Solutions for Finite Mathematics With Applications In The Management Natural And Social Sciences 12t

Page 1


INSTRUCTOR’S SOLUTIONS MANUAL

SAL SCIANDRA

Niagara County Community College

M ATHEMATICS WITH A PPLICATIONS

AND F INITE M ATHEMATICS

WITH A PPLICATIONS

IN

THE M ANAGEMENT , N ATURAL , AND S OCIAL S CIENCES

TWELFTH

EDITION

Margaret L. Lial

American River College

Thomas Hungerford

Saint Louis University

John Holcomb

Cleveland State University

Birmingham-Southern College

Bernadette Mullins

The author and publisher of this book have used their best efforts in preparing this book. These efforts include the development, research, and testing of the theories and programs to determine their effectiveness. The author and pu blisher make no warranty of any kind, expressed or implied, with regard to these programs or the documentation contained in this book. The author and publisher shall not be liable in any event for incidental or consequential damages in connection with, or arising out of, the furnishing, performance, or use of these programs.

Reproduced by Pearson from electronic files supplied by the author.

Copyright © 2019, 2015, 2011 Pearson Education, Inc. Publishing as Pearson, 330 Hudson Street, NY NY 10013

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher. Printed in the United States of America.

ISBN-13: 978-0-13-477640-8

ISBN-10: 0-13-477640-2

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter 1: Algebra and Equations

Section 1.1 The Real Numbers

1. True.Thisstatementistrue,sinceeveryinteger canbewrittenastheratiooftheintegerand1.

Forexample,5 5 1 

2. False.Forexample,5isarealnumber,and 10 5 2  whichisnotanirrationalnumber.

3. Answersvarywiththecalculator,but 2,508,429,787 798,458,000 isthebest.

4. 0(7)(7)0 

Thisillustratesthecommutativepropertyof addition.

5. 6(4)664 tt

Thisillustratesthedistributiveproperty.

6. 3+(–3)=(–3)+3

Thisillustratesthecommutativepropertyof addition.

7. (–5)+0=–5

Thisillustratestheidentitypropertyofaddition.

8. 1 4 (4)()1  

Thisillustratesthemultiplicativeinverse property.

9. 8+(12+6)=(8+12)+6

Thisillustratestheassociativepropertyof addition.

10. 1(20)20  

Thisillustratestheidentitypropertyof multiplication.

11. Answersvary.Onepossibleanswer:Thesumof anumberanditsadditiveinverseistheadditive identity.Theproductofanumberandits multiplicativeinverseisthemultiplicative identity.

12. Answersvary.Onepossibleanswer:Whenusing thecommutativeproperty,theorderofthe addendsormultipliersarechanged,whilethe groupingoftheaddendsormultipliersis changedwhenusingtheassociativeproperty.

ForExercises13–16,let p =–2, q =3and r =–5.

13. () [][] () 35325(3)3215 31339 pq −+=−−+=−−+ =−=−

14. ()()() 22352816 qr−=+==

15. qr qp   3(5)22 3(2)1 +−− ===− +−

16. 33(3)99 323(2)2(5)6104 q pr === −−−−−+

17. Let r =3.8. APR1212(3.8)45.6% r 

18. Let r =0.8. APR1212(0.8)9.6% r 

19. Let APR =11. 12 1112 11 12 .9167% APRr r r r    

20. Let APR =13.2. 12 13.212 13.2 12 1.1% APRr r r r    

21. 3455320517512 

22. 2 8(4)(12) Takepowersfirst. 8–16–(–12) Thenaddandsubtractinorderfromlefttoright. 8–16+12=–8+12=4

23. (45)66166660 

24. 2(37)4(8) 4(3)(3)(2)  

Workaboveandbelowfractionbar.Do multiplicationsandworkinsideparentheses. 2(4)32832244 1261266

25. 2 84(12)

Takepowersfirst. 8–16–(–12)

Thenaddandsubtractinorderfromlefttoright. 8–16+12=–8+12=4

26.   2 (35)2313

Takepowersfirst. –(3–5)–[2–(9–13)]

Workinsidebracketsandparentheses. –(–2)–[2–(–4)]=2–[2+4] =2–6=–4

27.

32 2(3)(2)16 641

Workaboveandbelowfractionbar.Takeroots. 32 2(3)(2)(4) 81 

Domultiplicationsanddivisions. 31 622 81 

Addandsubtract. 3 12114 222271 777 

28. 2 2 6325 613 

Takepowersandroots. 363(5)3615213 3613497  

29. 20401894587 ,,27,,6.735,4752337691

30. 187385 ,2.9884,85,,10, 63117 

31. 12islessthan18.5. 12<18.5

32. –2isgreaterthan–20. –2>–20

33. x isgreaterthanorequalto5.7. 5.7 x 

34. y islessthanorequalto–5. 5 y 

35. z isatmost7.5. 7.5 z 

36. w isnegative. 0 w 

37. 62 38. 34.75 

39. 3.14 

40. 13.33 

41. a liestotherightof b orisequalto b

42. b + c = a

43. c < a < b

44. a liestotherightof0

45. (–8,–1)

Thisrepresentsallrealnumbersbetween–8and –1,notincluding–8and–1.Drawparenthesesat –8and–1andaheavylinebetweenthem.The parenthesesat–8and–1showthatneitherof thesepointsbelongstothegraph.

46. [–1,10]

Thisrepresentsallrealnumbersbetween–1and 10,including–1and10.Drawbracketsat –1and10andaheavylinebetweenthem.

47.  2,3

Allrealnumbers x suchthat–2< x ≤ 3 Drawaheavylinefrom–2to3.Usea parenthesisat–2sinceitisnotpartofthegraph. Useabracketat3sinceitispartofthegraph.

48. [–2,2)

Thisrepresentsallrealnumbersbetween–2and 2,including–2,butnotincluding2. Drawabracketat–2,aparenthesisat2,anda heavylinebetweenthem.

49.   2, 

Allrealnumbers x suchthat x >–2 Startat–2anddrawaheavylinetotheright. Useaparenthesisat–2sinceitisnotpartofthe graph.

50. (–∞,–2]

Thisrepresentsallrealnumberslessthanor equalto–2.Drawabracketat–2andaheavy linetotheleft.

51. 9129(12)3 

52. 848(4)4

53.

54. 6124(6)166(16)22

55. 55 5__5

58. 6(4)46

59. 2828  66 66 66 

60. 353(5) 3–515  3515 1515

61. 3535 235 22

63. When a <7, a –7isnegative. So7(7)7aaa 

64. When b ≥ c, b – c ispositive. So bcbc 

Answerswillvaryforexercises65–67.Sampleanswers aregiven.

65. No,itisnotalwaystruethat. abab  For example,let a =1and b =–1.Then, 1(1)00 ab ,but 1(1)112 ab

66. Yes,if a and b areanytworealnumbers,itis alwaystruethat. abba  Ingeneral, a – b =–(b – a).Whenwetaketheabsolute valueofeachside,weget () abbaba 

67. 22bb onlywhen b =0.Theneachside oftheequationisequalto2.If b isanyother value,subtractingitfrom2andaddingitto2 willproducetwodifferentvalues.

68. Forfemales:|63.5|8.4 x  ;formales: |68.9|9.3 x 

69. 1;30062007

70. 8;2008,2009,2010,2011,2012,2013,2014, 2015

71. 9;2006,2008,2009,2010,2011,2012,2013, 2014,2015

72. 4;2008,2010,2013,2015

73. 4;2006,2007,2009,2011

74. 8;2006,2007,2009,2010,2011,2012,2013, 2014,2015

75. |10.614.9||4.3|4.3 −=−=

76. |63.1(8.0)||71.1|71.1 −−==

77. |1.063.1||64.1|64.1 −−=−=

78. |10.6(5.7)||16.3|16.3 −−==

79. |5.7(8.0)||2.3|2.3 −−−==

80. |1.0(5.7)||4.7|4.7 −−−==

81. 3;30062010,2015,2016

82. 7;2010,2011,2012,2013,2014,2015,2016

83. 6;2010,2011,2012,2013,2014,2015

84. 3;2014,2015,2016

Section 1.2 Polynomials

1. 6 11.21,973,822.685 

2. 11 (6.54)936,171,103.1 

3. 186 289.0991339 7

4. 57 .0163339967 9

5. 2 3isnegative,whereas2(3)ispositive.Both 3 3and3(3)arenegative.

6. Tomultiply34and54,addtheexponentssince thebasesarethesame.Theproductof34and 34cannotbefoundinthesamewaysincethe basesaredifferent.Toevaluatetheproduct,first dothepowers,andthenmultiplytheresults.

7. 23235 4444   8.  464610 4444

9. 25257 (6)(6)(6)(6) 

565611 (2)(2)(2)(2) zzzz

 7 44728555 uuu

 4 35320 23 6666 (6) yyyy y

13. degree4;coefficients:6.2,–5,4,–3,3.7; constantterm3.7.

14. degree7;coefficients:6,4,0,0,–1,0,1,0; constantterm0.

15. Sincethehighestpowerof x is3,thedegree is3.

16. Sincethehighestpowerof x is5,thedegree is5.

17.     3232 32548 x xxxxx     3322 342(58) x xxxxx 3213 x xx

18.     32 257482 pppp  32 24(58)(72) pppp  32 2439 ppp 

Copyright © 2019 Pearson Education, Inc.

19.     22 438262 yyyy 

  22 438262 yyyy  22 438262 yyyy 

22 42(36)(82) yyyy 

2 636 yy 

20. 

 22 725326 bbbb 

22 725326 bbbb 

22 732256 bbbb 

2 41 b 

21.

3232 2243281 xxxxx 

3232 2243281 xxxxx  3232 2243281 xxxxx 

3322 2228(4)(31) xxxxx  2 644 xx 

22.

