Solutions for College Algebra 11th Us Edition by Sullivan

Page 1


Chapter R Review

Section R.1

1. rational

2. 4563430331 

3. Distributive

4. c

5. a

6. b

7. True

8. False;TheZero-ProductPropertystatesthatifa productequals0,thenatleastoneofthefactors mustequal0.

9. False;6istheGreatestCommonFactorof12 and18.TheLeastCommonMultipleisthe smallestvaluethatbothnumberswilldivide evenly.TheLCMfor12and18is36.

10. True

AB 

11.   1,3,4,5,92,4,6,7,8 1,2,3,4,5,6,7,8,9

12.   1,3,4,5,91,3,4,6 1,3,4,5,6,9 AC 

13.  1,3,4,5,92,4,6,7,84 AB

14.  1,3,4,5,91,3,4,61,3,4 AC

15.

ABC 

16.

ABC    

     ()

1,3,4,5,92,4,6,7,81,3,4,6 41,3,4,6 1,3,4,6

17.  0,2,6,7,8 A 

18.  0,2,5,7,8,9 C 

AB 

19.    1,3,4,5,92,4,6,7,8 40,1,2,3,5,6,7,8,9

BC 

20.    2,4,6,7,81,3,4,6 1,2,3,4,6,7,80,5,9

AB 

21.   0,2,6,7,80,1,3,5,9 0,1,2,3,5,6,7,8,9

BC 

22.   0,1,3,5,90,2,5,7,8,9 0,5,9

23. a.  2,5

b.  6,2,5

c.  1 6,,1.333...1.3,2,5 2 

d.  

e.  1 6,,1.333...1.3,,2,5 2  

  ()



1,3,4,5,92,4,6,7,81,3,4,6 1,2,3,4,5,6,7,8,91,3,4,6 1,3,4,6

  

24. a.  1

b.  0,1

c.  5,2.060606...2.06,1.25,0,1 3 

d.  5

e.  5,2.060606...2.06,1.25,0,1,5 3 

25. a.  1

b.  0,1

c.  1110,1,,,234

d. None

e.  1110,1,,,234

26. a. None

b.  1

c.  1.3,1.2,1.1,1

d. None

e.  1.3,1.2,1.1,1

27. a. None

b. None

c. None

d.  2,,21,1 2 

e.  2,,21,1 2 

28. a. None

b. None

c.  110.3 2 

d.  2,2   e.  1 2,2,10.3 2  

29. a. 18.953 b. 18.952

30. a. 25.861 b. 25.861

31. a. 28.653 b. 28.653

32. a. 99.052 b. 99.052

33. a. 0.063 b. 0.062

34. a. 0.054 b. 0.053

35. a. 9.999 b. 9.998

36. a. 1.001 b. 1.000

37. a. 0.429 b. 0.428

38. a. 0.556 b. 0.555

39. a. 34.733 b. 34.733

40. a. 16.200 b. 16.200

41. 325 

42. 5210 

43. 234 x 

44. 322 y 

45. 312 y 

46. 246 x 

47. 26 x 

48. 26 y 

49. 6 2 x 

50. 26 x 

51. 942527 

52. 643235 

53. 6436126 

54. 842880 

55. 185218108 

56. 1001021002080 

57. 4112113 333  

58. 21413 222 

21100374253 253253

73. 3215823 452020

74. 418311 3266

75. 74493281 875656

76. 81516135151 921818

77. 5110313 18123636 

2864046 1594545

79. 5825643913 241512012040

80. 32945 14214242

81. 32981 20156060

82. 6312153 35147070

83. 5 1852759359 1118119211 27

5 2153557557 2212732

85. 141741721 1 3721212121

86. 24122222222 35635323532315 25210210212 351515151515 43434 53535

87. 3323363623 2 4814848428 12312315 8888

88. 51351351351 3 62162322322 51514 2 2222

64624 xx

2 44 xxxx

2 43412 xxxx

2121323 333 3636332 3231 2 3322 x

2 2 24428 68 xxxxx

2 2 5155 65

xxxxx

2 2 927271863 21163

98.  2 2 3153155 3145   xxxxx xx

99.  2 2 822816 1016 xxxxx xx  

100.  2 2 42248 68 xxxxx xx  

101. 2 22 3(5)360 315360 1560 4     xxkxx xxkxx xkx k



 

102. 2 222 222 222 222 ()(3)412 33412 (3)3412 (3)3412 (2)3412 24 2

    xkxkxx xkxkxkxx xxkkkxx xxkkkxx xxkkxx k k

103.   2323 23 5 5 xxxx x x x  

104. 23421214  sincemultiplicationcomesbeforeadditioninthe orderofoperationsforrealnumbers.

2345420  sinceoperationsinsideparenthesescomebefore multiplicationintheorderofoperationsforreal numbers.

105.  23421224   23246848 

106. 4371 257    ,but 43453220626132.6 251010105  

107. Subtractionisnotcommutative;for example:231132 

108. Subtractionisnotassociative;for example:  52124521  .

109. Divisionisnotcommutative;forexample: 23 32  .

110. Divisionisnotassociative;for example:  1222623  ,but

122212112 

111. TheSymmetricPropertyimpliesthatif2= x, then x =2.

112. Fromthe principleofsubstitution, if5 x  ,then

113. Therearenorealnumbersthatarebothrational andirrational,sinceanirrationalnumber,by definition,isanumberthatcannotbeexpressed astheratiooftwointegers;thatis,notarational number

Everyrealnumberiseitherarationalnumberor anirrationalnumber,sincethedecimalformofa realnumbereitherinvolvesaninfinitely repeatingpatternofdigitsoraninfinite,nonrepeatingstringofdigits.

114. Thesumofanirrationalnumberandarational numbermustbeirrational.Otherwise,the irrationalnumberwouldthenbethedifferenceof tworationalnumbers,andthereforewouldhave toberational.

115. Answerswillvary.

116. Since1day=24hours,wecompute 12997541.5416 24 

Nowweonlyneedtoconsiderthedecimalpart oftheanswerintermsofa24hourday.Thatis,

0.54162413  hours.Soitmustbe13hours laterthan12noon,whichmakesthetime1AM CST.

117. Answerswillvary.

Section R.2

1. variable

2. origin

3. strict

4. base;exponent(orpower)

5. 31.234567810 

6. d

7. a

8. b

9. True

10. False;theabsolutevalueofarealnumberis nonnegative.00  whichisnotapositive number.

11. False;anumberinscientificnotationis expressedastheproductofanumber,x, 110 x  or101 x  ,andapowerof10.

12. True 13.

15. 10 2  16. 56  17. 12 18. 35 2  19. 3.14  20. 21.41 

21. 10.5 2  22. 10.33 3  23. 20.67 3  24. 10.25 4  25. 0 x 

26. 0 z  27. 2 x  28. 5 y 

29. 1 x 

30. 2 x 

31. Graphonthenumberline:2 x 

32. Graphonthenumberline:4 x

33. Graphonthenumberline:1 x 

34. Graphonthenumberline:7 x 

35. (,)(0,1)1011dCDd

36. (,)(0,3)3033dCAd

37. (,)(1,3)3122dDEd

38. (,)(0,3)3033dCEd

39. (,)(3,3)3(3)66dAEd

40. (,)(1,1)1122dDBd

41. 2223264xy

42. 33(2)3633 xy

43. 525(2)(3)230228 xy 

44. 22(2)(2)(3)462 xxy 

45. 2(2)4 24 2355 x xy 

46. 2311 2355 xy xy   

47. 323(2)2(3)6600 22355 xy y 

48. 2(2)343 237 333 x y 

49. 3(2)11 xy

50. 3(2)55 xy

51. 32325 xy

52. 32321 xy

53. 331 33 x x 

54. 221 22 y y 

55. 454(3)5(2) 1210 22 22 xy   

56. 323(3)2(2)9455 xy

57. 454(3)5(2) 1210 1210 2 2 xy

58. 323322 3322 94 13 xy

59. 21 x x

Part(c)mustbeexcluded.Thevalue0 x  must beexcludedfromthedomainbecauseitcauses divisionby0.

