Solutions for Beginning And Intermediate Algebra And College Algebra 1st Us Edition by Lial

Page 1


Chapter 1

EQUATIONS AND INEQUALITIES

Section 1.1 Linear Equations

1. Anequationisastatementthattwo expressionsareequal.

2. Tosolveanequationmeanstofindall numbersthatmaketheequationatrue statement.

3. Alinearequationisafirst-degreeequation becausethegreatestdegreeofthevariableis 1.

4. Anidentityisanequationsatisfiedbyevery numberthatisameaningfulreplacementfor thevariable.

5. Acontradictionisanequationthathasno solution.

6. True.Replacing x with8in253 xx yieldsatruestatement.Therefore,thegiven statementistrue.

7. True.Theleftsidecanbewrittenas

5858558 540540,

whichisthesameastherightside.Therefore, thestatementisanidentity.

8. False.If x =0,thentheequationistrue.A contradictionisfalseforallvaluesof x

9. False.Solvingtheliteralequation 1 2 Abh  for h gives 1 2 2 2 Abh Abh A h b   

10. Bcannotbewrittenintheform0. axb Acanbewrittenas1570or x 

 1570, x  Ccanbewrittenas 20or200, xx andDcanbewrittenas 0.040.40or x    0.040.40. x 

11. 5434 244 284 xx x xx  

 Solutionset:  4

12. 91171 2111 2105 xx x xx  

 Solutionset:  5

13.     63181014 18681014 1862210 28622 28281 xx xx xx x xx 

 Solutionset:  1

14. 

  421624 84624 84102 4106 661 xx xx xx x xx      Solutionset:  1

15. 545 2 633 545 626 633 512810 7810 2 72 7 xx xx xx x xx

    

 



Solutionset:  2 7

16. 7134 4525 7134 2020 4525 3543016 4516 5 512 12 xx xx xx xx xx        

Solutionset:  5 12

17.

 355167 355567 267 77 87 88 xxx xxx xx xx

Solutionset:  7 8

18.

5343242 51543242 91226 11126 66 116 1111 xxx xxx xx x xx

Solutionset:

6 11

19.

242322 242322 2122 2222 242 44 1 xxx xxx xx xx x x x

Solutionset:{1}

20.

21.

Solutionset:{2}

110 32 1410 110 703270 1410 532710 1510770 81070 88010 x x x x xx xx x xx

Solutionset:{10}

22.

12 25 159 12 452545 159 32552 615510 15105 x x x x xx xx xx

Solutionset:{5}

23.  0.20.50.17 100.20.5100.17 2570 570 75 xx xx xx x x      Solutionset:{75}

24.  0.013.12.032.96 1000.013.11002.032.96 310203296 310202296 6062023 xx xx xx x xx      Solutionset:  3

25.

  4268524 8248624 24624 060 xxxx xxx x xx  

  Solutionset:  0

26.     8346484 243264324 1832832 322632 0260 xxxx xxxx xx x xx    



Solutionset:  0

27.  4 0.510 3 14 10 23 14 6610 23 38660 11660 56012 xxx xxx xxx xxx xx xx





      Solutionset:  12

28.

 2 0.252 3 21 2 34 21 12122 34 831224 111224 2424 xxx xxx xxx xxx xx xx





  

  

Solutionset:  24

29.

30.

Solutionset:  50

Solutionset:  20

31. 

427222322 82822266 828828 282800 xxx xxx xx

32.  1 620423 2 310426 310310 101000 xxx xxx xx

identity;  allrealnumbers

33.   28316 216316 16160 xx xx xx

conditionalequation;  0

34. 

85858 8408540 8401340 54040 50 0 xxx xxx xx x x x

conditionalequation;{0}

35.   

 4721221 42822422 428426 2826 xxx xxx xx

  contradiction; 

36.

   contradiction; 

  62134151 126312151 156151 61 xxx xxx xx

  0.320.520.20.4 100.320.52100.20.4 325224 3651024 2424 00 xxx xxx xxx xxx xx  

100.650.86100.21.8 6586218 630848218 218218 00 xxx xxx xxx xxx xx

39. Vlwh Vlwh whwh lV wh

41. Pabc Pabc cPab

42. 22 22 22 22 2 22 Plw Plw Plw PlP wl

43. 

 1 2 1 22 2 2 2 2 2 22 hBb hBb hBb Bhbh bhBh bhBh hh bh Bb hh

49.

51.    3 33 33 33 3 3 3 3 axbxa axbxa abxax abax ab x a ab x a

53.

52.  43 43 43 43 43 aaxbbx abbxax abbax ab x ba ab x ba

2 2 2 2 2 3 1 113 1 33 33 331 33 1 33 1 x ax a x aaax a xaxaax aaxaxx aaax a x aa a x aa

55.

xaa aa x aa

22 22 2 2 32 32 2 3 axxa axa a x a 

56.

22 22 22 22 22 axbbxa abbxax abbax ab x ba ab x ba

3214 3284 425 425 4 25 4 25 xxm xxmxm mxmx mmx m x m m x m

58.

59. (a) Here, r =0.04, P =3150,and 61(year).

Theinterestis$63.

(b) TheamountMiguelmustpayJulioatthe endofthesixmonthsis

$3150+$63=$3213.

60. (a) Here, r =0.055, P =30,900,and 183(year). 122 t

Shemustpaythebank $30,900+$2549.25=$33,449.25.

(b) Theinterestis$2549.25.

61. 9 32 5 9 2032363268 5 FC F

Therefore,20°C=68°F.

62. 9 32 5 9 2003236032392 5 FC F

Therefore,200°C=392°F.

63.

5 32 9 55 50321810 99 CF C

Therefore,50°F=10°C.

64. 

5 32 9 55 77324525 99 CF C 

Therefore,77°F=25°C.

65.   5 32 9 55 100326837.8 99 CF C   Therefore,100°F  37.8°C.

66.   5 32 9 55 35032318176.7 99 CF C   Therefore,350°F  176.7°C.

67.   5 32 9 55 86732835463.9 99 CF C   Therefore,865°F  463.9°C.

FC F

68.  9 32 5 9 89.432160.9232128.9 5

 Therefore,–89.4°C  –128.9°F.

69.    5 32 9 55 113328145 99 CF C

Therefore,113°F=45°C.

70.  9 32 5 9 28.13250.583282.6 5 FC F 

Therefore,28.1°C  82.6°F.

Section 1.2 Applications and Modeling with Linear Equations

1. Distance=rate×time,sotime=distance÷ rate.Divide400milesby50mphtoobtain8 hours.

2. 15minutesis14ofanhour,somultiply80 mphby14togetadistanceof20mi.

3. 2%is0.02,somultiply$500by0.02andby4 yrstogetinterestof$40

4. Multiply40half-dollarsby$0.50toget$20; multiply200quartersby$0.25toget$50. Together,themonetaryvalueis$70.

5. 75%is34,somultiply120Lby34,toget90L acid.

6. ExpressionD, x 0.60doesnotrepresentthe salesprice. x 0.60represents x dollars discountedby60cents,not x dollars discountedby60%.Alloftheotherchoices areequivalentandrepresentthesalesprice.

7. ConcentrationA,24%,cannotpossiblybethe concentrationofthemixturebecauseitisless thanboththeoriginalconcentrations.

8. A 9. D

10. BandCcannotbecorrectequations.

InB,

 17 9 27552 235752 93552 917 xx xx x xx     butthelengthofarectanglecannotbe negative.

InC,

 52510 510510 1010101000 xx xx xxx

butthelengthofarectanglecannotbezero.

11. Intheformula22, Plw  let 294and57.Pw 2942257 2942114 180290 l l ll  

 Thelengthis90cm.

12. Let w =widthoftherectangularstorageshed. Then w +6=thelengthofthestorageshed. Usetheformulafortheperimeterofa rectangle.

  

22 442(6)2 442122 44412 3248 Plw ww ww w ww

 Thewidthis8ftandthelengthis 8+6=14ft.

13. Let x =thelengthoftheshortestside. Then2x =thelengthofeachofthelonger sides.

Theperimeterofatriangleisthesumofthe measuresofthethreesides. 22305306xxxxx  Thelengthoftheshortestsideis6cm.

14. Let w =thewidthoftherectangle. Then2w 2.5=thelengthoftherectangle. Usetheformulafortheperimeterofa rectangle.

 22 40.6222.52 40.6452 40.66545.667.6

Plw ww ww www     Thewidthis7.6cm.

15. Let x =thelengthoftheshortestside. Then2x 200=thelengthofthelongestside andthelengthofthemiddlesideis (2x 200)200=2x 400. Theperimeterofatriangleisthesumofthe measuresofthethreesides.

220024002400 220024002400 56002400 53000600 xxx xxx x xx 

 Thelengthoftheshortestsideis600ft.The middlesideis2600400  1200400 800ft.  Thelongestsideis2600200 12002001000ft.

16. Let w =thewidthofthecake. Then w +0.39=thelengthofthecake. Usetheformulafortheperimeterofa rectangle. 22

 

17.022(0.39)2 17.0220.782 17.0240.78 16.2444.06



Plw ww ww w ww



 Thewidthofthecakewas4.06mandthe lengthwas4.06+0.39=4.45m.

17. Let h =theheightofbox. Usetheformulaforthesurfaceareaofa rectangularbox.



Slwwhhl hh hh h hh



222 496218828218 4962881636 49628852 208524





 Theheightoftheboxis4ft.

18. Thevolumeofarightcircularcylinderis 2 Vrh   2 2 1446 14436 14436 4 3636 Vrh h h h h







   

 Theheightofthecylinderis4in.

19. Let x =thetime(inhours)spentonthewayto thebusinessappointment. rtd

Morning50 x 50 x Afternoon401 4 x    1 404 x 

Thedistanceonthewaytothebusiness appointmentisthesameasthereturntrip,so

 1 50404 504010 10101 xx xx xx  

Becauseshedrove1hr,herdistancetraveled wouldbe50150mi. 

20. Let x =time(inhours)ontripfromDenverto Minneapolis. rtd

Going50 x 50 x Returning5532 x   5532 x Thedistancegoingandreturningarethesame, sowehave

 505532 50176055 105176016.76 xx xx xx

Becausehetraveledapproximately16.8hrto Minneapolis,thedistancewouldbeabout 5016.8840mi.

21. Let x =David’sspeed(inmph)onbike. Then4.5 x  =David’sspeed(inmph) driving. rtd

Car x +4.51 203minhr    1 34.5 x 

Bike x 3 454minhr  3 4 x

Thedistancebybikeandcararethesame,so

13 34 13 34 4.5 124.512 44.59 4189 18 185 5 xx xx xx xx xx

Becausehisrateis185(or3.6)mph,David travels

31827 45102.7mi  towork.

22. Let x =rate(inmph)theSanDiegobound planetravels.Then x +50=rate(inmph)the SanFranciscoboundplanetravels. rtd

SanDiego x 1 2 1 2 x

San Francisco50 x  1 2

Thedistancetraveledbythetwoplanesis275 miles.TherateoftheSanDiegoboundplane canbefoundbysolving   11 2250275. xx

50275 2502275 50550250550 2500250 xx xx xxx xx

TheSanDiegoboundplanetravelsat250mph, andtheSanFranciscoboundplanetravelsat 25050300  mph.

23. Let x =time(inhours)ittakesforRussand Janettobe1.5miapart. rtd

Mary7 x 7 x

Janet5 x 5 x

BecauseMary’srateisfasterthanJanet’s,she travelsfartherthanJanetinthesameamount oftime.TohavethedifferencebetweenMary andJanettobe1.5mi,solvethefollowing equation.

751.521.50.75 xxxx  Itwilltake0.75hr=45minforMaryand Janettobe1.5miapart.

24. Let x =time(inhours)Maryruns.Because Janethasaten-minutestartand10minutesis 1 6hr,Janet’stimerunningis1 6 x  hr.

Mary7 x 7 x

Janet51 6 x 

1 56 x 

BecauseMarymusttravelthesamedistanceas Janet,wemustsolvethefollowingequation.

Itwilltake55 1212hr60min25min  for MarytocatchupwithJanet.

25. Weneedtodeterminehowmanymetersarein 26miles.

265,280ft1mmi41,840.9m 1mi3.281ft 

UsainBolt’srateinthe100-mdashwouldbe 100 9.69meterspersecond. d r t 

Thus,thetimeitwouldtakeforUsaintorunthe 26-mimarathonwouldbe

Becausethereare60secondsinoneminute and60603,600  secondsinonehour, 4054sec1360076034sec  or1hr,7min,34sec.Thisisabout12the worldrecordtime.

26. Weknow26mi41,840.9m  fromexercise 25.UsainBolt’srateinthe100-mdashwould be100meterspersecond. 9.58 d r t  Thus,the timeitwouldtakeforUsaintorunthe26-mi marathonwouldbe

4008sec1360066048sec  or1hr,6 min,48sec.Thisisabout12theworldrecord time.

27. Let x =speed(inkm/hr)ofCallie’sboat. WhenCallieistravelingupstream,thecurrent slowsherdown,sowesubtractthespeedof thecurrentfromthespeedoftheboat.When sheistravelingdownstream,thecurrent speedsherup,soweaddthespeedofthe currenttothespeedoftheboat.

Upstream5 x 1

Becausethedistanceupstreamand downstreamarethesame,wemustsolvethe followingequation.

28. Let x =speed(inmph)ofthewind.WhenJoe istravelingagainstthewind,thewindslows himdown,sowesubtractthespeedofthe windfromthespeedoftheplane.Whenheis travelingwiththewind,thewindspeedshim up,soweaddthespeedofthewindtothe speedoftheplane.

Against wind180 x 3 

3180 x With wind180 x 

Becausethedistancegoingandcomingarethe same,wemustsolvethefollowingequation.

2.81803180

5042.85403

5045.8540 5.8366.2 xx xx x xx

Thespeedofthewindisabout6.2mph.

29. Let x =theamountof5%acidsolution(in gallons).

Strength Gallons of Solution

5% x 0.05 x 10%50.1050.5  7%5 x   0.075 x 

Thenumberofgallonsofpureacidinthe5% solutionplusthenumberofgallonsofpure acidinthe10%solutionmustequalthe numberofgallonsofpureacidinthe7% solution.

 1 2 0.050.50.075 0.050.50.070.35

0.50.020.35

0.150.02

0.15 0.027.57gal xx xx x x xx      1 72gallonsofthe5%solutionshouldbe added.

ThespeedofCallie’sboatis35kmperhour.

30. Let x =theamountof5%hydrochloricacid solution(inmL).

Strength Milliliters of Solution Millilitersof Hydrochloric Acid

5% x 0.05 x 20%600.206012  10% x +60   0.1060 x 

Thenumberofmillilitersofhydrochloricacid inthe5%solutionplusthenumberof millilitersofhydrochloricacidinthe20% solutionmustequalthenumberofmilliliters ofhydrochloricacidinthe10%solution.

 0.05120.1060

0.05120.106 120.056 60.05 6600 120mL 0.055 xx xx x x

120mLof5%hydrochloricacidsolution shouldbeadded.

31. Let x =theamountof100%alcoholsolution (inliters).

Strength

Thenumberoflitersofpurealcoholinthe 100%solutionplusthenumberoflitersof purealcoholinthe10%solutionmustequal thenumberoflitersofpurealcoholinthe30% solution.

0.70.307 0.70.302.1

0.70.72.1 0.71.4 1.414 2L 0.77

2Lofthe100%solutionshouldbeadded.

32. Let x =theamountof100%alcoholsolution (ingallons).

Thenumberofgallonsofpurealcoholinthe 100%solutionplusthenumberofgallonsof purealcoholinthe15%solutionmustequal thenumberofgallonsofpurealcoholinthe 25%solution.

2 3 30.2520 30.255 0.7535 0.752

2 23gallonsofthe100%solutionshouldbe added.

33. Let x =theamountofwater(inmL).

0.048 x 

Thenumberofmillilitersofsaltinthe6% solutionplusthenumberofmillilitersofsalt inthewater(0%solution)mustequalthe numberofmillilitersinthe4%solution.

 0.4800.048 0.480.320.04 0.160.04 0.1616 4mL 0.044 x x x xx    

Toreducethesalineconcentrationto4%, 4mLofwatershouldbeadded.

34. Let x =theamountof100%acid(inliters).

Strength Liters of Solution LitersofPure Acid 100% x 1xx 

30%180.30185.4  50%18 x   0.5018 x 

Thenumberoflitersofacidinthepureacid (100%)plusthenumberoflitersofacidinthe 30%solutionmustequalthenumberofliters ofacidinthe50%solution.

  5.40.5018 5.40.509 0.55.49 0.53.6 3.636 7.2L 0.55 xx xx x x x      7.2Lpureacidshouldbeadded.

35. Let x =amountoftheshort-termnote.Then 240,000– x =amountofthelong-termnote. Note Amount Interest Rate Time (years)InterestPaid

x 2%1 x(0.02)(1)

240,000 x 2.5%1(240,000 x)(0.025)(1) 5500

Theamountofinterestfromthe2%noteplus theamountofinterestfromthe2.5%note mustequalthetotalamountofinterest.

0.020.025240,0005500

0.0260000.0255500

38. Let x =amountinvestedat3%. Then4x =amountinvestedat2.75%.

Amountin Account InterestRateInterest

x 3%0.03x 4 x 2.75%0.0275(4x)=0.11x 2800

Theamountofinterestfromthe3%account plustheamountofinterestfromthe2.75% accountmustequalthetotalamountof interest.

0.030.0275(4)2800

0.00560005500 0.005500 100,000

x x x

Theamountoftheshort-termnoteis$100,000 andtheamountofthelong-termnoteis $240,000–$100,000=$140,000.

36. Let x =amountpaidforthefirstplot.Then 120,000– x =amountpaidforthesecondplot.

LandPriceRateofReturnProfitorLoss

x 15%0.15 x 120,000 x 10%   0.10120,000 x 120,0005,500

0.150.10120,0005500

0.1512,0000.105500

0.2512,0005500

0.2517,500

$70,000

Rogerpaid$70,000forthefirstplotand 120,00070,000=$50,000forthesecond plot.

37. Let x =amountinvestedat2.5%. Then2x =amountinvestedat3%.

Amountin Account InterestRateInterest

x 2.5%0.025x 2 x 3%0.03(2x)=0.06x 850

Theamountofinterestfromthe2.5%account plustheamountofinterestfromthe3% accountmustequalthetotalamountof interest.

0.0250.03(2)850 0.0250.06850 0.085850$10,000 xx xx xx

Janetdeposited$10,000at2.5%and 2($10,000)=$20,000at3%.

0.030.112800 0.142800$20,000

xx xx

Thechurchinvested$20,000at3%and 420,000 $80,000at2.75%.

39. 30%of$200,000is$60,000,soafterpaying herincometax,Lindahad$140,000leftto invest.Let x =amountinvestedat1.5%.

Then140,000– x =amountinvestedat4%.

Amount Invested Interest RateInterest x 1.5%0.015x 140,000 x 4%0.04(140,000 x) 140,0004350

0.0150.04140,0004350 0.01556000.044350 0.02556004350 0.0251250

$50,000 xx

x x x

Lindainvested$50,000at1.5%and $140,000–$50,000=$90,000at4%.

40. 28%of$48,000is$13,440,soafterpayingher incometax,Beckyhad$34,560lefttoinvest. Let x =amountinvestedat3.25%.

Then34,560– x =amountinvestedat1.75%.

Amount Invested Interest RateInterest

x 3.25%0.0325x 34,560 x 1.75%0.0175(34,560 x) 34,560904.80

  0.03250.017534,560904.80 0.0325604.800.0175904.80 0.015604.80904.80 0.015300

$20,000 xx xx x x x 

Beckyinvested$20,000at3.25%and $34,560–$20,000=$14,560at1.75%.

41. (a) 1000.02 1000.02(2400)1004852 yx y 

Theannualcostis$52.

(b) 501000.02 500.02 2500 x x x

Theannualcostofmembershipwillbe $50iftheclubpurchasesare$2500.

(c) 01000.02 1000.02 5000 x x x

Theannualcostofmembershipwillbe$0 iftheclubpurchasesare$5000.

42. (a) 500.016 500.016(1500)502426 yx y

Theannualcostis$26.

(b) 0500.016 500.016 3125 x x x 

Theannualcostofmembershipwillbe$0 iftheclubpurchasesare$3125.

(c) Iftheannualclubpurchasesaremore than$3125,thenthemodelwouldyielda negativevaluefor y,theactualannual costofmembership.Essentially,thecashbackrewardexceedstheinitialfeeof $50,creatingapositivegainforthe member.

43. (a) Let x =thenumberofhours.Then F =100(140)x =14,000x

(b) Because3 33 gft causesirritation,the roomwouldneed3380026,400 g  tocauseirritation. 14,000 26,40014,000 26,400 14,000 1.9hr Fx x x x 

Itwilltakeabout1.9hoursfor concentrationstoreach3 33. gft

44. (a) Becauseeachstudentneeds153fteach minuteandthereare60minutesinan hour,theventilationrequiredby x studentsperhourwouldbe V =60(15x)=900x

(b) Thenumberofairexchangesperhouris

900 0.06. 15,000 Axx 

(c) If x =40,then0.06402.4ach. A 

(d) Theventilationshouldbeincreasedby 1 3 5010 3 153  times.(Smokingareas requiremorethantripletheventilation.)

45. (a) In2018, x =4. 0.314321.95 0.3143421.9523.2072 yx y  

Theprojectedenrollmentforfall2018is approximately23.2million.

(b) 0.314321.95

240.314321.95 2.050.3143 2.05 6.52 0.3143 yx x x x 

2014+6=2020

Enrollmentisprojectedtoreach24 millionduringtheyear2020.

(c) Theyarequiteclose.

(d) Theyear2000isrepresentedby x =14.

0.314321.95 0.31431421.9517.5 yx y  

Accordingtothemodel,theenrollment wasapproximately17.5million

(e) Answerswillvary.Sampleanswer:When usingthemodelforpredictions,itisbest tostaywithinthescopeofthesample data.

46. (a) Theyear1952correspondsto x =6.  2.8370140.83 2.83706140.83157.852 yx y  

Accordingtothemodel,theU.S. populationonJuly1,1952was157.852 millionor157,852,000.

(b) 2.8370140.83 1502.8370140.83 9.172.8370 9.17 3.2 2.8370 yx x x x    

Accordingtothemodel,theU.S. populationreached150millionduring 1949.

Section 1.3 Complex Numbers

1. Bydefinition, i =1,andtherefore,21. i 

2. If a and b arerealnumbers,thenanynumber oftheform a + bi isacomplexnumber.

3. Thenumbers6+5i and6–5i,whichdiffer onlyinthesignoftheirimaginaryparts,are complexconjugates.

4. Theproductofacomplexnumberandits conjugateisalwaysarealnumber.

5. Tofindthequotientoftwocomplexnumbers instandardform,multiplyboththenumerator andthedenominatorbythecomplexconjugate ofthedenominator.

6. True.252515i

7. True.2492366 iii 

8. True.

3 124311 ii

9. False.

10. False.

22 2 2 5352533 25309 25309 1630 iii ii i i

11. 4isrealandcomplex.

12. 0isrealandcomplex.

13. 13i iscomplex,pureimaginary,andnonreal complex.

14. 7i iscomplex,pureimaginary,andnonreal complex.

15. 5 i  iscomplexandnonrealcomplex.

16. 62i iscomplexandnonrealcomplex.

17.  isrealandcomplex.

18. 24isrealandcomplex.

19. 255i  iscomplex,pureimaginary,and nonrealcomplex.

20. 366i  iscomplex,pureimaginary,and nonrealcomplex.

21. 25255 ii

22. 36366 ii

23. 1010 i 

24. 1515 i 

25. 2882881442122 iii 26. 5005001005105 iii

18189232 iii

28. 808016545 iii

22 13131313 1311313

32933923

2444

53.

25342 232541 110110 iii i ii

42345 42413510 iii ii

2264252 2652422 1342 iii i

54.

37474275 374727145 372 iii i i

 2 232 232232 6432621 628 ii iiii iiii ii

57.

58. 

 

 2 2342 24223432 8412681661 8166216 ii iiii iiii ii

    2 2413 21234143 2641222121 2212142 ii iiii iiii ii    

    2 1325 12153235 256152151 21517 ii iiii iiii ii    

59.  22 2 3232322 9124512 iii ii  

60.   2222222244 44134 iiiii ii  

61.     22 3339(1)10 iii 

62.       22 55525126 iii 

63.   222 23232349 49113   iiii

64.

2 22 2 14514532 323232 42281510 32 4213101421310 94941 52135213 9413 5213 4 1313 iii iii iii i ii i ii ii

22 22 222222 2222 4413434 41555 iiiii iiii ii i

22 22 2 2 43434342433 43434343 16249162491 1691691 16249724724 169252525 iiiii iiii iii i ii i

2 22 131 13133 1111 1431143 112 2424 12 222 ii iiii iiii ii i ii

78.

79.

2 22 342 346384 2222 6541654 415 105105 2 555 ii iiii iiii ii i ii

2 5 55 55 5or05 11 ii iiii ii ii

80.

81.