322 391184106 yyyyy 

322 391184106 yyyyy 

 322 394(1110)(86) yyyyy  32 3132114 yyy 

23.   2 9261 mmm 

 2 (9)29(6)(9)(1) mmmmm  32 18549mmm

24.   2 2468 aaa   2 242(6)2(8) aaaaa 32 81216 aaa

25.   2 (35)421 zzz

 22 322 32 (3)421(5)421 126320105 121475 zzzzz zzzzz zzz 

 322 122061035 zzzzz  32 121475 zzz 

26.   32(23)43kkkk      3232 243343 kkkkkkk  43232 8621293 kkkkkk  432 8673 kkkk

27. (6k –1)(2k +3) (6)(23)(1)(23) kkk  2 121823 kkk  2 12163 kk 

28. (8r +3)(r –1) UseFOIL.

2 8833 rrr  2 853 rr 

29. (3y +5)(2y +1) UseFOIL.

2 63105 yyy  2 6135 yy 

30. (5r –3s)(5r –4s) 2225201512 rrsrss 22253512 rrss

31. (9k + q)(2k – q) 221892kkqkqq  22187kkqq

32. (.012x –.17)(.3x +.54) =(.012x)(.3x)+(.012x)(.54) +(–.17)(.3x)+(–.17)(.54) 2 .0036.00648.051.0918 xxx  2 .0036.04452.0918 xx 

33. (6.2m –3.4)(.7m +1.3) 2 4.348.062.384.42 mmm  2 4.345.684.42 mm 

34. 2p –3[4p –(8p +1)]

=2p –3(4p –8p –1) =2p –3(–4p –1) =2p +12p +3 =14p +3

35. 5k –[k +(–3+5k)]

=5k –[6k –3] =5k –6k +3 =–k +3

36. (31)(2)(25)2 xxx 

22 35242025 xxxx  22 35242025 xxxx

37. R =5(1000x)=5000x C =200,000+1800x P =(5000x)–(200,000+1800x) =3200x –200,000

38. R =8.50(1000x)=8500x C =225,000+4200x P =(8500x)–(225,000+4200x) =4300x –225,000

39. R =9.75(1000x)=9750x 2 2 260,000(33480325) 33480259,675 Cxx xx

2 2 (9750)(33480259,675) 36270259,675

40. R =23.50(1000x)=23,500x 2 2 145,000(4.23220425) 4.23220144,575 Cxx xx

2 2 (23,500)(4.23220144,575) 4.220,280144,575.

41. a. Accordingtothebargraph,thenetearnings in2007were$673million.

b. Let x =7.

32 32 4.79122.511042863

505.47 xxx −+− =−+− =

4.797122.57110472863

Accordingtothepolynomial,thenetearnings in2007wereapproximately$505million.

42. a. Accordingtothebargraph,thenetearnings in2015were$2757million.

b. Let x =15.

4.7915122.5151104152863 2300.75

Accordingtothepolynomial,thenet earningsin2015wereapproximately$2301 million.

43. a. Accordingtothebargraph,thenetearnings in2012were$1384million.

b. Let x =12.

4.7912122.5121104122863 1022.12 xxx −+− =−+−

Accordingtothepolynomial,thenet earningsin2012wereapproximately$1022 million.

44. a. Accordingtothebargraph,thenetearnings in2013were$8million.

b. Let x =13. ()()() 32 32 4.79122.511042863

4.7913122.5131104132863 1310.13 xxx −+− =−+−

Accordingtothepolynomial,thenet earningsin2013wereapproximately$1,310 million.

45. Let x =17. ()()() 32 32 4.79122.511042863

=−+−

4.7917122.5171104172863 4035.77 xxx

Accordingtothepolynomial,thenetearningsin 2017willbeapproximately$4036million.

46. Let x =18.

32 32 4.79122.511042863

52. Let x =11.

()()()

4.7918122.5181104182863

5254.28

Accordingtothepolynomial,thenetearningsin 2018willbeapproximately$5254million.

47. Let x =19. ()()()

32 9.5(11)401.6(11)6122(11)25,598 5794.9   Let x =16.

32 9.5(16)401.6(16)6122(16)25,598 8456.4  

Thus,thecostswere$5794.9millionin2011 and$8456.4millionin2016.Thestatementis true.

4.79122.511042863

32 32

4.7919122.5191104192863

6745.11

Accordingtothepolynomial,thenetearningsin 2019willbeapproximately$6745million.

48. Thefiguresfor2013–2015seemhigh,but plausible.Toseehowaccuratetheseconclusions are,searchStarbucks.comforlaterannual reports.

Forexercises49–52,weusethepolynomial

32 9.5401.6612225,598. xxx 

49. Let x =10.

32 9.5(10)401.6(10)6122(10)25,598 4962  

Thus,thecostswereapproximately$4962 millionin2010.Thestatementisfalse.

50. Let x =15.

32 9.5(15)401.6(15)6122(15)25,598 7934.5  

Thus,thecostswereapproximately$7934.5 millionin2015.Thestatementistrue.

51. Let x =12.

32

9.5(12)401.6(12)6122(12)25,598 6451.6   Let x =15.

32 9.5(15)401.6(15)6122(15)25,598 7934.5  

Thus,thecostswere$6451.6millionin2012 and$7934.5millionin2015.Thestatementis false.

Forexercises53–58,weusethepolynomial 32 72.85208216,53259,357. xxx −+−+

53. Let x =7.

32 72.85208216,53259,357

72.85(7)2082(7)16,532(7)59,357 20,663.45 xxx −+−+ =−+−+ =

Thus,theprofitforPepsiCoIncin2007was approximately$20,663million.

54. Let x =10.

32

32 72.85208216,53259,357 72.85(10)2082(10)16,532(10) 59,357 29,387 xxx −+−+ =−+− + =

Thus,theprofitforPepsiCoIncin2010was $29,387million.

55. Let x =12.

32

xxx −+−+ =−+− + =

32

72.85208216,53259,357 72.85(12)2082(12)16,532(12) 59,357 34,896.2

Thus,theprofitforPepsiCoIncin2012was approximately$34,896million.

56. Let x =15.

32

32

72.85208216,53259,357 72.85(15)2082(15)16,532(15) 59,357 33,958.25 xxx −+−+ =−+− + =

Thus,theprofitforPepsiCoIncin2015was approximately$33,958million.

Copyright © 2019 Pearson Education, Inc.

57. Let x =13.

32 32

72.85208216,53259,357

xxx

72.85(13)2082(13)16,532(13) 59,357

36,247.55

Thus,theprofitforPepsiCoIncin2013was approximately$36,248million.

Let x =9.

60. Inorderforthecompanytomakeaprofit, 2 7.25005230,0000Pxx Settheprofitfunctionequalto0andsolve for x. 2 84450215,0000 xx Bythequadraticformula, x ≈ 45or x ≈ –601. Since x representsapositivenumber, x =45.

32 32

72.85(9)2082(9)16,532(9) 59,357 26,103.35 xxx

72.85208216,53259,357

Thus,theprofitforPepsiCoIncin2009was approximately$26,104million.Therefore,the profitwashigherin2013.

58. Bycomparingtheanswerstoproblems55and 56,theprofitwashigherin2012.

59. 2 7.25005230,000Pxx .Hereispartof thescreencapture.

For25,000,thelosswillbe$100,375;

Therefore,between40,000and45,000 calculatorsmustbesoldforthecompanyto makeaprofit.

61. Let x =100(inthousands)

2 7.2(100)5005(100)230,000342,500 

d. Theprofitforselling100,000calculatorsis $342,500.

62. Let x =150(inthousands) 2 7.2(150)5005(150)230,000682,750 

d. Theprofitforselling150,000 calculatorsis$682,750.

Section 1.3 Factoring

12241212212(2)

2. 5655(1)5(13)5(113) yxyyyxyx

For60,000,thereprofitwillbe$96,220.

Thereisalossatthebeginningbecauseof largefixedcosts.Whenmoreitemsare made,thesecostsbecomeasmallerportion ofthetotalcosts.

Copyright © 2019 Pearson Education, Inc.

5. 32 61218 zzz    2 66(2)6(3) zzzzz

 2 623 zzz 

6. 32 55510 x xx   2 55(11)5(2) x xxxx

2 5112 xxx 

7. 23 3(21)7(21) yy 22 (21)(3)(21)7(21) yyy  2 (21)[37(21)] yy

(21)(3147) yy

(21)(144)

8. 53 (37)4(37) xx 323 (37)(37)(37)(4) xxx 

32 (37)(37)4 xx 

 32 (37)942494 xxx 

 32 (37)94245 xxx 

9. 46 3(5)(5) xx 442 (5)3(5)(5) xxx   42(5)35 xx 

 42 (5)31025 xxx 

 42 (5)1028 xxx 

10. 24 3(6)6(6) xx       222 22 22 22 22 3(6)(1)3(6)2(6) 3(6)12(6) 36121236 36122472 3622473 xxx xx xxx xxx xxx

11. 254(1)(4) xxxx 

12. 276(1)(6) uuuu 

13. 2712(3)(4) xxxx 

14. 2812(2)(6) yyyy  15.

 2632 xxxx  16.

17.

18.

24551 xxxx 

 22331 xxxx 

21243 yyyy 

 23414 xxxx 

20. 

 22824 uuuu 

21. 

 291427 zzzz 

 261628 wwww 

23. 21024(4)(6) zzzz 

24. 21660(6)(10) rrrr 

25. 2 294(21)(4) xxxx 

26. 2 384(32)(2) wwww 

27. 2 15234(34)(51) pppp 

28. 2 8143(41)(23) xxxx 

29. 2 41615(25)(23) zzzz 

30. 2 122915(35)(43) yyyy 

31. 2 654(21)(34) xxxx 

32. 2 121(41)(31) zzzz 

33. 2 102110(52)(25) yyyy 

34. 2 1544(52)(32) uuuu 

35. 2 654(21)(34) xxxx 

36. 2 12710(32)(45) yyyy 

37.  2 325351 aaaa 

38.   22 6481206820 6(10)(2) aaaa aa  

39. 22281(9)(9)(9)xxxx 

40. 221772(8)(9) x xyyxyxy

41. 222 2 9124(3)2(3)(2)2 (32) pppp p  

42. 2 32(32)(1) rrrr 

43. 22310(2)(5) rrttrtrt 

44. 22 26(23)(2). aabbabab 

45. 2222 2 816()2()(4)(4) (4) mmnnmmnn mn  

46.   22 816102485 2(21)(25) kkkk kk  

47.  22 412923 uuu

48.  2 22 916343434 pppp 

49. 2 25104 pp Thispolynomialcannotbefactored

50.