60. 21 x x 

Part(c)mustbeexcluded.Thevalue0 x  must beexcludedfromthedomainbecauseitcauses divisionby0.

61. 2(3)(3) 9 xx xxx  

Part(a),3 x  ,mustbeexcludedbecauseit causesthedenominatortobe0.

62. 29 x x 

Noneofthegivenvaluesareexcluded.The domainisallrealnumbers.

63. 2 21 x x 

Noneofthegivenvaluesareexcluded.The domainisallrealnumbers.

64. 33 2(1)(1) 1 xx xxx  

Parts(b)and(d)mustbeexcluded.Thevalues 1,and1xx mustbeexcludedfromthe domainbecausetheycausedivisionby0.

65. 22 3 510510 (1)(1) xxxx xxxxx   

Parts(b),(c),and(d)mustbeexcluded.The values0,1,and1 xxx mustbeexcluded fromthedomainbecausetheycausedivisionby 0.

66. 22 32 9191 (1) xxxx xxxx   

Part(c)mustbeexcluded.Thevalue0 x  must

beexcludedfromthedomainbecauseitcauses divisionby0.

67. 4 5 x 5 x  mustbeexludedbecauseitmakesthe denominatorequal0.

Domain5 xx 

68. 6 4 x  4 x  mustbeexcludedsineitmakesthe denominatorequal0.

 Domain4 xx 

69. 4 x x  4 x  mustbeexcludedsineitmakesthe denominatorequal0.

 Domain4 xx 

70. 2 6 x x 6 x  mustbeexcludedsineitmakesthe denominatorequal0.

Domain6 xx 

71. 555 (32)(3232)(0)0C 999 CF

72. 555 (32)(21232)(180)100C 999 CF

73. 555 (32)(7732)(45)25C 999 CF

74. 55(32)(432)99 5(36) 9 20C CF  

75. 2 (9)(9)(9)81 

76. 22 4(4)16

77. 2 2 411 416 

78. 2 2 411 416

79. 64642 2 333311 39

80. 23231 44444

131 33 44464

90.

33311333 3 y xyxyxy x

91. 25 235411 34  xyy xyxy xyx

92. 2 211231 23 1 xy xyxy xyxy 

93. 253533 37272 315732 221 2 2 (4)()16 (3)27 16 27 16 27 16 27

95. 22 2 33266 13222 3 2339 2 3224

122 2 24 1 x xy y

yxzyxz xyzxyz xyz xyz xz y 94. 21211 344 24111 621 62 4()4 28 4 8 1 2 1 2 xyzxyz xyxy xyz xyz xyz 

222221415 xy

222221414 xy

2 222124 xy

 2 222111 xy 103. 222xx 104.

2 2 xx 105.

222221415 xy 106. 2221213 xyxy 107. 211 2 y x 

114. 5 (3.7)693.440  115. 3 (6.1)0.004 

116. 5 (2.2)0.019  117. 6 (2.8)481.890 

118. 6 (2.8)481.890

119. 4 (8.11)0.000

120. 4 (8.11)0.000

121. 2 454.24.54210 

122. 132.143.21410 

123. 0.0131.3102  124. 0.004214.21103 

125. 432,1553.215510 

126. 4 21,2102.12110 

127. 0.0004234.23104 

128. 0.05145.14102 

129. 4 6.151061,500 

130. 3 9.7109700 

131. 3 1.214100.001214 

132. 4 9.88100.000988 

133. 8 1.110110,000,000 

134. 2 4.11210411.2 

135. 2 8.1100.081 

136. 1 6.453100.6453 

137. Alw 

138.  2 Plw 

139. Cd  

140. 1 2 Abh 

141. 32 4 Ax 

142. 3 Px 

143. 43 3 Vr  

144. 42Sr  

145. 3 Vx 

146. 62Sx 

147. a. If1000, x  40002 40002(1000) 40002000 $6000 Cx  

Thecostofproducing1000watchesis $6000.

b. If2000, x  40002 40002(2000) 40004000 $8000 Cx

Thecostofproducing2000watchesis $8000.

148. 210801202560325$98  Hisbalanceattheendofthemonthwas$98.

149. Wewantthedifferencebetween x and4tobeat least6units.Sincewedon’tcarewhetherthe valuefor x islargerorsmallerthan4,wetake theabsolutevalueofthedifference.Wewantthe inequalitytobenon-strictsincewearedealing withan‘atleast’situation.Thus,wehave 46 x 

150. Wewantthedifferencebetween x and2tobe morethan5units.Sincewedon’tcarewhether thevaluefor x islargerorsmallerthan2,we taketheabsolutevalueofthedifference.We wanttheinequalitytobestrictsinceweare dealingwitha‘morethan’situation.Thus,we have 25 x 

151. a. 110108110225 x  108voltsisacceptable.

b. 110104110665 x  104voltsis not acceptable.

152. a. 220214220668 x  214voltsisacceptable.

b. 22020922011118 x  209voltsis not acceptable.

153. a. 32.9993 0.001 0.0010.01 x    Aradiusof2.999centimetersisacceptable.

b. 32.893 0.11 0.110.01 x     Aradiusof2.89centimetersis not acceptable.

154. a. 98.69798.6 1.6 1.61.5 x    97˚Fisunhealthy.

b. 98.610098.6 1.4 1.41.5 x    100˚Fis not unhealthy.

155. ThedistancefromEarthtotheMoonisabout 8 410400,000,000  meters.

156. TheheightofMt.Everestisabout 388488.84810  meters.

157. Thewavelengthofvisiblelightisabout 7 5100.0000005  meters.

158. Thediameterofanatomisabout 10 1100.0000000001  meters.

159. Thediameterisabout2 0.04034.0310  inches.

160. Thetiniestmotorislessthan5 0.00004410  millimeterstall.

161.  5112 2 1.86106102.4103.6510

186,000606024365   1012 586.5696105.86569610  Thereareabout12 5.910  milesinonelightyear.

162. 7 2 5 93,000,0009.310510 186,0001.8610 500seconds8min.20sec.   

Ittakesabout8minutes20secondsforabeam oflighttoreachEarthfromtheSun.

163. 10.333333...0.333 3  1 3islargerbyapproximately0.0003333...

164. 2 30.666666...0.666  2 3islargerbyapproximately0.000666...

165. 61319 20 5.24106.51034.0610 3.40610 

166. 44 6 1010 5 1.62101.62100.3610 4.5 4.51010 3.610

167. No.Foranypositivenumber a,thevalue2 a is smallerandthereforecloserto0.

168. Wearegiventhat2110 x  .Thisimpliesthat 110 x  .Since103.162 x  and 3.142 x   ,thenumbercouldbe3.15or3.16 (whicharebetween1and10asrequired).The numbercouldalsobe3.14sincenumberssuchas 3.146whichliebetween  and10would equal3.14whentruncatedtotwodecimalplaces.