2 6 66 66 6or06 11 ii iiii ii ii

2 888 88 8or08 11 ii iiii ii ii

82.

2 121212 1212 12or012 11 ii iiii ii ii

83.

2 23 266 33391 9 622 or0 933 iii iiii i ii

Note:Intheabovesolution,wemultipliedthe numeratoranddenominatorbythecomplex conjugateof3i,namely–3i.Becausethereisa reductionintheend,thesameresultscanbe achievedbymultiplyingthenumeratorand denominatorby–i.

84.

2 59 54545 999811 81 4555 or0 8199 iii iiii i ii

85. 2 57,64 (57)(64) 5(6)5(4)7(6)7(4) 30204228 306228 262 IiZi EIZ Eii iiii iii i i

86. 2 2012,105 (2012)(105) 20(10)20(5)12(10)12(5) 20010012060 2002060 26020 IiZi EIZ Eii iiii iii i i

 

87. 104,88128 88128(104) IiEi EIZ iiZ

      22 88128 104 88128104 104104 88(10)88(4)128(10)128(4) 104 i Z i ii Z ii iiii Z i     

88035212805122 100(16) 8803521280512 116 1392928 128 116 iii Z ii Z i Zi    

88.

 5767,95 576795 EiZi EIZ iIi  

  22 2 5767 95 576795 9595 57(9)57(5)67(9)67(5) 95 513285603335 81(25) 513318335 106 848318 83 106 i I i ii I ii iiii I i iii I i I i Ii

6 252446 1 iiiiiii

90.

7 292847 1 iiiiiii

5 22202451111 iiii

92.

6 26242461111 iiii

2 2222 22211 2 44422 1111 1 2222 i ii iiii iii

313312 22424 31331 1 22424 iii ii

31331 22424 3123 2242 ii ii

2 2 3113 2222 31331113 22222222 3313 4444 34333 1 44444 ii iii iii iii

104. Weneedtoshowthat 3 31 22 ii

(continued)

105. If–2+ i isasolutionoftheequation,then substitutingthatvaluefor x makesatrue statement.

 2 2 2 450 24250 448450 4418450 00 xx ii iii ii  

106. If–2– i isasolutionoftheequation,then substitutingthatvaluefor x makesatrue statement.





 2 2 2 450 24250 448450 4418450 00 xx ii iii ii

  

107. If–3+4i isasolutionoftheequation,then substitutingthatvaluefor x makesatrue statement.





 2 2 2 6250 34634250 924161824250 924161824250 00 xx ii iii ii



108. If–3–4i isasolutionoftheequation,then substitutingthatvaluefor x makesatrue statement.

 2 2 2 6250 34634250 924161824250 924161824250 00 xx ii iii ii 

   

Section 1.4 Quadratic Equations

1. G;225255 xx

2. A;225255 xxi 

3. C;2250555 xxxi 

4. E;225055xxx

5. H;2202025 xxi 

6. B;2202025 xx

7. D; 505xx

8. F;505 xx

9. Distheonlyonesetupfordirectuseofthe zero-factorproperty.     3170 xx 1 3 310or70 or7 xx xx   

Solutionset:  1 3,7

10. Bistheonlyonesetupfordirectuseofthe squarerootproperty. 2 257257 57 257 2 xx xx   

Solutionset:  57 2 

11. CistheonlyonethatdoesnotrequireStep1 ofthemethodofcompletingthesquare.

   22 111 224 2 211 44 1249 24 149 24 7711 2222 Note: 1 12 12 xx xx x x xx         787611 2222224and3 

Solutionset:  4,3

12. Aistheonlyonesetupsothatthevaluesof a, b,and c canbedeterminedimmediately. 2 31760 xx yields a =3, b =–17,and c =–6.

13.

Solutionset:  2,3

14.  2280 420 xx xx   404or202 xxxx 

Solutionset:  4,2

15.  2 5320 5210 xx xx   2 5205or101 xxxx  Solutionset:  2 5,1

16.  2 2150 2530 xx xx   5 2502or303 xxxx 

Solutionset:  5 2,3

17.

 2 2 43 043 0431 xx xx xx 

3 4304or101 xxxx

Solutionset:  3 4,1

18.

 2 2 6710 067100 06520 xx xx xx    5 6506or202 xxxx 

Solutionset:  5 6,2

19.

 21000 10100 x xx   10010or10010 xxxx  Solutionset:{10,10}

20.

 2640 880 x xx   808or808 xxxx  Solutionset:{8,8}

21.  2 2 1 2 4410 210 21021 xx x xxx   

Solutionset:  1 2

22.

 2 2 2 3 91240 320 32032 xx x xxx 





Solutionset:  2 3

23.  2 2 3 5 253090 530 53053 xx x xxx  



Solutionset:  3 5

24.  2 2 5 6 3660250 650 65065 xx x xxx  



Solutionset:  5 6

25. 216 164 x x  

Solutionset:  4

26. 2121 12111 x x  

Solutionset:  11

27. 2 2 270 27 2733 x x x   

Solutionset:  33

28. 2 2 480 48 4843 x x x   

Solutionset:  43

29. 281 819 x xi 

Solutionset:  9i 

30. 2400 40020 x xi 

Solutionset:  20 i

31. 2 3112 3112 123 3123 3 x x xx 

Solutionset:  123 3 

32. 2 4120 4120 125 4125 4 x x xx    

Solutionset:  125 4 

33. 2 53 53 53 53 x x xi xi 

Solutionset:  53 i 

34. 2 45 45 45 45 x x xi xi 

Solutionset:  45 i 

35. 2 533 533 533 533 3333 555 x x xi xi i xi

Solutionset:  33 55 i 

36. 2 258 258 2522 2522 5225 2 22 x x xi xi i xi 

Solutionset:  5 22 i  37.

122 2 2 2 2 Note: 4 430 443442 21 21 21 21 xx xx x x x x

211and213  Solutionset:  1,3

38.

  2217 22 49 4 2 24949 44 721 24 71 24 71 22 71 22 Note: 7120 7127 xx xx x x x x

 7678 11 2222223and4 Solutionset:  3,4

39.

1 2 22 1111 22416 2 21 2 2111 21616 12225 416 1225 416 115 44 115 44 Multiplyby. Note: 2280 140 14 xx xx xx x x x x

15715161141 4442444and4 

Solutionset:  7 2,4

40.

22 1339 24864 2 2310 44 235 42 23959 464264 2 3169 864 316913 8648 313 88 Note: 43100 0 0 xx xx xx xx x x x

31310531316 8884888and2

Solutionset:  5 4,2

41.

44.

Note: 210 5 5 xx xx xx x x x x

22 1111 22416 2 21 2 2111 21616 1281 416 181 416 19 44 19 44

91059811 4442444and2 

Solutionset:  5 2,2

Note: 325 xx xx xx x x x x 

22 1211 2339 2 25 2 33 25211 3939 1216 39 116 39 14 33 14 33

531414 333333and1 

Solutionset:  5 3,1

45.

42.

Solutionset:  13 

46.

 122 2 2 23 2 23 2 25 2 510 22 10210 22 Note: 211 2430 20 211 1 1 1 xx xx xx x x x  

Solutionset:  210 2 

122 2 2 25 3 25 3 28 3 82426 333 26326 33 Note: 211 3650 20 211 1 1 1 xx xx xx x x x

Solutionset:  326 3 

48.

2 27 4 2722 41 2 23 4 33 42 3 2 487 2 Note: 211211 1 1 1 i xx xx xx x x xi

22 139 224 2 27 3 29792827 4341212 321 212 312233 1 21212126 33 26 Note:3 397 3 3 i xx xx xx x xii xi

Solutionset:  33 26 i 

49. Franciscoisincorrectbecause c =0andthe quadraticformula, 24 2, bbac x a   can beevaluatedwith1,8,and0. abc 

50. Francescaisincorrectbecause b =0andthe quadraticformula, 24 2, bbac x a   can beevaluatedwith1,0,and19. abc

51. 210xx Let1,1,and1. abc

2 2 4 2 11411 21 11415 22 bbac x a

Solutionset:

52. 2320xx Let1,3,and2. abc

 2 2 4 2 33412 21 398317 22 bbac x a      

Solutionset:  317 2 

53. 2 2 67 670 xx xx   Let1,6,and7. abc

  2 2 4 2 6641763628 212 68622 32 22 bbac x a     

 

Solutionset:  32 

54. 2 2 41 410 xx xx   Let1,4,and1. abc   2 2 4 2 444114164 212 412423 23 22 bbac x a  

  

 

Solutionset:  23 

55. 2 2 25 250 xx xx   Let1,2,and5. abc

  2 2 4 2 22415 21 242021624 12 222 bbac x a i i  

 

 

Solutionset:  12i 

56. 2 2 210 2100 xx xx  

Let1,2,and10. abc 

 

 

59.



 2 11 24 2 11 24 2 30 4340 2120 xx xx xx





bbac x a i i

 

 2 2 4 2 224110 21 244023626 13 222

Solutionset:  13i 



57. 2 2 41211 041211

 xx xx

Let4,12,and11. abc 

bbac x a   

 

Let2,1,and12. abc   224114212 222 1196197 44

Solutionset:  197 4 

60.

2 2 422123 8822 4 2 12124411 24 121441761232 88 1242 8

bbac x a i ii      

Solutionset:  32 22 i 

58. 2 2 632 0632 xx xx 



Let6,3,and2. abc

22433462 226 3948339339 121212 bbac x a i   

33939 1 1212412 xii 

Solutionset:  139 412 i 

61.

 2 21 34 2 21 34 2 2 3 12123 8336 83360 xx xx xx xx   

bbac x a  

  

 

 Let8,3,and36. abc   2 2 4 2 334836391152 2816 3116133129 1616

Solutionset:  33129 16 





 2 2 2 0.20.40.30 100.20.40.3100 2430 xx xx xx

 Let2,4,and3. abc

bbac x a  

  

 

  2 2 4 2 4442341624 224 4404210210 442

Solutionset:  210 2 

62.  2 2 2 2 0.10.10.3 100.10.1100.3 3 30 xx xx xx xx

Let1,1,and3. abc

2 2 4 2 11413 21 1112113 22

Solutionset:  113 2 

63. 22 (41)(2)4 47244320 xxx xxxxx

22433442 224 3932341 88

Solutionset:  341 8 

64. 2 2 (32)(1)3 323 3420 xxx xxx xx

2 2 4 2 44432 23 41624440 66 4210210 63 bbac x a

Solutionset:  210 3 

65. 2 2 (9)(1)16 10916 10250 xx xx xx

   Let a =1, b =10,and c =25.

2 10104125 21 10100100100 5 22 x

Solutionset:{5}

66. Answerswillvary.Multiplyingthefirst equationby–1producesthesecondequation, andthus,theequationsareequivalent.

  22 2 236012360 2360 xxxx xx 

 Therefore,thetwoequationshavethesame solutionset.

67.

  3 33 2 80 20 2240 x x xxx    202xx or 2240 1,2,and4 xx abc  

  2 2 4 2 224142416 212 212223 13 22 bbac x a i i  

  

 

Solutionset:  2,13i 

68.

  3 33 2 270 30 3390 x x xxx  



303xx or 2390 1,3,and9 xx abc  

  2 2 4 2 334193936 212 327333333 2222 bbac x a i i  

  

 

Solutionset:  3333,22 i 

69.

3 33 2 270 30 3390 x x xxx

1,4,and16 xx abc

x a i i

2 2 4 2 44411641664 212 448443 223 22

Solutionset:

i

74. 2 2 2 2 2 222 ek E r Erek ErErErk ee kkk

75.

2 0 2 0 2 0 02 00 1 2 1 2 2 2 22 rrat rrat rrat rr t a rrarr t aa

76.  2 0 2 0 2 2 00 00 0 ssgtk sskgt sskssk gtt ggg tssksskg ggg sskg t g

77.  0 0 2 00 2 00 2 00 16,, 16 160 160 abv chs htvts tvths tvths

2 2 000 2 000 2 000 4 2 416 216 64 32 6464 32 bbac t a vvhs vvhs vvhs

78.

2 22 22 22 2 2 2 22 4 2 444931 29 4163631 18 41610836 18 412436 18 44319 18 42319 18 23192319 99 bbac x a yyy yyy yyy yy yy yy yyyy

2,4,and232abycy 

2 22 22 22 2 2 2 2 4 2 444322 23 4161222 6 4162424 6 44024 -6 44106 6 42106 6 2106 3 bbac x a xxx xxx xxx xx xx xx xx

22 22 5621 56210 xxyy xxyy   a. Solvefor x intermsof y.     22 56210 xyxy 5,6,and221abycy 

2 22 22 22 22 22 4 2 664521 25 6362021 10 6364020 10 6204645 1010 62535 105 bbac x a yyy yyy yyy yyyy yyyy



b. Solvefor y intermsof

83. 28160

2248411664640bac

Onerationalsolution(adoublesolution)

84. 2440xx 1,4,and4abc

224441416160bac

Onerationalsolution(adoublesolution)

85. 2 3520 xx 3,5,and2abc

222 45432252411bac Twodistinctrationalsolutions

86. 2 2 8143 81430 xx xx   8,14,and3abc

22 2 414483 1969610010 bac  Twodistinctrationalsolutions

87. 2 2 463 4630 xx xx 

4,6,and3abc

 2246443364884bac Twodistinctirrationalsolutions

88. 2 2410 xx 2,4,and1abc

22444211688bac Twodistinctirrationalsolutions

89. 2 91140 xx 9,11,and4abc

2241149412114423bac Twodistinctnonrealcomplexsolutions

90. 2 2 345 3450 xx xx   3,4,and5abc 

2244435166044bac Twodistinctnonrealcomplexsolutions

91. 2 8720 x  8,0,and72abc

222 404872230448bac

Twodistinctrationalsolutions

92. Answerswillvary.

2 25320 xx 2,5,and32abc 

22454232 25122252449 bac  No,thisdoesnotcontradictthediscussionin thissectionbecauseaconditionthatisplaced onthequadraticequationisthatithasinteger coefficientsinordertoinvestigatethe discriminant.

93. No,itisnotpossibleforthesolutionsetofa quadraticequationwithintegercoefficientsto consistofasingleirrationalnumber. Additionalresponseswillvary.

94. No,itisnotpossibleforthesolutionsetofa quadraticequationwithrealcoefficientsto consistofonerealnumberandonenonreal complexnumber.Answerswillvary.

Inexercises9598,thereareotherpossibleanswers.

95. 4or5 40or50 xx xx 

 2 2 450 54200 9200 xx xxx xx

1,9,and20abc

96. 3or2 30or20 xx xx

97.

98. or 0or0 xixi xixi

1,0,and1abc

Chapter 1 Quiz (Sections 1.1 1.4)

1. 3(5)21(42) 3152142 31332 5133 5102 xx xx xx x xx

Solutionset{2}

  

2. (a) 452(32)3 45643 4543 53 xx xx xx

contradiction;solutionset:  (b) 595(2)1 591051 5959 xx xx xx

 identity;solutionset:{allrealnumbers} or   , 

(c) 2211 84 543(6) 54183 8418 822 xx xx x xx     conditionalequation;solutionset:  11 4

3. 25 3 3(1) 3(1) 3 1 ayxyx ayxy xyayya xya x y a 

4. Let x =theamountdepositedat2.5%interest. Then2x =theamountdepositiedat3.0% interest.Theinterestearnedonxdollarsat 2.5%is0.025x,andtheinterestearnedon2x at3.0%is(2x)(0.03)=0.06x.Thetotalearned is$850,sowehave 0.0250.06850 0.08585010,000 xx xx

$10,000wasinvestedat2.5%,and$20,000 wasinvestedat3.0%.

5. Substitute2008for x intheequation: 0.128(2008)250.436.59 y  So,themodelpredictsthattheminimum hourlywagefor2008was$6.59.Themodel predictsawagethatis$0.04greaterthanthe actualwage.

6. 424446 88 42616 8824 i i   

7. 72722414284(8) 2424244(16) 63263238 202020105 iiiii iii i ii 

8. 22 31310 xxxx Usethequadraticformula. a =3, b =1, c =1 2 (1)(1)4(3)(1)111111 2(3)666 i 

Solutionset: 111 66 i

9. 222902929 xxx

Solutionset:  29

Section 1.5 Applications and Modeling with Quadratic Equations

1. A.Thelengthoftheparkingareais2x +200, whilethewidthis x,sotheareais(2x +200)x. Settheareaequalto40,000toobtain x(2x +200)=40,000.

2. C.Thediagonalofthisrectangleisthe hypotenuseofarighttrianglewithlegs r feet and s feet.BythePythagoreantheorem,the lengthofthediagonalis22. rs 

3. D.UsethePythagoreantheoremwith a = x, b =2x –2,and c = x +4.

222 (22)(4)xxx

4. B.Thelengthofthepictureis34–2x,while thewidthis21–2x,givinganareaof (34–2x)(21–2x).Usetheformulaforthe areaofarectangle, A = lw,andsetthearea equalto600toobtain (342)(212)600. xx 

5. A.Let x =thewidth,so x +5=thelength.If2 in.arecutfromeachcorner,thenthewidthof theboxis x –4andthelengthoftheboxis x +5–4or x +1.Theheightoftheboxis2.

8. C.Theyear2010correspondsto x =10.We areseekingthevalueofthemodelfor x =10, sothecorrectequationis  2 0.0538100.807108.84. S 

9. Let x =thefirstinteger.Then x +1=thenext consecutiveinteger. 2



2 (1)5656

560(8)(7)0 808or707 xxxx xxxx xxxx

  If x =8,then x +1=7.If x =7,then x +1=8.Sothetwointegersare8and7,or 7and8.

10. Let x =thefirstinteger.Then x +1=thenext consecutiveinteger.

2

2 (1)110110

1100(11)(10)0 11011or 10010 xxxx xxxx xx xx

   

If x =11,then x +1=10.If x =10,then x +1=11.Sothetwointegersare 11and10,or10and11.

11. Let x =thefirsteveninteger.Then x +2=the nextconsecutiveeveninteger.

xxxx xxxx xx xx



2 2 (2)1682168

  

21680(14)(12)0 14014or 12012

If x =14,then x +2=12.If x =12,then x +2=14.so,thetwoevenintegersare 14and12,or12and14.

12. Let x =thefirsteveninteger.Then x +2=the nextconsecutiveeveninteger.

2 2 (2)2242224 22240(16)(14)0 16016or 14014 xxxx xxxx xx xx

    If x =16,then x +2=14.If x =14,then x +2=16.So,thetwoevenintegersare 16and14,or14and16.

  14264.Vxx

Then,thevolumeoftheboxisrepresentedby 

6. C.Theheightisgiventobe40ftandweare seeking t.Thus,2401660 tt isthe correctequation.

7. B.Weareseekingtheheightgiventhetime t =2seconds.Therefore,thecorrectequation is  2 162452. s 

13. Let x =thefirstoddinteger.Then x +2=the nextconsecutiveoddinteger.

2 2 (2)63263 2630(9)(7)0 909or 707 xxxx xxxx xx xx

    If x =9,then x +2=7.If x =7,then x +2=9.so,thetwooddintegersare 9and7,or7and9.

14. Let x =thefirstoddinteger.Then x +2=the nextconsecutiveoddinteger. 2 2 (2)1432143



21430(13)(11)0 13013or 11011 xxxx xxxx xx xx

If x =13,then x +2=11.If x =11,then x +2=13.so,thetwooddintegersare 13and11,or11and13.

15. Let x =thefirstoddinteger.Then x +2=the nextconsecutiveoddinteger.   22 22 22 22 2202 44202 244202241980 229902990 (11)(9)0 11011or 909 xx xxx xxxx xxxx xx xx xx 





 

If x =11,then x +2=9.If x =9,then x +2=11.Sothetwointegersare 11and9,or9and11.

16. Let x =thefirsteveninteger.Then x +2=the nextconsecutiveeveninteger. 



2240(6)(4)0 606or 404 xx xxxxx xxxx xxxx xx xx

22 222 22 2 252 445224452 2448022240











If x =6,then x +2=4.If x =4,then x +2=6.Sothetwoevenintegersare6and 4,or4and6.

17. Let x =thefirsteveninteger.Then x +2=the nextconsecutiveeveninteger.

22 22 284 44844484 48020 xx xxxx xx 

 

If x =20,then x +2=22.Thetwointegersare 20and22.

18. Let x =thefirstoddinteger.Then x +2=the nextconsecutiveoddinteger.

22 22 232 44324432 4287 xx xxxx xx







If x =7,then x +2=9.Sothetwointegersare 7and9.

19. Let x =thelengthofoneleg, x +2=thelength oftheotherleg,and x +4=thelengthofthe hypotenuse.(Rememberthatthehypotenuseis thelongestsideinarighttriangle.)The Pythagoreantheoremgives





 222 222 2 24 44816 4120620 606or 202 xxx xxxxx xxxx xx xx

 





Lengthcannotbenegative,sorejectthat solution.If x =6,then x +2=8and x +4=10.Thesidesoftherighttriangleare 6,8,and10.

20. Let x =thelengthofoneleg, x +1=thelength oftheotherleg,and x +2=thelengthofthe hypotenuse.(Rememberthatthehypotenuseis thelongestsideinarighttriangle.)The Pythagoreantheoremgives

222 222 22 2 12 2144 22144 230 310 303or 101 xxx xxxxx xxxx xx xx xx xx



   





Lengthmustbeapositivenumber,soreject x =1.If x =3,then x +1=4and x +2=5. Thesidesoftherighttriangleare3,4,and5.

21. Let x =thelengthofthesideofthesmaller square.Then x +3=thelengthofthesideof thelargersquare.



22 222 2 3149 69149261400 3700(7)(10)0 707or 10010 xx xxxxx xxxx xx xx

  

 Lengthcannotbenegative,sorejectthat solution.If x =7,then x +3=10.Thelength ofthesideofsmallersquareis7in.,andthe lengthofthesideofthelargersquareis10in.

22. Let x =thelengthofthesideofthesmaller square.Then x +5=thelengthofthesideof thelargersquare.

22 22 595 102595 10259510707 xx xxx xxx





 If x =7,then x +5=12.Thelengthoftheside ofthesmallersquareis7in.,andthelengthof thesideofthelargersquareis12in.

23. Usethefigureandequation A fromExercise1.

2 2 2 220040,000 220040,000 220040,0000 10020,0000 (100)(200)0 100or200

Thenegativesolutionisnotmeaningful.If x =100,then2x +200=400.Thedimensions ofthelotare100ydby400yd.

24. Usetheformulafortheareaofarectangle. 2 2 5000(150) 5000150 15050000(100)(50)0 1000100or 50050

If x =100,then150– x =50.If x =50,then 150– x =100.Thedimensionsofthegarden are50mby100m.

25. Let x =thewidthofthestripofflooraround therug.

Thedimensionsofthecarpetare15–2x by 12–2x.Because, Alw  theequationforthe carpetareais(15–2x)(12–2x)=108.Put thisequationinstandardformandsolveby factoring.

2 2 152122108 18030244108 180544108 454720 227360 (23)(12)0 xx xxx xx xx xx xx

3 230 2 12012 xx xx

Thesolutionsofthequadraticequationare3 2 and12.Weeliminate12asmeaninglessin thisproblem.If x = 3 2,then15–2x =12and 12–2x =9.Thedimensionsofthecarpetare 9ftby12ft.

26. Let x =thewidthoftheborder.

Thedimensionsofthecenterplotare9–2x by 5–2x Thetotalareais5945  sqft.The borderareais24sqft,sotheareaofthecenter plotis45–24=21sqft.Applytheformula fortheareaofarectangletothecenterplot. 2 2 (92)(52)21 451810421 4528421 Alw xx xxx xx 

 22 428240760 (6)(1)0606or 101 xxxx xxxx xx

  

Thesolutionsare1and6.Weeliminate6as meaninglessinthisproblem.Thebordercan be1ftwide.

27. Let x =thewidthofthemetal.Thedimensions ofthebaseoftheboxare x –4by x +6.

Becausetheformulaforthevolumeofaboxis ,Vlwh  wehave

 2 2 2 642832 64416 4624416 224416 2440022200 22022or 20020 xx xx xxx xx xxxx xx xx       

Thenegativesolutionisnotmeaningful.If x =20,then x +10=30.Thedimensionsof thesheetofmetalare20inby30in.

28. Let x =thewidthofthemetal.Thedimensions ofthebaseoftheboxare8 x by28. x

Becausetheformulaforthevolumeofaboxis

,Vlwh  wehave

Thenegativesolutionisnotmeaningful.If x =20,then2x =40.Thedimensionsofthe sheetofmetalare20inby40in.

29. Let h =heightand r =radius.

Surfacearea=2πrh +2πr2

8π =2πr(3)+2πr2

  rr rr rrrr rrrr

2 2 2 862 0268 0234041 404or101

The r representstheradiusofacylinder,so4 isnotreasonable.Theradiusofthecircular topis1ft.

30. Let h =heightand r =radius.Volume= πr2h    222 1 3 3303 0310or310 rrrrrr rrrrr  

Acirclemusthavearadiusgreaterthan0.The radiusofthecirculartopis13ftor4in.

31. Let x =lengthofsideofsquare.Area=2 x andperimeter=4x   2244040xxxxxx  x =0or x =4

Wereject0because x mustbegreaterthan0. Thesideofthesquaremeasures4units.