 2 101735123 xxxx 

51. 

52.

53.

54.

 22 492323 rvrvrv 

 2232874 x xyyxyxy

 222 442 x xyyxy

22 1612182869 24323 uuuu uu  

55. 2 31330(35)(6) aaaa 

56. 2 328(34)(2) kkkk 

57. 22 21132(72)(3) mmnnmnmn 

58. 2 81100(910)(910) yyy 

59. 22421(7)(3) yyzzyzyz 

60. 2 499 a  Thispolynomialcannotbefactored.

61. 2 12164(118)(118) xxx 

62.

 22 22 22 2 41449 42()(7)(7) 456196 4(7) zzyy zzyy zzyy zy     

63.   333264(4)(4)416aaaaa 

64.

  33322166(6)636bbbbb 

66.

33 33 22 22 827 (2)(3) (23)2233 (23)469 rs rs rsrrss rsrrss

33 33 22 100027 (10)(3) (103)100309 pq pq pqppqq

67. 3 64125 m  33(4)(5) m 

22(45)4455 mmm

2 (45)162025 mmm

68. 3 216343 y 33(6)(7) y

2 (67)364249

69. 100033 yz 33(10)() yz 22 (10)(10)(10)()()

22(10)10010yzyyzz

70.

422271025

442222 22 16814949 232349 ababab ababab

81.

4222 6332133 xxxx

isnotthe correctcompletefactorizationbecause233 x containsacommonfactorof3.Thiscommon factorshouldbefactoredoutasthefirststep. Thiswillrevealadifferenceoftwosquares, whichrequiresfurtherfactorization.Thecorrect factorizationis

82. Thesumoftwosquarescanbefactoredwhenthe termshaveacommonfactor.Anexampleis 2222 (3)3999(1) xxx

83. 32 2 322 32 (2)(2)(2) (2)(44) 42848 6128, xxx xxx xxxxx xxx   

 whichisnotequalto38 x  .Thecorrect factorizationis328(2)(24).xxxx 

84. Factoringandmultiplicationareinverse operations.Ifwefactorapolynomialandthen multiplythefactors,wegettheoriginal polynomialback.Forexample,wecanfactor 26xx toget(3)(2) xx .Thenifwe multiplythefactors,weget 22 (3)(2)2366 xxxxxxx 

Section 1.4 Rational Expressions

1. 2 88 56787 x xxx xx  

2. 322 27271 812733 mm mmmm

3. 22 32 25555 35757 pp p ppp

4. 4222 22 18633 24644 yyyy yy  

5. 5155(3)5 4124(3)4 mm mm

6. 1055(21)1 20105(21)22 zx zx   

7. 4(3)4 (3)(6)6 w www

8. 6(2)6 (4)(2)4 x xxx    or 6 4 x

9.

2 32 2 3123(4) 933 4 3 yyyy y yy y y  

10. 2 2 154515(3) 933 35(3) 33 5(3) 3 kkkk kk k kk kk k k

11. 2 2 44(2)(2)2 6(3)(2)3 mmmmm mmm mm 

12. 2 2 6(3)(2)2 12(4)(3)4 rrrrr rrr rr 

13.

2 2 31 233 1111 xx xxx xxx x 

14.   22 2 2 442 4222 z zzz zzz z 

15. 22 33 38383 6416 2642 aa a aa

16. 2323 44 2102105 918889 uuuu u uuu

17. 3 332 7147667663 116611141114 x xxyxyy y x xx

18. 226216 22217 x yxyxyyy xyxxy 

19. 215(2)15155 34(2)(2)12124 abab cababccc

20. 22 4(2)34(2)33 8(2)4(2)22 x wwxw wxwx

21. 1531021533 636102 3(51)3 322(51) 3(51)33 3(51)224

22. 28312283 636312 2(4)3 63(4) 6(4)61 18(4)183

23. 918369(2)3(2) 61215306(2)15(2) 27(2)(2)273 90(2)(2)9010

24. 122461212(2)6(2) 36368836(1)8(1) 23(2) 3(1)4(1) 24(1)4 3(1)3(2)9

25. 22 22 412941220 210210209 4(3)(5)(4) 2(5)(3)(3) 4(3)(5)(4) 2(5)(3)(3) 2(4) 3 aaaaa

26.

2 22 6181216 9624412 6(3)4(34)2(34) 4(3) 3328328 2(34)2 (34)(2)2

27. 22 22 634 1223 (3)(2)(4)(1) (4)(3)(3)(1) (3)(2)(4)(1)2 (4)(3)(3)(1)3 kkkk kkkk kkkk kkkk kkkkk kkkkk

28. 22 22 69 28712 (3)(2)(3)(3) (4)(2)(3)(4) 33344 44434 nnn nnnn nnnn nnnn nnnnn nnnnn

Answerswillvaryforexercises29and30.Sample answersaregiven.

29. Tofindtheleastcommondenominatorfortwo fractions,factoreachdenominatorintoprime factors,multiplyalluniqueprimefactorsraising eachfactortothehighestfrequencyitoccurred.

30. Toaddthreerationalexpressions,firstfactor eachdenominatorcompletely.Then,findthe lowestcommondenominatorandrewriteeach expressionwiththatdenominator.Next,addthe numeratorsandplaceoverthecommon denominator.Finally,simplifytheresulting expressionandwriteitinlowestterms.

31. Thecommondenominatoris35z. 2125171073 757557353535 zzzzzzz 

32. Thecommondenominatoris12z. 45445316151 343443121212 zzzzzzz

33. 22(2)(2) 333 224 33 rrrr

34. 3131(31)(31)21 88884 yyyy

35. Thecommondenominatoris5x 414512020 555555 x xx x xxxxx

36. Thecommondenominatoris4r 63643243 44444 2433(8) 44 rr rrrrr rr

37. Thecommondenominatoris m(m –1). 121(1)2 1(1)(1) 2(1) (1)(1) 2(1)22 (1)(1) 32 (1) mm

38. Thecommondenominatoris(y +2)y 8383(2)83(2) 2(2)(2)(2) 8365656 or (2)(2)(2) yyyy yyyyyyyy yyyy yyyyyy

39. Thecommondenominatoris5(b +2).

40. Thecommondenominatoris3(k +1).

41. Thecommondenominatoris20(k –2). 25825 5(2)4(2)20(2)20(2) 82533 20(2)20(2) kkkk kk

42. Thecommondenominatoris6(p +4). 115225 3(4)6(4)6(4)6(4) 22517 6(4)6(4) pppp pp

43. Firstfactorthedenominatorsinordertofindthe commondenominator.

2 2 4331 632 xxxx xxxx

Thecommondenominatoris(x –3)(x–1)(x +2).

22 25 436 25 (3)(1)(3)(2) 2(2)5(1) (3)(1)(2)(3)(2)(1) 2(2)5(1)2455 (3)(2)(1)(3)(1)(2) 71 (3)(1)(2) xxxx xxxx xx xxxxxx xxxx xxxxxx x xxx   

44. Firstfactorthedenominatorsinordertofindthe commondenominator.

2 2 31052 2054 mmmm mmmm

Thecommondenominatoris (5)(2)(4) mmm . 22 37 31020 37 (5)(2)(5)(4) 3(4)7(2) (5)(2)(4)(5)(4)(2) 3127141026 (5)(2)(4)(5)(2)(4) mmmm mmmm mm mmmmmm mmm mmmmmm         

45. Firstfactorthedenominatorsinordertofindthe commondenominator.

     2 2 71234 5632 yyyy yyyy  

Thecommondenominatoris (y +4)(y +3)(y +2). 22 22 2 2 71256 2 (4)(3)(3)(2) 2(2)(4) (4)(3)(2)(4)(3)(2) 2(2)(4)244 (4)(3)(2)(4)(3)(2) (4)(3)(2) yy yyyy yy yyyy yyyy yyyyyy

46. Firstfactorthedenominatorsinordertofindthe commondenominator.

2 2 101682 2842 rrrr rrrr

Thecommondenominatoris(8)(2)(4) rrr

22 2222 2 3 101628 3 (8)(2)(4)(2) (4)3(8) (8)(2)(4)(4)(2)(8) 43244324 (8)(2)(4)(8)(2)(4) 420 (8)(2)(4)

Multiplybothnumeratoranddenominatorofthis complexfractionbythecommondenominator, x.

49. 11 x hx h 

Thecommondenominatorinthenumeratoris x(x + h) 11() ()()() 1 ()() 11 or ()() xxh x xhh x xhxxhxxh xhx hhhh hh h x xhxxhh xxhxxh

50. 22 11 () x hx h  Thecommondenominatorofthenumeratoris ()22 x hx 

22 222222 11() ()()() 1 22 22 222 22 2 2222 22 ()1 () 21 () 2(2) ()() 2 () xh x xhxxhxxhx h h xxh h xhx xxxhh h xhx xhhhxh x hxhxhxh xh xhx

51. Thelengthofeachsideofthedartboardis2x,so theareaofthedartboardis24. x Theareaofthe shadedregionis2 x 

a. Theprobabilitythatadartwilllandinthe shadedregionis 2 42 x x  b. 2 424 x x  

52. Theradiusofthedartboardis x +2x +3x =6x, sotheareaofthedartboardis 22 636. x x   Theareaoftheshadedregionis2. x 

Multiplybothnumeratoranddenominatorbythe commondenominator, y

a. Theprobabilitythatadartwilllandinthe shadedregionis 2 362 x x  

b. 2 2 1 3636 x x   

53. Thelengthofeachsideofthedartboardis5x,so theareaofthedartboardis225. x Theareaof theshadedregionis2 x

a. Theprobabilitythatadartwilllandinthe shadedregionis 2 252 x x

b. 2 2 1 2525 x x 

54. Thelengthofeachsideofthedartboardis3x,so theareaofthedartboardis29. x Theareaofthe shadedregionis2 1 2 x

a. Theprobabilitythatadartwilllandinthe shadedregionis 122 2 22918 x x x x 

b. 2 2 1 1818 x x 

55. Averagecost=totalcost C dividedbythe numberofcalculatorsproduced.

2 7.26995230,000 1000 xx x 

56. Let x =20(inthousands).

2 7.2(20)6995(20)230,000$18.35 1000(20) 

Let x =50(inthousands).

