Chapter2
Limits
2.1TheIdeaofLimits
2.1.1 Theaveragevelocityoftheobjectbetweentime t = a and t = b isthechangeinpositiondividedby theelapsedtime: vav = s(b) s(a) b a
2.1.2 Inordertocomputetheinstantaneousvelocityoftheobjectattime t = a,wecomputetheaverage velocityoversmallerandsmallertimeintervalsoftheform[a,t],usingtheformula: vav = s(t) s(a) t a .We let t approach a.Ifthequantity s(t) s(a) t a approachesalimitas t ! a,thenthatlimitiscalledthe instantaneousvelocityoftheobjectattime t = a.
2.1.3 Theaveragevelocityis s(3) s(2) 3 2 =156 136=20.
2.1.4 Theaveragevelocityis s(4) s(1) 4 1 = 144 84 3 = 60 3 =20.
2.1.5
a. s(2) s(0) 2 0 = 72 0 2 =36.
b. s(1.5) s(0) 1.5 0 = 66 0 1.5 =44
c. s(1) s(0) 1 0 = 52 0 1 =52.
d. s(.5) s(0) .5 0 = 30 0 .5 =60.
2.1.6
a. s(2 5) s( 5) 2 5 5 = 150 46 2 =52.
b. s(2) s(.5) 2 5 = 136 46 1 5 =60
c. s(1 5) s( 5) 1 5 5 = 114 46 1 =68.
d. s(1) s(.5) 1 .5 = 84 46 .5 =76.
2.1.7 s(1 01) s(1) 01 =47 84,while s(1 001) s(1) 001 =47 984and s(1 0001) s(1) 0001 =47 9984.Itappears thattheinstantaneousvelocityat t =1isapproximately48.
2.1.8 s(2.01) s(2) .01 = 4 16,while s(2.001) s(2) .001 = 4 016and s(2.0001) s(2) .0001 = 4 0016.Itappears thattheinstantaneousvelocityat t =2isapproximately 4.
2.1.9 Theslopeofthesecantlinebetweenpoints(a,f (a))and(b,f (b))istheratioofthedi↵erences f (b) f (a)and b a.Thus msec = f (b) f (a) b a .
2.1.10 Inordertocomputetheslopeofthetangentlinetothegraphof y = f (t)at(a,f (a)),wecompute theslopeofthesecantlineoversmallerandsmallertimeintervalsoftheform[a,t].Thusweconsider f (t) f (a) t a andlet t ! a.Ifthisquantityapproachesalimit,thenthatlimitistheslopeofthetangent linetothecurve y = f (t)at t = a
2.1.11 Bothproblemsinvolvethesamemathematics,namelyfindingthelimitas t ! a ofaquotientof di↵erencesoftheform g (t) g (a) t a forsomefunction g .
2.1.12 Notethat f (2)=64.
a. i. f (0.5)=28.Sotheslopeofthesecantlineis
ii. f (1 9) ⇡ 63 84.Sotheslopeofthesecantlineisabout
iii. f (1 99) ⇡ 63 9984.Sotheslopeofthesecantlineisabout 63 9984 64 1 99 2 =0 16.
iv. f (1.999) ⇡ 63.999984.Sotheslopeofthesecantlineisabout 63 999984 64 1 999 2 =0.016.
v. f (1 9999) ⇡ 63 99999984.Sotheslopeofthesecantlineisabout 63 99999984 64 1 9999 2 =0 0016.
b. Agoodguessisthatthelimitis0.
c. Theslopeofthetangentlineisthelimitoftheslopesofthesecantlines,soitisalso0.
2.1.13
a. Over[1, 4],wehave
b. Over[1, 3],wehave vav = s(3) s(1) 3
c. Over[1, 2],wehave vav = s(2) s(1) 2 1 = 192 112 1 =80.
d. Over[1, 1+ h],wehave
2.1.14
a. Over[0, 3],wehave vav = s(3) s(0) 3 0 = 65.9 20 3 =15 3.
b. Over[0, 2],wehave vav = s(2) s(0) 2 0 = 60.4 20 2 =20 2.
c. Over[0, 1],wehave vav =
d. Over[0,h],wehave
2.1.15
Theslopeofthesecantlineisgivenby s(2) s(0 5) 2 0.5 = 136 46 1.5 =60 Thisrepresents theaveragevelocityoftheobjectoverthetime interval[0.5, 2].
2.1.16
Theslopeofthesecantlineisgivenby s(0 5) s(0) 0.5 0 = 1 0.5 =2 Thisrepresentstheaveragevelocityoftheobjectoverthetimeinterval [0, 0.5].
2.1.17
Theinstantaneousvelocityappearstobe96ft/s.
2.1.18
Theinstantaneousvelocityappearstobe10.4m/s.
2.1.19
Theinstantaneousvelocityappearstobe4ft/s.
2.1.20
Theinstantaneousvelocityappearstobe0ft/s.
2.1.21
TimeInterval [3, 3.1] [3, 3.01] [3, 3.001] [3, 3.0001]
AverageVelocity 17 6 16 16 16 016 16 002
Theinstantaneousvelocityappearstobe 16ft/s.
2.1.22
Theinstantaneousvelocityappearstobe 20ft/s.
2.1.23
Theinstantaneousvelocityappearstobe80ft/s.
2.1.24
AverageVelocity 10 18 1818 19 802 19 98 Theinstantaneousvelocityappearstobe 20ft/s.
2.1.25
Theslopeofthetangentlineappearstobe8. 2.1.26
2.1.27
Theslopeofthetangentlineappearstobe1.
Theslopeofthetangentlineappearstobe2.
2.1.29
a. Notethatthegraphisaparabolawithvertex(2, 1).
b. At(2, 1)thefunctionhastangentlinewith slope0.
Theslopeofthetangentlineat(2, 1)appearstobe0.
2.1.30
a. Notethatthegraphisaparabolawithvertex(0, 4).
b. At(0, 4)thefunctionhasatangentlinewith slope0.
c. Thisistrueforthisfunction–becausethe functionissymmetricaboutthe y -axisand wearetakingpairsofpointssymmetrically aboutthe y axis.Thus f (0+ h)=4 (0+ h)2 =4 ( h)2 = f (0 h).Sotheslopeof anysuchsecantlineis 4 h2 (4 h2 ) h ( h) = 0 2h =0.
2.1.31
a. Notethatthegraphisaparabolawithvertex(4, 448).
b. At(4, 448)thefunctionhastangentlinewith slope0,so a =4.
c. x Interval [4, 4 1] [4, 4 01] [4, 4 001] [4, 4 0001] SlopeoftheSecantLine 1.6 .16 .016 .0016 Theslopesofthesecantlinesappeartobe approachingzero.
d. Ontheinterval[0, 4)theinstantaneousvelocityoftheprojectileispositive.
e. Ontheinterval(4, 9]theinstantaneousvelocityoftheprojectileisnegative.
2.1.32
a. Therockstrikesthewaterwhen s(t)=96.Thisoccurswhen16t2 =96,or t2 =6,whoseonlypositive solutionis t = p6 ⇡ 2.45seconds.
b. t Interval [p6 .1, p6] [p6 .01, p6] [p6 .001, p6] [p6 .0001, p6]
Whentherockstrikesthewater,itsinstantaneousvelocityisabout78.38ft/s.
2.1.33 Forline AD ,wehave
Forline AC ,wehave mAC = yC yA xC xA = f (⇡ /2+ 5) f (⇡ /2) (⇡ /2+ 5) (⇡ /2) = cos(⇡ /2+ 5) 5 ⇡ 0.958851.
Forline AB ,wehave mAB = yB yA xB xA = f (⇡ /2+ 05) f (⇡ /2) (⇡ /2+ 05) (⇡ /2) = cos(⇡ /2+ 05) 05 ⇡ 0 999583
Computingonemoreslopeofasecantline:
sec = f (⇡ /2+ .01) f (⇡ /2) (⇡ /2+ .01) (⇡ /2) = cos(⇡ /2+ .01) .01 ⇡ 0 999983
Conjecture:Theslopeofthetangentlinetothegraphof f at x = ⇡ /2is1.
2.2DefinitionofaLimit
2.2.1 Supposethefunction f isdefinedforall x near a exceptpossiblyat a.If f (x)isarbitrarilyclosetoa number L whenever x issu cientlycloseto(butnotequalto) a,thenwewritelim x!a f (x)= L
2.2.2 False.Forexample,considerthefunction f (x)= 8 < : x2 if x =0 4if x =0
Thenlim x!0 f (x)=0,but f (0)=4.
2.2.3
a. h(2)=5
b. lim x!2 h(x)=3
c. h(4)doesnotexist.
d. lim x!4 f (x)=1.
e. lim x!5 h(x)=2.
2.2.5
a. f (1)= 1.
b. lim x!1 f (x)=1.
c. f (0)=2.
d. lim x!0 f (x)=2.
2.2.7
a. x 1.9
f (x)= x2 4 x 2 3.9 3.99
b. lim x!2 f (x)=4.
2.2.4
a. g (0)=0.
b. lim x!0 g (x)=1.
c. g (1)=2.
d. lim x!1 g (x)=2.
2.2.6
a. f (2)=2.
b. lim x!2 f (x)=4.
c. lim x!4 f (x)=4.
d. lim x!5 f (x)=2.
Copyright c 2019PearsonEducation,Inc.
2.2.8
a. x
f (x)= x3 1 x 1
b. lim x!1 x3 1 x 1 =3
2.2.9
a. t
g (t)= t 9 pt 3
b. lim t!9 t 9 pt 3 =6.
2.2.10
a. x 0.01
b. lim x!0(1+ x)1/x ⇡ 2 718.
c. lim x!0(1+ x)1/x = e.
2.2.11 Supposethefunction f isdefinedforall x near a butgreaterthan a.If f (x)isarbitrarilycloseto L for x su cientlycloseto(butstrictlygreaterthan) a,thenwewritelim x!a+ f (x)= L
2.2.12 Supposethefunction f isdefinedforall x near a butlessthan a.If f (x)isarbitrarilycloseto L for x su cientlycloseto(butstrictlylessthan) a,thenwewritelim x!a f (x)= L
2.2.13 Itmustbetruethat L = M .
2.2.14
b. lim x!2 g
2.2.15
f (1)=0.
d. lim x!1 f (x)doesnotexist,sincethetwoone-sidedlimitsaren’tequal.
2.2.16 Becausegraphingutilitiesgenerallyjustplotasamplingofpointsand“connectthedots,”theycan sometimesmisleadtheuserinvestigatingthesubtletiesoflimits.
2.2.17
a. f (1)=3. b. lim x!1 f (x)=2. c. lim x!1+ f (x)=2.
d. lim x!1 f (x)=2. e. f (3)=2.
lim x!3 f (x)=4. g. lim x!3+ f (x)=1.
lim x!3 f (x)doesnotexist. i. f (2)=3. j. lim x!2 f (x)=3.
lim x!2 f (x)=3.