169. Answerswillvary.

170. Answerswillvary. 5<8isatruestatementbecause5isfurtherto theleftthan8onarealnumberline.

Section R.3

1. right;hypotenuse

2. 1 2 Abh  3. 2 Cr   4. similar 5. c 6. b 7. True.

8. True.222 68366410010 

9. False;thesurfaceareaofasphereofradius r is givenby2 4 Vr  

10. True.Thelengthsofthecorrespondingsidesare equal.

11. True.Twocorrespondinganglesareequal.

12. False.Thesidesarenotproportional.

13. 222 22 5,12, 512 25144 16913 ab cab c  







14. 222 22 6,8, 68 3664 10010 ab cab c     

15. 222 22 10,24, 1024 100576 67626 ab cab c 









16. 222 22 4,3, 43 169 255 ab cab c   





17. 222 22 7,24, 724 49576 62525 ab cab c 

18. 222 22 14,48, 1448 1962304 250050 ab cab c 

19. 222 534 25916 2525

Thegiventriangleisarighttriangle.The hypotenuseis5.

20. 222 1068 1003664 100100

Thegiventriangleisarighttriangle.The hypotenuseis10.

21. 222 645 361625 3641false  

Thegiventriangleisnotarighttriangle.

22. 222 322 944 98false 

Thegiventriangleisnotarighttriangle.

23. 222 25724 62549576 625625 

Thegiventriangleisarighttriangle.The hypotenuseis25.

24. 222 261024 676100576 676676   

Thegiventriangleisarighttriangle.The hypotenuseis26.

25. 222 634 36916 3625false   

Thegiventriangleisnotarighttriangle.

26. 222 754 492516 4941false    Thegiventriangleisnotarighttriangle.

27. 67422 in Alw

28. 94362 cm Alw

29. 112 22(14)(4)28in

Abh

30. 112 22(4)(9)18cmAbh

31. 222 (5)25m 22(5)10m Ar Cr 



32. 222 (2)4ft 22(2)4ft Ar Cr 



33. 6852403 ft Vlwh



 Slwlhwh

 

 2 222 268265285 966080

236ft

34. 9482883 in Vlwh

Slwlhwh    

 2 222 294298248 7214464 280in

35. 333 222 445005cm 333 445100cm

 Vr Sr



36. 333 222 44336f 33 44336ft



Vrt Sr



37. 223 (9)(8)648in Vrh

2 2 2 22 29298 162144

38. 223 (8)(9)576in Vrh

2 2 2 22 28289 128144

39. Thediameterofthecircleis2,soitsradiusis1. 22(1)squareunits Ar

40. Thediameterofthecircleis2,soitsradiusis1. 22 2(1)4squareunits A 

41. Thediameterofthecircleisthelengthofthe diagonalofthesquare.

222 22 44 8 822 222 22 d d d r

Theareaofthecircleis:

2222squareunits Ar

42. Thediameterofthecircleisthelengthofthe diagonalofthesquare. 222 22 44 8 822 222 22 d d d r

Theareais:

22 2224squareunits A

43. Sincethetrianglesaresimilar,thelengthsof correspondingsidesareproportional.Therefore, weget 8 42 82 4 4 x x x

Inaddition,correspondinganglesmusthavethe sameanglemeasure.Therefore,wehave 90 A  ,60 B  ,and30 C 

44. Sincethetrianglesaresimilar,thelengthsof correspondingsidesareproportional.Therefore, weget 6 1216 616 12 8 x x x   

Inaddition,correspondinganglesmusthavethe sameanglemeasure.Therefore,wehave 30 A  ,75 B  ,and75 C 

45. Sincethetrianglesaresimilar,thelengthsof correspondingsidesareproportional.Therefore, weget 30 2045 3045 20 135 or67.5 2 x x xx 

Inaddition,correspondinganglesmusthavethe sameanglemeasure.Therefore,wehave 60 A  ,95 B  ,and25 C 

46. Sincethetrianglesaresimilar,thelengthsof correspondingsidesareproportional.Therefore, weget 8 1050 850 10 40 x x x  

Inaddition,correspondinganglesmusthavethe sameanglemeasure.Therefore,wehave 50 A  ,125 B  ,and5 C  .

47. Thetotaldistancetraveledis4timesthe circumferenceofthewheel. TotalDistance44()416 64201.1inches16.8feet

48. Thedistancetraveledinonerevolutionisthe circumferenceofthedisk4  Thenumberofrevolutions= dist.traveled2051.6revolutions circumference4

49. Areaoftheborder=areaofEFGH–areaof ABCD222 1061003664ft

50. FG=4feet;BG=4feetandBC=10feet,so CG=6feet.TheareaofthetriangleCGFis: 12 2(4)(6)12ft

51. Areaofthewindow=areaoftherectangle+ areaofthesemicircle. 122 (6)(4)224230.28ft 2 A

Perimeterofthewindow=2heights+width+ one-halfthecircumference. 1 2(6)4(4)1242 2 16222.28feet P 

52. Areaofthedeck=areaofthepoolanddeck–areaofthepool. 22 22 (13)(10)169100 69ft216.77ft

Theamountoffenceisthecircumferenceofthe circlewithradius13feet. 2(13)26ft81.68ft

53. WecanformsimilartrianglesusingtheGreat Pyramid’sheight/shadowandThales’ height/shadow: h 126114 240 {{ 2 3

Thisallowsustowrite 2 2403 2240

TheheightoftheGreatPyramidis160paces.

54. Let x =theapproximatedistancefromSanJuan toHamiltonand y =theapproximatedistance fromHamiltontoFortLauderdale.Usingsimilar triangles,weget 1046

5853.5 104653.5 58 964.8 x x x

1046 5857 104657 58 1028.0 y y y

TheapproximatedistancebetweenSanJuanand Hamiltonis965milesandtheapproximate distancebetweenHamiltonandFortLauderdale is1028miles.

55. Convert20feettomiles,andsolvethe PythagoreanTheoremtofindthedistance:

201milefeet20feet0.003788miles 5280feet (39600.003788)396030 5.477miles

222sq.miles

56. Convert6feettomiles,andsolvethe PythagoreanTheoremtofindthedistance:

61mile feet6feet0.001136miles 5280feet (39600.001136)39609 3miles

222sq.miles

57. Convert100feettomiles,andsolvethe PythagoreanTheoremtofindthedistance: 1001milefeet100feet0.018939miles 5280feet 

222sq.miles (39600.018939)3960150 12.2miles

Convert150feettomiles,andsolvethe PythagoreanTheoremtofindthedistance: 1501milefeet150feet0.028409miles 5280feet 

222sq.miles (39600.028409)3960225 15.0miles

58. Given0,0andmnmn  , if2222 ,2and amnbmncmn  ,then

and  2 2224224 2 cmnmmnn

222,and abcabc representthesides ofarighttriangle.

Ifyoudoubletheradiusthevolumeis8times theoriginalvolume.

63. Let l= lengthoftherectangle and w =widthoftherectangle. Noticethat 22 ()() [()()][()()] (2)(2)44 lwlw lwlwlwlw lwlwA

Since2()0 lw ,thelargestareawilloccur when l–w =0or l=w;thatis,whenthe rectangleisasquare.But 1000222() 5002 250 lwlw lwl lw

Vrh So,

59. 2 2 3 (10)(4.5) 450ft

3 33 1ft7.48052galso 450ft7.48052gal/ft10,575gal

60. 3 2 2 10000(5.61458)56145.8ft 56145.8(25) 56145.828.6ft 625

61. 2 2 2 2 2 (2) 4 44

Ar Ar r rA

Ifyoudoubletheradius,theareaisfourtimes theoriginalarea.