 

2 7.2(50)6995(50)230,000$11.24 1000(50)

Let x =125(inthousands).

2 7.2(125)6995(125)230,000$7.94 1000(125)  

57. Let x =13.Then

()() 2 .505134.5871327.6 3.8 131 −+ ≈ +

Theadcostapproximately$3.8millionin 2013

58. Let x =16.Then

()() 2 .505164.5871627.6 4.9 161 −+ ≈ +

Theadcostapproximately$4.9millionin 2016.

59. Let x =45.Then  2 .07245.744451.2 3.84 452    Let x =20.Then ()() 2 .505204.5872027.6 6.6 201 −+ ≈ + Thecostofanadwillnotreach$7millionin 2020.

60. Let x =45.Then  2 .07245.744451.2 3.84 452   

Let x =22.Then ()() 2 .505224.5872227.6 7.4 221 −+ ≈ + Thecostofanadwillnotreach$8millionin 2022.

61. Let x =11.Then

()() 2 .049112.4011.83 2.55 112 ++ ≈ + Thehourlyinsurancecostin2011was$2.55.

62. Let x =17.Then ()() 2 .049172.4017.83 2.94 172 ++ ≈ + Thehourlyinsurancecostin2017is$2.94.

63. Let x =20.Then ()() 2 .049202.4020.83 3.11 202 ++ ≈ +

Thehourlyinsurancecostin2020willbe$3.11. Theannualcostwillbe3.11(2100)=$6531.

64. Let x =23.Then ()() 2 .049232.4023.83 3.28 232 ++ ≈ +

Thehourlyinsurancecostin2023willbe$3.28. Theannualcostwillbe3.28(2100)=$6888.

No;theannualcostwillnotreach$10,000by 2023.

Section 1.5 Exponents and Radicals

1.

2.

3.

4.

22224416 ccc

6. 33 3333 55125 xy x

9. 1

14. 22 162636 61

16. 2224 22 x yy x yx

17. 1133 3 abb aa b

18. 4 4 11 2 216

,but 4 4 11 (2)16 (2)

19. 12 497  because2749 

20. 13 82  because328  .

21. 14.25 (5.71)(5.71)1.55  Useacalculator.

22.   52125 1212498.83 

23.   2 23132 6464(4)16  24. 

3 32123 64648512

25. 4 434134 134 8273381 27216 82

26. 1313 27644 64273

27. 32 23 54 45

28. 4 431 3 71 777 77

29. 363444  30. 9101 9999

31. 106 10648 4 44 4444 4 

33 24 32343234 2133223413 31494134 5555 55 kkkk kkk

2313231323 53 252(5) 25 ppppppp pp 

32323232323232 0623 32323 6363 x xxxxxx x xx

1323 222343 232232 24323 33 11 33 xy xy xyxy yy 

312 1233232 1433434314 (32)(34)(32)(34) 3434 cdcd cd cd cd cd    47.

3 2 3 2 2322 223232 3243232444 2 12 52 7575 57577 49 ab aba ab ab b a b  

48.

 12121212121212 322322322 123221232 1232 444 22 2 xxyxxy x xy xyxyxy xyxyxy xy  

49.   12234312231243 76116 x xxxxxx x x  

50.   12321212321212 2 3232 32 xxxxxxx x  

51. Thisisadifferenceoftwosquares.

22121212121212 xyxyxy xy

52. UseFOIL.

13121332 131313321312 1232 23131213322 2 22 22 xyxy x xxyxy yy x xyxyy

53. 133 (3)3 x x  ,(f)

54. 13333 x x  ,(b)

55. 13 133 11 (3) (3)3 x x x  ,(h)

56. 13 133 33 3 x x x  ,(d)

57. 133 (3)3 x x  ,(g)

58. 13 133 33 3 x x x  ,(a)

59. 13 133 11 (3) (3)3 x x x  ,(c)

60. 13333 x x  ,(e)

61. 313 1251255 

62. 61664642

63. 4146256255

64. 717128(128)2

65. 6373773721 

66. 3338197299

67. 81477

68. 491633 

69. 5157525325353

70. 89688128812843 843823163

71. 507252622 

72 751925383133 

73. 52045280 52535245 1053585155

22 323232341

22 525252 523

76. 33444  .Acorrectstatementwouldbe 3334416

22 3312312 121212(1)2 312312 121 312332

2215215 15151515 21515151 4212

22 9393332793333 33333333 24632463 43 936

3131323132 32323234 3233213 13 11

81. 323232 323232 927 96221162

82. 171717 232317 17 227337 6 227321

83. kM x f 

Notethatbecause x representsthenumberof unitstoorder,thevalueof x shouldberounded tothenearestinteger.

a. k =$1, f =$500, M =100,000 1100,00020014.1

500 x 

Thenumberofunitstoorderis14.

b. k =$3, f =$7, M =16,700 316,70084.6

7 x  

Thenumberofunitstoorderis85.

c. k =$1, f =$5, M =16,800 116,800336058.0

5 x 

Thenumberofunitstoorderis58.

84. 12.313hT 

If T =216,find h 13 12.3(216)73.8 h 

Aheightof73.8in.correspondstoathreshold weightof216lb.

Forexercises85–88,weusethemodel .188 revenue6.67,5, xx =≥ x =5correspondsto2005.

85. Let x =15.Then ().188 6.671511.1 ≈

Thedomesticrevenuefor2015wereabout$11.1 billion.

86 Let x =18.Then ().188 6.671811.5 ≈

Thedomesticrevenuefor2018willbeabout $11.5billion.

87. Let x =20.Then ().188 6.672011.7 ≈

Thedomesticrevenuefor2020willbeabout $11.7billion.

88. Let x =23.Then ().188 6.672312.0 ≈

Thedomesticrevenuefor2023willbeabout $12.0billion.

Forexercises89–92,weusethemodel .527 revenue1.08,1, xx =≥ x =1correspondstothefirst quarteroftheyear2013.

89. Let x =13.Then ().527 1.08134.2 ≈

Theadvertisingrevenueinthefirstquarterof 2016wasapproximately$4.2billion.

90. Let x =18.Then ().527 1.08185.0 ≈

Theadvertisingrevenueinthesecondquarterof 2017wasapproximately$5.0billion.

91. Let x =24.Then ().527 1.08245.8 ≈

Theadvertisingrevenueinthefourthquarterof 2018willbeapproximately$5.8billion.

92. Let x =27.Then ().527 1.08276.1 ≈

Theadvertisingrevenueinthethirdquarterof 2019willbeapproximately$6.1billion.

Forexercises93–96,weusethemodel Part-time.238Students2.72;10, xx =≥ x =10 correspondsto1990.

93. Let x =29.Then.2382.72(29)6.1 ≈

Accordingtothemodel,therewere approximately6.1millionpart-timestudents attendingcollegeoruniversityin2009.

94. Let x =34.Then.2382.72(34)6.3 ≈

Accordingtothemodel,therewere approximately6.3millionpart-timestudents attendingcollegeoruniversityin2014.

Copyright © 2019 Pearson Education, Inc.

95. Let x =38.Then.2382.72(38)6.5 ≈

Accordingtothemodel,therewillbe approximately6.5millionpart-timestudents attendingcollegeoruniversityin2018

96. Let x =43.Then.2382.72(43)6.7 ≈

Accordingtothemodel,therewillbe approximately6.7millionpart-timestudents attendingcollegeoruniversityin2023

Section 1.6 First-Degree Equations

1. 3820 388208 312 11 (3)(12)33 4 x x x x x  

2. 4–5y =19

Add–4tobothsides. 45(4)19(4) 515 y y 

Multiplybothsidesby 1 5 11 (5)(15)55 3 y y

3. .6.3.5.4 .6.5.3.5.5.4 .1.3.4 .1.3.3.4.3 .1.7 .1.7 7 .1.1 kk kkkk k k k k k

4. 2.55.048.5.06

2.55.04.068.5.06.06

2.55.18.5

2.55.1(2.5)8.5(2.5) 5.16.0 5.16.0 5.15.1 6.0 1.18 5.1 mm mmmm m m m m mm 

5. 214(1)75 214475 21119 2211129 199 19999 109 10910 999 aaa aaa aa aaaa a a a a a 

  326431 366431 3121 312()1() 2121 21212112 213 21313 222 kkk kkk kk kkkk k k k k k



7. 2[(32)9]38 2(329)38 2(6)38 21238 1258 2054 xxx xxx xx xx x x x

8.

 

    24231142 2(4833)142 2(5)142 210142 21021422 10144 101414414 244 244 6 44 kkk kkk kk kk kkkk k k k k k

 



   



9. 343(1)2(34)5510 x xx 

Multiplybothsidesbythecommon denominator,10. 34 1010(1) 55 x x 

3 (10)(2)(10)(34) 10 x

2(3)8(1)203(34) 68820912 28329 29328 740 1140 (7)(40) 777 xxx xxx xx xx x xx

10. 413 (2)21 324 4813 2 3322 4193 2 362 419434 2 36323 191 2 66 191 222 66

Multiplybothsidesbythecommon denominator,10,toeliminatethefractions. 3 103101 25 530610 53056105 3010 30101010 40 xx xx x xxx x x x

13. 22 165 212 165 1212 212 1 (12)(12)(6)(5) 2 61265 125 1112 (12)(5) 555 mm m mm mm m m mmmmm m mmm m mm

14. 395118 26 kkk k   Multiplybothsidesbythecommon denominator,6k toeliminatethefractions. 2 22 395118 66 26 395118 6666 26 9(95)6(11)6(8) 9956648 56648 566664866 7148 714848 717171 kkk kk k kkk kkkk kk kkkk kkkk kk kkkk k k k

15. 483 0 3253 438 0 3325 78 0 325 xxx xxx xx

Multiplyeachsidebythecommondenominator, (x –3)(2x +5). 78 (3)(25)(3)(25)325 (3)(25)(0) xxxx xx xx

7(25)8(3)0 14358240 6590 59 659 6 xx xx x xx

16. 534 23223 53545 232232323 31 223 ppp ppppp pp

Multiplybothsidesbythecommon denominator,(2p +3)(p –2). 53 (23)(2)232 pp pp

3 223 2 1 223 23 32312 692 11 511 5 pp p pp p pp pp pp

2523324 5106948 1948 11 115 5 ppp ppp pp pp

17. 31 2 242 31 2 2(2)2 mm mm

3 2(2)2(2) 1 2(2)2(2)(2) 2 m m mm m

 1 2(2)2(2)(2) 2 mm m

 324(2) 3248 9 36494 4 m m mmm

18. 85 4 393 kk

Multiplybothsidesbythecommon denominator,3k –9. 85 (39)(39)4 393 kk kk

85 (39)3(3)1236 393 8151236 71236 29 2912 12 kkk kk k k kk

19. 9.063.59(85)12.07.5612 9.0628.7217.9512.07.5612

9.0628.7212.0717.95.5612

25.7118.5112 18.5112 .72 25.71

20. 5.74(3.12.7)1.095.2588 17.79415.4981.095.2588 15.4981.095.258817.794

14.40823.0528

23.0528 1.6 14.408 pp pp pp p p 

21. 2.638.993.901.77 1.252.45 rr r  Multiplybythecommondenominator (1.25)(2.45)toeliminatethefractions.