2.2.18 a. g (2)=3.
lim x!2 g (x)=2.
d. lim x!2 g (x)doesnotexist. e. g (3)=2.
lim x!2+ g (x)=3.
lim x!3 g (x)=3. g. lim x!3+ g (x)=2. h. g (4)=3.
2.2.19
f ( 1)=2,lim x! 1 f (x)=2,lim x! 1+ f (x)=3,lim x! 1 f (x)doesnotexist.
2.2.20
f (2)isundefined.lim x!2 f (x)=1,lim x!2+ f (x)=1,andlim x!2 f (x)=1.
lim x!4 g (x)=3.
2.2.21
2.2.22
2.2.25
2.2.26
Fromthegraphandthetable,thelimitappearstobe0.
2.2.28
Fromboththegraphandthetable,thelimitappearstobe2.
2.2.29
(x) 1.993342 1.999933 1.999999 1.999999 1.999933 1.993342
Fromboththegraphandthetable,thelimitappearstobe2.
2.2.30
Fromboththegraphandthetable,thelimitappearstobe3.
2.2.31
x 1 1 1 01 1 001 0 999 0 99 0 9 f (x) 0 9983342 0 9999833 0 9999998 0 9999998 0 9999833 0 9983342
Fromboththegraphandthetable,itappearsthatthelimitdoesnotexist.
2.2.32
)
Fromboththegraphandthetable,itappearsthatthelimitdoesnotexist.
2.2.33
a. False.Infactlim x!3 x2 9 x 3 =lim x!3(x +3)=6.
b. False.Forexample,if f (x)= 8 < : x2 if x =0; 5if x =0 andif a =0then f (a)=5butlim x!a f (x)=0.
c. False.Forexample,thelimitinpartaofthisproblemexists,eventhoughthecorrespondingfunction isundefinedat a =3. Copyright c 2019PearsonEducation,Inc.
d. False.Itistruethatthelimitof px as x approacheszerofromtherightiszero,butbecausethe domainof px doesnotincludeanynumberstotheleftofzero,thetwo-sidedlimitdoesn’texist.
e. True.Notethatlim x!⇡ /2 cos x =0andlim x!⇡ /2 sin x =1,solim x!⇡ /2
2.2.34
a. Notethat H ispiecewiseconstant.
b. lim x!0 H (x)=0,lim x!0+ H (x)=1,andso lim x!0 H (x)doesnotexist.
2.2.35
a. Notethatthefunctionispiecewiseconstant.
b. lim w !2 3 f (w )= 89.
c. lim w !3+ f (w )=1 1correspondstothefact thatforanypieceofmailthatweighsslightly over3ounces,thepostagewillcost$1.1 cents.lim w !3 f (w )=$0 89correspondsto thefactthatforanypieceofmailthatweighs slightlylessthan3ounces,thepostagewill cost89cents.Becausethetwoone-sidedlimitsarenotequal,lim w !3 f (w )doesnotexist.
2.2.36
h)1/h
lim h!0 (1+2h)1/h 2e2+h = 1 2
2.2.37
lim x!⇡ /2 cot3x cos x =3.
lim x!1 18( 3 px 1) x3 1 =2.
2.2.39
18( 3 px 1) x3 1
lim x!1 9p2x x4 3 px 1 x3/4 =16.
2.2.40
6x 3x x ln16
lim x!0 6x 3x x ln16 = 1 4
2.2.41 h 0.01
) h
lim h!0 ln(1+ h) h =1.
2.2.42
4h 1 h ln(h+2)
lim h!0 4h 1 h ln(h +2) =2.
2.2.43
x
f (x)=sin(1/x) 1 1 1 1 1 1
If xn = 2 (2n+1)⇡ ,then f (xn )=( 1)n where n isanon-negativeinteger.
b. As x ! 0,1/x !1.Sothevaluesof f (x)oscillatedramaticallybetween 1and1.
c. lim x!0 sin(1/x)doesnotexist.
2.2.44
a. x
f (x)=tan(3/x) 1 1 1 1 1 1
Wehavealternating1’sand 1’s.
b. tan3x alternatesbetween1and 1infinitely manytimeson(0,h)forany h> 0.
c. lim x!0 tan(3/x)doesnotexist. 2.2.45
2.2.50
a. Notethat f (x)= |x| x isundefinedat0,and lim x!0 f (x)= 1andlim x!0+ f (x)=1.
b. lim x!0 f (x)doesnotexist,sincethetwoonesidelimitsaren’tequal.
2.2.51
a. lim x! 1 bxc = 2,lim x! 1+ bxc = 1,lim x!2 bxc =1,lim x!2+ bxc =2.
b. lim x!2 3 bxc =2,lim x!2 3+ bxc =2,lim x!2 3bxc =2.
c. Ingeneral,foraninteger a,lim x!a bxc = a 1andlim x!a+ bxc = a
d. Ingeneral,if a isnotaninteger,lim x!a bxc =lim x!a+ bxc = bac.
e. lim x!a bxc existsandisequalto bac fornon-integers a
2.2.52
a. Notethatthegraphispiecewiseconstant.
b. lim x!2 dxe =2,lim x!1+ dxe =2,lim x!1 5dxe =2.
c. lim x!a dxe existsandisequalto dae fornonintegers a.
2.2.53
a. Becauseofthesymmetryaboutthe y axis,wemusthavelim x! 2+ f (x)=8.
b. Becauseofthesymmetryaboutthe y axis,wemusthavelim x! 2 f (x)=5. Copyright c 2019PearsonEducation,Inc.
2.2.54
a. Becauseofthesymmetryabouttheorigin,wemusthavelim x! 2+ g (x)= 8.
b. Becauseofthesymmetryabouttheorigin,wemusthavelim x! 2 g (x)= 5.
2.2.55
2.2.56 a.
lim x!0 sin x x =1.
lim x!0 sin2x x =2.
lim x!0 sin3x x =3.
b. Itappearsthatlim x!0 sin(px) x = p
lim x!0 sin4x x =4.
2.2.57
For p =8and q =2,itappearsthatthelimitis4.
For p =12and q =3,itappearsthatthelimitis4.
For p =4and q =16,itappearsthatthelimitis1/4.
For p =100and q =50,itappearsthatthelimitis2. �
Conjecture:lim x!0 sin px sin qx = p q
2.3TechniquesforComputingLimits
2.3.1 If p(x)=
= an (lim x!a x)n + an 1 (lim x!a x)n 1 + + a1 lim x!a x +lim x!a a0
an an + an 1 an 1 + + a1 a +
= p(a)
2.3.2 lim x!1(x 3 +3x 2 3x +1)=1+3 3+1=2.
2.3.3 Forarationalfunction r (x),wehavelim x!a r (x)= r (a)exactlyforthosenumbers a whichareinthe domainof r .(Whicharethoseforwhichthedenominatorisn’tzero.)
2.3.4 lim x!4 ✓ x2 4x 1 3x 1 ◆ = 16 16 1 12 1 = 1 11 .
2.3.5 Because x 2 7x+12 x 3 = (x 3)(x 4) x 3 = x 4(for x =3),wecanseethatthegraphsofthesetwofunctions arethesameexceptthatoneisundefinedat x =3andtheotherisastraightlinethatisdefinedeverywhere. Thusthefunction x 2 7x+12 x 3 isastraightlineexceptthatithasa“hole”at(3, 1).Thetwofunctionshave thesamelimitas x ! 3,namelylim x!3 x2 7x +12 x 3 =lim x!3(x 4)= 1.
2.3.6 lim x!5 4x2 100 x 5 =lim x!5 4(x 5)(x +5) x 5 =lim x!5 4(x +5)=40.
2.3.7 lim x!1 4f (x)=4lim x!1 f (x)=4 · 8=32.ThisfollowsfromtheConstantMultipleLaw.
2.3.8 lim x!1 f (x) h(x) = lim x!1 f (x) lim x!1 h(x) = 8 2 =4.ThisfollowsfromtheQuotientLaw.
2.3.9 lim x!1(f (x) g (x))=lim x!1 f (x) lim x!1 g (x)=8 3=5.ThisfollowsfromtheDi↵erenceLaw.
2.3.10 lim x!1 f (x)h(x)=lim x!1 f (x) lim x!1 h(x)=8 2=16.ThisfollowsfromtheProductLaw.
2.3.11 lim x!1 f (x) g (x) h(x) = lim x!1 f (x) lim x!1[g (x) h(x)] = lim x!1 f (x) lim x!1 g (x) lim x!1 h(x) = 8 3 2 =8.Thisfollowsfromthe QuotientandDi↵erenceLaws.
2.3.12 lim x!1 3 pf (x)g (x)+3= 3 q lim x!1(f (x)g (x)+3)= 3 q lim x!1 f (x) lim x!1 g (x)+lim x!1 3= 3 p8 3+3= 3 p27= 3.ThisfollowsformtheRoot,Product,SumandConstantLaws.
2.3.13 lim x!1 f (x)2/3 = ⇣ lim x!1 f (x)⌘2/3 =82/3 =22 =4.ThisfollowsfromtheRootandPowerLaws.
2.3.14 If p(x)isapolynomial,thenlim x!a p(x)=lim x!a+ p(x)= p(a).
2.3.15 lim x!0 g (x)=lim x!0(2x +1)=1,while g (0)=5.
2.3.16 lim x!3 f (x)=lim x!3 4=4,andlim x!3+ f (x)=lim x!3+ (x +2)=5.Becausethetwoone-sidedlimitsdi↵er, thetwo-sidedlimitdoesn’texist.
2.3.17 If p and q arepolynomialsthenlim x!0 p(x) q (x) = lim x!0 p(x) lim x!0 q (x) = p(0) q (0) .Becausethisquantityisgiventobe
equalto10,wehave p(0) 2 =10,so p(0)=20.
2.3.18 Byadirectapplicationofthesqueezetheorem,lim x!2 g (x)=5.
2.3.19 lim x!4(3x 7)=3lim x!4 x 7=3 4 7=5.
2.3.20 lim x!1( 2x +5)= 2lim x!1 x +5= 2 · 1+5=3.
2.3.21 lim x! 9(5x)=5lim x! 9 x =5 · 9= 45.
2.3.22 lim x!6 4=4.
2.3.23 lim x!1(2x 3 3x 2 +4x +5)=lim
2(1)3 3(1)2 +4 1+5=8.
2.3.24 lim t! 2(t2 +5t +7)=lim t! 2 t2 +lim t! 2 5t +lim t! 2 7= ✓ lim t! 2
2.3.25 lim x!1 5x2 +6x +1 8x 4 = lim x!1(5x 2 +6x +1) lim x!
2.3.26
2.3.30
2.3.31
2.3.32 lim h!0 100 (10h 1)11 +2 = 100 ( 1)11 +2 = 100 1 =100.
2.3.33 lim x!1 x2 1 x 1 =lim x!1 (x +1)(x 1) x 1 =lim x!1(x +1)=2.