32. Let x =widthofrectangle. Then2x =lengthofrectangle. Area= lw andPerimeter=22lw 

22 22 22222 2242226 2122120 260200or 606 xxxx xxxxx xxxx xxxx xx

Wereject0because x mustbegreaterthan0. Thewidthoftherectanglemeasures6units. Thelengthoftherectanglemeasures12units.

33. Let h =heightand r =radius.

Areaofside=2πrh andAreaofcircle= πr2

Surfacearea=areaofside+areaoftop+area ofbottom

Surfacearea=2πrh + πr2+ πr2=2πrh +2πr2

371=2πr(12)+2πr2 2 2 371242 0224371   

rr rr a =2π, b =24π,and c =–371 2 2 2 4 2 24(24)4(2)(371) 2(2) 245762968 4 15.753.75      

    bbac rr a rorr

Thenegativesolutionisnotmeaningful.The radiusofthecirculartopisapproximately 3.75cm.

34. Let x =height,then x –3.2=length,and 2.3=width. Vlwx 

 2 2 180.43.22.3 180.42.37.36 02.37.36180.4 xx xx xx    a =2.3, b =–7.36,and c =–180.4 2 2 4 2 (7.36)(7.36)4(2.3)(180.4) 2(2.3) 7.361713.84967.3641.40 4.64.6 10.6or7.4

bbac x a x       

Aboxcannothaveanegativeheight,soreject –7.4asasolution.Theheightisabout10.6in. andthelengthis10.6–3.2=7.4in.

35. Let h =theheightofthedock. Then2h +3=thelengthoftheropefromthe boattothetopofthedock. ApplythePythagoreantheoremtothetriangle showninthetext.





 222 2 22 22 2 2 12(23) 1442263 1444129 0312135 04450(9)(5) 909or505 hh hhh hhh hh hhhh hhhh









Thenegativesolutionisnotmeaningful.The heightofthedockis5ft.

36. Let x =thehorizontaldistance ApplythePythagoreantheoremtotheright triangleshowninthetext.

 222 222 222 22 2 2 (10)50 210102500 201002500 22024000 1012000 (40)(30)0 40040or 30030 abc xx xxx xxx xx xx xx xx xx





Thenegativesolutionisnotmeaningful. Thekite’shorizontaldistanceis30ftandthe verticaldistancefromthegroundis 40ft+5ft=45ft.

37. Let r =radiusofcircleand x =lengthofside ofsquare.Theradiusis12thelengthofthe sideofthesquare.Area=2 x 2 800800202 102 xx r 

Theradiusis102feet.

38. Letx=lengthofshortleg. Then2x =lengthoflongleg. ApplythePythagoreantheorem. 222 222 22 2 2 26(2) 6764 6765 135.2 135.2 cab xx xx x x x      

Thenegativesolutionisnotmeaningful.The shortlegshouldbe135.211.6  in.andthe longlegshouldbe2135.223.3  in.

39. Let x =lengthofladder

Distancefrombuildingtoladder=8+2=10. Distancefromgroundtowindow=13 ApplythePythagoreantheorem. 222 2222 2 1013100169 269269 abc xx xx 

x ≈ –16.4or x ≈ 16.4

Thenegativesolutionisnotmeaningful.The workerwillneeda16.4-ftladder.

40. Let x =thenumberofhourstheycantalkto eachotheronthewalkie-talkies.

Use d = rt todeterminehowfareachboy walksin x hours.Then2.5x =thenumberof milesTannerwalksnorthand3x =thenumber ofmilesSheldonwalkseast.Thisformsa righttrianglewithlegsoflength2.5x and3x, andlengthofthehypotenuseisthedistance betweentheboys.Wewanttofind x whenthe lengthofthehypotenuseis4mi.

22222 22 (2.5)(3)46.25916 15.25161.0491.02 abc xxxx xxx

Thenegativesolutionisnotmeaningful. 1.02hr1.02(60min)61min 

Theywillbeabletotalkforabout61min.

41. Let x =lengthofshortleg, x +700=lengthof longleg,and x +700+100or x +800=lengthofhypotenuse.

ApplythePythagoreantheorem.

222 222 2 22 2 (800)(700) 1600640,000 1400490,000 0200150,000

0(300)(500) 3000300or 5000500 cab xxx xx xxx xx xx xx xx 

 Thenegativesolutionisnotmeaningful. 500=lengthofshortleg

500+700=1200=lengthoflongleg 1200+100=1300=lengthofhypotenuse 500+1200+1300=3000=lengthof walkway.Thetotallengthis3000yd.

42. Let x =heightofthebreak.Then10 x =the lengthofhypotenuse.

ApplythePythagoreantheorem. 222 222 22 (10)3 100209 10020920914.55 cab xx xxx xxx 

Theheightofthebreakis4.55ft.

43. (a) 2 0 2 2 2 16 1696 801696 1696800 stvt stt tt tt

    a =16, b =–96and c =80

 2 2 4 2 96964(16)(80) 2(16) bbac t a     9692165120 32 9640969664 3232 t     96649664 1or5 3232 tt   Theprojectilewillreach80ftat1secand 5sec.

(b)  2 2 1696 01696 0166 stt tt tt    1600or606 tttt  Theprojectilewillreturntotheground after6sec.

44. (a) 2 0 2 2 2 2 16 16128 8016128 16128800 850 stvt stt tt tt tt      a =1, b =–8and c =5

bbac t a  

 

 

 4110.68or 4117.32 t t 

 2 2 4 2 884(1)(5) 2(1) 864208448211 222 411

 Theprojectilewillreach80ftat0.68sec and7.32sec.

(b)



 2 2 16128 016128 0168 stt tt tt



 1600or808 tttt  Theprojectilewillreturntotheground after8sec.

45. (a) 2 0 2 2 2 2 16 1632 801632 1632800 250 stvt stt tt tt tt



a =1, b =–2and c =5

309004(2.7)(5.5)30840.6 2(2.7)5.4 t   

30840.630840.6 10.92or0.19 5.45.4  

Therefore,theballreaches12ftfirstafter 0.19sec(onthewayup),thenagainafter 10.92sec(onthewaydown).

bbac t a i i



2 2 4 2 224(1)(5) 2(1) 242021624 222 12

Theprojectilewillnotreach80ft. (b)

2 2 1632 016320162 1600or202 stt tttt tttt

Theprojectilewillreturntotheground after2sec.

  

46. (a) 2 0 2 2 22 16 1616 801616 161680050 stvt stt tt tttt

 a =1, b =–1and c =5

 2 2 4 2 114(1)(5) 2(1) 1120119119 222 bbac t a i  

 

 

Theprojectilewillnotreach80ft. (b)  2 2 1616 016160161 1600or101 stt tttt tttt    Theprojectilewillreturntotheground after1sec.

47. Theheightoftheballisgivenby 2 2.7306.5.stt

(a) Whentheballis12ftabovethemoon’s surface, s =12.Set s =12andsolvefor t 2 2 122.7306.5 2.7305.50 tt tt   Usethequadraticformulawith a =2.7, b =–30,and c =5.5.

(b) Whentheballreturnstothesurface, s =0.

2 02.7306.5 tt  Usethequadraticformulawith a =–2.7, b =30,and c =6.5. 309004(2.7)(6.5) 2(2.7)

30970.2 5.4

30970.2 11.32 5.4   

30970.2 0.21or 5.4

Thenegativesolutionisnotmeaningful. Therefore,theballhitsthemoon’ssurface after11.32sec.

48. Whenthequadraticformulaisappliedtothe equation22.7306.5100 tt  2 2.73093.50, tt  thediscriminant,

 2243042.793.5 9001009.8109.8 bac

isnegative.Becausethisequationhasnoreal solution,theballwillneverreachaheightof 100ft.

49. (a) Theyear2007correspondsto x =13.  2 2 0.23132.60035.17 0.2313132.6001335.17 108.0597

yxx y   

In2007,theNFLsalarycapwas approximately$108.1million. (b) Wemustsolvefor x when y =90. 2 2 900.23132.60035.17 00.23132.60054.83 xx xx

Usethequadraticformulawith a =0.2313, b =2.600,and c =–54.83. (continuedonnextpage)

(continued)

50. (a)

(b)

2 2 4 2

2.60057.4887 0.4626 10.8,22.0 bbac x a x  

2.6002.60040.231354.83 20.2313

Thenegativesolutionisnotmeaningful. Therefore,thesalarycapreached90million dollarsduring2004.

2 2 0.02581.3023.3 0.025811.30123.3 22.0258 yxx y 

Aplayerchosenfirstwillearnabout$22.0 million.

2 2 0.02581.3023.3 0.0258101.301023.3 12.88 yxx y 

Aplayerchosententhwillearnabout$12.9 million.

51. (a) Let x =50. 2 0.00787(50)1.528(50)75.8919.2 T 

Theexposuretimewhen x =50ppmis approximately19.2hr.

(b) Let T =3andsolvefor x 2 30.007871.52875.89 xx  2 0.007871.52872.890 xx

Usethequadraticformulawith a =0.00787, b =–1.528,and c =72.89. 2 (1.528)(1.528)4(0.00787)(72.89) 2(0.00787)

1.5280.0402068 0.01574 x  

1.5282.3347842.2945772 0.01574

1.5280.0402068 109.8 0.01574   or 1.5280.0402068 84.3 0.01574 

Werejectthepotentialsolution109.8 becauseitisnotintheinterval[50,100]. So,84.3ppmcarbonmonoxide concentrationisnecessaryforapersonto reachthe4%to6%CoHblevelin3hr.

52. (a) Let x =600andsolvefor T 2 2 0.00020.316127.9 0.0002(600)0.316(600)127.9 10.3

Theexposuretimewhen x =600ppmis 10.3hr.

(b) Let T =4andsolvefor x 2 40.00020.316127.9 xx  2 0.00020.316123.90 xx Usethequadraticformulawith a =0.0002, b =–0.316,and c =123.9.  2 0.316(0.316) 4(0.0002)(123.9) 2(0.0002)

0.3160.0998560.09912 0.0004 0.3160.000736 857.8or722.2 0.0004 x

857.8isnotintheinterval[500,800].A concentrationof722.2ppmisrequired.

53. (a) 2014isrepresentedby x =6.Substitute x =6intotheequationtofind y:

 2 2 0.04299.73606 0.042969.736606 549.2milliontons yxx y

In2014,emissionswereabout549.2million tons.

(b) Let y =500andsolvefor x 2 2 5000.04299.73606 0.04299.731060 xx xx  

Usethequadraticformulawith a =0.0429, b =–9.73,and c =106.   2 9.739.7340.0429106 20.0429 9.7376.4833 11.5or215.3 0.0858

Themodelpredictsthattheemissionswill reach500milliontonsabout11.5yearsafter 2008,whichisduring2019.

Copyright©2017PearsonEducation,Inc.

54. Let y =8605andsolvefor x 2 2 86054.065370.13450 4.065370.151550

Usethequadraticformulawith a =4.065, b =370.1,and c =5155. 2 370.1370.14(4.065)(5155) 2(4.065)

370.1220,794.31 8.130

370.1469.89 8.130 103.3or12.3

Reject103.3becauseitgivesayearbefore 2000.Basedonthismodel,thecostwas$8605 about12.3yearsafter2000orin2012.

55. Theyear2010isrepresentedby x =3.

In2010,therevenuefromInternetpublishing andbroadcastingwasabout$42,795million.

56. Theyear2012isrepresentedby x =5.

Accordingtothemodel,cableTV’stop internetspeedin2012wasabout299.43MBS.

57. Foreach$20increaseinrentover$300,one unitwillremainvacant.Therefore,for x $20 increases, x unitswillremainvacant. Therefore,thenumberofrentedunitswillbe 80– x.

58. x representsthenumberof$20increasesin rent.Therefore,therentwillbe300+20x dollars.

59. 300+20x istherentforeachapartment,and 80– x isthenumberofapartmentsthatwillbe rentedatthatcost.Therevenuegeneratedwill thenbetheproductof80– x and300+20x, sothecorrectexpressionis

2 2 (80)(30020) 24,000160030020 24,000130020. Rxx xxx xx

60. Settherevenueequalto$35,000.Thisgives theequation 2 35,00024,000130020, xx where x representsthenumberofvacantapartments. Rewritethisequationinstandardformand thensolve.

2 2 20130011,0000 655500 5510055,10 xx xx xxx  

If x =55,thenonly25apartmentswillbe rented.Thisdoesnotmeettherestriction,so wedisregardthissolution.If x =10,then70 apartmentswillberented.Thismeetsthe restriction.

61. Let x =numberofpassengersinexcessof75. Then225–5x =thecostperpassenger(in dollars)and75+ x =thenumberof passengers. (Costperpassenger)(Numberofpassengers)= Revenue

2 2 22557516,000 16,875225375516,000 16,875150516,000 xx xxx xx 

 2 2 05150875 0301750(35)(5) 35035or505 xx xxxx xxxx 

  Thenegativesolutionisnotmeaningful. Becausethereare5passengersinexcessof 75,thetotalnumberofpassengersis80.

62. Let x =thenumberofunsoldseats.Thenthe numberofpassengersis100 x.Therevenue isgivenby y =(40+2x)(100 x).







 2 2 2 5950402100 59504000402002 019501602 0280975 01565 xx xxx xx xx xx



 15015 65065 xx xx   Theremustbenomorethan50unsoldseats, soonly x =15isvalid.Thereare10015= 85passengers.

63. Let x =numberofweeksthemanagershould wait.Then100+5x =numberofpoundsand 0.400.02 x =costperpound (Costperpound)(Numberofpounds)= Revenue

Thenegativesolutionisnotmeaningful.The farmershouldwait4weekstogetanaverage revenueof$38.40pertree.

64. Let x =numberofdaysthescoutsshouldwait. Then40.1x  thepricethescoutswill receiveperhundredpounds,and1204 x  = thenumberofhundredsofpoundsofcansthe scoutscancollect.

(Priceperhundredpounds)(Numberof pounds)=Revenue

Thescoutsshouldwait5daysinorderto receive$490fortheircans.

Section 1.6 Other Types of Equations and Applications

1. Arationalequationisanequationthathasa rationalexpressionforoneormoreterms.

2. Proposedsolutionsforwhichanydenominator equals0areexcludedfromthesolutionssetof arationalequation.

3. Ifajobcanbecompletedin4hours,thenthe rateofworkis1/4ofthejobperhour.

4. Whenthepowerpropertyisusedtosolvean equation,itisessentialtocheckallproposed solutionsintheoriginalequation.

5. Anequationsuchas328 x  isanequation witharationalexponentbecauseitcontainsa variableraisedtoanexponentthatisarational number. 6. B 7. D 8. C 9. E 10. A 11. 51 0 236 xx   3 2302 xx and606 xx

12. 23 0 152xx   101xx and2 5205 xx

13. 2 313 212xxxx   313 or 21(2)(1)xxxx   202xx and101 xx

14. 2 255 3123xxxx    or 255 31(3)(1)xxxx   303xx and101 xx

15. 12 3 4 xx  400 xx

16. 52 6 2 xx  200 xx

17. 253 22 xx x x  

Theleastcommondenominatoris   22, x whichisequalto0if x =2.Therefore,2 cannotpossiblybeasolutionofthisequation.

  22 253 2222 22 2252322 25410624 510410 xx xxx x xxxxx xxxxxx xxx   

   Therestriction2 x  doesnotaffectthe result.Therefore,thesolutionsetis 10.

18. 432 41 xx x x   

Theleastcommondenominatoris   41, x  whichisequalto0if x =1.Therefore,–1 cannotpossiblybeasolutionofthisequation. (continuedonnextpage)

(continued)

Therestriction1 x  doesnotaffectthe result.Therefore,thesolutionsetis  3 5

19. 3 3 33 x xx

Theleastcommondenominatoris x 3, whichisequalto0if x =3.Therefore,3 cannotpossiblybeasolutionofthisequation.

3 333 33 333 339 36263 x xx xx xx xx xxxx

Theonlypossiblesolutionis3.However,the variableisrestrictedtorealnumbersexcept3. Therefore,thesolutionsetis: 

20. 4 4 44 x xx 

Theleastcommondenominatoris x 4, whichisequalto0if x =4.Therefore,4 cannotpossiblybeasolutionofthisequation.

4 444 44 444 4416 412 3124 x xx xx xx xx xx xx

Theonlypossiblesolutionis4.However,the variableisrestrictedtorealnumbersexcept4. Therefore,thesolutionsetis:. 

21.

2 2312 or 339 2312 3333 xxx xxxx

Theleastcommondenominatoris

33,xx

whichisequalto0if x =3or x =3.Therefore,–3and3cannotpossiblybe solutionsofthisequation.

23 33 33 12 33 33 xx xx xx xx

  233312 263912 15123 xx xx xx   

Theonlypossiblesolutionis3.However,the variableisrestrictedtorealnumbersexcept–3 and3.Therefore,thesolutionsetis:.  22.

2 3112 or 224 3112 2222 xxx xxxx

Theleastcommondenominatoris

 22,xx whichisequalto0if 2or2.xx Therefore,2and2cannot possiblybesolutionsofthisequation.

31 22 22 12 22 22 xx xx xx xx

 32212 36212 4412 482 xx xx x xx    

Theonlypossiblesolutionis2.However,the variableisrestrictedtorealnumbersexcept2 and2.Therefore,thesolutionsetis:. 

23.

222 412 or 6456 412 322223 xxxxx xxxxxx 

Theleastcommondenominatoris

    322,xxx whichisequalto0if 3or2xx or2. x  Therefore,3and 2and2cannotpossiblybesolutionsofthis equation.

322 41 3222 2 322 23 xxx xxxx xxx xx

 (continuedonnextpage)

(continued)

25.

Therestrictions3,2,and2 xxx  do notaffecttheresult.Therefore,thesolutionset is 9.

Theleastcommondenominatoris

whichisequalto0if

or2.

Therefore,–1and1 and–2cannotpossiblybesolutionsofthis equation.

2312271 612271 662477 4277 237 933 xxx xxx xxx xx x xx

Therestrictions1,1,and2 xxx

do notaffecttheresult.Therefore,thesolutionset is 3.

2 2136 or 22 2136 22 x xxxx x xxxx

Multiplyeachtermintheequationbytheleast commondenominator,   2, xx assuming 0,2. x 

2 2 2 2136 22 22 21326 2366 2466 240220 x xxxx xxxx xxx xxx xx xxxx

200or202 xxxx  Becauseoftherestriction0, x  theonly validsolutionis2.Thesolutionsetis 2.

26.

2 43214321 or 111 xx xxxxxx xx

   Multiplyeachtermintheequationbytheleast commondenominator,   1, xx  assuming 0,1. x 

2 22 4321 11 11 43211 43221 45214510 4110 x xxxx xxxx xxx xxx xxxx xx

 1 4 410or101 xxxx  Becauseoftherestriction1, x  theonly validsolutionis14.Thesolutionsetis

1 4.

2 12 or 111 12 1111 x xxx x xxxx

Multiplyeachtermintheequationbytheleast commondenominator, 

 11,xx assuming1. x 



  1 11 11 2 11 11 x xx xx xx xx 

   

         2 22 11212 1210 110101or 101 xxxxxx xx xxxx xx

 

 

Becauseoftherestriction1, x  thesolution setis 

28.

Multiplyeachtermintheequationbytheleast commondenominator,

31. 2 31 2 2121 xx 

Multiplyeachtermintheequationbytheleast commondenominator, 2 21, x assuming

Becauseoftherestriction1, x  thesolution setis: 

29. 2 543 18 xx 

Multiplyeachtermintheequationbytheleast commondenominator,2, x assuming0. x 

22 2 22 5 2 1 9 543 18 54318018435 02591 250or 910 xx xx xxxx xx xx xx

Therestriction0 x  doesnotaffecttheresult. Therefore,thesolutionsetis  51 29,.

30. 2 719 6 xx 

Multiplyeachtermintheequationbytheleast commondenominator,2, x assuming0. x 

22 2 2 2 719 6 7196 06197 03127 xx xx xx xx xx

Therestriction0 x  doesnotaffecttheresult. Therefore,thesolutionsetis  17 32,.

Therestriction1 2 x  doesnotaffecttheresult. Thereforethesolutionsetis

3 4,1. 32. 2 73 6 2323 xx 

Multiplyeachtermintheequationbytheleast commondenominator, 2 23, x assuming 3 2. x

 22 2 73 23623 2323 xx xx 

       2 2 2 2 2 641297233 24725414213 2472541418 2486720 21243360249340 xxx xxx xxx xx xxxx

     94 43490or340 xxxx  Therestriction3 2 x  doesnotaffecttheresult. Therefore,thesolutionsetis  94 43,.

33. 252 3 xx x  Multiplyeachtermintheequationbytheleast commondenominator,3, x assuming0. x 

2 2 252 33 3 32526152 0815(3)(5) xx xx x xxxxxx xxxx

  303or505 xxxx  Therestriction0 x  doesnotaffecttheresult. Therefore,thesolutionsetis{3,5}.

34. 41 23 xx x  

Multiplyeachtermintheequationbytheleast commondenominator,6x,assuming x ≠ 0.

2 2 41 66 23 3421 31222 02512 0(23)(4) xx xx x xxx xxx xx xx

3 2 230or404 xxxx 

Therestriction0 x  doesnotaffecttheresult. Thereforethesolutionsetis

35. 242 5 22 xx xx 

Multiplyeachtermintheequationbytheleast commondenominator, x –2,assuming x ≠ 2.

2 2 2 2 24 (2)(2)522 2524 25104 04310 0245 xx xx xx xxx xxx xx xx

36. 32 2 11 xx xx 

5 2,4.

Multiplyeachtermintheequationbytheleast commondenominator, x 1,assuming x ≠ 1.

37. Let x =theamountoftime(inhours)ittakes JoeandSamtopaintthehouse. rt Partofthe Job Accomplished

Joe1 3 x 1 3

Sam1 5 x 1 5 x

BecauseJoeandSammustaccomplish1job (paintingahouse),wemustsolvethe followingequation.

38. Let x =theamountoftime(inhours)ittakes JoeandSamtopaintthehouse.

BecauseJoeandSammustaccomplish1job (paintingahouse),wemustsolvethe followingequation.

39. Let x =theamountoftime(inhours)ittakes plantAtoproducethepollutant.Then2x =the amountoftime(inhours)ittakesplantBto producethepollutant.

RateTime

BecauseplantAandBaccomplish1job (producingthepollutant),wemustsolvethe followingequation.

PlantBwilltake23978

hrtoproducethe pollutant.

40. Let x =theamountoftime(inhours)thefirst (faster)pipeoperates.Then3x =thesecond (slower)pipeoperates.

Firstpipe1 x 1212 x

Becausethetwopipesareworkingtogether, wemustsolvethefollowingequation. 1212361248

Thefasterpipecanfillthepondin16hours workingalone.

41. Let x =theamountoftime(inhours)tofillthe poolwithbothpipesopen.

RateTime Partofthe Job Accomplished

Inletpipe1 5 x 1 5 x

Outletpipe1 8 x 1 8 x

Fillingthepoolis1wholejob,butbecausethe outletpipeemptiesthepool,itscontribution shouldbesubtractedfromthecontributionof theinletpipe. 11 58 11 58 1 3 1 404018540 40 34013hr 3 xx xxxx xx

Ittook1133hrtofillthepool.

42. Weneedtodeterminehowmuchofthepool wasfilledafter1hour.Todothis,weevaluate 11 58xx when1 x  .After1hour, 1111853 5858404040 11

ofthepool hasbeenfilled.Whatremainstobefilledis 340337 140404040

.Ifwenowlet x bethe amountoftimeittakestocompletefillingthe pool,wemustsolvethefollowing.

373711 540540 375 88 55 4hr xx x

Itwilltake548hrmoretofillthepool.

43. Let x =theamountoftime(inminutes)tofill thesinkwithbothpipesopen.

Tap1 5 x 1 5 x Drain110 x 1 10 x Fillingthesinkis1wholejob,butbecausethe sinkisdraining,itscontributionshouldbe subtractedfromthecontributionofthetaps.

11 510 11 510 1 1010121010 xx xxxxx  

Itwilltake10minutestofillthesinkifMark forgetstoputinthestopper.

44. Weneedtodeterminehowmuchofthesink wasfilledafter1minute.Todothis,we evaluate11 510xx when1 x  .After1 minute,1111211 510510101010 11  of thesinkhasbeenfilled.Whatremainstobe filledis109 11 110101010  .Ifwenowlet x betheamountoftimeittakestocomplete fillingthesink,wemustsolvethefollowing.

19 510 9 11 5102 45 554min 10 x xx   Itwilltake142minmoretofillthesink.



45. 



xx xxxx xxxx xxxx



46.

47.



Check1. x 



22 22 230 2323 23230 1301or3

xx



 ? 230 12130 1230 11011020





Thisisafalsestatement.1isnotasolution.

Check3. x 

xx



 ? 230 32330 3630 39033000





Thisisatruestatement.3isasolution.

Solutionset:  3



Check2. x  ? 3735 3(2)73(2)5 6765 1111 xx 





Thisisafalsestatement.2isnotasolution.