2.452.638.991.253.901.77 2.451.25

6.443522.02554.8752.21253.0625

1.568519.8133.0625

19.8131.494

19.8131.494 1.4941.494 13.26

22.

8.192.558.179.94 4 4.341.04 1.048.192.554.348.179.94

23. 4()2 442 42 52 52 22 55 or 22 axbax axbax abax abx abx abba xx

24. (3)(2) 32 abbxax abbxaxa





Isolatetermswith x ontheright. 32 5 5()5 abaxabx abaxbx ab ababxx ab

 

25. 5(b – x)=2b + ax First,usethedistributiveproperty. 5b –5x =2b + ax 525 35 3(5) 3(5)3 555 bbaxx baxx bax baxb x aaa       Nowusethedistributivepropertyontheright. 3(5) 3(5) 55 3 5 bax bax aa b x a  

26. bx –2b =2a – ax Isolatetermswith x ontheleft. 22 22 ()2() 2()2 bxaxab axbxab abxab ab xx ab      

27. for 11 ()() PVkV PVk PP k V P   

28. for iprtp i p rt  

29. 0 0 0 0 for VVgtg VVgt VV gt tt VV g t    

30. 2 0 2 0 2 00 222 SSgtk SSkgt SSkSSk gt g ttt

  

31. 1 2()for 11 22 2Multiplyby2. 2 21 Multiplyby. 22 ABbhB ABhbh ABhbh AbhBh AbhBh hhh AbhA bB hh

32. 5(32)for 9 99 3232 55 CFF

33. 215 h  215or215 26or24 3or2 hh hh hh

34. 4312 m  4312or4312 415or49 159 or 44 mm mm mm

35. 6210 p  6210or6210 24or216 2or8 pp pp pp

36. 5715 x  5715or5715 58or522 822 or 55 xx xx xx

 5 10 3 55 10or10 33 5103or5103 51030or51030 3510or2510 357255 or 102102 r rr rr rr rr rr

38.  3 4 21 33 4or4 2121 3421or3421 384or384 78or18 71 or 88 h hh hh hh hh hh

5 532 9 995 532 559 93223 F F F F

Thetemperature–5°C=23°F.

40.

5 1532 9 995 1532 559 27325 F F F F

Thetemperature–15°C=5°F.

41.

5 2232 9 995 2232 559

39.63271.6 F F F F

42.

5 3632 9 995 3632 559 64.83296.8 F F F F

43. Let x =10.

1.151.62 1.15(10)1.62 13.12 yx y y =+ =+ =

Therefore,thegrossfederaldebtin2010was $13.12trillion.

44. Let x =15.

1.151.62 1.15(15)1.62 18.87 yx y y =+ =+ =

Therefore,thegrossfederaldebtin2015was $18.87trillion.

45. 1.151.62yx=+

Substitute22.32for y 22.321.151.62 20.71.1518 x x x =+ =⇒= Therefore,thefederaldeficitwillbe$22.32 trillionin2018.

46. 1.151.62yx=+

Substitute24.62for y. 24.621.151.62 231.1520 x x x =+ =⇒= Therefore,thefederaldeficitwillbe$24.628.83 trillionin2020.

47. 1.151.62yx=+

Substitute25.77for y 25.771.151.62 24.151.1521 x x x =+ =⇒= Therefore,thefederaldeficitwillbe$825.77 trillionin2021.

48. 1.151.62yx=+

Substitute30.37for y. 30.371.151.62

28.751.1525 x x x =+ =⇒= Therefore,thefederaldeficitwillbe$30.378 trillionin2025.

49. E =.108x +1.517

Substitute$2.7052422infor E. 2.705.1081.517

1.188.10811 x x x =+ =⇒= Thehealthcareexpenditureswereat$2.7052250 trillionin2011.

50. E =.108x +1.517

Substitute$3.029infor E. 3.029.1081.517 1.512.10814 x x x =+ =⇒= Thehealthcareexpenditureswereat$3.029 trillionin2014.

51. E =.108x +1.517

Substitute$3.461infor E 3.461.1081.517

1.944.10818 x x x =+ =⇒=

Thehealthcareexpenditureswillbe$3.4612422 trillionin2018.

52. E =.108x +1.517

Substitute$3.893infor E. 3.893.1081.517

2.376.10822 x x x =+ =⇒= Thehealthcareexpenditureswillbe$3.893 trillionin2022.

53. () 114.8201053390.5 xy−=−

Substitute746.98for y andsolvefor x ()() 114.820105746.983390.5 114.8230,748344.4

114.8231,092.4 2013 x x x x −=− −= = =

Theamountofincomewas$746.98billionin 2013.

54. () 114.8201053390.5 xy−=−

Substitute815.86for y andsolvefor x. ()() 114.820105815.863390.5 114.8230,748688.8

114.8231,436.8 2016 x x x x −=− −= = =

Theamountofincomewas$815.86billionin 2016.

55. () 114.8201053390.5 xy−=−

Substitute907.7for y andsolvefor x ()() 114.820105907.73390.5

114.8230,7481148

114.8231,896 2020 x x x x −=− −= = =

Theamountofincomewillbe$907.7billionin 2020.

56. () 114.8201053390.5 xy−=−

Substitute1022.5for y andsolvefor x. ()() 114.8201051022.53390.5 114.8230,7481722 114.8232,470 2025 x x x x −=− −= = = Theamountofincomewillbe$1022.5billionin 2025.

57. f =800, n =18, q =36 (1)18(19) 800 (1)36(37) 342 800205.41 1332 nn uf qq

Theamountofunearnedinterestis$205.41.

58. f =1400, q =48, n =12 (1)12(121)1400$92.86 (1)48(481) nn uf qq

Theamountofunearnedinterestis$92.86.

59. Let x =thenumberinvestedat5%. .05.04(52,000)2290 .052080.042290 .0120802290 .012080208022902080 .01210 .01210 .01.01 21,000 xx xx x x x x x x 

Joeinvested$21,000at5%.

60. Let x representtheamountinvestedat4%.Then 20,000– x istheamountinvestedat6%.Since thetotalinterestis$1040, .04.06(20,000)1040 .041200.061040 .0212001040 .02160 8000 xx xx x x x

Sheinvested$8000at4%.

61. Let x =priceoffirstplot. Then120,000– x =priceofsecondplot. .15x =profitfromfirstplot –.10(120,000– x)=lossfromsecondplot. .15.10(120,000)5500 .1512,000.105500 .2517,500 70,000 xx xx x x

Shepaid$70,000forthefirstplotand 120,000–70,000,or$50,000forthesecond plot.

62. Let x representtheamountinvestedat4%. $20,000investedat5%(or.05)plus x dollars investedat4%(or.04)mustequal4.8%(or .048)ofthetotalinvestment(or20,000+ x). Solvethisequation.

.05(20,000).04.048(20,000) 1000.04960.048 1000960.008 40.0085000 x x xx x xx

$5000shouldbeinvestedat4%.

63. Let x =averagerateofgrowthofTwitter. Then5.7+ x =averagerateofgrowthof Instagram.

35x =visitorstoTwitter 21(5.7+ x)=visitorstoInstagram.

3521(5.7)

35119.721

14119.7 8.6 x x x x x x =+ =+ = ≈

Since x representstheaveragerateofgrowthof Twitter,therewasanaveragegrowthof approximately8.6millionvisitorsShe.

64. TheaveragerateofgrowthofInstagramwas 5.7+ x orapproximately14.3millionvisitors.

65. ThenumberofvisitorstoTwitterwas 35x =35(8.6)=301million.

66. ThenumberofvisitorstoInstagramwas 21(5.7+ x)=21(5.7+8.6)=300.3million (Note:Duetoroundingerror,thevaluesin65 and66aredifferent)

67. Let x =thenumberoflitersof94octanegas; 200=thenumberoflitersof99octanegas; 200+ x =thenumberoflitersof97octanegas. 9499(200)97(200) 9419,80019,40097

4003

400 3 x x x x x x    

Thus,4003litersof94octanegasareneeded.

68. Let x betheamountof92octanegasoline.Then 12– x istheamountof98octanegasoline.A mixtureofthetwomustyield12Lof96octane gasoline,so 9298(12)96(12) 921176981152 624 4 xx xx x x    

Then12– x =12–4=8. Mix4Lof92octanegasolinewith8Lof 98octanegasoline.

Section 1.7 Quadratic Equations

1. (x +4)(x –14)=0 40or140 4or14 xx xx  

Thesolutionsare–4and14.

2. (p –16)(p –5)=0 160or50 16or5 pp pp  

Thesolutionsare16and5.

3. x(x +6)=0

0or60 6 xx x  

Thesolutionsare0and–6.

4. 220xx x(x –2)=0 0or20 2 xx x   Thesolutionsare0and2.

5.  2 2 24 240 220 zz zz zz    20or20 0or2 zz zz   Thesolutionsare0and2.