2.3.34
2.3.35 lim x!4 x2 16 4 x =lim x!4 (x +4)(x 4) (x 4) =lim x!4[ (x +4)]= 8.
2.3.36 lim t!2 3t2 7t +2 2 t =lim t!2 (t 2)(3t 1) (t 2) =lim t!2[ (3t 1)]= 5.
2.3.37 lim x!b (x b)50 x + b x b =lim x!b (x b)50 (x b) x b =lim x!b (x b)((x b)49 1) x b = lim x!b[(x b)49 1]= 1.
2.3.38 lim x! b (x + b)7 +(x + b)10 4(x + b) =lim x! b (x + b)((x + b)6 +(x + b)9 ) 4(x + b) =lim x! b
2.3.39 lim x! 1 (2x 1)2 9 x +1 =lim x! 1 (2x 1 3)(2x 1+3) x +1 =lim x! 1 2(x 2)2(x +1) x +1 =lim x! 1 4(x 2)=4 ( 3)= 12
2.3.40 lim h!0 1 5+h 1 5 h =lim h!
2.3.41
2.3.43
2.3.44 Expandinggives
Nowbecause t 3= (3 t),wehave
2.3.45
2.3.46
+
) x a = (a + a)(pa + pa)=4a 3/2 .
2.3.47 lim h!0 p16+ h 4 h =lim h!0 (p16+ h 4)(p16+ h +4) h(p16+ h +4) =lim h!0 (16+ h) 16 h(p16+ h +4) =lim h!0 h h(p16+ h +4) =lim h!0 1 (p16+ h +4) = 1 8 .
2.3.48 lim x!c x2 2cx + c2 x c =lim x!c (x c)2 x c =lim x!c x c = c c =0.
2.3.49 lim x!4 1 x 1 4 x 4 =lim x!4 4 x 4x x 4 =lim x!4 4 x 4x(x 4) = lim x!4 1 4x = 1 16
2.3.50 lim x!3 1 x2 +2x 1 15 x 3 =lim x!3 15 (x 2 +2x) 15(x2 +2x) x 3 =lim x!3 15 (x2 +2x) 15(x2 +2x)(x 3) =lim x!3 15 2x x2 15(x2 +2x)(x 3) =lim x!3 (3 x)(5+ x) 15(x2 +2x)(x 3) =lim x!3 (5+ x) 15(x2 +2x) = 8 225 .
2.3.51 lim x!1 p10x 9 1 x 1 =lim x!1 (p10x 9 1)(p10x 9+1) (x 1)(p10x 9+1) =lim x!1 (10x 9) 1 (x 1)(p10x 9+1) =lim x!1 10(x 1) (x 1)(p10x 9+1) =lim x!1 10 (p10x 9+1) = 10 2 =5.
2.3.52 lim x!2 ✓ 1 x 2 2 x2 2x ◆ =lim x!2 ✓ x x(x 2) 2 x(x 2) ◆ =lim x!2 ✓ x 2 x(x 2) ◆ =lim x!2 1 x = 1 2
2.3.53 lim h!0 (5+ h)2 25 h =lim h!0 25+10h + h2 25 h =lim h!0 h(10+ h) h =lim h!0(10+ h)=10.
2.3.54 Wehave lim w ! k w 2 +5kw +4k 2 w 2 + kw =lim w ! k (w +4k )(w + k ) (w )(w + k ) =lim w ! k w +4k w = k +4k k = 3 If k =0,wehavelim w ! k w 2 +5kw +4k 2 w 2 + kw =lim w !0 w 2 w 2 =1. Copyright c 2019PearsonEducation,Inc.
2.3.55 lim x!1 x 1 px 1 =lim x!1 (x 1)(px +1) (px 1)(px +1) =lim x!1 (x 1)(px +1) x 1 =lim x!1(px +1)=2.
2.3.56 lim x!1 x 1 p4x +5 3 =lim x!1 (x 1)(p4x +5+3) (p4x +5 3)(p4x +5+3) =lim x!1 (x 1)(p4x +5+3) 4x +5 9 =lim x!1 (x 1)(p4x +5+3) 4(x 1) =lim x!1 (p4x +5+3) 4 = 6 4 = 3 2
2.3.57 lim x!4 3(x 4)px +5 3 px +5 =lim x!4 3(x 4)(px +5)(3+ px +5) (3 px +5)(3+ px +5) =lim x!4 3(x 4)(px +5)(3+ px +5) 9 (x +5) =lim x!4 3(x 4)(px +5)(3+ px +5) (x 4) =lim x!4[ 3(px +5)(3+ px +5)]=( 3)(3)(3+3)= 54
2.3.58 Assume c =0. lim
2.3.59 lim x!0 x cos x =0 1=0.
2.3.60 lim x!0 sin2x sin x =lim x!
2.3.61 lim x!0 1 cos x cos2 x 3cos x +2 =lim x!0 1 cos x (cos x 2)(cos x 1) = lim x!
2.3.62 lim x!0 cos x 1 cos2 x 1 =lim x!0 cos x 1 (cos x 1)(cos x +1) =lim x!0 1 cos x +1 = 1 2
2.3.63 lim x!0 x2 x |x| =lim x!0 x(x 1) x = lim x!0 (x 1)=1.
2.3.64 lim w !3 |w 3| w 2 7w +12 =lim w !3 3 w (w 3)(w
2.3.65 lim t!2+ |2t 4| t2 4 =lim t!2+ 2(t 2) (t 2)(t +2) = 2 4 = 1 2 .
2.3.66 lim x! 1 g (x)=lim x! 1 x2 1 x +1 =lim x! 1 (x +1)(x 1) x +1 =lim x! 1 (x 1)= 2.Also,lim x! 1+ g (x)= lim x! 1+ ( 2)= 2.Therefore,lim x! 1 g (x)= 2.
2.3.67 lim x!3+ x 3 |x 3| =lim x!3+ x 3 x 3 =lim x!3+ 1=1.Ontheotherhand,lim x!3 x 3 |x 3| =lim x!3 x 3 3 x = lim x!3 ( 1)= 1.Therefore,lim x!3 x 3 |x 3| doesnotexist. Copyright c 2019PearsonEducation,Inc.
2.3.68 lim x!5+ |x 5| x2 25 =lim x!5+ x 5 (x 5)(x +5) =lim x!5+ 1 x +5 = 1 10 .Ontheotherhand,lim x!5 |x 5| x2 25 = lim x!5 5 x (x 5)(x +5) = lim x!5+ 1 x +5 = 1 10 .Therefore,lim x!5 |x 5| x2 25 doesnotexist.
2.3.69 Becausethedomainof f (x)= x 3 +1 px 1 istheinterval(1, 1),thelimitdoesn’texist.
2.3.70 lim x!1+ x 1 px2 1 =lim x!1+ x 1 (x 1)1/2 (x +1)1/2 =lim x!1+ (x 1)1/2 (x +1)1/2 = 0 p2 =0.
2.3.71
a. False.Forexample,if f (x)= 8 < : x if x =1; 4if x =1, thenlim x!1 f (x)=1but f (1)=4.
b. False.Forexample,if f (x)= 8 < : x +1if x 1; x 6if x> 1, thenlim x!1 f (x)=2butlim x!1+ f (x)= 5.
c. False.Forexample,if f (x)= 8 < : x if x =1; 4if x =1, and g (x)=1,then f and g bothhavelimit1as x ! 1, but f (1)=4 = g (1).
d. False.Forexamplelim x!2 x2 4 x 2 existsandisequalto4.
e. False.Forexample,itwouldbepossibleforthedomainof f tobe[1, 1),sothattheone-sidedlimit existsbutthetwo-sidedlimitdoesn’tevenmakesense.Thiswouldbetrue,forexample,if f (x)= x 1.
2.3.72
a. lim x!4 g (x)=lim x!4 (5x 15)=5.
b. lim x!4+ g (x)=lim x!4+ p6x +1=5.
c. Becausethetwoone-sidedlimitsbothexistandareequalto5,lim x!4 g (x)=5.
2.3.73
a. lim x! 1 f (x)=lim x! 1 (x 2 +1)=( 1)2 +1=2.
b. lim x! 1+ f (x)=lim x! 1+ px +1= p 1+1=0.
c. Becausethetwoone-sidedlimitsdi↵er,lim x! 1 f (x)doesnotexist.
2.3.74
a. lim x! 5 f (x)=lim x! 5 0=0
c. lim x! 5 f (x)=0.
e. lim x!5+ f (x)=lim x!5+ 3x =15.
2.3.75 Copyright c
b. lim x! 5+ f (x)=lim x! 5+ p25 x2 = p25 25=0.
d. lim x!5 f (x)=lim x!5 p25 x2 = p25 25=0
f. lim x!5 f (x)doesnotexist.
a. lim x!2+ px 2= p2 2=0.
b. Thedomainof f (x)= px 2is[2, 1).Thus,anyquestionaboutthisfunctionthatinvolvesnumbers lessthan2doesn’tmakeanysense,becausethosenumbersaren’tinthedomainof f .
2.3.76
a. Notethatthedomainof f (x)= q x 3 2 x is(2, 3].lim x!3 r x 3 2 x =0.
b. Becausethenumberstotherightof3aren’tinthedomainofthisfunction,thelimitas x ! 3+ of thisfunctiondoesn’tmakeanysense.
2.3.77 lim x!10 E (x)=lim x!10 4 35 xpx2 +0 01 = 4 35 10p100.01 ⇡ 0.0435N/C.
2.3.78 lim t!200 d(t)=lim t!200 (3 0.015t)2 =(3 (0.015)(200))2 =(3 3)2 =0.Astimeapproaches200 seconds,thedepthofthewaterinthetankisapproaching0.
2.3.79 lim S !0+ r (S )=lim S !0+ (1/2) r100+ 2S ⇡ 10! =0.
Theradiusofthecircularcylinderapproacheszeroasthesurfaceareaapproacheszero.
2.3.80
a. L(c/2)= L0 q1 (c/2)2 c2 = L0 p1 (1/4)= p3L0 /2.
b. L(3c/4)= L0 p1 (1/c2 )(3
c. Itappearsthatthattheobservedlength L oftheshipdecreasesastheshipspeedincreases.
d. lim x!c L0 p1 (⌫ 2 /c2 )= L0 0=0.Asthespeedoftheshipapproachesthespeedoflight,theobserved lengthoftheshipshrinksto0.
2.3.81
a. Thestatementwearetryingtoprovecanbestatedincasesasfollows:For x> 0, x x sin(1/x) x, andfor x< 0, x x sin(1/x) x
Nowforall x =0,notethat 1 sin(1/x) 1(becausetherangeofthesinefunctionis[ 1, 1]). Wewillconsiderthetwocases x> 0and x< 0separately,butineachcase,wewillmultiplythis inequalitythroughby x,switchingtheinequalitiesforthe x< 0case. For x> 0wehave x x sin(1/x) x,andfor x< 0wehave x x sin(1/x) x,whichareexactly thestatementswearetryingtoprove.
b.
c. Becauselim x!0 |x| =lim x!0 |x| =0,and because |x| x sin(1/x) |x|, theSqueezeTheoremassuresusthat lim x!0[x sin(1/x)]=0aswell.