Thelargestpossibleareais225062500  sqft. Acircularpoolwithcircumference=1000feet yieldstheequation:500 21000rr 

Theareaenclosedbythecircularpoolis: 22 22 50050079577.47ft Ar



Thus,acircularpoolwillenclosethemostarea.

64. Considerthediagramshowingthelighthouseat pointL,relativetothecenterofEarth,usingthe radiusofEarthas3960miles.LetPrefertothe furthestpointonthehorizonfromwhichthe lightisvisible.Notealsothat 362362feetmiles. 5280 

ApplythePythagoreanTheoremto CPL :

2 22 1 39603960362 5280 d 

2 22 1 22 1 362 5280 362 5280 39603960 3960396023.30mi. d d 

Therefore,thelightfromthelighthousecanbe seenatpointPonthehorizon,wherepointPis approximately23.30milesawayfromthe lighthouse.Brochureinformationisslightly overstated.

Verifytheshipinformation:

LetSrefertotheship’slocation,andlet x equal theheight,infeet,oftheship.

Weneed1240 dd

Since123.30miles d  weneed 24023.30=16.70miles. d 

ApplythePythagoreanTheoremto CPS :

396016.73960

222 22 22

396016.73960

396016.73960

Theshipwouldhavetobeatleast186feettallto seethelighthousefrom40milesaway.

Verifytheairplaneinformation:

LetArefertotheairplane’slocation.The distancefromtheplanetopointPis2 d Wewanttoshowthat12120 dd Assumethealtitudeoftheairplaneis 10,000feet=10000miles. 5280

ApplythePythagoreanTheoremto CPA :

2 22 2 3960396010000 5280 d

2 22 2 2 2 2 10000 39603960 5280 10000 39603960 5280 122.49miles. d d

    61Therefo re,1223.30122.49145.79120. dd

Thebrochureinformationisslightlyunderstated. Notethataplaneatanaltitudeof6233feet couldseethelighthousefrom120milesaway.

Section R.4

False;monomialscannothavenegativedegrees.

False;thedividend=(quotient)(divisor)+ remainder

9. 23 x Monomial;Variable: x ; Coefficient:2;Degree:3

10. 42 x Monomial;Variable: x ;Coefficient: –4;Degree:2

11. 81 8 x x  Notamonomial;whenwrittenin theform k ax ,thevariablehasanegative exponent.

12. 23 x Notamonomial;whenwritteninthe form k ax ,thevariablehasanegativeexponent.

13. 22 xy Monomial;Variables:,xy ; Coefficient:–2;Degree:3

14. 523 xy Monomial;Variables:,xy ; Coefficient:5;Degree:5

15. 81 8 x xy y  Notamonomial;whenwritten intheform nm axy ,theexponentonthevariable y isnegative.

16. 2 23 3 22 x xy y  Notamonomial;when writtenintheform nm axy ,theexponentonthe variable y isnegative.

17. 22 xy  Notamonomial;theexpression containsmorethanoneterm.Thisexpressionis abinomial.

18. 2 34 x  Notamonomial;theexpression containsmorethanoneterm.Thisexpressionis abinomial.

19. 2 35 x Polynomial;Degree:2

20. 14 x Polynomial;Degree:1

21. 5Polynomial;Degree:0

22. –πPolynomial;Degree:0

23. 325 x x Notapolynomial;thevariableinthe denominatorresultsinanexponentthatisnota nonnegativeinteger.

24. 32 x  Notapolynomial;thevariableinthe denominatorresultsinanexponentthatisnota nonnegativeinteger.

25. 3 22 y Polynomial;Degree:3

26. 102zz  Polynomial;Degree:2

27. 2 3 5 1 x x  Notapolynomial;thepolynomialin thedenominatorhasadegreegreaterthan0.

28. 3 2 321 1 xx xx   Notapolynomial;the polynomialinthedenominatorhasadegree greaterthan0.

29. 22 22 2 (68)(347) (3)(64)(87) 4215

 xxxx xxxx xx







30. 322 322 32 (32)(44) (3)(4)(24) 446 xxxx xxxx xxx





31. 322 322 (2510)(243) 2510243 xxxxx xxxxx 



 322 32 (22)(54)(103) 497 xxxxx xxx



32. 232 232 (34)(35) 3435 xxxxx xxxxx 



 322 32 (3)(3)(45) 449 xxxxx xxx





33.  53432 542 653 653 xxxxxx xxxx



34.  5232 532 108326 103106 xxxx xxx 



35. 22 22 2 (64)3(25) 646315 7311

 xxxx xxxx xx





36. 22 22 2 2(1)(52) 22252 73 xxxx xxxx xx

37. 3232 3232 32 6(3)4(23) 6618812 21818 xxxx xxxx xx

38. 323 323 8(431)6(482) 32248244812 xxxx xxxx

32 824484 xxx 

39.

40.