Check1 x  ? 3735 3(1)73(1)5 3735 4222 xx

 

Thisisatruestatement.1isasolution.

Solutionset:  1

 

xx xxxx xxxx xxxx

 

 22 22 3180 318318 3183180 3603or6



Check3. x 

xx



 ? 3180 333180 39180 39033060





Thisisafalsestatement.–3isnotasolution.

Check6. x 

xx



 ? 3180 636180 618180 636066000



 Thisisatruestatement.6isasolution

Solutionset:  6





 22 2 2 2 3735 3735 3793025 092718 0932921 xx xx xxx xx xxxx

  

2or1xx

48.     22 2 2 2 41321 41321 413441 04812 0423 0413 xx xx xxx xx xx xx

    1or3xx

Check1. x 



xx



  ? 41321 4113211 41321 9333





Thisisafalsestatement.1isnotasolution. Check3. x 

xx



  ? 41321 4313231 121361 25555





Thisisatruestatement.3isasolution.

Solutionset:  3





49.  



 

 22 2 2 2 456211 4525 4525 4542025 042420 0465415 1or5 xx xx xx xxx xx xxxx xx

  (continuedonnextpage)

(continued)

Check1. x  

xx



? 456211 41562111 456211 969 36939



  Thisisafalsestatement.1isnotasolution.

Check5. x  

xx



? 456211 45562511 20561011 256156111

  Thisisatruestatement.5isasolution.

Solutionset:  5

50.

 

22 2 2 6797 672 672 6744 02313 xx xx xx xxx xxxx



 

1or3xx

Check1. x   ? 6797 617917 6710 11011000 xx



 Thisisatruestatement.1isasolution.

Check3. x 



xx



 ? 6797 637937 18794 259459444



 Thisisatruestatement.3isasolution.

Solutionset:  1,3

51.

52.

 

  22 2 2 430 43 43 469 0109(1)(9) 1or9 xx xx xx xxx xxxx xx

Check1. x 

   

 ? 430 41130 4130 213040 xx

   Thisisafalsestatement.1isnotasolution.

Check9. x 

 ? 430 49930 36930 693000 xx

Thisisatruestatement.9isasolution.

Solutionset:  9

 

  

  22 2 2 240 24 24 2816 01016(2)(8) 2or8 xx xx xx xxx xxxx xx



Check2. x 



 ? 240 22240 4240 224040 xx





 Thisisafalsestatement.2isnotasolution.

Check8. x 



 ? 240 28840 16840 484000 xx



  Thisisatruestatement.8isasolution.

Solutionset:  8

Chapter 1 Equations and Inequalities

53.





22 22 51 1515 1255 254425 2525 459 xx xxxx xxx xxxx xx xx





  Check9. x  ? 51 9951 34132111 xx



Thisisatruestatement. Solutionsetis:  9

54.

22 22 122 212212 441212 41288412 212212 41216 xx xxxx xxx xxxx xx xx



 Check16. x  ? 122 1616122 44242222 xx





Thisisatruestatement.

Solutionset:  16

55.



22 22 734 734 76794 671646720 37103710 97100963100 37 937 9 xx xx xxx xxxx xx xx xx











 37 Check9. x  ? 3737 99 37633736 9999 734 734 3 xx





Thisisafalsestatement. Solutionset: 

56.





  



57.

 1001 99 1010919111 3333333 3 3 

 22 22 521 521 54541 94514510 255255 452542025 5 45 4 xx xx xxx xxxx xx xx xx

 5 Check4. x  ? 55 44 52054 4444 251 44 5911 2222 521 521 2 2 2 xx    

Thisisafalsestatement. Solutionset: 

 

       22 22 2 2 2 2521 2521 2521 252221 25322 222 222 4442 4448 04 0222 xx xx xx xxx xxx xx xx xxx xxx x xxx





 

     Check2. x 



xx

 ? ? ? ? 2521 225221 4541 941 32111

 



 Thisisatruestatement.2isasolution.

(continuedonnextpage)

(continued)

Check2. x 

? ? ? ? 2521 225221 4501 101 10111 xx    

Thisisatruestatement.2isasolution.

Solutionset:

22 4112 4112 4112 411414 41341 3241 xx xx xx xxx xxx xx

22 2 2 2 10 9 3241 9124161 91241616 92820091020 or2 xx xxx xxx xxxx xx 



 

10 Check9. x   ? 1010 99 40109 999 4112 4112 12 xx   4094911 99993 7677 1 33333 22

 Thisisatruestatement.109isasolution.

Check2. x   ? 4112 421212 8112 91233 xx

 



Thisisatruestatement.2isasolution.

Solutionset:  109,2

59. 

 

    22 222 2 3511 3511 3512511 352251 25122511 5115112 0303 0or3 xx xx xxx xxx xxxx xxxxx xxxx xx

 



  

Check0. x 

? 3511 305011 0011011 01100 xx  

 Thisisatruestatement.0isasolution. Check3. x 

xx 

  ? 3511 335311 915113161 34133



 Thisisatruestatement.3isasolution. Solutionset:{0,3}





60.  















   22 22 2 2 2 2 23122 23122 231243124 23164312 431216 431216 1631232256 4819232256 01664 0(8)8

 xx xx xxx xxx xx xx xxx xxx xx xx

Check8. x 

xx



  ? 23122 2838122 1624122 436246244



 Thisisatruestatement. Solutionset:{8}

61.

62.

 

22 22 22 2137 2(137) 2123737 238237 23726 23723 373373 3769032 021 2or1 xx xx xxx xxx











  

Check2. x 

 ? 2137 221327 0167 011 01100

 Thisisatruestatement.2isasolution.

Check1. x 

? 2137 121317 1137 114 11211 xx

   Thisisafalsestatement. 1isnotasolution. Solutionset:{2}









22 22 2 2 2 2522 2522 254422 25242 742 742 1449162 14491632 308103270 3or27 xx xx xxx xxx xx xx xxx xxx xxxx xx

Check3. x 

 ? 2522 235232 6521 12113 xx

 

 Thisisafalsestatement.3isnotasolution.

Check27. x 

 ? 252272 22752272 545225 492577 x 



  Thisisatruestatement.27isasolution. Solutionset:{27} 63.



 



    22 22 2 2 2 2 9 27232 27232 27232 27232 4729124 2889124 09164 0922 or2 xx xx xx xx xxx xxx xx xx xx









   2 Check9. x 

xx





 ? 22 99 142 93 186142 9933 4424 9333 27232 27232 222 2 22

  323424 33 333 23232323 33333





Thisisatruestatement. 2 9isasolution.

Check2. x 



xx



   ? 27232 2722322 214262

2168 2422 8222222

   

Thisisatruestatement.2isasolution.

Solutionset:  2 9,2

22 22 2 2 2 3 25 32356 32356 32356 32356 923256036 1827256036 025789 02533 or3 xx xx xx xx xxx xxx xx xx xx

 3 Check25. x 

 ? 33 2525 63 255 675330 252555 32356 32356 336 3

8127927 25555 27335 555 27315 55 335315315315 55555 33 i i ii 

Thisisafalsestatement.325isnotasolution.

Check3. x 

? 32356 3233536 363156 xx

399 3339333 

Thisisatruestatement.3isasolution Solutionset:  3 65.

22 22 2 2 323 323 9623 128 128 1442464 401440 364036or4 xx xx xxx xx xx xxx xx xxxx

Check36. x 

? 323 3362363 36263 31233933 xx

 Thisisafalsestatement.36isnotasolution. Check4. x 

? 323 34243 32223 1431111 xx

 Thisisatruestatement.4isasolution. Solutionset:  4 66.





22 22 22 247 247 4447 33 990 900or9 xx xx xxx xxxx xxxx xxxx





 

Check0. x   ? 247 02470 02470 2402422 xx







 Thisisatruestatement.0isasolution. Check9. x   ? 247 92479 32473 542152555



xx





 Thisisatruestatement.9isasolution. Solutionset:  0,9

67.

  33 3333 4321 4321 4321242 xx xx xxxx  

 Check2. x  33 ? 3333 4(2)32(2)1 5555



 Thisisatruestatement.2isasolution. Solutionset:{–2}

68.

   333333 252252 2 25232 3 xxxx xxxx

2 Check3. x 





 323 333 23 22 4 3 398 398 39831080 3420or2 xxx xxx xxxxx xxxx



69.

 



 2233 33 ?10106 443333 33333 333 44 33 3333 3 3333 33 252 2 4936 393 36493636 333 39 

Thisisatruestatement.

Solutionset:  2 3

  

323 323 333 23 2 2 2 5 5620 562 562 562 5720 5210or1 xxx xxx xxx xxx xx xxxx

 



2 Check5. x 

323 2?3222 3 555 412233 2555 10 412233 5555 2233 55 5620 5620 520 0 000 xxx

4

Check3. x 

xxx     

333 33 33 33333 33 323 2? 3444 3 333 49361616 33 933 39 163636 3124 3 33333 49363636 39333 398 398 31284

Thisisatruestatement.43isasolution. Check2. x 

 323 32?3 33 3333 398 329282 341882 1210222 xxx 



   Thisisatruestatement.2isasolution. Solutionset:  4 3,2

71.











Thisisatruestatement.25isasolution.

Check1. x    323 2?33 3 3 3 5620 5161210 516210 56210 11011000

xxx









Thisisatruestatement.1isasolution.

Solutionset:  2 5,1

72.

  4444 152152 151631 xx xx 

 Check31. x  44? 4 15231152 16222 x   Thisisatruestatement. Solutionset:  31

 4 444 311 311311 300 x xx xx    Check0. x 

 4? 4 44 3113011 0111111 x   Thisisatruestatement. Solutionset:  0

73.

 4444 2244 22 2323 23230 3103or1 xxxx xxxx xxxx







Check3. x 

 424 42?4 4444 23 3233 96333 xx





Thisisatruestatement.3isasolution.

Check1. x   424 42?4 4444 23 1213 12333



Thisisatruestatement.1isasolution.

Solutionset:{3,1}

74.



4 44224 22 6262 6166160 8208or2 xxxx xxxx xxxx





Check8. x 

xx

 42 42? 44 62 8682 6448216222





Thisisatruestatement.8isasolution.

Check2. x 

xx

 42 42? 44 62 2622 412216222





Thisisatruestatement.2isasolution.

Solutionset:  8,2

75.

 32 23 3223 2 125 125 525 x x x   

Check x =25. 32 32? 125 25125 125125 x   

Thisisatruestatement.25isasolution.

Solutionset:{25}

76.

 54 45 5445 4 32 32 216 x x x   

Check x =16. 54 54? 32 1632 3232 x   

Thisisatruestatement.16isasolution. Solutionset:{16}

77. 1/44 21/424 22 (24)3243 248124810 (27)(3)027027or 303 xxxx xxxx xxxx xx    

   Check27. x 

 21/4 21/4? 1/4 1/4 (24)3 2724273 7296483 81333 xx  



  Thisisatruestatement.–27isasolution. Check3. x 

  21/4 21/4? 1/41/4 (24)3 32433 972381333 xx  

 Thisisatruestatement.3isasolution. Solutionset:{–27,3}

78. 

 1/41/44 224 22 64 3 35243524 3522563522560 36440or4 xxxx xxxx xxxx

      64 Check3. x   

21/4 21/4?6464 33 1/4 40963328 93 409633281/4 33 7681/4 3 1/4 3524 3524 34 4 4 256444 xx         Thisisatruestatement. 643isasolution. (continuedonnextpage)



(continued)

Check4. x 

21/4 21/4? 1/4 3524 345244 3162084 xx

1/4 1/4 482084 256444  

Thisisatruestatement.4isasolution.

Solutionset:  643,4

79.   25 255252 34 34 332 33235 33229 x x x xx xx 

Check x =35.

25 25? 25 34 3534 32444 x   

Thisisatruestatement.35isasolution.

Check x =29.

25 25? 25 2 34 2934 324 2444 x    



Thisisatruestatement.29isasolution. Solutionset:{29,35}

80. 

 23 233232 20036 20036 200216 20021616 200216416 x x x xx xx  

Check x =16.

 23 23? 23 20036 1620036 216363636 x    Thisisatruestatement.16isasolution.

81.

Check x =416. 

  23 23? 23 2 20036 41620036 21636 6363636 x    

Thisisatruestatement.416isasolution. Solutionset:{416,16}

 1313 1313 331313 3 2 25610 2561 2561 2561 46 xx xx xx xx x x

Check3 2 x 

1313 1313?33 22 1313 25610 25610 88000

Thisisatruestatement.32isasolution.

Solutionset:  3 2

1313 1313 331313 37420 3742 3742 3742 5 xx xx xx xx x

Check x =5.

1313 1313? 1313 37420 3574520 2222000

Thisisatruestatement.5isasolution. Solutionset:{5}

2/31/3

83.

Thisisatruestatement.14isasolution.

Check1. x 

2/31/32/3?1/3 2/32/3 (21)2111 2111111 xx

Thisisatruestatement.1isasolution.

Solutionset:  1 4,1

2/51/5 552/51/5

2 2 (3)4 (3)4 (3)4 694 1090 1901or9 xx xx xx xxx xx xxxx

Check1. x 

2/51/5

2/5?1/5

2/51/5

21/51/55555 (3)4 (13)41 24 244444 xx

Thisisatruestatement.1isasolution.

Check9. x 

2/51/5

2/5?1/5

2/51/521/55 1/5555 (3)4 (93)49 636636 36363636 xx

Thisisatruestatement.9isasolution.

Solutionset:  1,9

332/31/32/31/3 22 22 88080 0or8 xxxx xxxxxx xx    Check0. x 

2/31/3 ? 2/31/3 2 02002000 xx 

Thisisatruestatement.0isasolution. Check8. x 

? 2/31/32/31/3 1/3 21/3 2828 82264444 xx  Thisisatruestatement.8isasolution. Solutionset:  0,8

443/41/23/41/2 3232 21 81 33 81810 81100or xxxx xxxx xxxx    Check0. x 

 3/41/2 3/4?1/2 3 30030000 xx  

Thisisatruestatement.0isasolution. 1 Check81. x 

  3/41/2 3/41/21/43 ? 1111 8181819 3 111111 3927999 3 33 33 xx      

Thisisatruestatement.181isasolution.

Solutionset:  1 0,81 87. 42 2750 xx Let2 ux  ;then24 ux  .Withthis substitution,theequationbecomes 2 2750 uu     2 5 2 27501250 1or uuuu uu  

Tofind x,replace u with2 x 2 51022 55 222 22 11orxx xx  

Solutionset:  101,2

88. 42 4830 xx

Let2 ux  ;then24 ux  .

 2 483021230 uuuu . 1 2 u  or3 2 u 

Tofind x,replace u with2 x 3622 33 222 22 222 111 222 22 or xxx xxx

 

Solutionset:  62 22 , 

89. 422150xx

Let2; ux  then24 ux 

 22150350 3or5 uuuu uu  

Tofind x,replace u with2 x . 2 2 33or 555 xx xxi  

Solutionset:  3,5 i 

90. 42 310250 xx

Let2; ux  then24 ux 

2 3102505350 uuuu  . 5 53 or uu

Tofind x,replace u with2 x 2 25315 55 333 33 555orxxi xxx  

Solutionset:  155,3 i 

91. 2/31/3 (1)(1)120 xx

Let 1/3 1. ux Then

2 21/32/3 11.uxx  

2120430 uuuu

4or3uu

Tofind x,replace u with 1/3 1. x

3 1/31/33 1414 16463or xx xx

1/31/333 1313 12728 xx xx

Check63. x 

xx  

2/31/3 2/31/3? 2/31/3 1/32 2 (1)(1)120 (631)(631)120 (64)(64)120 (64)4120 44120 16412000

 Thisisatruestatement.63isasolution. Check28. x  2/31/3 2/31/3? 2/31/3 1/32 2 (1)(1)120 (281)(281)120 2727120 273120 33120 9312000 xx

   Thisisatruestatement.28isasolution. Solutionset:  63,28

92. 2/31/3 (21)2(21)30 xx

Let 1/3 21.ux Then  2 21/32/3 2121.uxx   

   2230310 uuuu 3or1uu

Tofind x,replace u with 1/3 21. x

 3 1/31/33 213213 212722613or xx xxx     1/31/333 211211 211221 xx xxx   

 Check13. x 

xx     



   2/31/3 2/31/3? 2/31/3 2/31/3 1/32 2 (21)2(21)30 2(13)122(13)130 (261)2(261)30 (27)2(27)30 (27)2330 3630 9630 00

  Thisisatruestatement.13isasolution. (continuedonnextpage)

(continued)

Check1. x  

xx

2/31/3 2/31/3? 2/31/3 2/31/3 (21)2(21)30 2(1)122(1)130 (21)2(21)30 12(1)30 12130 1230 00

Thisisatruestatement.1isasolution

Solutionset:  13,1

93. 2/51/5 (1)3(1)20 xx

Let 1/5 1. ux Then

2 21/52/5 11.uxx

1or2uu

Tofind x,replace u with 1/5 1. x 

1/51/555 1111 110 xx xx

1/51/555 1212 13231 xx xx

Check0. x  2/51/5

xx

2/51/5?

2/51/5 (1)3(1)20 (01)3(01)20 13(1)20 13(1)2000

 



Thisisatruestatement.0isasolution.

Check31. x 

2/51/5

xx

2/51/5?

 

2/51/5 1/52 2 (1)3(1)20 (311)3(311)20 323(32)20 (32)3(2)20 2620 462000

Thisisatruestatement.31isasolution.

Solutionset:  0,31

94. 2/31/3 (5)(5)200 xx

Let 1/3 5. ux Then

 2 21/32/3 55.uxx   

   2200540 uuuu 5or4uu Tofind x,replace u with 1/3 5. x 

 3 1/31/33 5555 5125130or xx xx    

1/31/333 5454 56459 xx xx     Check130. x 

2/31/3 2/31/3? 2/31/3 (5)(5)200 (1305)(1305)200 125125200 255200 00 xx

   

Thisisatruestatement.130isasolution. Check59. x   2/31/3 2/31/3? 2/31/3 (5)(5)200 (595)(595)200 6464200 164200 00 xx

 

 

Thisisatruestatement.59isasolution. Solutionset:{130,59}

95.   42 42 411319 4113190 xx xx 



Let2(1).ux Then24(1).ux

 2 9 4 41390 4910or1 uu uuuu 



Tofind x,replace u with2 (1) x 

 293 42 351 222 11 1or xx xxx  

 2 1111 112or0 xx xxx  

Besuretocheckallpossiblesolutionsinthe originalequation.

Solutionset:  51 22 ,2,0,

96. 

 42 42 255116564 2551165640 xx xx 



Let  2 5. ux Then  245. ux

 2 16 25 25116640 251640or4 uu uuuu 



Tofind x,replace u with 2 5. x  2164 255 42129 555 55 5or xx xxx





 2 5452 527or3 xx xxx





Besuretocheckallpossiblesolutionsinthe originalequation.

Solutionset:  2129 55 3,,,7 97. 42 42 6(2)11(2)4 6(2)11(2)40 xx xx 



Let2(2);ux then24 (2).ux 2 61140(34)(21)0 uuuu  41 32 or uu

Tofind x,replace u with2 (2) x  223 44 333 2323623 6 3333 (2)2 2 xx x 





(2)2 2 xx x 

 or 22 11 222 2242 4 2222



Solutionset:  62342 32 ,  

98. 42 42 8(4)10(4)3 8(4)10(4)30 xx xx

 

99. 21 103370 xx

Let1 ux  ;then22. ux  2 103370(27)(51)0 uuuu  71 25 or uu

Tofind x,replace u with1 x 11721 275or5xxxx 

Solutionset:  2 7,5

100. 21 71080 xx

Let1 ux  ;then22. ux  2 71080(74)(2)0 uuuu 4 7or2uu

Tofind x,replace u with1 x 11 7 41 742 or2 xxxx 

Solutionset:  71 42 ,

101. 2/31/360xx

Let1/3; ux  then  2 21/32/3 uxx  260(3)(2)0 uuuu 3or2uu

Tofind x,replace u with1/3. x   

3 1/31/333 11 327 33xx xx 

 or

  3 3 1/31/33 11 28 22xx xx   1 Check27. x 

  2/31/3 2/31/3?11 2727 2/31/3 60 60 (27)(27)60 xx  

 

(4)4 4 xx x  

Let u = 2 (4); x then24 (4).ux     2 8103021430 uuuu  1 2 u  or3 4 u  22 11 222 2282 8 2222

 or 23 33 442 3383 8 2222 (4)4 4 xx x 

Solutionset:  8283 22 ,  

  1/32 2 27360 3360 936000

  Thisisatruestatement. (continuedonnextpage)

(continued)

1 Check8. x 

2/31/3 2/31/3?11 88 2/31/3 1/32 2 60 60 8860 8260 2260 426000 xx

Thisisatruestatement.

Solutionset:  11 278 ,

102. 2/51/5 210 xx

Let1/5; ux  then

2 21/52/5 uxx  2 210(21)(1)0 uuuu 1 2or1uu

Tofind x,replace u with1/5 x

1/51 2 1/555 1 2 32 x x x 

5 or1/51/55111xxx 

Solutionset:{32,1}

103. 42 166540 xx

Let2 ux  ;then24 ux  .Solvethe resultingequationbyfactoring:

 2 1 16 16654041610 4or uuuu uu  

Find x byreplacing u with2 x : 2211 42 22 1 16 4 164 xxx xxx  

Check1 2 x 

4211 22 42? 166540 16265240 161665440 25626040 00     

Thisisatruestatement,so12isasolution.

Check1 2 x 

4211 22 42? 166540 16265240 161665440 25626040 00

Thisisatruestatement,so12isasolution. Check x =4

 42 42?11 44 11 25616 165 1616 16465440 166540 166540 40 00     

Thisisatruestatement,so4isasolution. Check x =4





42 42?11 44 11 25616 165 1616 16465440 166540 166540 40 00



 

Thisisatruestatement,so4isasolution. Solutionset:  1 2,4

104. 42 62512540 xx

Let2 ux  ;then24 ux  .Solvethe resultingequationbyfactoring:



 2 41 2525 62512540 2542510or uu uuuu



Find x byreplacing u with2. x 22255 4 2542 22 1 25255 xxx xxx

 

Check5 2 x 





42?55 22 4222 55 164 62525 62512540 62512540 62512540 16204000





Thisisatruestatement,so52isasolution.

(continuedonnextpage)

(continued)

Check5 2 x 

42?55 22 4222 55 164 62525 62512540 62512540 62512540 16204000

Thisisatruestatement,so52isasolution.

Check x =5

42? 4211 55 11 62525 6255125540 62512540 62512540 154000

Thisisatruestatement,so5isasolution.

Check x =5

42?

4211 55 11 62525 6255125540 62512540 62512540 154000 

Thisisatruestatement,so5isasolution.

Solutionset:

5 2,5

105. dkh  for h d h k  2 2 d h k 

So, 2 2. d h k  106.

2/32/32/3

2/32/32/3

332/32/32/3 22/32/33

2/32/33 2/32/33/2 for () xyay yax yax yax yax yax

107. 3/43/4

3/43/4 1for 1 mnm mn   Raisebothsidestothe43power.

3/44/33/44/3

3/44/3 ()(1) (1) mn mn  

108.  12 121212 12 12 1221 1221 12 21 111 for 111 Multiplybothsidesby. R Rrr RrrRrrRrr Rrr Rrr rrRrRr rrRrr rr R rr



   

So,12 12 =. rr R rr 

109. for Multiplybothsidesby. () ERr e er ERr erer er er EreRer EreRr Er e Rr  

 

So, Er e Rr  

110. 222 222 22 for abcb bca bca   

111. 120 xx

Let ux  ;then2ux  .Solvetheresulting equationbyfactoring. 2120(4)(3)0 uuuu u =4or u =–3

Tofind x,replace u with x  22 4416xxx  or    22 339xxx 

But93 

Sowhen u =–3,thereisnosolutionfor x. Solutionset:{16}

112. 120 xx

Solvebyisolating x ,thensquaringboth sides.

222 2 12 (12)()24144

251440(16)(9)0 xx xxxxx xxxx  

 x =16or x =9

Check x =16. ? 120 1616120 16412000

Thisisatruestatement. Check x =9. ? 120 991209312060 xx

 Thisisafalsestatement.9doesnotsatisfythe equation.

Solutionset:{16}

113. Answerswillvary.

114. 3280 xx Solvebysubstitution.

Let ux  ;then2ux  .Solvetheresulting equationbyfactoring.

2 3280(34)(2)0 uuuu 4 3or2uu

Tofind x,replace u with x 4 3 x  hasnosolution,becausetheresult ofasquarerootisneveranegativereal number.

24xx Check x =4.

? 3280 342480 342280 1248000

Thisisatruestatement. Solutionset:{4}

Summary Exercises on Solving Equations

1. 4323233 263 xxx xx   Solutionset:  3

2.

    563222 56344 2644242 221 xx xx xxx xx  

 Solutionset: 1.

3.   22 6969690xxxxxx Solvebycompletingthesquare.