2.3.82
a.
b. Notethatlim x!0 1 x2 2 =1=lim x!0 1.So because1 x 2 2 cos x 1,thesqueeze theoremassuresusthatlim x!0 cos x =1as well.
2.3.83 a.
b. Notethatlim x!0 1 x2 6 =1=lim x!0 1.So because1 x 2 6 sin x x 1,thesqueeze theoremassuresusthatlim x!0 sin x x =1as well.
2.3.84 a.
b. Notethatlim x!0( |x|)=0=lim x!0 |x|.So because |x| x2 ln x2 |x|,thesqueeze theoremassuresusthatlim x!0(x 2 ln x 2 )=0 aswell.
2.3.85 Usingthedefinitionof |x| given,wehavelim x!0 |x| =lim x!0 ( x)= 0=0.Also,lim x!0+ |x| =lim x!0+ x = 0.Becausethetwoone-sidedlimitsareboth0,wealsohavelim x!0 |x| =0.
Copyright c 2019PearsonEducation,Inc.
2.3.86
If a> 0,thenfor x near a, |x| = x.Sointhiscase,lim x!a |x| =lim x!a x = a = |a| If a< 0,thenfor x near a, |x| = x.Sointhiscase,lim x!a |x| =lim x!a ( x)= a = |a|,(because a< 0).
If a =0,wehavealreadyseeninapreviousproblemthatlim x!0 |x| =0= |0|
Thusinallcases,lim x!a |x| = |a|.
2.3.87 lim x!3 f (x)=lim x!3 x2 5x +6 x 3 =lim x!3 (x 3)(x 2) x 3 =lim x!3(x 2)=1.So a =1.
2.3.88 Inorderforlim x!2 f (x)toexist,weneedthetwoone-sidedlimitstoexistandbeequal.Wehave lim x!2 f (x)=lim x!2 (3x + b)=6+ b,andlim x!2+ f (x)=lim x!2+ (x 2)=0.Soweneed6+ b =0,sowerequire that b = 6.Thenlim x!2 f (x)=0.
2.3.89 Inorderforlim x! 1 g (x)toexist,weneedthetwoone-sidedlimitstoexistandbeequal.Wehave lim x! 1 g (x)=lim x! 1 (x 2 5x)=6,andlim x! 1+ g (x)=lim x! 1+ (ax 3 7)= a 7.Soweneed a 7=6,so werequirethat a = 13.Thenlim x! 1 f (x)=6.
2.3.90 lim x!2 x5 32 x 2 =lim x!2 (x 2)(x4 +2x3 +4x2 +8x +16) x 2 =lim x!2(x 4 +2x 3 +4x 2 +8x +16)=16+16+ 16+16+16=80.
2.3.91 lim x!1 x6 1 x 1 =lim x!1 (
2.3.92 lim x! 1 x7 +1 x
2.3.94
2.3.95
b. Theslopeofthesecantlinebetween(0, 1) and(x, 2x )is 2x 1 x
2.3.96
2.3.98
b. Theslopeofthesecantlinebetween(0, 1) and(x, 3x )is 3x 1 x
2.3.101 Let f (x)= x 1and g (x)= 5 x 1 .Thenlim x!1 f (x)=0,lim x!1
2.3.102 Let f (x)= x2 1.Thenlim x!1 f (x) x 1 =lim x!1 x2 1 x 1 =lim x!1(x +1)=2.
2.3.103 Let p(x)= x2 +2x 8.Thenlim x!2 p(x) x 2 =lim x!2 (x 2)(x +4) x 2 =lim x!2(x +4)=6.
Theconstantsareunique.Weknowthat2mustbearootof p (otherwisethegivenlimitcouldn’t exist),soitmusthavetheform p(x)=(x 2)q (x),and q mustbeadegree1polynomialwithleading coe cient1(otherwise p wouldn’thaveleadingcoe cient1.)Sowehave p(x)=(x 2)(x + d),butbecause lim x!2 p(x) x 2 =lim x!2(x + d)=2+ d =6,weareforcedtorealizethat d =4.Therefore,wehavededucedthat theonlypossibilityfor p is p(x)=(x 2)(x +4)= x2 +2x 8.
2.3.104 Becauselim x!1 f (x)=4,weknowthat f isnear4when x isnear1(butnotequalto1).Itfollows thatlim x! 1 f (x 2 )=4aswell,becausewhen x isnearbutnotequalto 1, x2 isnear1butnotequalto1. Thus f (x2 )isnear4when x isnear 1.
2.3.105 As x ! 0+ ,(1 x) ! 1 .Solim x!0+ g (x)=lim (1 x)!1 f (1 x)=lim z !1 f (z )=6. (Where z =1 x.)
As x ! 0 ,(1 x) ! 1+ .Solim x!0 g (x)=lim (1 x)!1+ f (1 x)=lim z !1+ f (z )=4. (Where z =1 x.)
2.3.106
a. Suppose0 < ✓ < ⇡ /2.Notethatsin ✓ > 0,so | sin ✓ | =sin ✓ .Also,sin ✓ = |AC | 1 ,so |AC | = | sin ✓ |
Nowsupposethat ⇡ /2 < ✓ < 0.Thensin ✓ isnegative,so | sin ✓ | = sin ✓ .Wehavesin ✓ = |AC | 1 , so |AC | = sin ✓ = | sin ✓ |
b. Suppose0 < ✓ < ⇡ /2.Because AB isthehypotenuseoftriangle ABC ,weknowthat |AB | > |AC | Wehave | sin ✓ | = |AC | < |AB | < thelengthofarc AB = ✓ = |✓ | If ⇡ /2 < ✓ < 0,wecanmakeasimilarargument.Wehave | sin ✓ | = |AC | < |AB | < thelengthofarc AB = ✓ = |✓ |
c. If0 < ✓ < ⇡ /2,wehavesin ✓ = | sin ✓ | < |✓ |,andbecausesin ✓ ispositive,wehave |✓ | 0 < sin ✓ Puttingthesetogethergives |✓ | < sin ✓ < |✓ |
If ⇡ /2 < ✓ < 0,then | sin ✓ | = sin ✓ .Fromthepreviouspart,wehave | sin ✓ | = sin ✓ < |✓ |. Therefore, |✓ | < sin ✓ .Nowbecausesin ✓ isnegativeonthisinterval,wehavesin ✓ < 0 |✓ |.Putting thesetogethergives |✓ | < sin ✓ < |✓ |.
d. If0 < ✓ < ⇡ /2,wehave
0 1 cos ✓ = |OB | |OC | = |BC | < |AB | < thelengthofarc AB = ✓ = |✓ |
For ⇡ /2 < ✓ < 0,wehave
0 1 cos ✓ = |OB | |OC | = |BC | < |AB | < thelengthofarc AB = ✓ = |✓ |.
e. Usingtheresultofpartd,wemultiplythroughby 1toobtain |✓ | cos ✓ 1 0,andthenadd1 toallparts,obtaining1 |✓ | cos ✓ 1,asdesired.
2.3.107
2.4InfiniteLimits
2.4.1 As x approaches a fromtheright,thevaluesof f (x)arenegativeandbecomearbitrarilylargein magnitude.
2.4.2 As x approaches a (fromeitherside),thevaluesof f (x)arepositiveandbecomearbitrarilylargein magnitude.
2.4.3 Averticalasymptoteforafunction f isaverticalline x = a sothatoneormoreofthefollowingare true:lim x!a f (x)= ±1,lim x!a+ f (x)= ±1
2.4.4 No.Forexample,if f (x)= x2 4and g (x)= x 2and a =2,wewouldhavelim x!2 f (x) g (x) =4,even though g (2)=0. Copyright c
2.4.5
Fromthedatagiven,itappearsthatlim x!1 f (x)= 1
2.4.6
2.4.7
lim x!2 f (x)doesnotexist.
2.4.8
lim x!4 g (x)= 1
2.4.9
x!4+ g (x)= 1
lim x!4 g (x)= 1
a. lim x! 2 h(x)= 1 b. lim x! 2+ h(x)= 1. c. lim x! 2 h(x)= 1 d. lim x!3 h(x)= 1. e. lim x!3+ h(x)= 1. f. lim x!3 h(x)doesnotexist.
2.4.10
a. lim x! 2 p(x)= 1 b. lim x! 2+ p(x)= 1 c. lim x! 2 p(x)= 1
d. lim x!3 p(x)= 1. e. lim x!3+ p(x)= 1. f. lim x!3 p(x)= 1.
2.4.11
a. lim x!0 1 x2 x = 1.
b. lim x!0+ 1 x2 x = 1.
c. lim x!1 1 x2 x = 1.
d. lim x!1+ 1 x2 x = 1. - ��� - ��� ��� ��� ��� � - �� - � � �
2.4.12
a. lim x! 2+ e x x(x +2)2 = 1
b. lim x! 2 e x x(x +2)2 = 1.
c. lim x!0 e x x(x +2)2 = 1
d. lim x!0+ e x x(x +2)2 = 1.
2.4.13 Becausethenumeratorisapproachinganon-zeroconstantwhilethedenominatorisapproaching zero,thequotientofthesenumbersisgettingbig–atleasttheabsolutevalueofthequotientisgettingbig. Thequotientisactuallyalwaysnegative,becauseanumbernear100dividedbyanegativenumberisalways negative.Thuslim x!2 f (x) g (x) = 1.
2.4.14 Usingthesamesortofreasoningasinthelastproblem–as x ! 3thenumeratorisfixedat1,but thedenominatorisgettingsmall,sothequotientisgettingbig.Itremainstoinvestigatethesignofthe quotient.As x ! 3 ,thequantity x 3isnegative,sothequotientofthepositivenumber1andthissmall negativenumberisnegative.Ontheotherhand,as x ! 3+ ,thequantity x 3ispositive,sothequotient of1andthisnumberispositive.Thus:lim x!3 1 x 3 = 1,andlim x!3+ 1 x 3 = 1
2.4.15 Notethatlim x!1 x2 4x +3 x2 3x +2 =lim
2 1 =2.Sothereis not avertical asymptoteat x =1.Ontheotherhand,lim x!2+ x2 4x +3 x2 3x +2 =lim x!2+ (x 3)(x 1) (x 2)(x 1) =lim x!2+ x 3 x 2 = 1,so thereisaverticalasymptoteat x =2.
x!
2.4.16 Notetheat x ! 0thenumeratorhaslimit1whilethedenominatorhaslimit0,sothequotientis growingwithoutbound.Notealsothatthedenominatorisalwayspositive,becauseforall x,cos x 1so 1 cos x 0.