222 222 22351 22351 xxxxx xxxxx

2 246 xx 

222 222 1452 1452 xxxx xxxx 

2 26 xx

41.  22 22 2 75343 73521124 11359 

 yyy yyy yy

42.  323 323 8141 884444 yyyy yyyy 

 32 44412 yyy 

43. 22432 (25)25  xxxxxx

44. 23532 4(2)448 xxxxxx 

45. 2352 2(45)810 xxxx

46. 343 5(34)1520 xxxx 

47. 2 22 (1)(24) (24)1(24) xxx xxxxx   322 32 2424 324 xxxxx xxx 



48. 2 22 (23)(1) 2(1)3(1) xxx xxxxx   322 32 222333 23 xxxxx xxx  

49. 2 2 (2)(4)428 68 xxxxx xx  

50. 2 2 (3)(5)5315 815 xxxxx xx  

51. 2 2 (27)(5)271035 21735   xxxxx xx

52. 2 2 (31)(21)6321 651 xxxxx xx 



53. 2 2 (4)(2)248 28 xxxxx xx  

54. 2 2 (4)(2)248 28 xxxxx xx  

55. 2 2 (6)(3)6318 918   xxxxx xx

56. 2 2 (5)(1)55 65 xxxxx xx  

57. 2 2 (23)(2)2436 26 xxxxx xx  

58. 2 2 (24)(31)62124 6104 xxxxx xx  

59. 2 2 (34)(2)3468 3108   xxxxx xx

60. 2 2 (31)(1)331 341 xxxxx xx  

61. 2 2 (5)(27)210735 21735   xxxxx xx

62. 2 2 (23)(3)6293 239 xxxxx xx 

63. 22 22 (2)()22 2 xyxyxxyxyy xxyy 

64. 22 22 (23)()2233 23 xyxyxxyxyy

65. 22 22 (23)(32)6496 6136 xyxyxxyxyy xxyy  

66. 22 22 (3)(2)263 273 xyxyxxyxyy xxyy 

67. 222 (7)(7)749 xxxx 

68. 222 (1)(1)11 xxxx 

69. 222 (23)(23)(2)349 xxxx 

70. 222 (32)(32)(3)294 xxxx 

71. 2222 (4)244816 xxxxx 

72. 2222 (5)2551025 xxxxx 

73. 2222 (4)244816 xxxxx 

74. 2222 (5)2551025 xxxxx 

75. 222 (34)(34)(3)4916 xxxx 

76. 222 (53)(53)(5)3259 xxxx 

77. 222 2 (23)(2)2(2)(3)3 4129 xxx xx  

78. 222 2 (34)(3)2(3)(4)4 92416 xxx xx  

79.  2 222 ()()() xyxyxyxy 

80.  2 222(3)(3)()39 xyxyxyxy 

81.  2 222(3)(3)(3)9 xyxyxyxy 

82.  2 222(34)(34)(3)4916 xyxyxyxy 

83. 222()2 xyxxyy 

84. 222()2 xyxxyy 

85.    222 22 (2)222 44 xyxxyy xxyy  

86.  222 22 (23)22233 4129 xyxxyy xxyy  

87. 33223 32 (2)32322 6128 xxxx xxx 

88. 33223 32 (1)31311 331 xxxx xxx  

89. 33223 32 (21)(2)3(2)(1)3(2)11 81261 xxxx xxx 

90. 33223 32 (32)(3)3(3)(2)3(3)22 2754368 xxxx xxx  

91. 2 32 32 2 2 41123 2431 48 11 1122 231 2346 45 xx xxxx xx xx xx x x  

   2 322 32 Check: (2)(41123)(45) 411238224645 431 xxx xxxxx xxx    Thequotientis241123 xx ;theremainder is–45.

92. 2 32 32 2 2 3715 232 36 7 714 152 1530 32 xx xxxx xx xx xx x x      2 322 32

Check:

(2)(3715)(32) 37156143032 32 xxx xxxxx xxx  

Thequotientis23715 xx ;theremainderis –32.

93. 232 3 2 2 43 431 4 31 3 1 x xxxx x xx x x   

Check: ()(43)(1)431 xxxxxx  Thequotientis43 x ;theremainderis1 x 

232

94. 232 3 2 2 31 32 3 2 2 x xxxx x xx x x 

232 Check: ()(31)(2)32 xxxxxx 

Thequotientis31 x ;theremainderis2 x

95. 2 2432 42 2 2 513 25031 510 131 1326 27 x xxxxx xx xx x x    

Check:

  22 422 42 251327 510132627 531 xxx xxxx xxx  



Thequotientis2513 x ;theremainderis 27 x 

96. 2 2432 42 2 2 511 2502 510 112 1122 20 x xxxxx xx xx x x 

Check:

  22 422 42 251120 510112220 52 xxx xxxx xxx  



Thequotientis2511 x ;theremainderis 20 x 

97. 2 35432 52 2 2 2140031 42 1 x xxxxxx xx xx 

Check:  322 52252 2121 421431 xxxx xxxxxxx 



Thequotientis2 2 x ;theremainderis 21xx 

22 432322

42 Check: (1)(1)(22) 122 1 xxxxx xxxxxxxx x xx

Thequotientis22 xaxa  ;theremainderis0.

Thequotientis432234 xaxaxaxa  ;the remainderis0.

108. Theproducts()()  xyxy and()()  zwzw willeachresultinabinomialthatisthe differenceofsquares.Theproductofthose resultingbinomialswillhave4terms.

109. Whenwemultiplypolynomials  1 px and  2 px ,eachtermof  1 px willbemultiplied byeachtermof  2 px .Sowhenthehighestpoweredtermof  1 px multipliesbythehighest poweredtermof  2 px ,theexponentsonthe variablesinthosetermswilladdaccordingtothe basicrulesofexponents.Therefore,thehighest poweredtermoftheproductpolynomialwill havedegreeequaltothesumofthedegreesof  1 px and  2 px .

110. Whenweaddtwopolynomials  1 px and  2 px ,wherethedegreeof  1 px  thedegree of  2 px ,eachtermof  1 px willbeaddedto eachtermof   2 px .Sinceonlythetermswith equaldegreeswillcombineviaaddition,the degreeofthesumpolynomialwillbethedegree ofthehighestpoweredtermoverall,thatis,the degreeofthepolynomialthathadthehigher degree.

111. Whenweaddtwopolynomials  1 px and  2 px ,wherethedegreeof  1 px =thedegree of  2 px ,thenewpolynomialwillhavedegree  thedegreeof  1 px and  2 px .

112. Answerswillvary.

113. Answerswillvary.

Section R.5

1.  322 xxx

2. prime

3. c 4. b

5. d

6. c

7. True;24 x  isprimeoverthesetofreal numbers.

8. False;  322 3264322 xxxxx 

9. 363(2) xx

10. 7147(2) xx

11. 22(1)axaax

12. (1)axaax

13. 322(1)xxxxxx 

14. 322(1)xxxxxx 

15. 2 222(1) xxxx 16. 2 333(1) xxxx

17. 22 36123(24) xyxyxyxyxy 

18. 2232 60487212(546) xyxyxyxyxyx 

19. 22211(1)(1)xxxx 

20. 22242(2)(2)xxxx 

21. 222 41(2)1(21)(21) xxxx 

22. 222 91(3)1(31)(31) xxxx 

23. 222164(4)(4)xxxx 

24. 222255(5)(5)xxxx 

25. 2 254(52)(52) xxx 

26. 22 3699419(21)(21) xxxx 

27. 22 21(1)xxx

28. 22 44(2)xxx

29. 22 44(2)xxx

30. 22 21(1)xxx

31. 22 1025(5)xxx

32. 22 1025(5)xxx

33. 22 441(21) xxx

34. 22 961(31) xxx

35. 22 1681(41) xxx

36. 22 25101(51) xxx

37. 3332273(3)(39)xxxxx 

38. 33321255(5)(525)xxxxx 

39. 3332273(3)(39)xxxxx 



40.   333 2 2 2783(2) (32)(964) 23469 xx xxx xxx

 

41. 333 2 827(2)3 (23)(469) xx xxx  

42.   333 2 2 64274(3) (43)(16129) 3491216 xx xxx xxx



 

43. 256(2)(3) xxxx 

44. 268(2)(4) xxxx 

45. 276(6)(1) xxxx 

46. 298(8)(1) xxxx 

47. 2710(2)(5) xxxx 

48. 21110(10)(1) xxxx 

49. 21016(2)(8) xxxx 

50. 21716(16)(1) xxxx 

51. 278(1)(8) xxxx 

52. 228(2)(4) xxxx 

53. 278(8)(1) xxxx 

54. 228(4)(2) xxxx 

55. 2 24362(2)3(2) (2)(23) xxxxxx xx  

56. 2 33223(1)2(1) (1)(32) xxxxxx xx  

57. 2 51535(3)1(3) (3)(51)   xxxxxx xx

58. 2 3623(2)1(2) (2)(31) xxxxxx xx  

59. 2 6218283(27)4(27) (27)(34)   xxxxxx xx

60.  