 2 122 2 2 6999

  

Note:639 318318 332332 xx xx xx

  Solvebythequadraticformula. Let1,6,and9. abc

  2 2 4 2 66419 21 63636672 22 662 332 2 bbac x a  

   Solutionset:  332 4. 228128120xxxx Solvebyfactoring.

    28120260 2or6 xxxx xx   Solvebycompletingthesquare.

  2 122 2 2 8161216 Note:8416 4444 4242 422or426 xx xx xx xx   

   Solvebythequadraticformula. Let1,8,and12. abc

  2 2 4 2 884112 21 bbac x a  

 

8644881684 42 222 x   422or426xx Solutionset:  2,6

5.

Check25. x  ? 1414 2525 503751414 25252525 36361625193119 252555555 2515 2515 5 5 xx

Thisisafalsestatement.Solutionset:  6.

2 563 or 326 563 3232 xxxx xxxx

Theleastcommondenominatoris

 32,xx whichisequalto0if 3or2.xx Therefore,3and2cannot possiblybesolutionsofthisequation.

Therestrictions3and2 xx donotaffect theresult.Therefore,thesolutionsetis{31}.

7. 342 33 xx x x 

Theleastcommondenominatoris   33, x whichisequalto0if3. x  Therefore,3 cannotpossiblybeasolutionofthisequation.

22 342 3333 33 3343233 34912639 xx xxx x xxxxx xxxxxx  

22 3111239 11129 1226 xxxx xx xx 

 Therestriction3 x  doesnotaffectthe result.Therefore,thesolutionsetis 6.

8.

44 5665 2323 3863011630 5306

xx xxxx xxxxx xx

Solutionset:  6

9. 2 21 50 xx

Theleastcommondenominatoris2, x which isequalto0if0. x  Therefore,0cannot possiblybeasolutionofthisequation.  222 2 21 505210xxxx xx

Solvebycompletingthesquare.





Note: xx xx x x xixi

1 5 221 55 22111 525525 22 1211 25525 25 114 5252525 14 525 1212 5555 0Multiplyby.

   Solvebythequadraticformula. Let5,2,and1. abc

  2 2 4 2 22451 25 2420216 1010 242412 10101055 bbac x a i ii         Therestriction0 x  doesnotaffecttheresult. Therefore,thesolutionsetis   12 55. i 

10. 2 219219213 13 213 2 xxx xx    134132 2or1 2222 xx  

Solutionset:  2,1

11. 2/51/52150xx

Let1/5 ux  ;then

Tofind x,replace u with1/5. x

5 1/51/555 11 3243

2/51/5 2/51/511 243243 2/51/5 1/52 2 2150 2150? (243)2(243)150 24323150 361509615000

Thisisatruestatement.1243isasolution. 1 Check3125. x 

2/51/5 2/51/5?11 31253125 2/51/5 1/52 2 2150 2150 (3125)2(3125)150 312525150 510150 251015000

Thisisatruestatement.13125isasolution. Solutionset:  11 2433125 , 12.

Check1. x   ? 2126 121216 11262422 xx

 Thisisatruestatement.

Solutionset:  1

13. 42340xx Let2 ux  ;then24 ux  

  2340140 1or4 uuuu uu  

Tofind x,replace x with2 x 2 2 11or 442 xxi xx  

Solutionset:  ,2 i 

14.  1.20.30.70.9 101.20.3100.70.9 12379539 5122.4 xx xx xxx xx    

Solutionset:  2.4

15.     333333 219219 219284 xx xxx 

 Check4. x 

 ? 333 3 3333 2192419 81999 x 

 Thisisatruestatement. Solutionset:{4}

16. 22 3213210 xxxx Solvebycompletingthesquare.    2 2211 333 22111 3939 22 1211 2339 23 112 3999 12 39 2211 3333 321 Multiplyby.

  





Note: xx xx xx x x xixi  

 Solvebythequadraticformula. Let3,2,and1. abc (continuedonnextpage)

(continued)

Solutionset:

  

2/3 2/333 2 2 2 2 (142)4 [(142)]4 (142)64 19656464 4561320 414330 431103or11 x x x xx xx xx xxxx

 





 Check3. x   

Solutionset:





22 22 2 2 2 111 111 2111 3111310 310 910020 010029 029100 0425 4or25 xx xx xxx xxxx xx xxx xx xx xx xx







Check4. x  ? 111 41114 211123933

xx





 Thisisatruestatement.

Check25. x  ? 111 2511125 5111566

xx 

  Thisisafalsestatement. Solutionset:  4

2/3 2/3? 2/32/3 2 1/32 (142)4 14234 146484 842444 x 

   

Thisisatruestatement. Check11. x 

 2/3 2/3? 2/32/3 2 1/32 (142)4 142114 1422484 842444 x   



 

Thisisatruestatement.

Solutionset:  3,11

 

20. 21 21 21 21 210 210 xx xx xx



Let1 ux  ;then22. ux  22210(1)01uuuu 

Tofind x,replace u with1 x 111xx

Solutionset:  1

21. 33 33xx 

Theleastcommondenominatoris  3 x whichisequalto0if3. x  Therefore,3 cannotpossiblybeasolutionofthisequation.

Solutionset:  |3xx  .

22. 222 22222 for abca acbacb  

Section 1.7 Inequalities

1. F.Theinequality x <–6includesallreal numberslessthan6notincluding6.The correctintervalnotationis   ,6.

2. J.Theinequality6 x  includesallreal numberslessthanorequalto6,soitincludes6. Thecorrectintervalnotationis

,6. 

3. A.Theinequality26 x  includesallreal numbersfrom–2to6,notincluding–2,but including6.Thecorrectintervalnotationis (–2,6].

4. H.Theinequality20 x  includesallreal numbersbecausethesquareofanyreal numberisgreaterthanorequalto0.The correctintervalnotationis

,. 

5. I.Theinequality6 x  includesallreal numbersgreaterthanorequalto–6,soit includes–6.Thecorrectintervalnotationis

6,.

6. D.Theinequality6 x  includesallreal numbersgreaterthanorequalto6,soit includes6.Thecorrectintervalnotationis

6,. 

7. B.Theintervalshownonthenumberline includesallrealnumbersbetween–2and6, including–2,butnotincluding6.Thecorrect intervalnotationis[–2,6).

8. G.Theintervalshownonthenumberline includesallrealnumbersbetween0and8,not including0or8.Thecorrectintervalnotation is(0,8).

9. E.Theintervalshownonthenumberline includesallrealnumberslessthan3,not including3,andgreaterthan3,notincluding 3.Thecorrectintervalnotationis

,33,,

10. C.Theintervalincludesallrealnumbersless thanorequalto–6,soitincludes–6,The correctintervalnotationis

,6.

11. Answerswil1vary.Sampleanswer:Asquare bracketisusedtoshowthatanumberispart ofthesolutionset,whileaparenthesisisused toindicatethatanumberisnotpartofthe solutionset.

12. D.810 x  means8 x  and10, x  whichisequivalentto8 x  and10. x  Thereisnorealnumberthatissimultaneously totherightof–8andtotheleftof–10ona numberline.

13. 2816288168 28 284 22 xx x xx  

Solutionset:   4, 

14. 38738878 315 3155 33 xx x xx  

Solutionset:   5, 

15. 221 22212 2323 33 331 33 xx xx xxxx x xx 

Solutionset:   1, 

16. 432 43323 4545 55 551 55 xx xx xxxx x xx  



Solutionset:  ,1

17.   35153 315153165 xx xx   Theinequalityistruewhen x isanyreal number.

Solutionset:   , 



18.   62345 623454345 44345435 xxx xxxxx xxxx

 

Theinequalityistruewhen x isanyreal number.

Solutionset:   , 

19.   83227 52214 5222142 3214322142 312 3124 33 xxx xx xxxx xx x xx 

   

Solutionset:   ,4

20.

 15 7 245162 2455612 3612 366126 7312733123 715 715 77 xxx xxx xx xxxx xx x xx

21.

22.

11 5 47 25 3 47 3325 3 47615 4766156 10715 10771571022 1022 1010 x x x x xx xxxx x xx x x

25 1 8 25 881 8 2588

1 2 658 6558563 63 66 x xx x x

23.

48 7 1211 3 35210 1211 30330 35210 10121533 101215453 7453 74545345 748 748 77 xxx xxx xxx xxx x x x x x

Solutionset:

 4, 

25. C =50x +5000; R =60x

Theproductwillatleastbreakevenwhen

RC  Set RC  andsolvefor x 60505000105000500 xxxx 

Thebreak-evenpointisat x =500. Thisproductwillatleastbreakevenifthe numberofunitsofpictureframesproducedis intheinterval 

500,. 

26. C =100x +6000; R =500x Theproductwillatleastbreakevenwhen RC  Set RC  andsolvefor x 5001006000400600015 xxxx 

Thebreak-evenpointis x =15.

Theproductwillatleastbreakevenwhenthe numberofunitsofbaseballcapsproducedis intheinterval   15,. 

27. C =105x +900; R =85x

Theproductwillatleastbreakevenwhen RC  Set RC  andsolvefor x 851059002090045 xxxx  Theproductwillneverbreakeven.

28. C =70x +500; R =60x Theproductwillatleastbreakevenwhen . RC  Set RC  andsolvefor x. 60705001050050 xxxx  Theproductwillneverbreakeven.

29. 55211 55525115 1026 1026 222 53 x x x x x     

Solutionset:  5,3

30. 7235 7223252 933 933 333 31 x x x x x

Solutionset:(3,1)

31. 102416 104244164 6212 6212 222 36 x x x x x

Solutionset:[3,6]

32. 3 2 66321 63633213 9618 9618 666 3 x x x x x

Solutionset:32,3

33. 113117 111311171 12318 12318 333 46 x x x x x

Solutionset:(4,6)

34. 1 6 2633 2363333 166 166 666 1 x x x x x

Solutionset:

35. 

1 45 2 1 24225 2 8110 8111101 99 x x x x x

Solutionset:[9,9]

36.   3 51 3 3 35331 3 1533 1533333 126 x x x x x

Solutionset:[12,6]

37.

 1619 33 34 34 5 34 53554 5 153420 154344204 19316 x x x x x x

Solutionset:  1619 33 ,   38.

 45 19 2 45 21229 2 24518 25455185 3413 3413133 44444 x x x x x x x 

Solutionset:  133 44 ,  

39. 260xx−−>

Step1:Findthevaluesof x thatsatisfy 260.xx

 260230 xxxx 202or303 xxxx  Step2:Thetwonumbersdivideanumberline intothreeregions.

Step3:Chooseatestvaluetoseeifitsatisfies theinequality,260. xx

IntervalTestValue Is260 xx TrueorFalse? A:   ,2 3 2? 3360 60   True (continuedonnextpage)

(continued)

IntervalTestValue Is260 xx TrueorFalse?

B:   2,30 2? 0060 60   False

C:   3,  4 2? 4460 60   True

Solutionset:

,23,  

40. 27100xx

Step1:Findthevaluesof x thatsatisfythe correspondingequation.

 27100 250 xx xx   202or505 xxxx 

Step2:Thetwonumbersdivideanumberline intothreeregions.

Step3:Chooseatestvaluetoseeifitsatisfies theinequality,27100. xx

IntervalTestValue Is27100 xx TrueorFalse?

A:   ,2  0

2? 070100 100   True

B:   2,53  2? 373100 20   False

C:   5,  6  2? 676100 40   True

Solutionset:

41. 2 2918 xx

Step1:Findthevaluesof x thatsatisfythe correspondingequation.

2 2 2918 29180 2360  

xx xx xx 3 2 230or606 xxxx 

Step2:Thetwonumbersdivideanumberline intothreeregions. Step3:Chooseatestvaluetoseeifitsatisfies theinequality,22918 xx

IntervalTestValue Is22918 xx TrueorFalse?

A:   3 ,2  2 2? 229218 2618   False

B:   3 2,60 2? 209018 018   True

C:   6,  7

Solutionset:32,6

42. 2 34 xx

2? 279718 3518   False

Step1:Findthevaluesof x thatsatisfythe correspondingequation.  22 34340 3410 xxxx xx   4 3 340or101 xxxx 

Step2:Thetwonumbersdivideanumberline intothreeregions.

Step3:Chooseatestvaluetoseeifitsatisfies theinequality,234 xx

IntervalTestValue Is234 xx TrueorFalse?

A:   4 ,3  2

B:   4 3,10

2? 3224 104   False

2? 3004 04   True

C:   1,  2 2? 3224 144   False

Solutionset:43,1    

43. 2463xx 

Step1:Findthevaluesof x thatsatisfythe correspondingequation.

2 2 463 430 310 xx xx xx

Step2:Thetwonumbersdivideanumberline intothreeregions.

Step3:Chooseatestvaluetoseeifitsatisfies theinequality,2463 xx 

IntervalTestValue Is2463 xx  TrueorFalse? A:

2? 44463 63

True

B:   3,12

2? 24263 23 

2? 04063 63 

True

Solutionset:(,–3][–1,) 

44. 26168xx 

Step1:Findthevaluesof x thatsatisfythe correspondingequation.

2 2 6168 680 420 xx xx xx

404or202 xxxx 

Step2:Thetwonumbersdivideanumberline intothreeregions.

Step3:Chooseatestvaluetoseeifitsatisfies theinequality,26168. xx 

IntervalTestValue Is26168 xx

A:   ,4 5

B:   4,23

C:   2,  0

TrueorFalse?

2 565168 118   False

2 363168 78 

True

2 060168 168

False

Solutionset:   4,2

45.   22 16660xxxxxx

Step1:Findthevaluesof x thatsatisfy 260.xx

260 230 xx xx   202or303 xxxx 

Step2:Thetwonumbersdivideanumberline intothreeregions.

Step3:Chooseatestvaluetoseeifitsatisfies theinequality,   16. xx 

IntervalTestValue Is   16 xx  TrueorFalse?

A:   ,2 3  ? 3316 126   False

B:   2,30  ? 0016 06   True

C:   3,  4  ? 4416 126   False

Solutionset:  2,3

46.     22 112112 12120 xxxx xxxx 



Step1:Findthevaluesof x thatsatisfy 2120.xx

 2120 430 

 xx xx

404or303 xxxx 

Step2:Thetwonumbersdivideanumberline intothreeregions.

Step3:Chooseatestvaluetoseeifitsatisfies theinequality,   112. xx 

IntervalTestValue Is   112 xx  TrueorFalse?

A:   ,4 5  ? 55112 2012   False

B:   4,30  ? 00112 012   True

C:   3,  4  ? 44112 2012   False

Solutionset:  4,3

47. 29 x 

Step1:Findthevaluesof x thatsatisfy29 x   2 2 9 90 330 x x xx

Step2:Thetwonumbersdivideanumberline intothreeregions.

Step3:Chooseatestvaluetoseeifitsatisfies theinequality,29. x 

IntervalTestValue Is29 x  TrueorFalse?

A:  ,3 4 2? 49 169   False

B:   3,30 2? 09 09   True

C:   3,  4 2? 49 169   False

Solutionset:[–3,3]

48. 2216160xx

Step1:Findthevaluesof x thatsatisfy  2160 440 x xx  

404or404 xxxx 

Step2:Thetwonumbersdivideanumberline intothreeregions.

Step3:Chooseatestvaluetoseeifitsatisfies theinequality,216. x 

IntervalTestValue Is216 x  TrueorFalse?

A:   ,4 5 2? 516 2516   True

B:   4,40 2? 016 016   False

C:   4,  5 2? 516 2516   True

Solutionset:(–,–4)(4,)  

49. 2570xx

Step1:Findthevaluesof x thatsatisfy 2570.xx

Usethequadraticformulatosolvethe equation.

Let a =1, b =5,and c =7.



Step2:Thenumberlineisoneregion,

, 

Step3:Becausetherearenorealvaluesof x thatsatisfy2570, xx 257xx is eitheralwayspositiveoralwaysnegative.By substitutinganarbitraryvaluesuchas0, x  weseethat257 xx willbepositiveand thusthesolutionsetis. 

IntervalTestValue Is2520 xx TrueorFalse?

A:   ,  0  2? 05070 70   False

Solutionset: 

50. 2 4310 xx

Step1:Findthevaluesof x thatsatisfy 2 4310. xx

Usethequadraticformulatosolvethe equation.Let4,3,and1. abc

Step2:Thenumberlineisoneregion,

Step3:Becausetherearenorealvaluesof x thatsatisfy24310, xx 2 431 xx is eitheralwayspositiveoralwaysnegative.By substitutinganarbitraryvaluesuchas0, x  weseethat2431 xx willbepositiveand thusthesolutionsetis 

IntervalTestValue Is24310 xx TrueorFalse?

A:   ,  0 2? 403010 10  

Solutionset: 

51. 2221210xxxx

Step1:Findthevaluesof x thatsatisfy 2210.xx Usethequadraticformulatosolvethe equation.

Let1,2,and1. abc  

2 2 4 2 22411 21 24428222 12 222 bbac x a       120.4or122.4  Step2:Thetwonumbersdivideanumberline intothreeregions. Step3:Chooseatestvaluetoseeifitsatisfies theinequality,221. xx

IntervalTestValue Is221 xx TrueorFalse?

A:   ,12 1 2? 1211 31   False

B:   12,12  0  ? 2 020101  True

C:   12, 3  ? 2 323131  False

Solutionset:12,12

52. 2241410xxxx

Step1:Findthevaluesof x thatsatisfy 2410.xx

Usethequadraticformulatosolvethe equation.Let1,4,and1. abc

233.7or0.3 bbac x a xx      

Step2:Thetwonumbersdivideanumberline intothreeregions.

Step3:Chooseatestvaluetoseeifitsatisfies theinequality,241. xx

IntervalTestValue Is241 xx TrueorFalse?

A:   ,23 4

B:   23,23 1

C:   23,  0

Solutionset: 

2? 4441 01 

True

2? 1411 31   False

? 2 0401 01 

True

 ,2323,  

53. A.2 (3) x  isequaltozerowhen3 x  .For anyotherrealnumber,2 (3) x  ispositive.

2 (3)0 x  hassolutionset   ,. 

54. D.2 (87) x isnevernegative,so

2 (87)0 x  hassolutionset 

55. 3 0 5 x x  

Becauseonesideoftheinequalityisalready0, westartwithStep2. Step2:Determinethevaluesthatwillcause eitherthenumeratorordenominatortoequal0.

303or505 xxxx  Thevalues–5and3dividethenumberline intothreeregions.Useanopencircleon–5 becauseitmakesthedenominatorequal0.

Step3:Chooseatestvaluetoseeifitsatisfies theinequality,30. 5 x x  

IntervalTestValue Is350 x x   TrueorFalse?

A:   ,5 6 ? 63 650 90False    B:   5,30 ? 03 05 3 5 0 0True

C:   3,  4 ? 43 45 1 9 0 0False   

IntervalBsatisfiestheinequality.Theendpoint 5isnotincludedbecauseitmakesthe denominator0.

Solutionset:(–5,3]

56. 1 0 4 x x  

Becauseonesideoftheinequalityisalready 0,westartwithStep2.

Step2:Determinethevaluesthatwillcause eitherthenumeratorordenominatortoequal0.

101or404 xxxx  Thevalues–1and4dividethenumberline intothreeregions.

Step3:Chooseatestvaluetoseeifitsatisfies theinequality, 1 0. 4 x x   (continuedonnextpage)

(continued)

IntervalTestValue Is140 x x   TrueorFalse?

A:  ,1 2 ? 21 24 1 6 0 0True  

B:   1,40 ? 01 04 1 4 0 0False

C:   4,  5 ? 51 540 60True 

Solutionset:(–,1)(4,) 

57. 1 1 2 x x  

Step1:Rewritetheinequalitysothat0ison onesideandthereisasinglefractiononthe otherside. 11 11 22 112 100 222 1(2)1200 22 3 0 2

Step2:Becausethenumeratorisaconstant, determinethevaluesthatwillcause denominatortoequal0.

202xx Thevalue–2dividesthenumberlineintotwo regions. Step3:Chooseatestvaluetoseeifitsatisfies theinequality, 1 1 2 x x  

IntervalTestValue Is121 x

,2

3

B:   2,  1

Solutionset:

True orFalse?

13? 321 21True

11? 121 21False

58. 6 1 2 x x  

Step1:Rewritetheinequalitysothat0ison onesideandthereisasinglefractiononthe otherside. 66 11 22 662 100 222 6224 00 22

Step2:Determinethevaluesthatwillcause eitherthenumeratorordenominatortoequal0. 2402or202 xxxx  Thevalues–2and2dividethenumberlineinto threeregions.

Step3:Chooseatestvaluetoseeifitsatisfies theinequality,61 2 x x  

IntervalTest

Value Is621 x x   TrueorFalse?

A:   ,2 3 6(3)?321 91False   

B:   2,20 ? 60 021 31True   

C:   2,  3 ? 63 32 3 5 1 1False   

Solutionset:(–2,2) 59. 3 2 6 x 

Step1:Rewritetheinequalitysothat0ison onesideandthereisasinglefractiononthe otherside.

 3326 200 666 3263212 00 66 152 0 6 x xxx xx xx x x 

Step2:Determinethevaluesthatwillcause eitherthenumeratorordenominatortoequal0. 15 2 1520or606 xxxx  (continuedonnextpage)

(continued)

Thevalues6and152dividethenumberline intothreeregions.Useanopencircleon6 becauseitmakesthedenominatorequal0.

Step3:Chooseatestvaluetoseeifitsatisfies theinequality,32. 6 x 

IntervalTestValue Is362 x  TrueorFalse?

IntervalTest

Value Is321 x  TrueorFalse?

A:   ,2 0 ? 3 02 3 2 1 1True  

B:   2,53 ? 3 321 31False  

C:   5,  6 ? 3 62 3 4 1 1True  

Solutionset:     ,25,   61. 4 5 1 x 

Step1:Rewritetheinequalitytocomparea singlefractionto0: 

44 550 11 451451 00 111 45595 00 11 xx xx xxx xx xx

IntervalsAandCsatisfiytheinequality.The endpoint6isnotincludedbecauseitmakes thedenominator0.

Solutionset:

60. 3 1 2 x 

Step1:Rewritetheinequalitysothat0ison onesideandthereisasinglefractiononthe otherside.

Step2:Determinethevaluesthatwillcause eitherthenumeratorordenominatortoequal0. 505or202 xxxx  Thevalues2and5dividethenumberlineinto threeregions.

Step3:Chooseatestvaluetoseeifitsatisfies theinequality,31. 2 x 

Step2:Determinethevaluesthatwillcause eitherthenumeratorordenominatortoequal0. 9 5 950or101 xxxx  Thevalues1and95dividethenumberlineinto threeregions.

Step3:Chooseatestvaluetoseeifitsatisfies theinequality, 4 5 1 x 

IntervalTestValue Is415 x  TrueorFalse?

A:  ,1 0 ? 4 105 45True  

B:   9 1,56 5 6 5 ? 4 1 5 205False  

C:   9 5,  2 ? 4 125 45True  

Solutionset:   9 (–,51),  

62. 6 2 35 x 

Step1:Rewritetheinequalitysothat0ison onesideandthereisasinglefractiononthe otherside.

66235 20 353535 62356610 00 3535 64 0 35 x xxx xx xx x x

Step2:Determinethevaluesthatwillcause eitherthenumeratorordenominatortoequal0. 25 33640or350 xxxx 

Thevalues23and53dividethenumberline intothreeregions.Useanopencircleon5 3 becauseitmakesthedenominatorequal0.

Step3:Chooseatestvaluetoseeifitsatisfies theinequality,62. 53 x 

IntervalTestValue Is6532 x  True orFalse?

A:   2 ,3  0 ?

Step1:Rewritetheinequalitysothat0isonone sideandthereisasinglefractionontheother side.

Step2:Determinethevaluesthatwillcause eitherthenumeratorordenominatortoequal0. 13 221050or320 xxxx 

Thevalues32and12dividethenumberline intothreeregions.Useanopencircleon3 2 becauseitmakesthedenominatorequal0.

Step3:Chooseatestvaluetoseeifitsatisfies theinequality,105. 32 x  

IntervalTestValue Is10325 x   TrueorFalse?

IntervalsAandCsatisfytheinequality.The endpoint53isnotincludedbecauseitmakes thedenominator0.

Solutionset: 

25 ,33,  

IntervalsAandCsatisfytheinequality.The endpoint32isnotincludedbecauseitmakes thedenominator0.

Solutionset:

31 22 ,,

64. 1 3 2 x  

Step1:Rewritetheinequalitysothat0ison onesideandthereisasinglefractiononthe otherside.

Step2:Determinethevaluesthatwillcause eitherthenumeratorordenominatortoequal0.

Thevalues–2and53dividethenumberline intothreeregions.Useanopencircleon–2 becauseitmakesthedenominatorequal0.

Step3:Chooseatestvaluetoseeifitsatisfies

IntervalTest

IntervalBsatisfiestheinequality.Theendpoint –2isnotincludedbecauseitmakesthe denominator0.

Solutionset:  5 2,3

65. 71 22

Step1:Rewritetheinequalitysothat0ison onesideandthereisasinglefractiononthe otherside. 716 00 222

Step2:Becausethenumeratorisaconstant, determinethevaluethatwillcausethe denominatortoequal0. 202xx

Thevalue2dividesthenumberlineinto tworegions.Useanopencircleon–2because itmakesthedenominatorequal0.