2.4.17

2.4.19 Both a and b aretruestatements.
2.4.20 Both a and c aretruestatements. Copyright c
2.4.21
a. lim x!2+ 1 x 2 = 1
b. lim x!2 1 x 2 = 1
c. lim x!2 1 x 2 doesnotexist.
2.4.22
a. lim x!3+ 2 (x 3)3 = 1
b. lim x!3 2 (x 3)3 = 1.
c. lim x!3 2 (x 3)3 doesnotexist.
2.4.23
a. lim x!4+ x 5 (x 4)2 = 1
b. lim x!4 x 5 (x 4)2 = 1
c. lim x!4 x 5 (x 4)2 = 1
2.4.24
a. lim x!1+ x |x 1| = 1
b. lim x!1 x |x 1| = 1.
c. lim x!1 x |x 1| = 1
2.4.25
a. lim x!3+ (x 1)(x 2) (x 3) = 1.
b. lim x!3 (x 1)(x 2) (x 3) = 1
c. lim x!3 (x 1)(x 2) (x 3) doesnotexist.
2.4.26
a. lim x! 2+ (x 4) x(x +2) = 1
b. lim x! 2 (x 4) x(x +2) = 1
c. lim x! 2 (x 4) x(x +2) doesnotexist.
Copyright c
2.4.27
a. lim x!2+ x2 4x +3 (x 2)2 = 1.
b. lim x!2 x2 4x +3 (x 2)2 = 1
c. lim x!2 x2 4x +3 (x 2)2 = 1
2.4.28
a. lim x! 2+ x3 5x2 +6x x4 4x2 =lim x! 2+ x(x 2)(x 3) x2 (x 2)(x +2) =lim x! 2+ x 3 x(x +2) = 1
b. lim x! 2 x3 5x2 +6x x4 4x2 =lim x! 2 x(x 2)(x 3) x2 (x 2)(x +2) =lim x! 2 x 3 x(x +2) = 1
c. Becausethetwoone-sidedlimitsdi↵er,lim x! 2 x3 5x2 +6x x4 4x2 doesnotexist.
d. lim x!2 x3 5x2 +6x x4 4x2 =lim x!2 x 3 x(x +2) = 1 8
2.4.29
a. lim x!2+ 1 px(x 2) = 1.
b. lim x!2 1 px(x 2) doesnotexist.Notethatthedomainofthefunctionis( 1, 0) [ (2, 1).
c. lim x!2 1 px(x 2) doesnotexist.
2.4.30
a. lim x!1+ x 3 px2 5x +4 doesnotexist.Notethat x2 5x +4=(x 4)(x 1)sothedomainofthefunction is( 1, 1) [ (4, 1).
b. ]lim x!1 x 3 px2 5x +4 = 1
c. lim x!1 x 3 px2 5x +4 doesnotexist.
2.4.31
a. lim x!0 x 3 x4 9x2 =lim x!0 x 3 x2 (x 3)(x +3) =lim x!0 1 x2 (x +3) = 1
b. lim x!3 x 3 x4 9x2 =lim x!3 x 3 x2 (x 3)(x +3) =lim x!3 1 x2 (x +3) = 1 54
c. lim x! 3 x 3 x4 9x2 =lim x! 3 x 3 x2 (x 3)(x +3) =lim x! 3 1 x2 (x +3) ,whichdoesnotexist.
2.4.32
a. lim x!0 x 2 x5 4x3 =lim x!0 x 2 x3 (x 2)(x +2) =lim x!0 1 x3 (x +2) ,whichdoesnotexist.
Copyright c 2019PearsonEducation,Inc.
b. lim x!2 x 2 x5 4x3 =lim x!2 x 2 x3 (x 2)(x +2) =lim x!2 1 x3 (x +2) = 1 32
c. lim x! 2 x 2 x5 4x3 =lim x! 2 x 2 x3 (x 2)(x +2) =lim x! 2 1 x3 (x +2) ,whichdoesnotexist.
2.4.33 lim x!0 x3 5x2 x2 =lim x!0 x2 (x 5) x2 =lim x!0(x 5)= 5.
2.4.34 lim t!5 4t2 100 t 5 =lim t!5 4(t 5)(t +5) t 5 =lim t!5[4(t +5)]=40.
2.4.35 lim x!1+ x2 5x +6 x 1 =lim x!1+ (x 2)(x 3) x 1 = 1.(Notethatas x ! 1+ ,thenumeratorisnear2,while thedenominatorisnearzero,butispositive.Sothequotientispositiveandlarge.)
2.4.36 lim z !4 z 5 (z 2 10z +24)2 =lim z !4 z 5 (z 4)2 (z 6)2 = 1.(Notethatas z ! 4,thenumeratorisnear 1 whilethedenominatorisnearzerobutispositive.Sothequotientisnegativewithlargeabsolutevalue.)
2.4.37 lim x!6+ x 7 px 6 = 1.(Notethatas x ! 6+ thenumeratorisnear 1andthedenominatorisnear zerobutispositive.Sothequotientisnegativewithlargeabsolutevalue.)
2.4.38 lim x!2 x 1 p(x 3)(x 2) = 1.Notethatas x ! 2 thenumeratorisnear1andthedenominatoris nearzerobutispositive.Sothequotientispositivewithlargeabsolutevalue.)
2.4.39 lim ✓ !0+ csc ✓ =lim ✓ !0+ 1 sin ✓ = 1
2.4.40 lim x!0 csc x =lim x!0 1 sin x = 1.
2.4.41 lim x!0+ 10cot x =lim x!0+ 10cos x sin x = 1.(Notethatas x ! 0+ ,thenumeratorisnear 10andthe denominatorisnearzero,butispositive.Thusthequotientisanegativenumberwhoseabsolutevalueis large.)
2.4.42 lim ✓ !(⇡ /2)+ 1 3 tan ✓ =lim ✓ !(⇡ /2)+ sin ✓ 3cos ✓ = 1.(Notethatas ✓ ! (⇡ /2)+ ,thenumeratorisnear1and thedenominatorisnear0,butisnegative.Thusthequotientisanegativenumberwhoseabsolutevalueis large.)
2.4.43 lim ✓ !0 2+sin ✓ 1 cos2 ✓ = 1.(Notethatas ✓ ! 0,thenumeratorisnear2andthedenominatorisnear0, butispositive.Thusthequotientisapositivenumberwhoseabsolutevalueislarge.)
2.4.44 lim ✓ !0 sin ✓ cos2 ✓ 1 =lim ✓ !0 sin ✓ sin2 ✓ = lim ✓ !0 1 sin ✓ = 1
2.4.45
a. lim x!5 x 5 x2 25 =lim x!5 1 x +5 = 1 10 ,sothereisn’taverticalasymptoteat x =5.
b. lim x! 5 x 5 x2 25 =lim x! 5 1 x +5 = 1,sothereisaverticalasymptoteat x = 5.
c. lim x! 5+ x 5 x2 25 =lim x! 5+ 1 x +5 = 1.Thisalsoimpliesthat x = 5isaverticalasymptote,aswe alreadynotedinpartb.
Copyright c 2019PearsonEducation,Inc.
2.4.46
a. lim x!7 x +7 x4 49x2 =lim x!7 x +7 x2 (x +7)(x 7) =lim x!7 1 x2 (x 7) = 1,sothereisaverticalasymptote at x =7.
b. lim x!7+ x +7 x4 49x2 =lim x!7+ x +7 x2 (x +7)(x 7) =lim x!7+ 1 x2 (x 7) = 1.Thisalsoimpliesthatthereisa verticalasymptoteat x =7,aswealreadynotedinparta.
c. lim x! 7 x +7 x4 49x2 =lim x! 7 x +7 x2 (x +7)(x 7) =lim x! 7 1 x2 (x 7) = 1 686 .Sothereisnotavertical asymptoteat x =7.
d. lim x!0 x +7 x4 49x2 =lim x!0 x +7 x2 (x +7)(x 7) =lim x!0 1 x2 (x 7) = 1.Sothereisaverticalasymptoteat x =0.
2.4.47 f (x)= x2 9x +14 x2 5x +6 = (x 2)(x 7) (x 2)(x 3) .Notethat x =3isaverticalasymptote,while x =2appears tobeacandidatebutisn’tone.Wehavelim x!3+ f (x)=lim x!3+ x 7 x 3 = 1 andlim x!3 f (x)=lim x!3 x 7 x 3 = 1, andthuslim x!3 f (x)doesn’texist.Notethatlim x!2 f (x)=5.
2.4.48 f (x)= cos x x(x +2) hasverticalasymptotesat x =0andat x = 2.Notethatcos x isnear1 when x isnear0,andcos x isnear 0 4when x isnear 2.Thus,lim x!0+ f (x)=+1,lim x!0 f (x)= 1, lim x! 2+ f (x)= 1,andlim x! 2 f (x)= 1
2.4.49 f (x)= x +1 x3 4x2 +4x = x +1 x(x 2)2 .Thereareverticalasymptotesat x =0and x =2.Wehave
lim x!0 f (x)=lim x!0 x +1 x(x 2)2 = 1,whilelim x!0+ f (x)=lim x!0+ x +1 x(x 2)2 = 1,andthuslim x!0 f (x)doesn’t exist.
Alsowehavelim x!2 f (x)=lim x!2 x +1 x(x 2)2 = 1,whilelim x!2+ f (x)=lim x!2+ x +1 x(x 2)2 = 1,andthus lim x!2 f (x)= 1 aswell.
2.4.50 g (x)= x3 10x2 +16x x2 8x = x(x 2)(x 8) x(x 8) .Thisfunctionhasnoverticalasymptotes.
2.4.51
a. lim x!(⇡ /2)+ tan x = 1.
b. lim x!(⇡ /2) tan x = 1
c. lim x!( ⇡ /2)+ tan x = 1
d. lim x!( ⇡ /2) tan x = 1.
2.4.52
2.4.53
a. lim x!(⇡ /2)+ sec x tan x = 1
b. lim x!(⇡ /2) sec x tan x = 1.
c. lim x!( ⇡ /2)+ sec x tan x = 1
d. lim x!( ⇡ /2) sec x tan x = 1
a. False.lim x!
b. True.Forexample,lim
!
c. False.Forexample
2.4.54
2.4.55 Weareseekingafunctionwithafactorof x 1inthedenominator,butthereshouldbemorefactors of x 1inthenumerator,andthereshouldbeafactorof(x 2)2 inthedenominator.Thiswillaccomplish thedesiredresults.So
2.4.56
2.4.57 Oneexampleis f (x)= 1 x 6
2.4.58 f (x)= x2 1 (x2 1)(x2 +1) = 1 x2 +1 (for x = ±1).Therearenoverticalasymptotes,becauseforall a,
lim x!a f (x)= 1 a2 +1 .
2.4.59 f (x)= x2 3x +2 x10 x9 = (x 2)(x 1) x9 (x 1) f hasaverticalasymptoteat x =0,becauselim x!0+ f (x)= 1 (andlim x!0 f (x)= 1.)Notethatlim x!1 f (x)= 1,sothereisn’taverticalasymptoteat x =1.