2 9632332132 3231 xxxxxx xx 



61. 2 341(31)(1) xxxx 

62. 2 231(21)(1) xxxx 

63. 2 297(27)(1)  zzzz

64. 2 651(31)(21) zzzz 

65. 2 568(54)(2)  xxxx

66. 2 3108(34)(2) xxxx 

67. 2 568(54)(2)  xxxx

68. 2 3108(34)(2) xxxx 

69. 2 5228(52)(4)  xxxx

70. 2 3148(32)(4) xxxx 

71. 2 5188(52)(4)  xxxx

72. 2 3108(32)(4) xxxx 

73. Since b is10thenweneedhalfof10squaredto bethelastterminourtrinomial.Thus

12 2 22 (10)5;(5)25 1025(5)xxx

74. Since b is14thenweneedhalfof14squaredto bethelastterminourtrinomial.Thus

12 2 22 (14)7;(7)49 1449(7)ppp

75. Since b is-6thenweneedhalfof-6squaredto bethelastterminourtrinomial.Thus

12 2 22 (6)3;(3)9 69(3)yyy 



76. Since b is-4thenweneedhalfof-4squaredto bethelastterminourtrinomial.Thus 12 2 22 (4)2;(2)4 44(2)xxx

77. Since b is12thenweneedhalfof12squared tobethelastterminourtrinomial.Thus 2 11111 224416 22 111 2164 ();() ()xxx

78. Since b is13thenweneedhalfof13squaredto bethelastterminourtrinomial.Thus 2 11111 236636 22 111 3366 ();() ()xxx  

79. 236(6)(6) xxx

80. 29(3)(3) xxx

81.  22 282(14)21212 xxxx 

82.  22 3273(19)31313 xxxx 

83. 21110(1)(10) xxxx 

84. 254(4)(1) xxxx 

85.  2102173 xxxx 

86. 268(2)(4) xxxx 

87. 22 4832428 xxxx 

88. 22 31215345 xxxx 

89. 2416xx isprimeovertherealsbecause therearenofactorsof16whosesumis4.

90. 22 1236(6)xxx

91. 22 152(215)(5)(3) xxxxxx 

92. 22 146(614) xxxx  isprimeoverthe integersbecausetherearenofactorsof–14 whosesumis–6.

93. 22 312363(412) 3(6)(2) xxxx xx

94. 322820(820) (10)(2) xxxxxx xxx

95. 43222 2 1130(1130) (5)(6) yyyyyy yyy

96. 322 318483(616) 3(2)(8) yyyyyy yyy 

97. 22 4129(23) xxx

98. 22 9124(32) xxx

99.

22 6822341 2311 xxxx xx

100.

22 8622431 2411 xxxx xx

101.  2 42222 2 819(9)(9) (3)(3)(9) xxxx xxx

102.  2 42222 2 11(1)(1) (1)(1)(1) xxxx xxx 

103. 6332 22 222 21(1) (1)(1) (1)(1) xxx xxx xxx 

104. 6332 22 222 21(1) (1)(1) (1)(1) xxx xxx xxx    

105. 75525(1)(1)(1)xxxxxxx 

106. 855352(1)(1)(1)xxxxxxxx 

107.  22 1624943 xxx

108.  22 9241634 xxx

109. 22 51616(16165) (45)(41) xxxx xx  

110. 22 51116(16115) (165)(1) xxxx xx  

111. 2 41615(25)(23) yyyy 

112. 2 994(34)(31) yyyy 

113. 2442 22 2 189(981) (91)(1) (31)(31)(1) xxxx xx xxx   



114. 2442 22 2 41482(472) 2(41)(2) 2(21)(21)(2) xxxx xx xxx





115. (3)6(3)(3)(6) xxxxx 

116. 5(37)(37)(37)(5) xxxxx 

117.

118.

  2 (2)5(2)(2)(2)5 (2)(3) xxxx xx  

  2 (1)2(1)(1)(1)2 (1)(3) xxxx xx 



119. 



 

 3 33 2 2 2 3227 323 323323329 359124969 35937 x x xxx xxxx xxx  

120.

121.

3 33 2 2 2 511 511 511511511 525101511 525153 x x xxx xxxx xxx

2 2 3102545 3545 5354 53154 5311

2 2 76953 7353 3735 37215 3716 xxx xx xx xx xx

123.

124.

322 2 22(2)12 (2)(1) (2)(1)(1) xxxxxx xx xxx 

322 2 33(3)13 (3)(1) (3)(1)(1) xxxxxx xx xxx

125.  433 3 2 1(1)11 (1)(1) (1)(1)(1) xxxxxx xx xxxx



126.  433 3 2 22 1(1)11 (1)(1) (1)(1)(1) (1)(1) xxxxxx xx xxxx xxx

  



127.     2 234232343 23434233 2343469 234913 xxx xxx xxx xx

128.     2 521562212 21521564 211052024 213019 xxx xxx

129.    2 2252225 225 235 xxxxxx xxx xx

130.

232 2 2 38383838 2498 329 xxxxxx xxx xx

132.

322 2 2 2 2 232332 322233 322439 3255 5321 xxxx xxxx xxxx xxx xxx





 

324 3 3 3 3 3 451521 251215 251225 25133 23511 6511 xxxx xxxx xxxx xxx xxx xxx

2 432434 43438 43438 43123 34341 xxx xxx xxx xx

134. 

2 23 2 2 2 3342343 334342 334342 33454 xxxx xxxx xxxx

135.

136.   

 223 2 2 2 345451452515 24551651545 245513062025 245515031 xxxx xxxx xxxx xxx  

137. Thepossiblefactorizationsare  2 1454xxxx  or  2 2244xxxx  ,noneofwhich equals24 x 

138. Thepossibilefactorizationsare  22 121xxx  ,neitherofwhichequals

21xx

139. Answerswillvary.

140. Answerswillvary.

Section R.6

1. quotient;divisor;remainder 2. 32051

3. d 4. a 5. True

6. True

7. 217510 21010 1550

Quotient:255 xx

Remainder:0

8. 11231 114 1145

Quotient:24 xx

Remainder:5

9. 33213 93396 3113299

Quotient:231132 xx

Remainder:99

10. 24211 82042 4102143

Quotient:241021 xx 

Remainder:43

11. 3104010 391545138 1351546138

Quotient:432351546

Remainder:138 xxxx 

12. 210102 241020 1251022

Quotient:322510xxx Remainder:22

13. 14030105 441122 4411227

Quotient:54324422 Remainder:7 xxxxx 

14. 11050010 11666 1166616

Quotient:432666xxxx Remainder:–16

15. 1.10.100.20

0.110.1210.3531

0.10.110.3210.3531

Quotient:20.10.110.321 xx Remainder:–0.3531

16. 2.10.100.2

0.210.441

0.10.210.241

Quotient:0.10.21 x Remainder:0.241

17. 21000032 2481632 1248160

Quotient:43224816xxxx Remainder:0

18. 1100001 11111 111110

Quotient:4321 xxxx Remainder:0

19. 24384 8104 4528

Remainder=8≠0.Therefore,2 x isnota factorof324384 xxx .

20. 34508 1251153 41751161

Remainder=161≠0.Therefore,3 x  isnota factorof32458 xx 

21. 3260721 60021 20070

Remainder=0.Therefore,3 x isafactorof 43 26721 xxx

22. 2401504 81624 48120

Remainder=0.Therefore,2 x isafactorof 42 4154 xx

23. 2500430024 10204061224 3102036120

Remainder=0.Therefore,3 x  isafactorof 63 54324 xx

24. 320180109 6180039 2600130

Remainder=0.Therefore,2  x isafactorof 642 2189 xxx

25. 410161019 4160416 140143

Remainder=1≠0.Therefore,4  x isnota factorof5321619xxx .

26. 4101601016 41600416 1400140

Remainder=0.Therefore,4 x  isafactor 6421616xxx

27. 131062 3 1002 30060

Remainder=0;therefore1 3 x isafactorof 43 362 xxx

28. 131031 3 1001 30032

Remainder=20  ;therefore1 3 x  isnota factorof43331 xxx

29. 21235 2822 141117 32 2 23517 411 22 xxx xx xx 

 1411179 abcd

30. 23 23 2 1322 3 130 hhhhh hhhh hh 322 3  xxhxh isthequotientand0isthe remainder.