Step3:Chooseatestvaluetoseeifitsatisfies theinequality,7122

IntervalTestValue Is7122xx

,2

TrueorFalse?

3 ? 71 3232 71False

B:   2,  0 ? 71 0202 71 22True   

IntervalBsatisfiestheinequality.Theendpoint 2isnotincludedbecauseitmakesthe denominator0.

Solutionset:   2, 

66. 512 11xx  

Step1:Rewritetheinequalitysothat0ison onesideandthereisasinglefractiononthe otherside.

5127

00 111xxx  

Step2:Becausethenumeratorisaconstant, determinethevaluethatwillcausethe denominatortoequal0.

101xx Thevalue1dividesthenumberlineinto tworegions. Step3:Chooseatestvaluetoseeifitsatisfies theinequality,512. 11xx   (continuedonnextpage)

(continued)

IntervalTestValue Is51211xx  TrueorFalse?

A:  ,1 2 ? 512 2121 512True

B:   1,  0 ? 512 0101 512False 

Solutionset:  ,1 67. 34 21xx 

Step1:Rewritetheinequalitysothat0ison onesideandthereisasinglefractiononthe otherside.

34 0 21 3421 0 2121 3421 0 21 384114 00 2121 xx xx xxxx xx xx xxx xxxx

Step2:Determinethevaluesthatwillcause eitherthenumeratorordenominatortoequal0. 4 11 1 2 1140or0or 210 xxx xx  

Thevalues0,411,and12dividethenumber lineintofourregions.

Step3:Chooseatestvaluetoseeifitsatisfies theinequality,34. 21xx 

IntervalTestValue Is34 21xx  TrueorFalse? A: 

,0  1  ? 34 2111 14False 

B:   4 0,11111 11

C:   41 112 , 9 22 99 2222 ?? 33388 4 2129 17 29 or 169False  

D:   1 2,  1  3?4 2111 34True  

Solutionset: 

41 0,112, 

68. 55 32xx  

Step1:Rewritetheinequalitysothat0ison onesideandthereisasinglefractiononthe otherside.

55 0 32 5532 0 3232 5532 0 32 515102010 00 3232 xx xx xxxx xx xx xxx xxxx

Step2:Determinethevaluesthatwillcause eitherthenumeratorordenominatortoequal0. 12 23 20100or0or320 or0or xxx xxx  

Thevalues23, 1 2,and0dividethe numberlineintofourregions.Useanopen circleon0and23becausetheymakesthe denominatorequal0.

Step3:Chooseatestvaluetoseeifitsatisfies theinequality,55 32xx   (continuedonnextpage)

(continued)

IntervalTest

D:

IntervalsAandCsatisfytheinequality.The endpoints23and0arenotincludedbecause theymakethedenominator0.

Solutionset:

69. 43 21xx 

Step1:Rewritetheinequalitysothat0ison onesideandthereisasinglefractiononthe otherside.

Step3:Chooseatestvaluetoseeifitsatisfies theinequality,43 21xx 

IntervalTestValue Is3 4 21xx  TrueorFalse?

A:   ,2 3   ? 43 2313 3 44True  

B:   2,10 ? 43 2010 23False  

C:   1,21.5 ? 43 21.511.5 86True  

D:   2,  3 ? 43 2313 3 42False  

IntervalsAandCsatisfytheinequality.The endpoints1and2arenotincludedbecause theymakethedenominator0.

Solutionset: 

  ,21,2  70. 42 13xx   Step1:Rewritetheinequalitysothat0ison onesideandthereisasinglefractiononthe otherside.

Step2:Determinethevaluesthatwillcause eitherthenumeratorordenominatortoequal0. 202or202or 101 xxxx xx

Thevalues–2,1,and2dividethenumberline intofourregions.Useanopencircleon1and 2becausetheymakethedenominatorequal0.

Step2:Determinethevaluesthatwillcause eitherthenumeratorordenominatortoequal0. 21005or101or 303 xxxx xx

Thevalues–5,3,and1dividethenumber lineintofourregions.

(continuedonnextpage)

(continued)

Step3:Chooseatestvaluetoseeifitsatisfies theinequality, 42 13xx  

IntervalTestValue Is4213xx  TrueorFalse?

A:

,5 6 ?? 4242 616353 1210 1515 or True

B: 

5,34 ? 42 4143 4 32False

C:   3,12 ? 42 2123 42True

D:   1,  0 ? 42 0103 2 3 4False

Solutionset:

71. 3 1 5 x x 

,53,1 

Step1:Rewritetheinequalitysothat0ison onesideandthereisasinglefractiononthe otherside. 335 100 555 3(5)3500 55 8 0 5 xxx

Step2:Becausethenumeratorisaconstant, determinethevaluethatwillcausethe denominatortoequal0.

505xx

Thevalue5dividesthenumberlineintotwo regions.Useanopencircleon5becauseit makesthedenominatorequal0.

Step3:Chooseatestvaluetoseeifitsatisfies theinequality,31. 5 x x  

IntervalTest

Value Is351 x x  

TrueorFalse? A:  ,5 0 ? 03 05 3 5 1 1True   

B:   5,  6 ? 63 651 91False   

IntervalAsatisfiestheinequality.The endpoint5isnotincludedbecauseitmakes thedenominator0.

Solutionset:  ,5

72. 2 5 32 x x   

Step1:Rewritetheinequalitysothat0ison onesideandthereisasinglefractiononthe otherside.

Step2:Determinethevaluesthatwillcause eitherthenumeratorordenominatortoequal0. 133 913092 or320 xxxx 

Thevalues32and139dividethenumber lineintothreeregions.Useanopencircleon 3 2becauseitmakesthedenominatorequal 0.

Step3:Chooseatestvaluetoseeifitsatisfies theinequality, 2 5. 32 x x    (continuedonnextpage)

(continued)

IntervalTestValue Is2

IntervalsAandCsatisfytheinequality.The endpoint32isnotincludedbecauseitmakes thedenominator0.

Solutionset:

73. 2 23 0 1 x x

Becauseonesideoftheinequalityisalready 0,westartwithStep2.

Step2:Determinethevaluesthatwillcause eitherthenumeratorordenominatortoequal0.

3 2dividesthenumberlineintotwointervals.

Step3:Chooseatestvaluetoseeifitsatisfies theinequality,2 23 0. 1 x x  

IntervalTestValue Is223 1 0 x x   TrueorFalse?

74. 2 98 0 425 x x  

Becauseonesideoftheinequalityisalready 0,westartwithStep2. Step2:Determinethevaluesthatwillcause eitherthenumeratorordenominatortoequal0. 8 9 2 980or 4250,whichhasnorealsolutions xx x   Thevalue89dividesthenumberlineintotwo intervals.

Step3:Chooseatestvaluetoseeifitsatisfies theinequality,2 98 0. 425 x x  

IntervalTestValue Is298 425 0 x x   TrueorFalse?

A:   8 ,9  0  2 908? 4025 8 25 0 0True   

B:   8 9,  1  2 918? 4125 1 29 0 0False   

Solutionset:   8 ,9 

75.   2 3 53 0 25 x x 

Becauseonesideoftheinequalityisalready 0,westartwithStep2. Step2:Determinethevaluesthatwillcause eitherthenumeratorordenominatortoequal 0.

55 32530or250xxxx  Thevalues53and52dividethenumberline intothreeintervals.

Step3:Chooseatestvaluetoseeifitsatisfies theinequality,   2 3 53 0. 25 x x  (continuedonnextpage)

(continued)

IntervalTestValue Is   2 3 53 25 0 x x  TrueorFalse?

A:   5 ,3  0   2 3 530? 205 1 5 0 0False  

B:   55 32,2   2 3 532? 225 0 10False  

C:   5 2,  3   2 3 533? 235 0 160True  

Solutionset:   5 2,  76.

3 2 53 0 258 x x 

Becauseonesideoftheinequalityisalready 0,westartwithStep2. Step2:Determinethevaluesthatwillcause eitherthenumeratorordenominatortoequal0. 325 53058 or2580 xxxx 

Thevalues35and258dividethenumberline intothreeintervals.Useanopencircleon25 8 becauseitmakesthedenominatorequal0.

Step3:Chooseatestvaluetoseeifitsatisfies

theinequality,   3 2 53 0. 258 x x 

IntervalTestValue Is   3 2 53 258 0 x x  TrueorFalse?

A:

3 ,5  0

325 58,2

3 2 503? 2580 27 625 0 0True

IntervalTestValue Is   3 2 53 258 0 x x  TrueorFalse?

C:   25 8,  4   3 2 543? 2584 4913 49 0 0False  

Solutionset:  3 ,5  

3 2338 0 6 xx x

Becauseonesideoftheinequalityisalready 0,westartwithStep2.

Step2:Determinethevaluesthatwillcause eitherthenumeratorordenominatortoequal0. 38 23 230or380or60 oror6

Thevalues83, 3 2,and6dividethenumber lineintofourintervals.Useanopencircleon6 becauseitmakesthedenominatorequal0.

Step3:Chooseatestvaluetoseeifitsatisfies theinequality,

3 2338 0. 6 xx x  

IntervalTestValue Is

3 2338 6 0 xx x   TrueorFalse? A:   8 ,3  3  3 233338? 36 1 81 0 0False

B:   83 32,0  3 203308? 06 1 9 0 0True

C:   3 2,62

D:   6,  7

Solutionset:

Copyright©2017PearsonEducation,Inc.

3 223328? 26 7 32 0 0False

3 273378? 76 0 3190True

83 32,6, 

78.

3 91127 0 38 xx x  

Becauseonesideoftheinequalityisalready 0,westartwithStep2.

Step2:Determinethevaluesthatwillcause eitherthenumeratorordenominatortoequal0. 1178 923 9110or270or380 oror xxx

Thevalues72, 119,and83dividethenumber lineintofourintervals.

Step3:Chooseatestvaluetoseeifitsatisfies theinequality,

IntervalTestValue

711 29,0

118 93,2

D:   8 3,  3

Solutionset:

3 9211227? 328 77 8 0 0False

3 9311237? 338 0 2080True

78 11 293,,

79. (a) Let R =7.6andthensolvefor x 0.28445.5357.6 0.28442.0657.3 x xx   Themodelpredictsthatthereceipts exceeded$7.6billionabout7.3years after1993,whichwasin2000.

(b) Let R =10andthensolvefor x 0.28445.53510 0.28444.46515.7 x xx  

Themodelpredictsthatthereceipts exceeded$10billionabout15.7years after1993,whichwasin2008.

80. (a) Let W =34andsolvefor x 0.3333.1Wx 0.3333.134 0.330.92.7(approx) x xx  

Accordingtothemodel,thepercentof wasterecoveredfirstexceeded34%about 2.7yearsafter2007,whichwasin2009.

(b) Solvefor x forvaluesbetween33.9and 34.5. 33.90.3333.134.5 0.80.331.42.44.2 x xx  

Accordingtothemodel,thepercentof wasterecoveredwasbetween33.9%and 34.5%about2.4yearsafter2007,which wasin2009,until4.2yearsafter2007, whichwasin2011.

81. 2 16220624 tt 

Step1:Findthevaluesof t thatsatisfy 2 16220624. tt 

22 2 16220624016220624 0455156 04439 tttt tt tt    394044or43909.75tttt 

Step2:Thetwonumbersdivideanumberline intothreeregions,where0. t 

Step3: Chooseatestvaluetoseeifitsatisfies theinequality,216220624. tt 

IntervalTestValue Is216220624 tt  TrueorFalse?

A:   0,41 2? 1612201624 204624False  

B:   4,9.755 2? 1652205624 700624True  

C:   9.75,  10 2? 161022010624 600624False  

Theprojectilewillbeatleast624feetabove groundbetween4secand9.75sec(inclusive).

82. 2 16220744 tt 

Step1:Findthevaluesof t thatsatisfy 2 16220744. tt 

22 2 16220744016220744 0455186 06431 tttt tt tt

   316064or43107.75tttt 

Step2:Thetwonumbersdivideanumberline intothreeregions,where0. t 

Step3: Chooseatestvaluetoseeifitsatisfies theinequality,216220744 tt 

IntervalTestValue Is216220744 tt  TrueorFalse?

A:   0,61 2? 1612201744 204744False 

B:

 6,7.757 2? 1672207744 756744True 

C:   7.75,  10 2? 161022010744 600744False 

Theprojectilewillbeatleast744feetabove groundbetween6secand7.75sec(inclusive).

83. 2 1644432 tt 

Step1:Findthevaluesof t thatsatisfy 2 1644432. tt   2 2 2 1644432 1644280 41170 4710 tt tt tt tt

7 4 470=1.75or101 tttt 

Step2:Thetwonumbersdivideanumberline intothreeregions,where0. t 

Step3: Chooseatestvaluetoseeifitsatisfies theinequality,21644432 tt 

IntervalTest

Value Is21644432 tt  TrueorFalse?

A:  ,1  0 2? 160440432 432False  

B:   1,1.751.5 2? 161.5441.5432 3432True  

C:   1.75,  2 2? 162442432 2832False  

Thebaseballwillbeatleast32feetabove groundbetween1secand1.75sec(inclusive).

84. 2 1644428 tt 

Step1:Findthevaluesof t thatsatisfy 2 1644428. tt   2 2 2 1644428 1644240 41160 4320 tt tt tt xx  

3 4 4300.75or 202 tt tt  

Step2:Thetwonumbersdivideanumberline intothreeregions,where0. t 

Step3: Chooseatestvaluetoseeifitsatisfies theinequality,21644428 tt 

IntervalTestValue Is21644428 tt  TrueorFalse?

A:   0,0.750.5 2? 160.5440.5428 2228False  

B:   0.75,21.5 2? 161.5441.5428 3428True  

C:   2,  3 2? 163443428 828False  

Thebaseballwillbegreaterthan28feetabove groundbetween0.75secand2sec.

85. 2 25120 tt

Step1:Findthevaluesof t thatsatisfy

2 25120. tt

 2 251202340 tttt 

3 2 2301.5or 404 tt tt  

Step2:Thetwonumbersdivideanumberline intothreeregions.

Step3:Chooseatestvaluetoseeifitsatisfies theinequality,225120. tt

IntervalTestValue Is225120 tt TrueorFalse?

A:

2? 2252120 60 False

B:   1.5,40 2? 2050120 120 True 

C:   4,  5 2? 2555120 130 False 

Thevelocitywillbenegativebetween–1.5sec and4sec.

86. 2 318240 tt

Step1:Findthevaluesof t thatsatisfy 2 318240. tt

 2 3182403240 tttt  202or404 tttt 

Step2:Thetwonumbersdivideanumberline intothreeregions.

Step3:Chooseatestvaluetoseeifitsatisfies theinequality,2318240. tt

IntervalTest

Value Is2318240 tt TrueorFalse?

A:   ,2 0 2? 30180240 240 False  

B:   2,43 2? 33183240 30 True  

C:   4,  5 2? 35185240 90 False  

Thevelocitywillbenegativebetween2sec and4sec.

87. (3x –4)(x +2)(x +6)=0 Seteachfactortozeroandsolve. 4 3403or202or 606 xxxx xx 

Solutionset:  4 3,2,6

88. Plotthesolutions–6,–2,and43onanumber line.

89. IntervalTest Value Is(34)(2)(6)0 xxx TrueorFalse? A:   ,6 –10

? 3104102 1060 10880

True

B:   6,2–4

? 34442 460 640

False C:   4 2,30

? 30402060 480

True D:   4 3,  4

? 34442460 4800

90. (a)

(b) Solutionset:   4 ,62,3

91. (23)(2)(3)0 xxx

Step1:Solve(23)(2)(3)0. xxx Seteachfactortozeroandsolve.

3 2302or202or 303 xxxx xx 

Solutionset:  3 2,2,3

Step2:Plotthesolutions32,2,and3ona numberline.

Step3:Chooseatestvaluetoseeifitsatisfies theinequality,(23)(2)(3)0. xxx

IntervalTestValue Is(23)(2)(3)0 xxx

3 2,20

53420xxx

Step1:Solve

53420.

Seteachfactortozeroandsolve. 4 5053or340or 202 xxxx xx 

Solutionset:  4 5,2,3

Step2:Plotthesolutions4 5,2,3andona numberline.

Step3:Chooseatestvaluetoseeifitsatisfies theinequality, 

 53420.xxx

IntervalTestValue Is

53420xxx TrueorFalse? A:

25324 220 560

Solutionset: 

  93. 3 40 xx

4 3 5,2,

Step1:Solve340. xx

 32 4040 220 xxxx xxx  

Seteachfactortozeroandsolve. 0or202or 202 xxx xx 



Solutionset:  2,0,2 Step2:Thevalues2,0,and2dividethe numberlineintofourintervals.

Step3:Chooseatestvaluetoseeifitsatisfies theinequality,340. xx

IntervalTestValue Is340 xx TrueorFalse? A:   ,2 3 3? 4330 150   True

B:   2,01 3? 4110 30   False

(continuedonnextpage)

(continued)

IntervalTestValue Is340 xx TrueorFalse?

C:   0,21  ? 3 4110 30   True

D:   2,  3  ? 3 4330 150   False

Solutionset:  ,20,2 

94. 3 160 xx

Step1:Solve3160. xx

32 160160 440 xxxx xxx  

Seteachfactortozeroandsolve. 0or404or 404 xxx xx  

Solutionset:  4,0,4

Step2:Thevalues4,0,and4dividethe numberlineintofourintervals.

Step3:Chooseatestvaluetoseeifitsatisfies theinequality,3160. xx

IntervalTestValue Is3160 xx Trueor False?

A:   ,4 5

3? 16550 450True  

B:   4,01 3? 16110 150False 

C:   0,41  ? 3 16110 150True  

D:   4,  5  ? 3 16550 450False

Solutionset: 

95.

2 130xx

Step1:Solve  2 130.xx Seteachdistinctfactortozeroandsolve. 101or303 xxxx 

Solutionset:  1,3

Step2:Thevalues1and3dividethenumber lineintothreeintervals.

Step3:Chooseatestvaluetoseeifitsatisfies theinequality,  2 130.xx

IntervalTestValue Is  2 130xx TrueorFalse?

A:  ,1 2 2? 21230 50True  

B:   1,30 2? 01030 30True  

C:   3,  4 2? 41430 250False  

Solutionset: 

,11,3  96.  2 510xx

Step1:Solve  2 510.xx

Seteachdistinctfactortozeroandsolve. 505or101 xxxx 

Solutionset:  1,5

Step2:Thevalues1and5dividethenumber lineintothreeintervals.

Step3:Chooseatestvaluetoseeifitsatisfies theinequality,  2 510.xx

IntervalTestValue Is  2 510xx TrueorFalse?

A:  ,1 2 2? 25210 490True  

B:   1,50 2? 05010 250False  

C:   5,  6 2? 65610 70False  

Solutionset:  ,1

97. 324936xxx

Step1:Solve324936xxx







 32 32 2 2 4936 49360 4940 490 4330 xxx xxx xxx xx xxx

Seteachfactortozeroandsolve. 303or404or 404 xxxx xx  

Solutionset:  4,3,4

Step2:Thevalues4,3,and4dividethe numberlineintofourintervals.







Seteachfactortozeroandsolve.

404or303or 303 xxxx xx 



Solutionset:  4,3,3

Step2:Thevalues4,3,and3dividethe numberlineintofourintervals.

Step3:Chooseatestvaluetoseeifitsatisfies theinequality,324936xxx

IntervalTestValue Is324936xxx

,4 5

32? 5459536 2036 

Step3:Chooseatestvaluetoseeifitsatisfies theinequality,3231648.xxx

IntervalTestValue Is3231648.xxx TrueorFalse?

A:   ,4 5

 True B:   4,33.5

 32 ? 535 16548 3048 

2 31648 316480 31630 3160 3440 xxx xxx xxx xx xxx    

C:   3,40

32? 03016048 048   True

D:   4,  5 32 53516548 12048   False

Solutionset:   ,43,4  99.  2240 xx 

Step1:Solve  2240. xx 

Seteachdistinctfactortozeroandsolve. 0or404xxx 

Solutionset:  4,0

Step2:Thevalues4and0dividethe numberlineintothreeintervals.

Step3:Chooseatestvaluetoseeifitsatisfies theinequality,  2240. xx 

IntervalTestValue Is  2240 xx  TrueorFalse? A:   ,4 5 22? 5540 250True   (continuedonnextpage)

(continued)

IntervalTestValue Is  2240 xx  TrueorFalse?

B:   4,01 22? 1140 90True  

C:   0,  1  22? 1140 250True  

Solutionset:   , 

100.  22230xx 

Step1:Solve  22230.xx  Seteachdistinctfactortozeroandsolve. 23 002 or230 xxxx 

Solutionset:  3 0,2

Step2:Thevalues30and2dividethenumber lineintothreeintervals.

Step3:Chooseatestvaluetoseeifitsatisfies theinequality,  22230.xx 

IntervalTestValue Is  22230xx  TrueorFalse? A:   ,0 1 

Section 1.8 Absolute Value Equations and Inequalities

1. F.Thesolutionsetincludesanyvalueof x whoseabsolutevalueis7;thus x =7or x =–7 arebothsolutions.

2. B.Thereisnosolutionbecausetheabsolute valueofanyrealnumberisnevernegative.

3. D.Thesolutionsetisallrealnumbersbecause theabsolutevalueofanyrealnumberis alwaysgreaterthan–7.Thegraphshowsthe entirenumberline.

4. E.Thesolutionsetincludesanyvalueof x whoseabsolutevalueisgreaterthan7;thus x >7or x <–7.

5. G.Thesolutionsetincludesanyvalueof x whoseabsolutevalueislessthan7;thus x mustbebetween–7and7,notincluding–7or 7.

6. A.Thesolutionsetincludesanyvalueof x whoseabsolutevalueisgreaterthanorequal to7;thus x ≥ 7or x ≤ –7.

7. C.Thesolutionsetincludesanyvalueof x whoseabsolutevalueislessthanorequalto7; thus x mustbebetween–7and7,including–7 and7.

8. H.Thesolutionsetincludesanyvalueof x whoseabsolutevalueisnotequalto7;thus, x canequalallrealnumbersexcept–7and7.

9. 312 x  1 3 312331or 31231 xxx xxx  

Solutionset:  1 3,1

10. 425 x  3 4 7 4 42543or 42547 xxx xxx  

Solutionset:  73 44 , 11. 533 x  2 3 8 3 53323or 53383 xxx xxx  

Solutionset:  28 33 , 12. 4 3 10 3 733 73334or 733310 x xxx xxx

  

Solutionset:  410 33 , 13. 4 5 2 4 541014or 2 4 54106 2 x x xx x xx 



 Solutionset:{–6,14}







Solutionset:





Solutionset:  17 88 , 17. 61 3 1 x x   4 3 2 9 61 13613(1) 613334or 61 13613(1) 613392 x xx x xxxx x xx x xxxx



 





Solutionset:  42 39 , 18. 23 1 34 x x  

1 5 23 123134 34 23347or 23 123134 34 233451 x xx x xxx x xx x xxxx      

Solutionset:  1 5,7

19. 2354 xx 7 3 11 77 235473or 23(54)2354 71 xxxx xxxx xx   

Solutionset:  71 37 , 20. 113 113400or 1(13)113 221 xx xxxx xxxx xx

    Solutionset:{0,1}

21. 4323 432342Falseor 43(23)4323 661 xx xx xxxx xx

    Solutionset:{1}

22. 3252xx 325235Falseor 32(52)3252 842 xx xxxx xx    Solutionset:{2}

23. 5225 xx  42 5225104105or 52(25)5225 00True xxxx xxxx   

Solutionset:   , 

24. Answerswillvary.Sampleanswer:If x is negative,then3x willalsobenegative. Becausetheoutcomeofanabsolutevaluecan neverbenegative,anegativevalueof x isnot possible.

25. Answerswillvary.Sampleanswer:If x is positive,then–5x willbenegative.Because theoutcomeofanabsolutevaluecanneverbe negative,apositivevalueofxisnotpossible.

26. (a) xx x willequalitsownoppositeonlyif x =0.

Solutionset:{0} (b) xx Anynumberanditsoppositehavethe sameabsolutevalue.

Solutionset:   , 

(c) 2 xx  Solutionset:{–1,0,1}

(d) 9 x  9 x  isnevertrue. Solutionset: 

27. 253 3253 822 41 x x x x  

Solutionset:  4,1

28. 342 x  2 3 2342 236 2 x x x   

Solutionset:   2 3,2

29. 253 x  253284or 253221 xxx xxx 

Solutionset:    ,41, 

30. 342 x  2 342323or 342362 xxx xxx  

Solutionset:

31. 1 22 x 



2 3 ,2,

1 2 1 2 53 22 22 22222 4124 523 x x x x x 

Solutionset:   35 22 ,

32. 3 51 x 

 3 5 3 5 82 55 11 51551 5355 852 x x x x x

Solutionset:   82 55 ,

33. 431233 330or336 xx xxxx   Solutionset:(,0)(6,)  

34. 511012 123or121 xx xxxx   Solutionset:(,3)(1,)  

35. 2 3 537 5373124or 53732 x xxx xxx   

Solutionset:     2 3 –,4, 

36. 11 3 734 734311or 734331 x xxx xxx   

Solutionset:     11 3 –,1, 

37. 537 x  2 3 2 3 7537 1232 4 4 x x x x    

Solutionset:23,4    

38. 734 x  11 3 11 3 4734 1133 1 1 x x x x    

Solutionset:11 1,3   

39. 211 326 x 

  1211 6326 1211 6326 1 2 666 1431 442 1 x x x x x     

Solutionset:1 1,2    

Copyright©2017PearsonEducation,Inc.