2.4.60 g (x)=2 ln x2 hasaverticalasymptoteat x =0,becauselim x!0(2 ln x 2 )= 1
2.4.61 h(x)= ex (x +1)3 hasaverticalasymptoteat x = 1,because lim x! 1+ ex (x +1)3 = 1 andlim x! 1 h(x)= 1
2.4.62 p(x)=sec(⇡ x/2)= 1 cos(⇡ x/2) hasaverticalasymptoteon( 2, 2)at x = ±1.
2.4.63 g (✓ )=tan(⇡✓ /10)= sin(⇡✓ /10) cos(⇡✓ /10) hasaverticalasymptoteateach ✓ =10n +5where n isaninteger. Thisisduetothefactthatcos(⇡✓ /10)=0when ⇡✓ /10= ⇡ /2+ n⇡ where n isaninteger,whichisthesame as {✓ : ✓ =10n +5,n aninteger}.Notethatatallofthesenumberswhichmakethedenominatorzero,the numeratorisn’tzero.
2.4.64 q (s)= ⇡ s sin s hasaverticalasymptoteat s =0.Notethatthisistheonlynumberwheresin s = s.
2.4.65 f (x)= 1 px sec x = cos x px hasaverticalasymptoteat x =0.
2.4.66 g (x)= e1/x hasaverticalasymptoteat x =0,becauselim x!0+ e 1/x = 1.(Notethatas x ! 0+ , 1/x !1,so e1/x !1 aswell.)
2.4.67
a. Notethatthenumeratorofthegivenexpressionfactorsas(x 3)(x 4).Soif a =3orif a =4the limitwouldbeafinitenumber.Infact,lim x!3 (x 3)(x 4) x 3 = 1andlim x!4 (x 3)(x 4) x 4 =1.
b. Foranynumberotherthan3or4,thelimitwouldbeeither ±1.Because x a isalwayspositive as x ! a+ ,thelimitwouldbe+1 exactlywhenthenumeratorispositive,whichisfor a intheset ( 1, 3) [ (4, 1).
c. Thelimitwouldbe 1 for a intheset(3, 4).
2.4.68
a. Theslopeofthesecantlineisgivenby f (h) f (0) h = h1/3 h = h 2/3
b. lim h!0 1 3 ph2 = 1.Thistellsusthattheslopeofthetangentlineisinfinite–whichmeansthatthe tangentlineat(0, 0)isvertical.
2.4.69
a. Theslopeofthesecantlineis f (h) f (0) h = h2/3 h = h 1/3 .
b. lim h!0+ 1 h1/3 = 1,andlim h!0 1 h1/3 = 1.Thetangentlineisinfinitelysteepattheorigin(i.e.,itisa verticalline.)
Copyright c 2019PearsonEducation,Inc.
2.5LimitsatInfinity
2.5.1 As x< 0becomesarbitrarilylargeinabsolutevalue,thecorrespondingvaluesof f approach10.
2.5.2 lim x!1 f (x)= 2andlim x! 1 f (x)=4.
2.5.3 lim x!1 x 12 = 1.Notethat x12 ispositivewhen x> 0.
2.5.4 lim x! 1 3x 11 = 1.Notethat x11 isnegativewhen x< 0.
2.5.5 lim x!1 x 6 =lim x!1 1 x6 =0.
2.5.6 lim x! 1 x 11 =lim x! 1 1 x11 =0.
2.5.7 lim t!1 ( 12t 5 )=lim t!1 12 t5 =0.
2.5.8 lim x! 1 2x 8 =lim x! 1 2 x8 =0.
2.5.9 lim x!1 (3+10/x2 )=3+lim x!1 (10/x2 )=3+0=3.
2.5.10 lim x!1 (5+1/x +10/x2 )=5+lim x!1 (1/x)+lim x!1 (10/x2 )=5+0+0=5.
2.5.11 If f (x) ! 100, 000as x !1 and g (x) !1 as x !1,thentheratio f (x) g (x) ! 0as x !1.(Because eventually thevaluesof f aresmallcomparedtothevaluesof g .)
2.5.12 lim x!1 3+2x +4x2 x2 =lim x!1 3 x2 +lim x!1 2x x2 +lim x!1 4x2 x2 =0+lim x!1 2 x +lim x!1 4=0+0+4=4
2.5.13 lim t!1 e t = 1,lim t! 1 e t =0,andlim t!1 e t =0.
2.5.14 As x !1,wenotethat e 2x ! 0,whileas x ! 1,wehave e 2x !1
2.5.15 Becauselim x!1 3 1 x2 =3andlim x!1 3+ 1 x2 =3,bytheSqueezeTheoremwemusthavelim x!1 g (x)=3. Similarly,becauselim x! 1 3 1 x2 =3andlim x! 1 3+ 1 x2 =3,bytheSqueezeTheoremwemusthave lim x! 1 g (x)=3.
2.5.16 lim x! 1 g (x)=3,lim x!1 g (x)= 1,lim x! 2 g (x)= 1,lim x!2+ g (x)= 1.
2.5.17 lim ✓ !1 cos ✓ ✓ 2 =0 Notethat 1 cos ✓ 1,so 1 ✓ 2 cos ✓ ✓ 2 1 ✓ 2 .Theresultnowfollowsfromthe SqueezeTheorem.
2.5.18 Notethat 5t2 + t sin t t2 canbewrittenas5+ sin t t .Also,notethatbecause 1 sin t 1,wehave 1 t sin t t 1 t ,so sin t t ! 0as t !1 bytheSqueezeTheorem.Therefore, lim t!1 5t2 + t sin t t2 =lim t!1 ✓5+ sin t t ◆ =5+0=5.
2.5.19 lim x!1 cos x5 px =0.Notethat 1 cos x5 1,so 1 px cos x 5 px 1 px .Becauselim x!1 1 px =lim x!1 1 px = 0,wehavelim x!1 cos x5 px =0bytheSqueezeTheorem.
2.5.20 lim x! 1 ✓5+ 100 x + sin4 (x3 ) x2 ◆ =5+0+0=5.Forthislastlimit,notethat0 sin4 (x3 ) 1,so
0 sin4 (x3 ) x2 1 x2 .TheresultnowfollowsfromtheSqueezeTheorem.
2.5.21 lim x!1 (3x 12 9x 7 )= 1.
2.5.22 lim x! 1 (3x 7 + x 2 )= 1
2.5.23 lim x! 1 ( 3x 16 +2)= 1.
2.5.24 lim x! 1 (2x 8 +4x 3 )=0+lim x! 1 4x 3 = 1
2.5.25 lim x!1 (14x3 +3x2 2x) (21x3 + x2 +2x +1) · 1/x3 1/x3 =lim x!1 14+(3/x) (2/x2 ) 21+(1/x)+(2/x2 )+(1/x3 ) = 14 21 = 2 3
2.5.26 lim x!1 (9x3 + x2 5) (3x4 +4x2 ) 1/x4 1/x4 =lim x!1 (9/x)+(1/x2 ) (5/x4 ) 3+(4/x2 ) = 0 3 =0.
2.5.27 lim x! 1 (3x2 +3x) (x +1) 1/x 1/x =lim x! 1 3x +3 1+(1/x) = 1.
2.5.28 lim x!1 (x4 +7) (x5 + x2 x) · 1/x5 1/x5 =lim x!1 (1/x)+(7/x5 ) 1+(1/x3 ) (1/x4 ) = 0+0 1+0 0 =0
2.5.29 Notethatfor w> 0, w 2 = pw 4 .Wehave lim w !1 (15w 2 +3w +1) p9w 4 + w 3 1/w 2 1/pw 4 =lim w !1 15+(3/w )+(1/w 2 ) p9+(1/w ) = 15 p9 =5
2.5.30 Notethat px8 = x4 (evenfor x< 0).Wehave lim x! 1 (40x4 + x2 +5x) p64x8 + x6 · 1/x4 1/px8 =lim x! 1 40+(1/x2 )+(5/x3 )
2.5.31 Notethatfor x< 0, px2 = x.Wehave lim x! 1 p16x2 + x x p1/x2 1/x
2.5.32 Notethat x2 = px4 forall x.Wehave
2.5.33 lim x!1
dividethenumeratoranddenominatorby x2 togive
2.5.34 lim x! 1 (x + px2 5x) 1 (x px2 5x) (x px2 5x) =lim x! 1 x2 (x2 5x) x px2 5x =lim x! 1 5x x px2 5x Nowdivide thenumeratoranddenominatorby x (andrecallthatfor x< 0wehave px2 = x)giving
2.5.35 Notethatbecause 1 sin x 1,wehave 1 ex sin x ex 1 ex .Thenbecauselim x!1 ±1 ex =0,the SqueezeTheoremtellsusthatlim x!1 sin x ex =0.
2.5.36 Notethatbecause 1 cos x 1,wehave
x cos
x .Then3 ex
x +3 ex +3. Becauselim x! 1 3 ex =3andlim x! 1 ex +3=3,theSqueezeTheoremtellsusthatlim x! 1 ex cos x +3=3.
2.5.37 lim x!1 4x 20x +1 =lim x!1 4x 20
asymptote.
x
.Thisshowsthatthecurveisalso asymptotictotheasymptoteinthenegativedirection.
2.5.38 lim x
horizontalasymptote.
x
asymptotictotheasymptoteinthenegativedirection.
2.5.39 lim x!1 (6x2 9x +8) (3x2 +2) ·
=3.Thus,theline
=2.Similarlylim x! 1 f (x)=2.The line y =2isahorizontalasymptote.
2.5.40 lim x!1 (12x8 3) (3x8 2x7 ) · 1/x8 1/x8 =lim x!1 12 3/x8 3 2/x = 12 0 3 0 =4.Similarlylim x! 1 f (x)=4.Theline y =4 isahorizontalasymptote.
2.5.41 lim x!1 3x3 7 x4 +5x2 =lim x!1 3x3 7 x4 +5x2 3/x4 1/x4 =lim x!1 1/x (7/x4 ) 1+(5/x2 ) = 0 0 1+0 =0.Thus,theline y =0(the x-axis)isahorizontalasymptote. lim x! 1 3x3 7 x4 +5x2 =lim x! 1 3x3 7 x4 +5x2 · 3/x4 1/x4 =lim x! 1 1/x (7/x4 ) 1+(5/x2 ) = 0 0 1+0 =0.Thus,thecurveis asymptotictothe x-axisinthenegativedirectionaswell.
2.5.42 lim x!1 (2x +1) (3x4 2) 1/x4 1/x4 =lim x!1
3 +1/x4 3
= 0+0 3
=0.Similarlylim x! 1 f (x)=0.Theline y =0is ahorizontalasymptote.
2.5.43 lim x!1 (40x5 + x2 ) (16x4 2x) 1/x4 1/x4 =lim x!1 40x +1/x2 16 2/x3 = 1.Similarlylim x! 1 f (x)= 1.Thereareno horizontalasymptotes.