31. 234 233 23 1334 254 12540 yyyyy yyyy yyy

Yes,  xy isafactorof 432234 334  xxyxyxyy .

32. Answerswillvary.

Section R.7

1. lowestterms

2. LeastCommonMultiple

3. d

4. a

5. True; 113 33 115 55 355(3) 353(5)       x xx x xx xxx xxx

6. False;    322 433 3 2623 64232 2332 xxxx xxxx LCMxxx   

7. 2 3(3) 393 9(3)(3)3 xx xxxx    

8. 24(2)48 122412(2)3 xxxxx xx    

9. 2(2) 2 363(2)3 xxxxx xx 

10. 2 22 3(58) 152458 33 xx xxx xxx   

11. 22 2 24244 1266(21)21 xxx xxxxx 

12.  2 2 (2)2 442 4(2)(2)2 xx xxx xxxx    

15. 2 2 (6)(2) 4126 44(2)(2)2

16. 2 2 (1) 2(2)(1)22 xxxxxx xxxxxx

254 20 42 54 14 5

18. 2(21)(3) 253(3)3 121(21) xxxx xx xx

19. 222 363(2) 545(2)(2) 3 5(2) x xxx xxxxx xx

20. 2 333 261022(35)4(35) xxx xxxx

23 2 22 2 2 464 162 44416 (4)(4)2 224416 244 2416 4 xx xx xxxx xxx xxxxx xxx xxx

26.

xxxx xxxx xxxx xxxx x x

22 22 625 45215 2355 5153 235 513 xxx xxxx xxxx xxxx xxx xxx

27. 2 2 6 4624 3939 4 24 62(2) (2)(2)3(3) 4 (2)(3) x xxx xx x x xx xxx x xx

32. 3 22 3 3 339 3 99 9 x xxx x xx x 

33. 2 222 222 2 2 2 712 71271212 1271212 12 (3)(4)(4)(3) (3)(4)(4)(3) (3) (3) xx xxxxxx xxxxxx xx xxxx xxxx x x

 34. 2 222 222 2 76 67656 56656 56 (6)(1)(2)(3) (3)(2)(6)(1) (1)(2) (2)(1) xx xxxxxx xxxxxx xx xxxx xxxx xx xx

    35. 2 222 222 2 576 23557621320 1514323515143 21320 (53)(2)(25)(4) (1)(25)(53)(31) (2)(4) (1)(31)



  xx xxxxxx xxxxxx xx xxxx xxxx xx xx

36.

(32)(41)(31)(31) (41)(23) (41)(31)

43. 3524(35)(24) 212121 3524 21 9 21 xxxx

44. 541(54)(1) 343434 541 34 45 34

666 11111

47. 737(1)3(3) 31(3)(1)(1)(3) 7739 (1)(3) 416 (1)(3) 4(4) (1)(3)

48. 252(5)5(5) 55(5)(5)(5)(5) 210525 (5)(5) 335 (5)(5) 335 (5)(5) xx xxxxxx xx xx x xx x xx

49. 22 2 23(1)(23)(1) 11(1)(1)(1)(1) 23 (1)(1) 323 (1)(1) xxxxxx xxxxxx xxxx xx xx xx

50.

22 2 323(3)2(4) 43(4)(3)(4)(3) 3928 (4)(3) 5 (4)(3) 51 (4)(3) xxxxxx xxxxxx xxxx xx xx xx xx xx

51. 22 22 34(3)(2)(4)(2) 22(2)(2)(2)(2) 56(68) (2)(2) 5668 (2)(2) 112(112) or (2)(2)(2)(2) xxxxxx xxxxxx xxxx xx xxxx xx xx xxxx

52.

55.  2422 xxx

2212 xxxx  Therefore,

56.  21234 xxxx 

281644 xxxx  Therefore,  LCM342 xx  .

57.   32111 xxxxxxx 

21 xxxx

Therefore,  LCM11 xxx  .

58.   22 32739333 xxxx   2 215253 xxxx 

Therefore,  LCM32533 xxx  . 59.

322 44441 2121 xxxxxx xxx     322 3 221 xxxx x  Therefore,  32LCM21 xx  .

60. 3 x

 2 32 33 9933 xxxx xxxxxxx   Therefore,  LCM33 xxx  .

61.   32111 xxxxxxx 



 3222 32 2211 111 xxxxxxxx xxxx  

Therefore,  22 LCM111 xxxxx 

62.  22 442xxx   322 3 22 2 xxxx x   Therefore,  23LCM2 xx  .

63. 22 22 76224 (6)(1)(6)(4) (4)(1) (6)(1)(4)(6)(4)(1) 45 (6)(4)(1)(6)(4)(1) xx xxxx xx xxxx xxxx xxxxxx xxxxx xxxxxx 

64. 2 22 1 3524 1 (3)(3)(8) (8)1 (3)(8)(3)(8) 8171 (3)(8)(3)(8) xx xxx xx xxx xxx xxxx xxxxx xxxx    

65. 22 42 46 42 (2)(2)(3)(2) x xxx x xxxx

2 2 2 4(3)2(2) (2)(2)(3)(3)(2)(2) 41224 (2)(2)(3) 4104 (2)(2)(3) 2(252) (2)(2)(3) xxx xxxxxx xxx xxx xx xxx xx xxx

66. 22 2 2 2 2 2 3434 1(1)21(1) 3(1)4 (1)(1)(1) 334 (1) 344 (1) xxxx xxxxx xxx xxx xxx x xx x

22 22 22 22 32 1111 3121 11 3322 11 51 11 xxxx xx xx xx xx x

68.

22 26 2121xxxx

69. 22 22 2 423 228 423 (2)(1)(4)(2) (4)(4)(23)(1) (2)(1)(4)(4)(2)(1) 816(253) (2)(1)(4) 313 (2)(1)(4) xx xxxx xx xxxx xxxx xxxxxx xxxx xxx xx xxx

70. 22 232 87(1) xx xxx 2 2 22 2 2 2 232 (1)(7)(1) (23)(1)(2)(7) (1)(7)(1)(1)(7) 23(514) (1)(7) 611 (1)(7) xx xxx xxxx xxxxx xxxx xx xx xx

71. 232 123 xxxxx

2 2 22 2 32 2 32 2 123 11 112131 11 12233 11 253 11 243 11 xxxxx xxxxxx xxx xxxxx xxx xxxx xxx xxx xxx

73. 111111() ()() 1 () () 1 () xxh hxhxhxhxxxh xxh hxxh h hxxh xxh

74. 22 111 () hxhx

22 2222 222 22 2 22 22 22 22 111() ()() 1(2) () 2 () (2) () 2 () 2 () xxh hxhxxxh xxxhh hxxh xhh hxxh hxh hxxh xh xxh xh xxh

78. 2 11 1111 1 21211 1 11 (1) xxx xxxx xxxx xxxx x xx x x

79. 43 21 1 xx xx x

22 2 (4)(1)(3)(2) (2)(1)(1)(2) 1 54(56) (2)(1) 1 1021 (2)(1)1 2(51) (2)(1) xxxx xxxx x xxxx xx x x xxx x xx