40. 512 329 x 

551212 329329 34 9 551212 329329 26 9 1818 3094934or 1818 3094926 xx xxx xx xxx



 



Solutionset:     2634 ,99,  

41. 0.0110.01 x 

0.010.0110.01 11001 10199 x x x    Solutionset:(101,99)

42. Because  22 , xx  2 xx  forallvaluesof x.Theequationisanidentity.

43. 4321431 xx  21 4314242or 431441 xxx xxx   Solutionset:  1 1,2

44. 8332831 xx  7 831373or 831393 xxx xxx  

Solutionset:  7 3,3

45. 6213622 xx  622242or 622284 xxx xxx  

Solutionset:  2,4

46. 4424442 xx  21 42 63 42 44242or 44246 xxx xxx  

Solutionset:  13 22 ,

47. 3112313 xx  42 33 3313 432 x x x   

Solutionset:   42 33 ,

48. 5223525 xx  73 55 5525 753 x x x   

Solutionset:   73 55 ,

49. 11 22 52557 xx     1 2 1 2 1513313 1010210 757 272527 1410114 151013 x x x x xx     

Solutionset:   313 210 ,

50. 11 33 21423 xx 

   1 3 1 3 108 66 54 33 323 333233 9619 1068 x x x x x x  

   

Solutionset:   54 33 ,

51. 104151044 xx  147 42 63 42 1044414 or 104446 xxxx xxxx  

Solutionset:   37 22 ,,    

52. 126391266 xx  12666183or 1266661 xxx xxx  

Solutionset:    ,13,  

53. 3712373 xx  Anabsolutevaluecannotbenegative. Solutionset: 

54. 5746572 xx  Anabsolutevaluecannotbenegative. Solutionset: 

55. Becausetheabsolutevalueofanumberis alwaysnonnegative,theinequality 1044 x  isalwaystrue.Thesolutionset is   ,. 

56. Becausetheabsolutevalueofanumberis alwaysnonnegative,theinequality 12912 x  isalwaystrue.Thesolutionset is   ,. 

57. Thereisnonumberwhoseabsolutevalueis lessthananynegativenumber.Thesolution setof6311 x  is 

58. Thereisnonumberwhoseabsolutevalueis lessthananynegativenumber.Thesolution setof1833 x  is 

59. Theabsolutevalueofanumberwillbe0if thatnumberis0.Therefore850 x  is equivalentto850, x  whichhassolution set  5 8

60. Theabsolutevalueofanumberwillbe0if thatnumberis0.Therefore720 x  is equivalentto720, x  whichhassolution set  7 2

61. Anynumberlessthanzerowillbenegative. Thereisnonumberwhoseabsolutevalueisa negativenumber.Thesolutionsetof 4.39.80 x  is 

62. Anynumberlessthanzerowillbenegative. Thereisnonumberwhoseabsolutevalueisa negativenumber.Thesolutionsetof 1.5140 x  is. 

63. Becausetheabsolutevalueofanumberis alwaysnonnegative,210 x  isnevertrue, so210 x  isonlytruewhen210. x  1 210210212 xxxx 

Solutionset:  1 2

64. Becausetheabsolutevalueofanumberis alwaysnonnegative,320 x  isnevertrue, so320 x  isonlytruewhen320. x  2 320320323 xxxx 

Solutionset:  2 3

65. 320 x  willbefalseonlywhen 320, x  whichoccurswhen2 3 x  So thesolutionsetfor320 x  is

   22 33 ,,.  

66. 430 x  willbefalseonlywhen 430, x  whichoccurswhen3 4 x  So thesolutionsetfor430 x  is 

 33 44 ,,. 

67. 2 pq ,whichisequivalentto2 qp , indicatesthatthedistancebetween p and q is2 units.

68. 6 rs ,whichisequivalentto6 sr , indicatesthatthedistancebetween r and s is6 units.

69. “m isnomorethan2unitsfrom7”meansthat m is2unitsorlessfrom7.Thusthedistance between m and7islessthanorequalto2,or 72. m 

70. “z isnolessthan5unitsfrom4”meansthat z is5unitsormorefrom4.Thus,thedistance between z and4isgreaterthanorequalto5, or45 z 

71. “p iswithin0.0001unitof9”meansthat p is lessthan0.0001unitfrom9.Thusthedistance between p and9islessthan0.0001,or 90.0001. p 

72. “k iswithin0.0002unitof10”meansthat k is lessthan0.0002unitfrom10.Thusthe distancebetween k and10islessthan0.0002, or100.0002. k 

73. “r isnolessthan1unitfrom29”meansthat r is1unitormorefrom29.Thusthedistance between r and29isgreaterthanorequalto1, or291. r 

74. “q isnomorethan8unitsfrom22”meansthat q is8unitsorlessfrom22.Thusthedistance between q and22islessthanorequalto8,or 228. q 

75. Becausewewant y tobewithin0.002unitof 6,wehave60.002 y  or 5160.002. x  550.002 0.002550.002

4.99855.002 0.99961.0004 x x x x    

Valuesof x intheinterval   0.9996,1.0004 wouldsatisfythecondition.

76. Becausewewant y tobewithin0.002unitof 6,wehave60.002 y  or 10260.002. x  1040.0020.0021040.002 3.998104.002 0.39980.4002 xx x x   

Valuesof x intheinterval   0.3998,0.4002 wouldsatisfythecondition.

77. 8.21.5 1.58.21.5 6.79.7 x x x  

Therangeofweights,inpounds,is[6.7,9.7].

78. 8456 C  56845614028 CC 

IndegreesCelsius,therangeoftemperatureis theinterval[–140,–28].

79. 780is50morethan730and680is50less than730,soallofthetemperaturesinthe acceptablerangearewithin50°of730°.That is73050 F 

80. Let x =thespeedofthekite.148is25more than123,and98is25lessthan123,soallthe speedsarewithin25ftpersecof123ftper sec,thatis,12325. x 

Let x =speedofthewind.26is5morethan 21,and16is5lessthan21,sothewind speedsarewithin5ftpersecof21ftpersec, thatis,215. x 

81. 26.751.42

1.4226.751.42

25.3328.17

82. Becausethereare225studentsand and LERR areindividualrates,thetotal amountsofcarbondioxideemittedwouldbe 225and225. LLEE TRTR  Thus, (225)(25.33)(225)(28.17) 5699.256338.25 (225)(36.58)(225)(40.92) 8230.59207 L L E E

83. 6andtheoppositeof6,namely–6

84. 26xx

 260230 202or303 xxxx xxxx  

Solutionset:  2,3

85. 22660xxxx

Thequadraticformula, 24 2 bbac x a   , canbeevaluatedwith a =1, b =–1,and c =6.

  2 2 4 2 114161124 212 123123123 2222 bbac x a i i     

 

Solutionset:  123 22 i 

86.  1232,3,22 i 

87. 222 314314or314 xxxxxx 

 2 2 7 3 314 3140 3720 370 202 xx xx xx xx xx   

  22 3143140 xxxx Wemustusethequadraticformulawith a =3, b =1,and c =14. 2 2 4 2 1143141167 236 11671167 666 bbac x a x ii  

 

 

Solutionset:  7167 1 366 ,2, i 

88. 222 235235or235 xxxxxx 

2 2 5 2 235 2350 2510 250 101 xx xx xx xx xx 

2 2 235 2350 xx xx   Wemustusethequadraticformulawith a =2, b =3,and c =5.

2 2 4 2 33425331 224 331331 444 bbac x a x ii

Solutionset:  5331 2441,, i 

89. 2 42360 xx

Because0andtheoppositeof0representthe samevalue,onlyoneequationneedstobe solved.

  2 423604160 xxxx  1 4 410or60 or6 xx xx  

Solutionset:  1 4,6

90. 32 62370 xxx

Because0andtheoppositeof0representthe samevalue,onlyoneequationneedstobe solved.   32 2 62370 62370 27310 xxx xxx xxx  

7 2 1 3 0or270or 310 xxx xx  

Solutionset:  71 23,,0

91. 2120xx  22 22 2 12012 12210 10101or xxxx xxxx xxx





  222 1221010 101 xxxxx xx  

Solutionset:  1,1 92. 2 22 211 0 3 211211 0 33 x x xx xx  

22 22 2 211211 33 33 32113611 311603230 xx xx xx xxxx xxxx

2 3 320or303 xxxx  or

2 2 22 2 211 3 211 33 3 32113611 311603230 x x x xx x xxxx xxxx

  2 3203or303 xxxx 

Solutionset:  22 33 3,,,3

93. Anynumberlessthanzerowillbenegative. Thereisnonumberwhoseabsolutevalueisa negativenumber.Thesolutionsetof 42210xx is. 

94. Anynumberlessthanzerowillbenegative. Thereisnonumberwhoseabsolutevalueisa negativenumber.Thesolutionsetof 2100 x  is. 

95. 4 0 31 x x  

Thisinequalitywillbetrue,exceptwhere 4 31 x x  isundefined.Thisoccurswhen 310, x  or13. x 

Solutionset:     11 33 ,,  

96. 9 0 78 x x  

Thisinequalitywillbetrue,exceptwhere 9 78 x x  isundefined.Thisoccurswhen 780, x  or78. x  Solutionset:

77 88 ,,  

Chapter 1 Review Exercises

1. 2832826 xxxx  Solutionset:{6}

2.   111 6122 1 xx

MultiplyeachtermbytheLCD,12,to eliminatethefractions.Thensolvefor x.

Solutionset:{5}

3.    524321 528633863 11 833113 3 xxx xxxxx xxx

Solutionset:  11 3

4. 911()(1) 91111 101111 (10)1111 111111() 1010 xkpxa xkpaxx xaxkp axkp kpkp x aa

5. 24 (1) Af Bp   for f (approximateannual interestrate) 24 (1)(1)(1) (1)24 (1) 24 (1) 24 BpABpf Bp ABpf ABpf fABp

6. BandCcannotbeequationstosolvea geometryproblem.Thelengthofarectangle mustbepositive.

A.   22220 22420 44204164 xx xx xxx

B.   2252 21022 41024123 xx xx xxx 

C.   82416 816416 1216161200 xx xx xxx   

D.   22310 22610 46104164 xx xx xxx  

7. AandBcannotbeequationsusedtofindthe numberofpenniesinajar.Thenumberof penniesmustbeawholenumber.

A. 8 5311585 xxx  B. 105 126 12641210 xx x  

C.  100503 10050150501503 xx xxxx  

D.   6424 62424 52424500 xx xx xxx   

8. Let l =thelengthofthecarry-on(ininches).

Let w =thewidthofthecarry-on(ininches).

Let h =theheightofthecarry-on(ininches). Linearinches= lwh 

(a) Linearinches 9122142in lwh  No;allairlinesonthelistwillallowthe Samsonitecarry-onbag.

(b) Linearinches 10142246in lwh  Thecarry-onisallowedonAlaskaand Southwest.

9. Let x =theoriginallengthofthesquare(in inches).Becausetheperimeterofasquareis4 timesthelengthofoneside,wehave

   1 2 44410. xx Solvethisequationfor x todeterminethelengthofeachsideofthe originalsquare.

416210 2161022613 xx xxx 

Theoriginalsquareis13in.oneachside.

10. Let x =rateofBeckyridingherbiketolibrary. Then x –8=rateofBeckyridingherbike home. To rtd

Library x 1 203minhr  1 3 x

Home8 x 1 302minhr  

1 28 x

Becausethedistancegoingtothelibraryisthe sameasgoinghome,wesolvethefollowing.

1111 32328668 2382324 2424 xxxx xxxx xx

Tofindthedistance,substitute x =24into 1 3 dx  Because13(24)8, d  Beckylives 8mifromthelibrary.

11. Let x =theamountof100%alcoholsolution (inliters).

Thenumberoflitersofpurealcoholinthe 100%solutionplusthenumberoflitersof purealcoholinthe10%solutionmustequal thenumberoflitersofpurealcoholinthe 30%solution.

0.71.23.6 0.72.4

 3 7 1.20.3012 1.20.303.6

12. Let x =amountborrowedat5.5%. Then90,000– x =amountborrowedat6%. Amount Borrowed InterestRateInterest x 5.5%0.055 x 90,000 x 6% 

0.0690,000 x 90,0005125

Theamountofinterestborrowedat5.5%plus theamountofinterestborrowedat6%note mustequalthetotalamountofinterest.

 0.0550.0690,0005125 0.05554000.065125 0.00554005125 0.005275 55,000

x x x

Theamountborrowedat5.5%is$55,000and theamountborrowedat6%is $90,000–$55,000=$35,000.

13. Let x =time(inhours)themotherspent drivingtomeetplane. BecauseMaryLynnhasbeenintheplanefor 15minutes,and15minutesis14hr,shehas beentravelingbyplanefor1 4 x  hr. drt

MaryLynnbyplane4201 4 x  Motherbycar2040 x ThetimedrivenbyMaryLynn’smothercan befoundby120402hr. xx  Mary Lynn,therefore,flewfor 11213 24444hr.  TherateofMary Lynn’splanecanbefoundby 3 4 420 d r t

4 4203 560  kmperhour.

14. Let x =numberofhoursforslowerplant (PlantII)toreleasethatamount.Then1 2 x = numberofhoursforfasterplant(PlantI)to releasethatamount.(Iftheplantistwiceas fast,ittakeshalfthetime.)

RateTimePartoftheJob

Accomplished

PlantII1 x 3   13 3 xx 

PlantI1 2 12 xx  3   26 3 xx 

BecausePlantIandPlantIIaccomplish1job (releasingtoxicwaste)wemustsolvethe followingequation. (continuedonnextpage)

(continued)

Ittakestheslowerplant(PlantI)9hoursto releasethatsameamount.

15. (a) Inoneyear,themaximumamountoflead ingestedwouldbe

0.05mglitersdays 2365.25 literdayyear

36.525mg. year 

Themaximumamount A oflead(in milligrams)ingestedin x yearswouldbe A =36.525x.

(b) If x =72,then A =36.525(72)=2629.8mg.TheEPA maximumleadintakefromwaterovera lifetimeis2629.8mg.

16. In2018, x =8.

40.892150.53 40.8928150.53477.67 yx y

Basedonthemodel,retaile-commercesales willbeapproximately$477.67billionin2018.

17. (a) Using1956for x =0,thenfor1990, x =34.

0.11320.4609 0.1132340.46094.31 yx y 

Accordingtothemodel,theminimum wagein1990was$4.31.Thisis$0.51 morethantheactualvalueof$3.80.

(b) Let y =$5.85andthensolvefor x 0.11320.4609

18. (a)

(b) ThenumberofAmericanslivinginNew YorkStateisincreasing.

6726712 133133 iii ii

153211311152 1413 iii i

64826248 4444 iii ii

2 534535434 152034 151741 151741917 iiiiii iii i ii

2 821 818212 882281021 8102610 ii iiii iiii ii

25.   22 2 Productofthe sumanddifference oftwoterms 511511511 25121 251211 25121146 iii i 

5.850.11320.4609

5.38910.1132

47.6 yx x x x 

Themodelpredictstheminimumwageto be$5.85about47.6yearsafter1956, whichismid-2003.Thisisclosetothe minimumwagechangingto$5.85in 2007.

1980:226.5million(0.078) ≈ 17.7 million

1990:248.7million(0.072) ≈ 17.9 million

2000:281.4million(0.068) ≈ 19.1 million

2010:308.7million(0.063) ≈ 19.4 million

2014:318.9million(0.062) ≈ 19.8 million

26.   22 2 2 Squareofa4342433binomial 16249 162491 16249724 iii ii i ii 

27.     222 2 535323 5961 5864030 403014030 3040 iiiii ii iiii ii i

2 2 42528202 8202 1684020 1684020 3236 iiiiii ii iii ii i

37. 2 (7)57575 xxx

Solutionset:{75} 

38. 2 (23)8 x  2382322 222 2223 3 xx xx

Solutionset:  222 3 

39.  2 2150 3250 xx xx   5 303or2502 xxxx 

Solutionset:  5 3,2

40.  22 128112810 61210 xxxx xx   11 62610or210 xxxx 

Solutionset:  11 62 ,

41.  22 2 21121211210 2112102370 xxxx xxxx   3 2 230or707 xxxx 

Solutionset:  3 2,7

42.   2 22 325325 32503250 xxxx xxxx   Solvebycompletingthesquare.

 2 25 2 33 25211 3939 22 1211 2339 2 114 39 114 39 114 33 114 33 3250 0 Note: xx xx xx x x xi xi   

    Solvebythequadraticformula. Let3,2,and5. abc   2 2 2141421 6633 4 2 22435 23 2460256 66 2214 6 bbac x a i ii        

Solutionset:  114 33 i 

43.     2 22 2 214284 2742840 420 xxxxxxx xxxxx xx   

Solvebycompletingthesquare. 

 2 2 122 2 2 420 4424 Note:424 262626 xx xx xxx  

  (continuedonnextpage)

(continued)

Solvebythequadraticformula. Let1,4,and2. abc 

2 2 4 2 444124168 212 424426 26 22 bbac x a

Solutionset:  26 

44. 2 2420 xx

Usingthequadraticformulawouldbethemost directapproach.

2,4,and2abc 

2 2 4 2 4(4)422 22 41684842222 2222222 222222 21 222

Solutionset:{21} 

45. 2510xx

Usingthequadraticformulawouldbethe mostdirectapproach.

1,5,and1abc 

46.

Solutionset:

2 2 122 2 2 480 4484 Note:424 2424 2222 xx xx xx xixi

Solveusingthequadraticformula. Let1,4,and8. abc

22444418 221 41632416 22 44 22 2 bbac x a i i

Solutionset:  22i 

47. D.Theequation2(74)11 x  hastworeal, distinctsolutionsbecausethepositivenumber 11hasapositivesquarerootandanegative squareroot.

48. (a) BandCaretheequationsthathave exactlyonerealsolutionbecausethe positiveandnegativesquarerootof0 representthesamenumber.

(b) A.Theequation2(34)9 x  hastwo imaginarysolutionsbecausethenegative number–9hastwoimaginarysquare roots.

49. 22 6236230 xxxx  a =6, b =2,and c =3

22424(6)(3)47276bac

Theequationhastwodistinctirrational solutionsbecausethediscriminantispositive butnotaperfectsquare.

50. 22 8268260 xxxx a =8, b =2,and c =6

22424(8)(6)4192188bac

Theequationhastwodistinctnonrealcomplex solutionsbecausethediscriminantisnegative.

51. 22 810708107 xxxx  a =8, b =10,and c =7

224(10)4(8)(7) 100224124 bac 

Theequationhastwodistinctnonrealcomplex solutionsbecausethediscriminantisnegative.

52. 22 16326162630 xxxx

a =16, b =26,and c =3 22 2 4264(16)(3) 67619248422 bac

Theequationhastwodistinctrational solutionsbecausethediscriminantisa positiveperfectsquare.

53.   2 2 961961 9610 xxxx xx  

a =9, b =6,and c =1 22464(9)(1)36360bac

Theequationhasonerationalsolution(a doublesolution)becausethediscriminantis equaltozero.

54. 2 251101210 xx a =25, b =110,and c =121 2241104(25)(121) 12,10012,1000 bac 

Theequationhasonerationalsolution(a doublesolution)becausethediscriminantis equaltozero.

55. Theprojectilewillbe750ftabovetheground whenever216220750. tt  Solvethisequationfor t

2 2 2 2 16220750 162207500 162207500 81103750 4252150 tt tt tt tt tt

Theprojectilewillbe750fthighat6.25sec andat7.5sec.

56. Let x =widthoftheframe. Then x +3=lengthoftheframe. Setupanequationthatrepresentstheareaof theunframedpicture.

2 2 370 370 3700 7100 xx xx xx xx

Wedisregardthenegativesolution.

Because x representsthewidthoftheframe, theframeis10inwideand10+3=13in. long.

57. Let x =widthofborder. Applytheformula A = LW toboththeoutside andinsiderectangles. Insidearea=Outsidearea–Borderarea

122102121021 xx

2 2 2 2 1202420412021 12044499 44412099 444210 (221)(21)0 xxx xx xx xx xx

211 22 1 2 22110or 210 xx xx

Theborderwidthcannotbe1102becausethis exceedsthewidthoftheoutsiderectangle,so rejectthissolution.Thewidthoftheborderis1 2 ft.

58.  2 2 2 2 2 0.1322 8000.1322 00.13778 100100.13778 0307780 Dss ss ss ss ss  

 Solveusingthequadraticformula. Let a =1, b =–30,and c =–7780.

  2 2 4 2 3030417780 21 3090031,1203032,020 22 bbac s a       (continuedonnextpage)

(continued)

3032,02074.5or 2 3032,020104.5 2 s s   

Wedisregardthenegativesolution.The appropriatelandingspeedwouldbe approximately104.5ftpersec.

59. In2009, x =19.

Accordingtothemodel,in2009theU.S. governmentspentapproximately$801.9 billiononmedicalcare.

60. Let x =thelengthofthemiddleside. Then x –7=thelengthoftheshorterside and x +1=thelengthofthehypotenuse. UsethePythagoreantheorem. 222 222 2 (7)(1) 144921 16480 (12)(4)012or4 xxx xxxxx xx xxxx    

If x =12,then x –7=5and x +1=13. If x =4,then x –7=–3,whichisnotpossible. Thesidesare5inches,12inches,and13 incheslong.

61. 42 4310 xx

Let224 ;then uxux  Withthissubstitution,theequationbecomes 2 4310 uu Solvethisequationbyfactoring.

    1410uu 1 114 or410 uuuu 

Tofind x,replace u with2 x 2 2111 442 11orxxxi xxx  

Solutionset:  1 ,2 i 

62.   242220120xxxx 2000 xxx  or 22 2 11 22 122 222 12012 xx xx xx   

Solutionset:  20,2 

63. 243 8 3 xxx  7 24 243 338 3 64249 2249 724 xx xxx x x xx      

Solutionset:  7 24

64. 2 53 2 xx 

22 2 2 2 53 2 253 2530 2130 xx xx xx xx xx

1 2102or303 xxxx

Solutionset:  1 2,3

65.

101101 441411 11 10101 4111411 xxxx xxxx

Multiplyeachtermintheequationbytheleast commondenominator,4(x –1),assuming 1. x 

101 4141 411 104140 xx xx

Thisisafalsestatement,thesolutionsetis. 

Alternatesolution:

101101 or 441411 xxxx

Multiplyeachtermintheequationbytheleast commondenominator,     411, xx assuming1. x 

10 411 41 1 411 1 10141 101044 10144 1414 1 xx x xx x xx xx x x x

Becauseoftherestriction1, x  thesolution setis 

66. 2 132 10 xx  

Multiplybothsidesbytheleastcommon denominator, 

210, xx  assuming0. x 

67.

Therestriction0 x

doesnotaffectthe result.Therefore,thesolutionsetis  5 2,4.

25 25525 5212

55 43or43 42434243 239247 xx xx xx

Solutionset:{–239,247}

68.

214 144 24 2 2 62 6216 616 6160 2802,8 xx xx xx xx xxxx

Solutionset:{–2,8}

69.

2313 332313 2 2 2 (2) (2) (2) 44 540 (4)(1)0 xx xx xx xxx xx xx

Check1. x 

2/31/3 2/31/32/3 1/322 (2) (12)1(1)1 11(1)111 xx 

Thisisatruestatement.1isasolution.

Check4. x  2/31/3

2/31/32/31/3 1/3 21/31/31/3 (2) (42)4(2)4 2444

xx    

Thisisatruestatement.4isasolution. Solutionset:{1,4}

70.    22 2 2 2 232 232 2344 021 01 xx xx xxx xx x      101xx

Check1. x  232 2(1)312 231 11 11 xx    

Thisisatruestatement. Solutionset:  1

71.



 222 2 2222 22244 032021 xxxx xxxxx xxxx

  202or101 xxxx  Check2. x 

 22 2222 0000

xx    Thisisatruestatement.–2isasolution. Check1. x 

xx  

 22 1221? 1111

 Thisisatruestatement.–1isasolution. Solutionset:{–2,–1}

73.

Check1. x  31 1131? 141 121 11

Thisisatruestatement. Solutionset:{1}

22 4231 4231 4231 21 3 xx xx xx x x

Check3. x  4231 4(3)23(3)1 12291 1010

Thisisatruestatement. Solutionset:{3}

74.