2.5.44 Notethatforall x, px4 = x2 .Then lim x!±1 (6x2 +1) p4x4 +3x +1 1/x2 p1/x4 =lim x!±1 6+(1/x2 ) p4+(3/x3 )+(1/x4 ) = 6 p4 =3 So y =3istheonlyhorizontalasymptote. Copyright c 2019PearsonEducation,Inc.
2.5.45 Notethatforall x, px8 = x4 .Thenlim x!±1 1 (2x4 p4x8 9x4 (2x4 + p4x8 9x4 ) (2x4 + p4x8 9x4 ) =lim x!±1 (2x4 + p4x8 9x4 ) (4x
So y = 4 9 istheonlyhorizontalasymptote.
2.5.46 Firstnotethat px2 = x for x> 0,while px2 = x for x< 0.Thenlim x!1 f (x)canbewrittenas
However,lim x! 1 f (x)canbewrittenas
2.5.47 Firstnotethat px6 = x3 if x> 0,but px6 = x3 if x< 0.Wehavelim x!1 4x3 +1 (2x3 + p16x6 +1)
. However,lim x! 1 4x3 +1 (2x3 + p16
=
2 = 2. So y = 2 3 isahorizontalasymptote(as x !1)and y = 2isahorizontalasymptote(as x ! 1).
2.5.48 Firstnotethatfor x> 0wehave px2 = x,butfor x< 0,wehave x = px2 .Thenwehavelim x!1 x px2 9x =lim x!1 (x px2 9x)(
Ontheotherhand,lim x! 1 x px2 9x =lim x! 1 (x px2 9x)(x + px2 9x) x + px2 9x = lim x! 1 9x (x + px2 9x) 1/x 1/x =lim x! 1 9 1+ p1 9/x = 1. Thelastequalsignfollowsbecause p1 9/x> 1butisapproaching1as x ! 1.Wecanthereforeconcludethat y = 9 2 istheonlyhorizontal asymptote,andisanasymptoteas x !1
2.5.49 Firstnotethat 3 px6 = x2 and px4 = x2 forall x (evenwhen x< 0.)Wehavelim x!1 3 px6 +8 (4x2 + p3x4 +1) 1/x2 1/x2 =lim x!1 3 p1+8/x6 4+ p3+1/x4 = 1 4+ p3+0 = 1 4p3 Thecalculationas x ! 1 issimilar.So y = 1 4p3 isahorizontalasymptote.
2.5.50 Firstnotethat px2 = x for x> 0and px2 = x for x< 0. Wehave lim x!1 4x(3x p9x2 +1)=lim x!1 4x(3x p9x2 +1)(3x + p9x2 +1) 3x + p9x2 +1 =lim x!1 (4x)( 1) (3x + p9x2 +1) 1/x 1/x =lim x!1 4 3+ p9+1/x2 = 4 6 = 2 3 Copyright c 2019PearsonEducation,Inc.
Moreover,as x ! 1 wehave lim x! 1 4x(3x p9x2 +1)=lim x! 1 4x(3x p9x2 +1)(3x + p9x2 +1) 3x + p9x2 +1 =lim x! 1 (4x)( 1) (3x + p9x2 +1) 1/x 1/x =lim x! 1 4 3 p9+1/x2 = 1.
Notethatthislastequalityisduetothefactthatthenumeratoristheconstant 4andthedenominator isapproachingzero(fromtheleft)sothequotientispositiveandisgettinglarge. So y = 2 3 istheonlyhorizontalasymptote.
2.5.51
a. f (x)= x2 3 x +6 = x 6+ 33 x +6 .Theobliqueasymptoteof f is y = x 6.
b.
Becauselim x! 6+ f (x)= 1,thereisaverticalasymptoteat x = 6.Notealsothat lim x! 6 f (x)= 1
2.5.52
a. f (x)= x2 1 x +2 = x 2+ 3 x +2 .Theobliqueasymptoteof f is y = x 2.
b. Becauselim x! 2+ f (x)= 1,thereisaverticalasymptoteat x = 2.Notealsothat lim x! 2 f (x)= 1.
2.5.53
a. f (x)= x2 2x +5 3x 2 =(1/3)x 4/9+ 37 9(3x 2) .Theobliqueasymptoteof f is y =(1/3)x 4/9.
Copyright c 2019PearsonEducation,Inc.
b. Becauselim x!(2/3)+ f (x)= 1,thereisaverticalasymptoteat x =2/3.Notealsothat lim x!(2/3) f (x)= 1
2.5.54
a. f (x)= 5x2 4 5x 5 = x +1+ 1 5x 5 .Theobliqueasymptoteof f is y = x +1.
b. Becauselim x!1+ f (x)= 1,thereisaverticalasymptoteat x =1.Notealsothatlim x!1 f (x)= 1.
2.5.55
a. f (x)= 4x3 +4x2 +7x +4 1+ x2 =4x +4+ 3x 1+ x2 .Theobliqueasymptoteof f is y =4x +4.
b. Therearenoverticalasymptotes.
2.5.56
a. f (x)= 3x2 2x +5 3x +4 = x 2+ 13 3x +4 .Theobliqueasymptoteof f is y = x 2.
Copyright c 2019PearsonEducation,Inc.
b. Becauselim x!( 4/3)+ f (x)= 1,thereisaverticalasymptoteat x = 4/3.Notealsothat
lim x!( 4/3) f (x)= 1
2.5.57
lim x!1 ( 3e x )= 3 0=0.lim x! 1 ( 3e x )= 1
2.5.58
lim x!1 2x = 1.lim x! 1 2x =0.
2.5.59
lim x!1 (1 ln x)= 1.lim x!0+ (1 ln x)= 1
2.5.60
lim x!1 | ln x| = 1.lim x!0+ | ln x| = 1.
2.5.61
y =sin x hasnoasymptotes.lim x!1 sin x and lim x! 1 sin x donotexist.
2.5.62
2.5.63
a. False.Forexample,thefunction y = sin x x onthe domain[1, 1)hasahorizontalasymptoteof y =0, anditcrossesthe x-axisinfinitelymanytimes.
b. False.If f isarationalfunction,andiflim x!1 f (x)= L =0,thenthedegreeofthepolynomialinthe numeratormustequalthedegreeofthepolynomialinthedenominator.Inthiscase,bothlim x!1 f (x) andlim x! 1 f (x)= an bn where an istheleadingcoe cientofthepolynomialinthenumeratorand bn is theleadingcoe cientofthepolynomialinthedenominator.Inthecasewherelim x!1 f (x)=0,then thedegreeofthenumeratorisstrictlylessthanthedegreeofthedenominator.Thiscaseholdsfor lim x! 1 f (x)=0aswell.
c. True.Thereareonlytwodirectionswhichmightleadtohorizontalasymptotes:therecouldbeoneas x !1 andtherecouldbeoneas x ! 1,andthosearetheonlypossibilities.
d. False.Thelimitofthedi↵erenceoftwofunctionscanbewrittenasthedi↵erenceofthelimitsonly whenbothlimitsexist.Itisthecasethatlim x!1 (x 3 x)= 1
2.5.64 lim t!1 p(t)=lim t!1 2500 t +1 =0 Thesteadystateexists.Thesteadystatevalueis0.
2.5.65 lim t!1 p(t)=lim t!1 3500t t +1 =3500. Thesteadystateexists.Thesteadystatevalueis3500.
2.5.66 lim t!1 m(t)=lim t!1 200(1 2 t )=200 Thesteadystateexists.Thesteadystatevalueis200.
2.5.67 lim t!1 v (t)=lim t!1 1000e 0 065t = 1. Thesteadystatedoesnotexist.
2.5.68 lim t!1 p(t)=lim t!1 1500 3+2e 1t = 1500 3 =500 Thesteadystateexists.Thesteadystatevalueis500.
Copyright c 2019PearsonEducation,Inc.
2.5.69 lim t!1 a(t)=lim t!1 2 ✓ t +sin t t ◆ =lim t!1 2 ✓1+ sin t t ◆ =2. Thesteadystateexists.Thesteadystate valueis2.
2.5.70
a. lim x!1 x2 4x +3 x 1 = 1,andlim x! 1 x2 4x +3 x 1 = 1.Therearenohorizontalasymptotes.
b. Itappearsthat x =1isacandidatetobeaverticalasymptote,butnotethat f (x)= x2 4x +3 x 1 = (x 1)(x 3) x 1 .Thuslim x!1 f (x)=lim x!1(x 3)= 2.So f hasnoverticalasymptotes.
2.5.71
a. lim x!1 2x3 +10x2 +12x x3 +2x2 (1/x3 ) (1/x3 ) =lim x!1 2+10/x +12/x2 1+2/x =2.Similarly,lim x! 1 f (x)=2.Thus, y =2 isahorizontalasymptote.
b. Notethat f (x)= 2x(x +2)(x +3) x2 (x +2) .Solim x!0+ f (x)=lim x!0+ 2(x +3) x = 1,andsimilarly,lim x!0 f (x)= 1.Thereisaverticalasymptoteat x =0.Notethatthereisnoasymptoteat x = 2because lim x! 2 f (x)= 1.
2.5.72
a. Wehavelim x!1 p16x4 +64x2 + x2 2x2 4 (1/x2 ) (1/x2 ) =lim x!1 p16+64/x2 +1 2 4/x2 = 5 2 .Similarly,lim x! 1 f (x)= 5 2 . So y = 5 2 isahorizontalasymptote.
b. lim x!p2+ f (x)=lim x! p2 f (x)= 1,andlim x!p2 f (x)=lim x! p2+ f (x)= 1 sothereareverticalasymptotesat x = ±p2.
2.5.73
a. Wehavelim x!1 3x4 +3x3 36x2 x4 25x2 +144 (1/x4 ) (1/x4 ) =lim x!1 3+3/x 36/x2 1 25/x2 +144/x4 =3.Similarly,lim x! 1 f (x)=3. So y =3isahorizontalasymptote.
b. Notethat f (x)= 3x2 (x +4)(x 3) (x +4)(x 4)(x +3)(x 3) .Thus,lim x! 3+ f (x)= 1 andlim x! 3 f (x)= 1.Also, lim x!4 f (x)= 1 andlim x!4+ f (
2.5.74
a. Firstnotethat
)= 1.Thusthereareverticalasymptotesat x = 3and x =4.
4 = 1 8 Similarly,thelimitas x ! 1 of f (x)is 1 8 aswell.So y = 1 8 isahorizontalasymptote. b. f hasnoverticalasymptotes. Copyright c
2.5.75
a. lim x!1 x2 9 x2 3x (1/x2 ) (1/x2 ) =lim x!1 1 9/x2 1 3/x =1 Asimilarresultholdsas x ! 1.So y =1isahorizontal asymptote.
b. Becauselim x!0+ f (x)=lim x!0+ x +3 x = 1 andlim x!0 f (x)= 1,thereisaverticalasymptoteat x =0.