6. 2640 x  (x –8)(x +8)=0 80or80 8or8 xx xx   Thesolutionsare8and–8.

7. 215560yy (y +7)(y +8)=0 70or80yy  7or8yy

Thesolutionsare–7and–8.

8. 2450 (1)(5)0 kk kk

  10or50 1or5 kk kk   Thesolutionsare–1and5.

9. 2 2 273 2730 (21)(3)0 xx xx xx    210or30 1 or3 2 xx xx  

Thesolutionsare 1 2 and3.

10.  2 2 215 0152 03152 zz zz zz    310or520 12 or 35 zz zz  

Thesolutionsare 1 3 and 2 5

11. 2 2 61 610 (31)(21)0 rr rr rr    310or210 11 or 32 rr rr

Thesolutionsare 1 3 and 1 2

12. 2 2 3165 31650 (31)(5)0 yy yy yy 

310or50 1 or5 3 yy yy

Thesolutionsare 1 3 and5.

13. 2 2 22013 213200 (25)(4)0 mm mm mm  

250or40 5 or4 2 mm mm 

Thesolutionsare5 2 and4.

14.  2 617120 23340 aa aa   230or340 34 or 23 aa aa  

Thesolutionsare3 2 and 4 3

15. 2 (7)10 7100 (5)(2)0 mm mm mm    50or20 5or2 mm mm  

Thesolutionsare–5and–2.

16. 2 (27)4 2740 (21)(4)0 zz zz zz    210or40 1 or4 2 zz zz 



Thesolutionsare 1 2 and–4.

17. 2 9160 (34)(34)0 x xx   340or340 3434 44 or 33 xx xx xx  



Thesolutionsare 4 3 and 4 3

18.  2 36490 67670 y yy   670or670 77 or 66 yy yy  

Thesolutionsare7 6 and7 6

19. 2 16160 16(1)0 xx xx   160or10 0or1 xx xx   Thesolutionsare0and1.

20. 2 12480 12(4)0 yy yy   0or40 0or4 yy yy   Thesolutionsare0and4.

21. 2 (2)7 r  27or27 27or27 rr rr

  Weabbreviatethesolutionsas27 

Copyright © 2019 Pearson Education, Inc.

22. 2 (4)27 b  427or427 433or433 433or433 bb bb bb 

Weabbreviatethesolutionsas433 

23. 2 (41)20 x  Usethesquarerootproperty. 4120or4120 4125or4125 4125or4125 xx xx xx

Thesolutionsare125 4 

24. 2 (35)11 t  3511or3511 3511or3511 511511 or 33 tt tt tt

Thesolutionsare511 3 

25. 2 2710 xx

Usethequadraticformulawith a =2, b =7,and c =1.

bbac x a  

 

 

2 2 4 2 774(2)(1) 2(2) 7498741 44

Thesolutionsare741 4  and7414, whichareapproximately–.1492and–3.3508.

26. 2 370 xx

bbac x a x  

   

Usethequadraticformulawith a =3, b =–1, and c =–7. 2 2 4 2 (1)(1)4(3)(7) 2(3) 1184185 66

Thesolutions185 6  areapproximately 1.7033and–1.3699.

27. 2 421 kk

Rewritetheequationinstandardform.

2 4210 kk

Usethequadraticformulawith a =4, b =2,and c =–1.

15 4 k k   

2 224(4)(1)2416 2(4)8 220225215 8824

 

Thesolutionsare15 4  and154,which areapproximately.3090and–.8090.

28. 2 2 35 350 rr rr 



Usethequadraticformulawith a =1, b =–3, and c =–5.

 

bbac r a r

 

 

2 2 4 2 (3)(3)4(1)(5) 2(1) 3920329 22

Thesolutions329 2  areapproximately 4.1926and–1.1926.

29. 2 552 yy 2 5520 yy a =5, b =5, c =–2 2 554(5)(2)52540 2(5)10 565565 1010 y     

Thesolutionsare565 10  and56510, whichareapproximately.3062and–1.3062.

30. 2 2 238 2830 zz zz 

 a =2, b =–8,and c =3.

2 2 4 2 (8)(8)4(2)(3) 2(2) 864248408210 444 2410410 42 bbac z a  

Thesolutions410 2  ,areapproximately 3.5811and.4189.

31. 2 6640 xx a =6, b =6, c =4 2 664(6)(4)63696 2(6)12 660 12 x   

 

Because60isnotarealnumber,thegiven equationhasnorealnumbersolutions.

32. 2 3220 aa a =3, b =–2,and c =2. 2 (2)(2)4(3)(2) 2(3) 2424220 66 a  

 

Since20isnotarealnumber,thegiven equationhasnorealnumbersolutions.

33. 2 2350 rr a =2, b =3, c =–5 (3)94(2)(5)3940 2(2)4 34937 44 37437105 1or 44442 r rr   

    Thesolutionsare5 2 and1.

34. 2 2 883 8830 xx xx 

bbac x a     

 a =8, b =–8,and c =3. 224(8)(8)4(8)(3) 22(8) 86496832 1616

Because32isnotarealnumber,thereareno realnumbersolutions.

35. 2 27300 xx a =2, b =–7, c =30 (7)494(2)(30)7191 2(2)4 x   

Since191isnotarealnumber,thereareno realsolutions.

36. 2 2 36 360 kk kk 

 

bbac k a k k

  

 

 a =3, b =1,and c =–6. 2 2 4 2 114(3)(6)1172 2(3)6 173 6

Thesolutions173 6  areapproximately 1.2573and–1.5907.

37. 2 715 1 22 a a 

Toeliminatefractions,multiplybothsidesby thecommondenominator,2 2 a . 22 271527150 aaaa a =2, b =7, c =–15 2 774(2)(15)749120 2(2)4 716971363 or 4442 71320 5 44 a a a

Thesolutionsare3 2 and–5.

38. 2 41 50 k k 

Multiplybothsidesby2 k

2 5410 kk a =5, b =–4, c =–1

2 44451 25 4162043646 101010 46104621 1or 101010105 k kk

Thesolutionsare 1 5 and1.

39. 2 254970 tt  2 2570490 tt 224(70)4(25)(49) 49004900 0 bac

Thediscriminantis0. Thereisonerealsolutiontotheequation.

40. 2 9121 zz 2 91210 zz 224(12)4(9)(1) 14436 180 bac  

Thediscriminantispositive. Therearetworealsolutionstotheequation.

41. 2 132450 xx 224(24)4(13)(5) 576260836 bac 

Thediscriminantispositive. Therearetworealsolutionstotheequation.

42. 2 201950 xx 224(19)4(20)(5) 36140039 bac 

Thediscriminantisnegative. Therearenorealsolutionstotheequation.

ForExercises43–46usethequadraticformula:

43. 2 4.4210.143.790 xx 2 (10.14)(10.14)4(4.42)(3.79) 2(4.42) 10.145.9843 .4701or1.8240 8.84 x    

44. 2 382.74570.49230 xx 2 (82.74)(82.74)4(3)(570.4923) 2(3) 82.74 13.79 6 x   

45. 2 7.632.795.32 xx 2 7.632.795.320 xx 2 2.79(2.79)4(7.63)(5.32) 2(7.63) 2.7913.0442 1.0376or.6720 15.26 x    

46. 2 8.0625.872625.047256 xx 2 8.0625.872625.0472560 xx 25.8726(25.8726)2 4(8.06)(25.047256) 2(8.06) 25.872638.4307 3.9890or.7790 16.12 x    

47. Let x =10. 2 2 .3967.0974.9 .396(10)7.09(10)74.9 43.6 Pxx P P =−+ =−+ =

Theaverageannualpayfortruckersin2010was $43.6thousand.

48. Let x =15. 2 2 .3967.0974.9 .396(15)7.09(15)74.9 57.65 Pxx P P =−+ =−+

Theaverageannualpayfortruckersin2015was $57.65thousand.

49. Let P =48.

() 2 2 2 2 .3967.0974.9 48.3967.0974.9 0.3967.0926.9 7.097.094.39626.9 2.396 5.46or12.45 Pxx xx

Thefirstfullyeartheaverageannualpayfor truckerswasbelow$48,000was2006.

50. Usingtheanswerfrom49,thefirstfullyearthe averagepayfortruckersrecoveredtobeabove $48,000was2013.

51. Let P =55.

Thefirstfullyeartheaverageannualpayfor truckersrecoveredtobeabove$55,000was 2015.

52. Let P =60. ()()() () 2 2 2 2 .3967.0974.9 60.3967.0974.9 0.3967.0914.9 7.097.094.39614.9 2.396 2.43or15.47 Pxx xx xx x =−+ =−+ =−+ ±−− = ≈

Thefirstfullyeartheaverageannualpayfor truckersrecoveredtobeabove$60,000was 2016.

53. Let x =3. 2 2 .8679.3163.32 .867(3)9.31(3)63.32 43.19 Oxx O O =−+ =−+ = Thepriceofcrudeoilforthethirdquarterof 2015was$43.19.

54. Let x =6. 2 2 .8679.3163.32 .867(6)9.31(6)63.32 38.67 Oxx O O =−+ =−+ = Thepriceofcrudeoilforthesecondquarterof 2016was$38.67.

55. Let O =45. ()()() () 2 2 2 2 .8679.3163.32

45.8679.3163.32

0.8679.3118.32 9.319.314.86718.32 2.867 2.59or8.14 Oxx xx xx x =−+ =−+ =−+ ±−− = ≈

Themostrecentquarterwherethepriceofcrude oilwasatleast$45wasthefirstquarterof2017.

56. Let O =55. ()()() () 2 2 2 2 .8679.3163.32

55.8679.3163.32

0.8679.318.32

0.98or9.75 Oxx xx xx x =−+ =−+ =−+ ±−− = ≈

9.319.314.8678.32 2.867

Themostrecentquarterwherethepriceofcrude oilwasatleast$55wasthesecondquarterof 2017.

Copyright © 2019 Pearson Education, Inc.

57. Triangle ABC representstheoriginalpositionof theladder,whiletriangle DEC representsthe positionoftheladderafteritwasmoved.