80. 2 12 3 xx xx x 

22 (2)(2)(1) (1)(2)(2)(1) 3 44() (2)(1) 3 541 (2)(1)3 54 (2)(1)(3) 54 (2)(1)(3) xxxx xxxx x xxxx xx x x xxx x xxx x xxx

81. 21 21 23 1 xx xx xx xx

2 22 22 2 2 2 (2)(1)(1)(2) (2)(1)(1)(2) (23)(1) (1)()(1) 22 (2)(1) (23) (1) 24 (2)(1) 3 (1) 2(2)( (2)(1) xxxx xxxx xxx xxxx xxxx xx xxx xx x xx xx xx xxx xx

2 2 2 2 2 1) (3) 2(2) (2)(3) 2(2) (2)(3) xx xx xxx xx xxx

82. 22 25 3 (1) 33 xx xx xx xx

 22 22 3232 2 2 2 (25)(3)() (3)(3) (3)(3)(1) (3)(3)(3)(3) 215 (3) 3(53) (3)(3) 15 (3) 453 (3)(3) 15( (3) xxxx xxxx xxxx xxxx xxx xx xxxxx xx xx xx xx xx xxx xx

2 2 2 3)(3) 453 (15)(3) (453) x xx xxx xxx  

83. 1111 111 1 1 1 1 1 1 x xx x x xx x x

84. 111111 1111 111 1111 1 1 xx xxx xx xx xx x x

2 7121 236 (3)7(2)121 3714121 (7)314121 712 5

11 111 1111 121 11 2,1,1 x xx xx xxx xx abc

111111 121121 111 21132 2121 3,2,1 x xx x x xxx xx abc

1121111 132132 1121 11

322153 3232 5,3,2 x xx x x xxx xx abc

Ifwecontinuethisprocess,thevaluesof a, b and c producethefollowingsequences: :1,2,3,5,8,13,21,.... :1,1,2,3,5,8,13,21,..... :0,1,1,2,3,5,8,13,21,..... a b c Ineachcasewehavea Fibonaccisequence, wherethenextvalueinthelistisobtainedfrom thesumoftheprevious2valuesinthelist.

21. 33433882 xxxxx

22. 3335322 19264343  xxxxx 23. 444 24381333

24. 44544 4816323 xxxxx

44 41283232 4 xyxyxy  26.

5 5105252 5 xyxyxy 

27. 97 44842 3 xy xyxy xy 

28. 23 33 42333 3111 81273 27 xy xyxx x 

29. 648  xx

30. 542933 xxxxx 

31.

 444491223 4 234 16223 32 xyxxy xyx   32.

33314103243 3 432 3 405(2) 25 xyxxyy xyxy

33. 222 1557525353  xxxxxxxx

34. 34252010010 xxxx  35. 

 22233 32333 5959 59581533153 

 44433 34233 310310 310331003003

37.   3622612643123 

51.

445444 44 44 3221622 222 22or22 xxxxx xxx xxxx

32 8350423252 22152 2152 xxxxx xxx xx

52.

39425920 920 xyyxyy xy

53.

54.

4433 3 3333 3 333 3 33 163252 823252 223252 2352 52or52 xyxxyxy xxyxxyyxy xxyxxyyxy xxyxy xyxyxyxy

2233 3 8258852 852 5 xyxyxyxyxyxy xy xy 

55. 1122 2222

56. 22323 3333

57. 33515 5555

58. 333266 822222224

59.

60.

3352 525252 352 252 352536 or 2323

2272 727272 272 74 2721422 or 33

61. 2525235 235235235 4256515 445 19858519 4141

62. 3131233 233233233 623333953 1293

63. 5521 212121 525525 21

64. 3354 545454 35123512 51611 3512 11

65. 33 333 55454 2242

66. 33 333 22323 9933

2 2 2 2 22 xhxxhxxhx xhxxhxxhx xhxxhx xhx xhxxhx xhx xhxxh h

22 22 22 2 2 22 2 xhxhxhxh xhxhxhxh xhxhxhxh xhxh xhxhxh xhxh xxh h xxh h

111111111 22111 11110 21112111 5 111

615615615 1515615 6159 901531015 93 3105105

72.

80. 3 3/43 4 161628 

3/2 3/233 41111 428 4 

3/2 3/233 161111 16464 16

3/2333 33 9933 882222 2727272 8221621622 272

2 2/32 3 272739 8824

1/31/31/3 36362 xyxyxy

3/43/43/4 484836 xyxyxy

1/32/31/32/3 1/32/3 2222

2/32/32/32/3

2/31/32/34/3 2/32/3

3/43/43/421/33/421/3

1/41/4 21/42 433/21/4

1/41/2

33/21/41/41/2 5/43/4 5/4 3/4 1616 16 2 8 8 xyxy xyxy xy xy xy xy x y  

3/23/23/211/33/211/3

3/23/23/2

33/21/2

3/23/2

33/23/21/23/2 31 3 44 4 2 8 8 xyxy xyxy xy xy xy xy xy 

2/32/32/31/34/32/3

2/312/3 xyxyxyxy xyxy xyxy xy xy xyxy

1/41/21/21/2 221/41/422

3/43/4 223/4

1/41/4

3/23/4

1/413/21/413/4

1/2 1/41/2 1/4 xyxyxyxy xyxy xyxy xy xy y xy x

1/21/2 1/2 1/21/2 1/2 1/2 1/2 211 21 (1)(1) 21 (1) 22 (1) 32 (1) xxxx x xx xx x xx x x x   

102. 1/21/2 1/2 1/21/2 1/21/2 112 22 1231 22 xxxx x xx xxx xx

1/32/3 1 11,1 3 xxxx

106.

33 2233 8121 3,2,8 22481 xx xx xx

24281 8812 24281 88+12 24281 6482 24281 656 24281 xxxx xx xx xx xx xx xx xx x xx

112.

21/2 2 21/2 2 1 1 ,1or1 x x x xx x 

1/21/2222 21/2 2 1/21/2222 21/22 11 1 111 1 xxx x x xxx xx

 22 21/22 22 21/22 221/2 11 1 11 1 1 1 xx xx xx xx xx

1/21/2222 2 44 4 xxx x  

21/22 21/2 2 1/21/2 222 21/2 2 1/21/2 222 21/22 22 1/223/222 4 4 4 44 4 4 441 44 414 4 44 x x x x xxx x x xxx xx xx x xx

119.



120.

1/223/21/2 1/22 1/22 1/2 688 23()44 234 2(34)(1) xxxxx xxxx xxx xxx 

1/23/2 1/2 1/2 6238 23(23)4 2109 xxx xxx xx

4/31/322 1/3 222 1/3 222 1/3 22 34442 4348 43128 41112 xxxx xxx xxx xx

4/31/3 2 1/3 1/3 234434 234342 23454 xxxx xxxx xxx 

121.

1/33/24/31/2 4352333523 xxxx 

1/31/2 1/31/2 1/31/2 3523423335 3523812915 35231727 xxxx xxxx xxx

3 where 2 x 

136. 161222 3222 24.44seconds T 

137. 314313 334312 134431

Thequotientis2(34)43 xx Theremainderis1

138. 1219137 126727 1387720

Yes,12  isafactorof329137xxx

139. Answersmayvary.Onepossibilityfollows:If 5 a  ,then  225255 aa  Sinceweusetheprincipalsquareroot,whichis alwaysnon-negative, 2if0 if0 aa a aa 

whichisthedefinitionof a ,so 2 aa 

SectionR.8: nth Roots; Rational Exponents

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.