Check3. x 

51512 5315312 151542 022 022 22

Thisisafalsestatement.3isnotasolution. Check8. x 

 51512 5815812 401592 2532 532 22 xx

Thisisatruestatement.8isasolution. Solutionset:  8

  22 22 2 2 33101 31310 31310 312310310 33112310 282310 4310 4310 816310 560(2)(3)0 xx xx xx xxx xxx xx xx xx xxx xxxx

          303or202 xxxx  Check3. x 

 33101 3333101 09101 011 01111 xx  

  Thisisafalsestatement.–3isnotasolution. Check2. x 

 33101 2332101 16101 141 12111 xx  



 Thisisafalsestatement.–2isnotasolution. Becauseneitheroftheproposedsolutions satisfiestheoriginalequation,theequation hasnosolution.Solutionset: 

76.

55 5555 232 232 23222 xx xx xxxx   

Check2. x 

 55 55 55 55 55 232 22322 462 44 44 xx

Thisisatruestatement.

Solutionset:  2

77.   33 33 3333 6240 624 624 624221 xx xx xx xxxx  

Check1. x 

33 33 33 33 33 6240 612410 6240 440 44000 xx    

Thisisatruestatement. Solutionset:{–1}

78.

 2 2 222 22 320 3232 34340 140 xx xxxx xxxx xx

   101or404 xxxx 

Check4. x    2 2 320 43420 161220 420 220 00

Thisisatruestatement.4isasolution.

Check1. x 

2 2 320 13120 1320 420 220 00 xx   

Thisisatruestatement.1isasolution. Solutionset:  4,1 79.

2 12 3 22 12 3 22 x xxxx x xxxx

Multiplyeachtermintheequationbytheleast commondenominator,   2, xx  assuming 0,2. x 

2 22 2 2 12 232 22 2322 2362 4722 470470 x xxxx xxxx xxxx xxxx xx xxxx

  7 0or4704xxx 

Becauseoftherestriction0, x  theonlyvalid solutionis74Thesolutionsetis  7 4 80.

2 214 2468 214 2442 xxxx xxxx      Theleastcommondenominatoris

    42,xx whichisequalto0if 4or2.xx Therefore,4and2 cannotpossiblybesolutionsofthisequation.

 21 42 24 4 42 42 xx xx xx xx 

   

        2424 2824362 xx xxxx



 Theonlypossiblesolutionis–2.However,the variableisrestrictedtorealnumbersexcept–4 and–2.Therefore,thesolutionsetis:. 

81. 2/31/3 (23)(23)60 xx

Let1/3 (23)ux .Then 21/322/3 [(23)](23)uxx  . Withthissubstitution,theequationbecomes 260.uu Solvebyfactoring.

    320uu

303or202 uuuu 

Tofind x,replace u with1/3 (23) x  .

3 1/31/33 1/31/333 5 2 233233 232723015or 232232 23825 xx xxx xx xxx







Check15. x 

2/31/3 2/31/3 2/31/3

2/31/3 1/32 2 (23)(23)6 2(15)32(15)36 (303)(303)6 (27)(27)6 (27)36 336 93666 xx

Thisisatruestatement.–15isasolution.

5 Check2. x 

2/31/3 2/31/3 55 22 2/31/3 2/31/3 1/32 2 (23)(23)6 23236 (53)(53)6 886 826 226 42666

Thisisatruestatement.52isasolution. Solutionset:  5 15,2

2/31/3 2/31/3 3233 32330 xx xx   Let

31/3 ux ;then

2 21/32/3 33.

 2230(1)(3)0 uuuu 1or3uu

Tofind x,replace u with  1/3 3. x   

3 3 3 1/31/33 11 11 1/31/333 11 327 818011 27272727 3131 3314 or 3333 33 3 xx xxx xx xx x  

2/31/3 2/31/3 2/31/3 2/31/3 2 1/31/3 2 32330 4324330 12130 12130 12130 12130 1230 00

 Thisisatruestatement.4isasolution. 80 Check27. x

2/31/3 2/31/38080 2727 2/31/380818081 27272727 2/31/311 2727 2/31/3 1/321/3 2 32330 32330? 230 230 2722730 2722730 32330 9630 00

Thisisatruestatement.8027isasolution. Solutionset:  80 4,27

Copyright©2017PearsonEducation,Inc.

83. 7 13 93410 137 xx x x  

Solutionset:   7 13, 

84.   8 9 1124 1128 98 xx xx x x

Solutionset:  8 9,

85. 543(25) 54615 11415 1111 1 xx xx x x x

Solutionset:  ,1

86. 

 42 105 72352 726105 56105 10610 104 xxx xxx xx x x xx

Solutionset:  2 ,5

87. 5237 8210 45 x x x  

Solutionset:[4,5]

88. 7 3 7 3 83512 337 1 1 x x x x  

Solutionset:   7 3,1

89. 2340xx

Step1:Findthevaluesof x thatsatisfy 2340.xx  2340 410 xx xx   404or101 xxxx 

Step2:Thetwonumbersdivideanumberline intothreeregions.

Step3:Chooseatestvaluetoseeifitsatisfies theinequality,2340. xx

IntervalTestValue Is2340 xx TrueorFalse?

A:   ,4 5 2? 53540 60  

False

B:   4,10  ? 2 03040 40   True

C:   1,  2  ? 2 23240 60   False

Solutionset:  4,1

90. 24210xx

Step1:Findthevaluesof x thatsatisfy 24210.xx

24210 730 xx xx   707or303 xxxx 

Step2:Thetwonumbersdivideanumberline intothreeregions.

Step3:Chooseatestvaluetoseeifitsatisfies theinequality,24210 xx

IntervalTestValue Is24210 xx TrueorFalse?

A:   ,7 8 2? 848210 110   True

B:   7,30  2? 040210 210   False

C:   3,  4  2? 444210 110   True

Solutionset:     ,73,  

91. 2 61110 xx

Step1:Findthevaluesof x thatsatisfy 2 61110 xx 2 2 61110 611100 (32)(25)0 xx xx xx    25 32320or250 xxxx 

Step2:Thetwonumbersdivideanumberline intothreeregions.

Step3:Chooseatestvaluetoseeifitsatisfies theinequality,261110 xx

IntervalTestValue Is261110 xx TrueorFalse?

A:   2 ,3  1

2? 6111110 1710   False

B:   25 32,0 2? 601101010 1010   True

C:   5 2,  3 2? 631131010 1110   False

Solutionset:   25 32 , 92. 235xx

Step1:Findthevaluesof x thatsatisfy 2235350xxxx Usethe quadraticformulaLet 1,3,and5.abc 

2 2 4 2 33415 21 3920329 22 329329 1.2or4.2

Step2:Thetwonumbersdivideanumberline intothreeregions. Step3:Chooseatestvaluetoseeifitsatisfies theinequality,235 xx

IntervalTestValue Is235 xx TrueorFalse?

A:   329 ,2  2 2? 2325 105   True

B:   329329 22 ,  0 2? 0305 05   False

C:   329 2,   5 2? 5355 105   True



Solutionset:   329329 ,22, 

93. 3160xx Step1:Solve3160. xx

32160160 440 xxxx xxx  

Seteachfactortozeroandsolve. 0or404or 404 xxx xx  

Step2:Thevalues4,0,and,4dividethe numberlineintofourintervals.

Step3:Chooseatestvaluetoseeifitsatisfies theinequality,3160. xx

IntervalTestValue Is3160 xx TrueorFalse?

A:   ,4 5 3? 51650 450   True

B:   4,01 3? 11610 150   False

(continuedonnextpage)

(continued)

IntervalTestValue

C:   0,41

Is3160 xx TrueorFalse?

3? 11610 150   True

D:   4,  5 3? 51650 450   False

Solutionset:

94. 32 2350 xxx Step1:Solve322350. xxx

322 23502350 1250 xxxxxx xxx   Seteachfactortozeroandsolve. 5 2 0or10or250 0or1or xxx xxx

Step2:Thevalues51,0,and,2dividethe numberlineintofourintervals.

Step3:Chooseatestvaluetoseeifitsatisfies theinequality,322350. xxx

IntervalTestValue Is322350 xxx TrueorFalse? A:  ,1 2

32? 2232520 180   True

B:   1,00.5  32? 20.530.550.50

95. 36 0 5 x x   Becauseonesideoftheinequalityisalready 0,westartwithStep2. Step2:Determinethevaluesthatwillcause eitherthenumeratorordenominatortoequal0. 3602or505 xxxx  Thevalues–2and5todividethenumberline intothreeregions. Step3:Chooseatestvaluetoseeifitsatisfies theinequality,360. 5 x x  

IntervalTestValue Is3650 x x   TrueorFalse? A:   ,2

3

336? 35 3 8 0 0

B:   2,50  306? 05 6 5 0 0 

C:   5,  6

Solutionset:

False

366?650 240 

True

Step1:Rewritetheinequalitysothat0ison onesideandthereisasinglefractiononthe otherside.

Step2:Determinethevaluesthatwillcause eitherthenumeratorordenominatortoequal0. 1 606or2102 xxxx  Thevalues12and6dividethenumberline intothreeregions.Useanopencircleon1 2 becauseitmakesthedenominatorequal0. (continuedonnextpage)

(continued)

Step3:Chooseatestvaluetoseeifitsatisfies theinequality,71 21 x x   

IntervalTest

IntervalsAandCsatisfytheinequality.The endpoint12isnotincludedbecauseitmakes thedenominator0.

Solutionset:

Step1:Rewritetheinequalitysothat0ison onesideandthereisasinglefractiononthe otherside. 32324 400 3242

Step2:Determinethevaluesthatwillcause eitherthenumeratorordenominatortoequal0.

202or0xxx 

Thevalues–2and0dividethenumberline intothreeregions.

Step3:Chooseatestvaluetoseeifitsatisfies theinequality,3240 x x  .

IntervalTest

Value Is3240 x x  TrueorFalse?

A:   ,2 3  332? 3 1 3 40 0   False

B:   2,01  312? 140 10   True

C:   0,  1 312?140 30   False

Solutionset:(–2,0) 98. 52 10 x x  

Step1:Rewritetheinequalitytocomparea singlefractionwith0. 5252 100 5262 00 xxx xxx xxx xx 

Step2:Determinethevaluesthatwillcause eitherthenumeratorordenominatortoequal0. 1 3 620or0 xxx 

Thevalues13and0dividethenumberline intothreeregions.

Step3:Chooseatestvaluetoseeifitsatisfies theinequality,5210. x x  

IntervalTest

Value

Is5210 x x   TrueorFalse?

A:   1 ,3  1  512? 110 40    False

B:   1 3,00.1  50.12?0.110 140    True

C:   0,  1 512?110 80    False

Solutionset:   1 3,0

99. 35 13xx  

Step1:Rewritetheinequalitysothat0ison onesideandthereisasinglefractiononthe otherside. 35 0 13 3(3)5(1)0 (1)(3)(3)(1) 3(3)5(1)0 (1)(3) 3955 0 (1)(3) 214 0 (1)(3) xx xx xxxx xx xx xx xx x xx

Step2:Determinethevaluesthatwillcause eitherthenumeratorordenominatortoequal0. 21407or101or 303 xxxx xx 

Thevalues–3,1and7dividethenumberline intofourregions.Useanopencircleon3 and1becausetheymakethedenominator equal0.

Step3:Chooseatestvaluetoseeifitsatisfies theinequality,3513xx  

IntervalTestValue Is3513xx  TrueorFalse?

A:  ,3 4 ? 35 4143 3 55    False

B:   3,10 ? 35 0103 5 33 

True

C:   1,72 ? 35 2123 31    False

D:   7,  8 ? 35 8183 ? 35 711 3335 7777     True

IntervalsBandDsatisfytheinequality.The endpoints3and1arenotincludedbecause theymakethedenominator0. Solutionset:(3,1)[7,)  

100. 32 24xx   Step1:Rewritetheinequalitytocomparea singlefractionwith0. 32 0 24

3(4)2(2)0 (2)(4)(4)(2) 3(4)2(2)0 (2)(4) 31224 0 (2)(4) 16 0 (2)(4) xx xx xxxx xx xx xx xx x xx 

Step2:Determinethevaluesthatwillcause eitherthenumeratorordenominatortoequal0. 16016or202or 404 xxxx xx  

Thevalues–2,4and16dividethenumberline intofourregions. Step3:Chooseatestvaluetoseeifitsatisfies theinequality,32. 24xx  

IntervalTestValue Is3224xx  TrueorFalse?

A:   ,2 3 3?2 3234 2

B:   2,40 3?2 0204 31 22    True

C:   4,165 3?2 5254 3 72    False

D:   16,  17 3?2 172174 3?2 1913 3938 247247

Solutionset:     2,416,  

101. (a) Let x =theozoneconcentrationafterthe Purafilairfilterisused.

  1400.4314079.8 x  TheozoneconcentrationafterthePurafil airfilterisusedis79.8ppb.

Copyright©2017PearsonEducation,Inc.

(b) Let x =themaximuminitialconcentration ofozone.

0.43500.5750 87.7(approximately) xxx x  

Thefilterwillreduceozoneconcentrations thatdon’texceed87.7ppb.

102. C =3x +1500, R =8x Thecompanywillatleastbreakevenwhen R ≥ C. 83150051500300 xxxx 

Thebreak-evenpointisat x =300.The companywillatleastbreakevenifthe numberofunitsproducedisintheinterval   300,. 

103. 2 16320st

(a) When s =0,theprojectilewillbeat groundlevel. 22 2 016320163200 200(20)0 tttt tttt   t =0or t =20

Theprojectilewillreturntotheground after20sec.

(b) Solve s >576for t. 2 2 2 32016576 016320576 02036 tt tt tt   

Step1:Findthevaluesof t thatsatisfy

220360.tt

2203602180 tttt 

202or18018 tttt 

Step2:Thetwonumbersdivideanumber lineintothreeregions.

Step3:Chooseatestvaluetoseeifit satisfiestheinequality, 2 32016576. tt

IntervalTestValue Is232016576 tt TrueorFalse?

A:   0,21 

True

IntervalTestValue Is232016576 tt TrueorFalse?

C:   18,  20 2? 320201620576 0576   False

Theprojectilewillbemorethan576ftabove thegroundbetween2and18sec.

104. 35.7486yx 35.7486800 35.7314

8.8(approximately) x x x   

Basedonthemodel,theamountpaidbythe governmentfirstexceeds$800billionabout 8.8yearsafter2004,whichisin2012.Thisis veryclosetothegraph.

105. Answerswillvary.3cannotbeinthesolution setbecausewhen3issubstitutedinto1493, x x  divisionbyzerooccurs.

106. Answerswillvary.4mustbeinthesolution setbecausewhen4issubstitutedinto421, x x   theresultiszero,whichmakesthenonstrict inequalitytrue.

107. 47 473or4711 x xxxx 

 Solutionset:{–11,3}



108. 2323 231or235 xx xxxx

 Solutionset:{–1,5}

109. 77 909 2323 xx  1111 2727 7 23979(23)71827 1127or xx x xxx

  2525 2727 7 23979(23) 718272527 x x xxxx

  Solutionset:  1125 2727 ,

Copyright©2017PearsonEducation,Inc.

110. 81 70 32 x x   15 13 8181 707 3232 817(32)812114 113141513or xx xx xxxx xxx





  13 29 81 327817(32) 81211429114 2913 x xx x xxx xx

   

Solutionset:  1513 1329 ,

111. 5123 xx

4 3 2 7 512331334 or 51235123 71372 xxxxx xxxx xxx

 

Solutionset:  24 73 ,

112. 1011xx  1 2 10111011False or 10111011 2101121 xx xxxx xxx







Solutionset:  1 2

113. 293 x  3293 1226 63 x x x   

Solutionset:  6,3

114. 852 x  6 852565or 8525102 xxx xxx 

Solutionset:

6 5

115. 734 x  1 734717or 734771 xxx xxx

Solutionset:

116. 12 233 x 

  12 23 12 23 2214 33 33 63663 183418 22314 x x x xx    

Solutionset:   2214 33 , 117. 37553710 xx  17 3 103710 1733 1 x x x   

Solutionset:   173,1

118. 7863783 xx  11 7 5 7 783711or 78375 xxx xxx  

Solutionset:     115 77 ,,  

119. Becausetheabsolutevalueofanumberis alwaysnonnegative,theinequality 4123 x  isalwaystrue.Thesolutionset is   ,. 

120. Thereisnonumberwhoseabsolutevalueis lessthanorequaltoanynegativenumber.The solutionsetof729 x  is 

121. Becausetheabsolutevalueofanumberis alwaysnonnegative,240 xx isnever true,so240 xx isonlytruewhen 240.xx  22404040 0or40 0or4 xxxxxx xx xx   

Solutionset:  4,0

122. 240xx willbefalseonlywhen 240,xx whichoccurswhen 4or0xx (seelastexercise).Sothe solutionsetfor240 xx is       ,44,00,.  

123. “k is12unitsfrom6”meansthatthedistance between k and6is12units,or612 k  or 612. k 

124. “p isatleast3unitsfrom1”meansthat p is3 unitsormorefrom1.Thus,thedistance between p and1isgreaterthanorequalto3, or13 p  or13. p 

125. “t isnolessthan0.01unitfrom5”meansthat t is0.01unitormorefrom5.Thus,the distancebetween t and5isgreaterthanor equalto0.01,or50.01 t  or50.01. t 

Chapter 1 Test

1. 3(4)5(2)2(24) 312510224 22222 2222

Solutionset:{0}

2.  21 44 32 xxx

21 6464 32 434624 4312624

Solutionset:  12

3.  2 61170 21370 xx xx

17 23210or370 xxxx

Solutionset:  17 23 ,

4. 2 (31)8 31822 122 3122 3 x x xx 

Solutionset:  122 3 

5. 2 322 xx Solvebycompletingthesquare.

2 2 22222121 333939 322 3220 0 xx xx xxxx 

22 1211 2339 25511 3939 5511 3333

Note: xx xixi

   Solvebythequadraticformula. Let3,2,and2. abc

 2 2 25521 6633 4 2 224322424 236 220225 66 bbac x a i ii

Solutionset:

15 33 i

2 1223 933 1232 3333 xxx xxxx  

Multiplyeachtermintheequationbytheleast commondenominator,    33xx assuming3,3. x 

123 33 333 2 33 3 123323 123926 3326 363 xx xxx xx x xx xx xx xx

Theonlypossiblesolutionis3.However,the variableisrestrictedtorealnumbersexcept–3 and3.Therefore,thesolutionsetis 

Multiplyeachtermintheequationbytheleast commondenominator, x(x –2)assuming 0,2.

Becauseoftherestriction0, x  theonlyvalid solutionis34.Thesolutionsetis

3 4.

8.





22 2 2 345213424 3424 3441616 041912 0434 xxxx xx xxx xx xx

3 4 430or404 xxxx 

3 Check4. x 

33 44 95255 4242 55155 2222 34521 34521 455 5 xx



 

Thisisafalsestatement.34isanotsolution.

Check4. x 

34521 3445241 124581 16581 45999 xx

Thisisatruestatement.4isasolution. Solutionset:{4} 9.







  

22 2333 2333 2333 239633 231263 3963 xx xx xx xxx xxx xx 





22 2 2 2 323 323 6943 69412 230310 xx xx xxx xxx xxxx





 303or101 xxxx 

Check3. x 

 2333 233333 6303 903 30333 xx  

Thisisatruestatement.–3isasolution.

Check1. x   2333 213133 2343 123 12333 xx  

 

 Thisisatruestatement.1isasolution. Solutionset:{–3,1}

10.

  33 3333 3894 3894 3894864 1262 xx xx xxx xx 



 

Check2. x 

xx





  33 33 33 3333 3894 328924 68184 14141414



 Thisisatruestatement.

Solutionset:{–2}

11. 4217160xx Let224 ;then uxux  Withthissubstitution,theequationbecomes 217160uu Solvethisequationbyfactoring.

    1160uu 101or16016 uuuu  Tofind x,replace u with2 x 2 2 111or 16164 xxx xxx  

Solutionset:  1,4

12. 2/31/3 3360xx

Let 31/3 ux .Then

 2 21/32/3 33.uxx    260(3)(2)0 uuuu 303or202 uuuu  Tofind x,replace u with 1/3 3. x 



 3 1/31/33 1/31/333 3333 32730or 3232 385 xx xx xx xx   

     (continuedonnextpage)

(continued)

Check30. x 

2/31/3

xx

2/31/3

 

2/31/3 1/32 2 3360 30330360 272760 27360 3360 936000

Thisisatruestatement.–30isasolution.

Check5. x 

2/31/3

2/31/3

2/31/3 1/32 2 3360 535360 8860 8260 2260 426000

Thisisatruestatement.5isasolution.

Solutionset:  30,5

13. 437 x  105 42 437441or 437410 xxx xxx

Solutionset:  5 2,1

14. 4 3 215 21531534 or 21(5)2156 xx xxxxx xxxxx

Solutionset:  4 6,3

15. 222 222 2(22) 2 22 2 22 SHWLWLH SLHHWLW SLHWHL SLH W HL SLH W HL 

17. (a)

22 2 2 8382833 64489 644891 644895548 iii ii i ii

2 2 2 319(319)(13) 13(13)(13) 391957 13 31057131057 19191 60106010 6 1910 iii iii iii i ii i ii i

10 424024101111 iiii

8 313248 1 iiiiiii

18. (a) Minimum: galminhrgal11206012806,400minhrdayday 

Theequationthatwillcalculatethe minimumamountofwaterpumpedafter x dayswouldbe806,400. Ax 

(b) 806,400 Ax  when30 x  wouldbe   806,4003024,192,000 A  gal.

(c) Becausetherewouldbegal 806,400day

minimumandeachpoolrequires20,000 gal,therewouldbeaminimumof 806,40040.32 20,000  poolsthatcouldbe filledeachday.Theequationthatwill calculatetheminimumnumberofpools thatcouldbefilledafter x dayswouldbe 40.32. Px  Approximately40pools couldbefilledeachday.

(d) Solve40.32Px  where1000. P  1000 40.32 100040.3224.8days. xx  Aminimumof1000poolscouldbefilled in25days.

19. Letwidthofrectangle. w  Then 220lengthofrectangle. w  Usetheformulafortheperimeterofa rectangle.

22 62022202 6204402 6206406606110 Plw ww ww www

Thewidthis110mandthelengthis

21102022020200  m.

20. Let x =amountofcashews(inpounds).Then 35– x =amountofwalnuts(inpounds). Costper Pound Amountof

Cashews7.00 x 7.00 x Walnuts5.5035 x 

5.5035 x Mixture6.5035356.50  Solvethefollowingequation.

35350701 1.51533 7.005.5035356.50 7192.55.5227.5 1.5192.5227.5 1.535 23

Thefruitandnutstandownershouldmix 1 233lbsofcashewswith12 33352311  lbs ofwalnuts.

21. Let x =averagespeedupriver. Then x +5=averagespeedonreturntrip. rtd Upriver x 1.21.2 x Downriver5 x  0.9  0.95 x 

Becausethedistanceupriveranddownriver arethesame,wesolvethefollowing.

1.20.9(5) 1.20.94.50.34.515 xx xxxx   Theaveragespeedoftheboatupriveris15 mph.

22. 0.4616.32yx

(a) Theyear2014isrepresentedby x =10.   0.461106.321.71 y 

Accordingtothemodel,in2014about 1.7%ofcollegefreshmensmoked.

(b) 4.90.4616.32 1.420.4613.1 x xx  

Accordingtothemodel,4.9%of freshmansmokedabout3.1yearsafter 2004orin2007.

23. 2 1696 stt  (a) Let s =80andsolvefor t. 22 8016961696800 tttt  2650 (1)(5)0 tt tt  

101or505 tttt  Theprojectilewillreachaheightof80ft at1secand5sec.

(b) Let s =0andsolvefor t. 2 01696 016(6) tt tt   0or606ttt  Theprojectilewillreturntothegroundat 6sec.

24.    211221 221222 21022 4102 412 3 xx xx xx x x x      

Solutionset:   3, 

25.

1 323 2 1 232223 2 646 102 x x x x 

  Solutionset:[–10,2]

26. 2 23 xx

Step1:Findthevaluesof x thatsatisfy 2 23. xx 2 2 23 230 (1)(23)0 xx xx xx    3 101or2302 xxxx 

Step2:Thetwonumbersdivideanumberline intothreeregions.

Step3:Chooseatestvaluetoseeifitsatisfies theinequality,223 xx

(continuedonnextpage)

(continued)

IntervalTestValue Is223 xx TrueorFalse?

Step1:Rewritetheinequalitysothat0ison onesideandthereisasinglefractiononthe otherside.

Step2:Determinethevaluesthatwillcause eitherthenumeratorordenominatortoequal0. 41604or303 xxxx  Thevalues3and4dividethenumberlineinto threeregions.

Step3:Chooseatestvaluetoseeifitsatisfies theinequality,135. x x  

IntervalTestValue Is135 x x   TrueorFalse?

A:  ,3 0 01? 03 1 3 5 5    True

B:   3,43.5 3.51? 3.535 95    False

C:   4,  5 51? 535 35    True Solutionset:(,3)(4,)  

28. 259 9259 4214 27 x x x x     Solutionset:(–2,7)

29. 211102111 xx  2111or2111 212210 6or5 xx xx xx    Solutionset:(,–6][5,)  

30. 7 3703703 xxx 

However,if73, x  then370, x  and 37 x  isnotdefined.Thus,thesolutionset of370 x  is   7 3

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.