UsethePythagoreantheoremtofindthedistance fromthetopoftheladdertotheground.

Intriangle ABC, 2222 2 13516925 14412 BCBC BCBC   Thus,thetopoftheladderwasoriginally12feet fromtheground.

Intriangle DEC, 2222 2 13716949 120120 ECEC ECEC  

Thetopoftheladderwas120feetfromthe groundaftertheladderwasmoved.Therefore, theladdermoveddown121201.046  feet.

58. Triangle ABC showstheoriginalpositionofthe ladderagainstthewall,andtriangle DEC isthe positionoftheladderafteritwasmoved.

Intriangle ABC, 222222 159159144 12 BCBC BC  

Intriangle DEC   222 22 2 15129 225144248118 062230 200or303 xx xxxx xxxx xxxx     Thebottomoftheladdershouldbepulled3feet awayfromthewall.

59. a. Theeastboundtraintravelsataspeedof x +20.

b. Thenorthboundtraintravelsadistanceof 5x in5hours. Theeastboundtraintravelsadistanceof 5(x +20)= 5x +100in5hours.

c.

BythePythagoreantheorem, 222 (5)(5100)300 xx

d. Expandandcombineliketerms.

22 2 2525100010,00090,000 50100080,0000 xxx xx   Factoroutthecommonfactor,50,and dividebothsidesby50.

2 2 50(201600)0 2016000 xx xx   Nowusethequadraticformulatosolvefor x

 2 2020411600 21 51.23or31.23 x  



Since x cannotbenegative,thespeedofthe northboundtrainis x ≈ 31.23mph,andthe speedoftheeastboundtrainis x +20 ≈ 51.23mph.

60. Let x representthelengthoftimetheywillbe abletotalktoeachother.

Since d = rt,Tyrone’distanceis2.5x and Miguel’sdistanceis3x.

Thisisarighttriangle,so 22222 22 (2.5)(3)46.25916

Sincetimemustbenonnegative,theywillbe abletotalktoeachotherforabout1.024hror approximately61min.

61. a. Let x representthelength.Then,3002 2 x or150– x representsthewidth.

b. Usetheformulafortheareaofarectangle. (150)5000LWAxx

c. 2 1505000 xx

Writethisquadraticequationinstandard formandsolvebyfactoring.

2 01505000 xx 

215050000xx (x –50)(x –100)=0 500or1000 50or100 xx xx  

Choose x =100becausethelengthisthe largerdimension.Thelengthis100mand thewidthis150–100=50m.

62. Let x representthewidthoftheborder.

Theareaoftheflowerbedis9·5=45.Thearea ofthecenteris(9–2x)(5–2x).Therefore,

 2 2 45(92)(52)24 454528424 454528424 xx xx xx 

 2 2 042824 0476 04(1)(6) xx xx xx    10or60 1or6 xx xx  

Thesolution x =6isimpossiblesinceboth 9–2x and5–2x wouldbenegative.Therefore, thewidthoftheborderis1ft.

63. Let x =thewidthoftheuniformstriparoundthe rug.

Thedimensionsoftherugare15–2x and 12–2x.Thearea,108,isthelengthtimesthe width.

Discard x =12sinceboth12–2x and15–2x wouldbenegative. If3 2 x  ,then

Forexercises65–70,usetheformula 2 00 16,htvth  where h0istheheightofthe objectwhen t =0,and v0istheinitialvelocityattime t =0.

65. 000,625,0vhh

22 0160625166250 25 42542506.25or 4 25 6.25 4 ttt ttt t 

Thenegativesolutionisnotapplicable.Ittakes 6.25secondsforthebaseballtoreachthe ground.

66. Whentheballhasfallen196feet,itis 625–196=429feetabovetheground.

000,625,429vhh

Thedimensionsoftherugshouldbe 9ftby12ft.

64. Let x =Haround’sspeed.Then x +92= Franchitti’sspeed.Fromtheformula d = rt,we haveHaround’stime=500 x andFranchitti’s time= 500 92 x  Then,wehave

50050046,0003.72342.24 03.72342.2446,000 xx xxxx x xxx xx

Usethequadraticformulatosolvefor x.

166.3or74.3 x    Thenegativevalueisnotapplicable. Haround’sspeedwas74.3mphandFranchitti’s speedwas74.3+92=166.3mph.

22 429160625161960 14 41441403.5or 4 14 3.5 4 ttt ttt t  



Thenegativesolutionisnotapplicable.Ittakes 3.5secondsfortheballtofall196feet.

67. a. 000,200,0vhh   22 2 016020016200 200200 3.54 164 ttt tt  

Thenegativesolutionisnotapplicable.It willtakeabout3.54secondsfortherockto reachthegroundifitisdropped.

b. 0040,200,0vhh  2 01640200 tt  Usingthequadraticformula,wehave   2 4040416200 216 5or2.5 t  



Thenegativesolutionisnotapplicable.It willtakeabout2.5secondsfortherockto reachthegroundifitisthrownwithan initialvelocityof40ft/sec.

c. 0040,200,2vht

 2 16240220056 h  After2seconds,therockis56feetabove theground.Thismeansithasfallen 200–56=144feet.

68. a. 00800,0,3200vhh 2 2 2 3200168000 1680032000 502000 tt tt tt

 



Usingthequadraticformula,wehave

2 505041200 21 4.38or45.62 t tt

 

Therocketrisesto3200feetafterabout 4.38seconds.Italsoreaches3200feetasit fallsbacktothegroundafterabout45.62 seconds.Becauseweareaskedhowlongto riseto3200feet,theanswerwillbeabout 4.38sec.

b. 00800,0,0vhh

2 2 0168000 16800016500 0or50 tt tttt tt

Therockethitsthegroundafter50seconds.

69. a. 0064,0,64vhh

2 2 22 6416640 1664640 440202 tt tt tttt

Theballwillreach64feetafter2seconds.

b. 0064,0,39vhh



2 2 3916640 166439041343 133 3.25or.75 44 tt tttt tt





Theballwillreach39feetafter.75seconds andafter3.25seconds.

c. Twoanswersarepossiblebecausetheball reachesthegivenheighttwice,onceonthe wayupandonceonthewaydown.

70. a. 00100,0,50vhh 2 2 2 50161000 16100500 850250.55or5.7 tt tt ttt



Theballwillreach50feetonthewayup afterapproximately0.55seconds.

b. 00100,0,35vhh 2 2 35161000 16100350 .37or5.88 tt tt t   

Theballwillreach35feetonthewayup afterapproximately0.37seconds.

Inexercises71–76,wediscardnegativerootssinceall variablesrepresentpositiverealnumbers.

71. 2 2 2 1 for 2 2 2 2 2 Sgtt Sgt S t g g S t g g Sg t g   

72. Solvefor r. 2 2 (0) ar a r a rr aa r    

    

73. 4 2 24 4 2 44 2 for dk Lh h Lhdk dk h L dkLdkL h LL L dkL h L

74. Solvefor v 2 2 (0) kMv F r Fr v kM FrkM vv kM kM FrFrkM v kMkM

Solvefor R byusingthequadraticformulawith a = P, 2Pr2bE  ,and2 Pr c  .

76. Solvefor r 222Srhr  Writeasaquadraticequationin r. 2 (2)(2)0 rhrS  Solvefor r usingthequadraticformulawith a =2π, b =2πh,and c =–S.   2 2 22 22 22 22 4 2 224(2)() 2(2) 248 4 222 4 22 4 2 2 bbac r a hhS r hhS hhS hhS hhS r

 

  

  

  

  

  





22 2Pr4Pr 2 EEE R P  

Chapter 1 Review Exercises

1. 0and6arewholenumbers.

2. –12,–6,4,0,and6areintegers.

3. –12,–6, 9 10,4,0, 1 8,and6arerational numbers.

4. 7,,11 4  areirrationalnumbers.

5. 9[(–3)4]=9[4(–3)] Commutativepropertyofmultiplication

6. 7(4+5)=(4+5)7 Commutativepropertyofmultiplication

7. 6(x + y –3)=6x +6y +6(–3) Distributiveproperty

8. 11+(5+3)=(11+5)+3 Associativepropertyofaddition

9. x isatleast9. x ≥ 9

10. x isnegative. x <0

11. 642,22  ,8199  , 3(2)3255  Since–5,–2,2,9areinorder,then 3(2),2,64,81  areinorder.

12. 164,8,7,1212

13. 78781

14. 39633330

15. x ≥ –3

Startat–3anddrawaraytotheright.Usea bracketat–3toshowthat–3isapartofthe graph.

16. –4< x ≤ 6 Putaparenthesisat–4andabracketat6.Draw alinesegmentbetweenthesetwoendpoints.

17. 9(6)(3)99189927 6(3)6399

2042515251 9(3)1239(3)4 1051211 9346410

 

 3232 3232 3322 32 8852410 8852410 8284510 104510 yyyyy yyyyy yyyyy yyy

21. 2222525252254 khkhkhkh 

22. 22 22 (25)(25)(2)(5) 425 ryryry ry  

23.  222 22 3432344 92416 x yxxyy xxyy  

24. 222 22 (25)(2)2(2)(5)(5) 42025 abaabb aabb  

25.   22 245245 khkhkkhh 

26.

27.

  222222 2616238 mnmnnnmm 

   43222 2 51245124 522 aaaaaa aaa  

28.

  322 2444461 4(31)(21) xxxxxx xxx  

Copyright © 2019 Pearson Education, Inc.

29.

2222 144169(12)(13) 12131213 pqpq pqpq

30. 2222 8125(9)(5) (95)(95) zxzx zxzx

3 33 22 2 27131 313311 31931 yy

32.

333 22 2 125216(5)(6) (56)(5)5(6)6 (56)253036

36.

2322(1)(2)8 2(1)82(1)(2) 8(1)(2)84 2(1)(2)2

322 22 2844 3169 ppppp p pp

22 289 3(4)(4)(2)(2) ppp p ppppp

(4)(2)92 3(4)(4)(2)(2) pppp ppppp

3(4)(2)32 3(4)(2)(4)(2) pppp ppppp

32 (4)(2) p pp  

37. 2 22 242618 123 mmm mmm      22 22123 (1)(1)618 mm mm mmm     2 2(1)(3)(1) (1)(1)6(3) mmm mmm    2(1)(3)(1)2 2(1)(3)3(1) mmm mmm    (1)2 3(1) m m  

38.  2 22 652(1) 4125 xxxx x x     2 (5)(1)2(1) 41(5)(5) xxxx xxx

2 2 2(5)(1) 2(5)21(5) xxx xxx

2 2 (1) 21(5) xx xx  

39. 3 3 11 5or 5125 

40. 2 2 11 10or 10100 

00 881

42. 22 5636 6525

43. 636(3)3 4444

44. 525(2)7 7 1 7777 7

45. 5 5(4)541 4 81 888 88

46. 3 347 47 61 66 66

47. 1111752 5210

48. 21 2 11116 55 5525525

49. 1312 13123223 3223 551 55 55

50. 341214 1414 222 1 22 

51.

52.

1232 22123327252 33333 aaaaa

32 23323233292

53. 3273 

54. 664isnotarealnumber.

55. 3533233 3322333 54272 27232 pqpqq

56. 4444534336416424 abaabaab

57. 331212331243331223 33243213

58. 8726387297 8767147 

59.

61.   34229 34829 829 1 13 3 xxx xxx xx xx

62. 493(12)5 49365 4926 7 27 2 yy yy yy yy    

63. 26 4 33 264(3) 26412 246 623 m mm mm mm mm mm 

Because m =3wouldmakethedenominatorsof thefractionsequalto0,makingthefractions undefined,thegivenequationhasnosolution.

64. 153 4 55 k kk   Multiplybothsidesoftheequationbythe commondenominator k +5.

  15453 1542035 kk kkk

  If k =–5,thefractionswouldbeundefined,so thegivenequationhasnosolution.

65.  832 823 823 3 82 axx axx xa x a    

66.  22 22 2 2 24 24 4 2 bxxb bxb b x b   

67. 2 8 5 22 8or8 55 22 55(8)or55(8) 55 240or240 38or42 38or42

Thesolutionsare–38and42.

68. 4163 kk 4163or41(63) 4163or4163 24or102 1 2or 5 kkkk kkkk kk kk

Thesolutionsare2and 1 5 .

69. 2 (7)5 b 

Usethesquarerootpropertytosolvethis quadraticequation.

75or75 75or75 bb bb 



Thesolutionsare75  and75,which weabbreviateas75 

70. 2 (21)7 p 

Solvebythesquarerootproperty. 217or217 217or217 1717 or 22 pp pp pp



  

Thesolutionsare17 2  .

71. 2 232 pp

Writetheequationinstandardformandsolveby factoring.

2 2320 (21)(2)0 pp pp   210or20 1 or2 2 pp pp 



Thesolutionsare 1 2 and–2.

72. 2 215yy  Writetheequationinstandardformandsolveby factoring.

2 2150 (3)(25)0 yy yy   y =3or 5 2 y 

Thesolutionsare3and5 2

73. 22 21121211210 (23)(7)0 qqqq qq   230or70 3 or7 2 qq qq 



Thesolutionsare3 2 and7.

74. 22 321632160 (38)(2)0 xxxx xx   380or20 8 or2 3 xx xx 



Thesolutionsare8 3 and2.

75. 4242 61610 kkkk Let2 pk  ,so 24pk  2 610 (31)(21)0 pp pp   310or210 11 or 32 pp pp  

2 1113

If,3333pkk

If211 , 22pk hasnorealnumber solution.

Thesolutionsare3 3 

76. 4242 2122120 pppp

Let2 up  ;then24 up 

2 2120 (31)(72)0 uu uu



 22 310or720 12 or 37 12 or 37 uu xx pp   

If222 , 77xp hasnorealnumber solution.

13 33 p 

Thesolutionsare3 3 

77. 2 ()2 ER p rR   for r  22 222 222 222 () 2 2 20 prRER prrRRER prrpRRpER prrpRRpER   

 Usethequadraticformulatosolvefor r   2222 2 244 2 24 2 pRpRpRpER r p pRpERpREpR r pp    

78. 2 ()2for. ER pE rR   2 222 2 ()() ()() prR prRERE R rRpR prR E RR  

  

79. K = s(s – a)for s 220KsassasK  Usethequadraticformula. 224()4 22 aaK aaK s   

80. 20kzhzt for z Usethequadraticformulawith a = k, b =–h,and c =–t 2 2 ()()4()() 2 4 2 hhkt z k hhkt k

81. 27(55)8282% −−==

82. 22.5(2.5)2020% 

83. Let x =theoriginalprice .21229 .81229 1536.25 xx x x −= = = Theoriginalpriceofthelaptopwas$1536.25.

84. Let x =theoriginalprice .27329.83 1.27329.83 23.43 xx x x += = = Theoriginalpriceofthestockwas$23.43.

85. Let O =3.63 3.63.112.2 1.43.11 13 x x x =+ = =

Theamountofoutlaysreached$3.63trillionin theyear2013.

86. Let O =3.96 3.96.112.2 1.76.11 16 x x x =+ = =

Theamountofoutlaysreached$3.96trillionin theyear2016.

87. Let O =10.8 10.8.28 2.8.2 14 x x x =+ = =

Thecrudeoiloutputreached10.8millionbarrels perdayintheyear2014.

Copyright © 2019 Pearson Education, Inc.

88. Let O =11.4 11.4.28 3.4.2 17 x x x =+ = =

Thecrudeoiloutputreached11.4millionbarrels perdayintheyear2017.

89. Let x =7 2 2 .04.4718.38 .04(7).47(7)18.38 17.05

17.05million.

90. Let x =10

was17.68million.

91. Let V =17.5.

Thefirstfullmonthinwhichsaleswerebelow 17.5millionvehicleswasMarch2016.

92. Usingthesolutionto91,thesecondmonthofthe yearinwhichsaleswas17.5millionwas October2016.

93. Let x =13 2 .061(13)6.09(13)38.89.16 131 F ++ =≈ +

Thetotalnumberofflightsthatdepartedin2013 wasapproximately9.16million.

94. Let x =20 2 .061(20)6.09(20)38.88.81 201 F ++ =≈ +

Thetotalnumberofflightsthatwilldepartin 2020willbeapproximately8.81million.

95. Let F =9.2.

2 2 2 2 2 .0616.0938.8 1 .0616.0938.8 9.2 1 9.2(1).0616.0938.8 0.0613.1129.6 3.113.114.06129.6 2.061 12.67or38.32 xx F x xx x xxx xx x

Thenumberofflightdeparturesfellbelow9.2 millionin2013.

96. Let F =8.9.

2 2 2 2 2 .0616.0938.8 1 .0616.0938.8 8.9 1 8.9(1).0616.0938.8 0.0612.8129.9 2.812.814.06129.9 2.061 16.70or29.38 xx F x xx x xxx xx x

Thenumberofflightdeparturesfellbelow8.9 millionin2017.

97. Let x =12 .26 16.2(12)30.91 R =≈

Thetotalamountspentonbasicresearchbythe U.S.governmentin2012wasapproximately $30.91billion.

98. Let x =17 .26 16.2(17)33.84 R =≈

Thetotalamountspentonbasicresearchbythe U.S.governmentin2017wasapproximately $33.84billion.

99.Let x =thesingleinterestrate 2000(.12)500(.07)2500 2752500 .11 x x x   

Therefore,asingleinterestrateof11%willyield thesameresults.

100.Let x =theamountofbeef.Then30– x =the amountofpork.

Thereforethebutchershoulduse10poundsof beefand30–10=20poundsofpork.

101. Let x =112 2 2 .0477.69341.6 .047(112)7.69(112)341.6 69.9 Dxx D D

= TheratiooffederaldebttoGDPin2012was approximately69.9%.

102. Let D =55%.

Themostrecenttimetheratiooffederaldebtto GDPwas55%wasin2006.

103. Let x =thewidthofthewalk.

Touseallofthecement,solve 2 2 200450 0450200 xx xx

Usingthequadraticformula,wehave

Thewidthcannotbenegative,sothesolutionis approximately3.2feet.

104. Let x =thelengthoftheyard.Then160– x =the widthoftheyard.Areaisequaltolengthtimes width. 2 Thearea 4000()(160) 01604000 lw xx xx  

Usingthequadraticformula,wehave

2 160(160)414000

Thelengthislongerthanthewidth,sothelength isapproximately129feetandthewidthis approximately160–129=31feet.

105. 00150,0,200vhh 2 2 2 200161500 161502000 87510001.61or7.77 tt tt ttt

Theballwillreach200feetonitsdownwardtrip afterapproximately7.77seconds.

106. 0055,700,0vhh 2 2 01655700 165570008.55or5.12 tt ttt

Theballwillreachthegroundafter approximately5.12seconds

Case 1 Consumers Often Defy Common Sense

1. Thetotalcosttobuyandrunthiselectrichot watertankfor x yearsis E =218+508x

2. Thetotalcosttobuyandrunthisgashotwater tankfor x yearsis G =328+309x

3. Over10years,theelectrichotwatertankcosts 218+508(10)=5298or$5298,andthegashot watertankcosts328+309(10)=3418or$3418. Thegashotwatertankcosts$1880lessover10 years.

4. Thetotalcostsforthetwohotwatertankswill beequalwhen218508328309 x x  1991100.55. xx Thecostswillbeequalwithinthefirstyear.

5. ThetotalcosttobuyandrunthisMaytag refrigeratorfor x yearsis M =1529.10+50x

6. ThetotalcosttobuyandrunthisLGrefrigerator for x yearsis L =1618.20+44x.

7. Over10years,theMaytagrefrigeratorcosts 1529.10+50(10)=2029.10or$2029.10, andtheLGrefrigeratorcosts 1618.20+44(10)=2058.20or$2058.20. TheLGrefrigeratorcosts$29.10moreover 10years.

8. Thetotalcostsforthetworefrigeratorswillbe equalwhen1529.10501618.2044 x x  689.1014.85. xx

Thecostswillbeequalinthe14th year.

Copyright © 2019 Pearson Education, Inc.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Solutions for Finite Mathematics With Applications In The Management Natural And Social Sciences 12t by 6alsm - Issuu