2.5.76
a. lim x!±1 x4 1 x2 1 =lim x!±1 (x2 1)(x2 +1) x2 1 =lim x!±1 x 2 +1= 1.Therearenohorizontalorslantasymptotes.
b. Itappearsthat x = ±1maybecandidatesforverticalasymptotes,butbecause x4 1 x2 1 = (x2 1)(x2 +1) x 1 = x 2 +1 for x = ±1therearenoverticalasymptoteseither.
2.5.77
a. Firstnotethat f (x)canbewrittens px2 +2x +6 3 x
= (x 1)(x +3) (x 1)(px2 +2x +6+3) . Thus lim x!1 f (x)=lim x!1 x +3 px2 +2x +6+3 1/x 1/x =lim x!1 1+3/x p1+2/x +6/x2
Usingthefactthat px2 = x for x< 0,wehavelim x! 1 f (x)= 1.Thusthelines y =1and y = 1 arehorizontalasymptotes.
b. f hasnoverticalasymptotes.
2.5.78
a. Notethatwhen x islarge |1 x2 | = x2 1.Wehavelim x!1 |1 x2 | x2 + x =lim x!1 x2 1 x2 + x =1.Likewise lim x! 1 |1 x2 | x2 + x =lim x! 1 x2 1 x2 + x =1.Sothereisahorizontalasymptoteat y =1.
b. Notethatwhen x isnear0,wehave |1 x2 | =1 x2 =(1 x)(1+ x).Solim x!0+ f (x)=lim x!0+ 1 x x = 1
Similarly,lim x!0 f (x)= 1.Thereisaverticalasymptoteat x =0.
2.5.79
a. Notethatwhen x> 1,wehave |x| = x and |x 1| = x 1.Thus f (x)=(px px 1) px + px 1 px + px 1 = 1 px + px 1
Thuslim x!1 f (x)=0. When x< 0,wehave |x| = x and |x 1| =1 x.Thus f (x)=(p x p1 x) p x + p1 x p x + p1 x = 1 p x + p1 x
Thus,lim x! 1 f (x)=0.Thereisahorizontalasymptoteat y =0.
Copyright c 2019PearsonEducation,Inc.
b. f hasnoverticalasymptotes.
2.5.80
a. lim x!1 (3ex +10) ex 1/ex 1/ex =lim x!1 3+(10/ex ) 1 =3.Ontheotherhand,lim x! 1
x +10 ex 1/ex 1/ex = lim x! 1 3+(10e x ) 1 = 1 y =3isahorizontalasymptoteas x !1
b. f hasnoverticalasymptotes.
2.5.81
a. lim x!1 cos x +2px px =lim x!1 ✓2+ cos x px ◆ =2. y =2isahorizontalasymptote.
b. lim x!0+ cos x +2px px = 1.andlim x!0 cos x +2px px doesnotexist. x =0isaverticalasymptote.
2.5.82
a. lim x!1 cot 1 x =0.
b. lim x! 1 cot 1 x = ⇡
2.5.83
a. lim x!1 sec 1 x = ⇡ /2.
b. lim x! 1 sec 1 x = ⇡ /2.
2.5.84
a. lim x!1 ex + e x 2 = 1 lim x! 1 ex + e x 2 = 1.
b. cosh(0)= e 0 +e 0 2 = 1+1 2 =1.
2.5.85
a. lim x!1 ex e x 2 = 1. lim x! 1 ex e x 2 = 1 Copyright c 2019PearsonEducation,Inc.
b. sinh(0)= e 0 e 0 2 = 1 1 2 =0
2.5.86
Onepossiblesuchgraphis:
2.5.87
Onepossiblesuchgraphis:

2.5.88 lim n!1 f (n)=lim n!1 4 n =0
2.5.89 lim n!1 f (n)=lim n!1 n 1 n =lim n!1 [1 (1/n)]=1
2.5.90 lim n!1 f (n)=lim n!1 n2 n +1 =lim n!1 n 1+1/n = 1,sothelimitdoesnotexist. Copyright c 2019PearsonEducation,Inc.
2.5.91 lim n!1 f (n)=lim n!1 n +1 n2 =lim n!1 [1/n +1/n2 ]=0
2.5.92
a. Suppose m = n
= an bn .
b. Suppose m<n
2.5.93
a. No.If m = n,therewillbeahorizontalasymptote,andif m = n +1,therewillbeaslantasymptote.
b. Yes.Forexample, f (x)= x4 px6 +1 hasslantasymptote y = x as x !1 andslantasymptote y = x as x ! 1.
2.5.94
a. lim x!1
b. lim x! 1 4ex +2e2x 8ex + e2x =lim x! 1 (4ex +2e2x ) (8ex + e2x ) 1/ex 1/ex =lim x! 1 4+2ex 8+ ex = 1 2
c. Thelines y =2and y = 1 2 arehorizontal asymptotes.
2.5.95 lim x!1 2ex +3 ex +1 =lim x!1 (2ex +3) (ex +1) 1/ex 1/ex =lim x!1
horizontalasymptote.Alsolim x! 1
2.5.96 lim x!1 3e5x +7e6x 9e5x +14e6x =lim x!1
horizontalasymptote.Also,lim x! 1
So y = 1 3 isahorizontalasymptote.
/ex 1+1/ex = 2+0 1+0 =2.Thustheline y =2isa
=3,so y =3isahorizontalasymptote.
2.5.97 Usingtherulesoflogarithms, f (x)= 6ln x 3ln x 1 .Thedomainof f is(0, 3 pe) [ ( 3 pe, 1).Wefirst examinetheendbehaviorofthefunction.Observethatlim x!1 6ln x 3ln x 1 =lim x!1 6 3 (1/ ln x) = 6 3 =2and
lim x!0+ 6ln x 3ln x 1 =lim x!0+ 6 3 (1/ ln x) = 6 3 =2.Sothefunctionhasahorizontalasymptoteof y =2anditis
undefinedat x =0buthaslimit2as x approaches0fromtheright.Noticealsothatas x ! 3 pe + ,6ln x ! 2 and3ln x 1ispositiveandapproaches0.Therefore,lim x! 3 pe+ 6ln x 3ln x 1 = 1 andbyasimilarargument,
lim x! 3 pe 6ln x 3ln x 1 = 1
2.6Continuity
2.6.1
a. a(t)isacontinuousfunctionduringthetimeperiodfromwhenshejumpsfromtheplaneandwhen shetouchesdownontheground,becauseherpositionischangingcontinuouslywithtime.
b. n(t)isnotacontinuousfunctionoftime.Thefunction“jumps”atthetimeswhenaquartermustbe added.
c. T (t)isacontinuousfunction,becausetemperaturevariescontinuouslywithtime.
d. p(t)isnotcontinuous–itjumpsbywholenumberswhenaplayerscoresapoint.
2.6.2 Inorderfor f tobecontinuousat x = a,thefollowingconditionsmusthold:
• f mustbedefinedat a (i.e. a mustbeinthedomainof f ),
• lim x!a f (x)mustexist,and
• lim x!a f (x)mustequal f (a).
2.6.3 Afunction f iscontinuousonaninterval I ifitiscontinuousatallpointsintheinteriorof I ,andit mustbecontinuousfromtherightattheleftendpoint(iftheleftendpointisincludedin I )anditmustbe continuousfromtheleftattherightendpoint(iftherightendpointisincludedin I .)
2.6.4 Thewords“hole”and“break”arenotmathematicallyprecise,soastrictmathematicaldefinitioncan notbebasedonthem.
2.6.5 f isdiscontinuousat x =1,at x =2,andat x =3.At x =1, f (1)isnotdefined(sothefirstcondition isviolated).At x =2, f (2)isdefinedandlim x!2 f (x)exists,butlim x!2 f (x) = f (2)(socondition3isviolated). At x =3,lim x!3 f (x)doesnotexist(socondition2isviolated).
2.6.6 f isdiscontinuousat x =1,at x =2,andat x =3.At x =1,lim x!1 f (x) = f (1)(socondition3is violated).At x =2,lim x!2 f (x)doesnotexist(socondition2isviolated).At x =3, f (3)isnotdefined(so condition1isviolated).
2.6.7 f isdiscontinuousat x =1,at x =2,andat x =3.At x =1,lim x!1 f (x)doesnotexist,and f (1)isnot defined(soconditions1and2areviolated).At x =2,lim x!2 f (x)doesnotexist(socondition2isviolated).
At x =3, f (3)isnotdefined(socondition1isviolated).
2.6.8 f isdiscontinuousat x =2,at x =3,andat x =4.At x =2,lim x!2 f (x)doesnotexist(socondition2 isviolated).At x =3, f (3)isnotdefinedandlim x!3 f (x)doesnotexist(soconditions1and2areviolated). At x =4,lim x!4 f (x) = f (4)(socondition3isviolated).
2.6.9
a. Afunction f iscontinuousfromtheleftat x = a if a isinthedomainof f ,andlim x!a f (x)= f (a).
b. Afunction f iscontinuousfromtherightat x = a if a isinthedomainof f ,andlim x!a+ f (x)= f (a).
2.6.10 If f isright-continuousat x =3,then f (3)=lim x!3+ f (x)=6,so f (3)=6.
2.6.11 f iscontinuouson(0, 1),on(1, 2),on(2, 3],andon(3, 4).Itiscontinuousfromtheleftat3.
2.6.12 f iscontinuouson(0, 1),on(1, 2],on(2, 3),andon(3, 4).Itiscontinuousfromtheleftat2.
2.6.13 f iscontinuouson[0, 1),on(1, 2),on[2, 3),andon(3, 5).Itiscontinuousfromtherightat2.
2.6.14 f iscontinuouson(0, 2],on(2, 3),on(3, 4),andon(4, 5).Itiscontinuousfromtheleftat2.
2.6.15 Thedomainof f (x)= ex x is( 1, 0) [ (0, 1),and f iscontinuouseverywhereonthisdomain.
2.6.16 Thefunctioniscontinuouson(0, 15],on(15, 30],on(30, 45],andon(45, 60].
2.6.17 Thenumber 5isnotinthedomainof f ,becausethedenominatorisequalto0when x = 5. Thus,thefunctionisnotcontinuousat 5.
2.6.18 Thefunctionisdefinedat5,infact f (5)= 50+15+1 25+25 = 66 50 = 33 25 .Also,lim x!5 f (x)=lim x!5 2x2 +3x +1 x2 +5x =
33 25 = f (5).Thefunctioniscontinuousat a =5.
2.6.19 f isdiscontinuousat1,because1isnotinthedomainof f ; f (1)isnotdefined.
Copyright c 2019PearsonEducation,Inc.
2.6.20 g isdiscontinuousat3because3isnotinthedomainof g ; g (3)isnotdefined.
2.6.21 f isdiscontinuousat1,becauselim x!1 f (x) = f (1).Infact, f (1)=3,butlim x!1 f (x)=2.
2.6.22 f iscontinuousat3,becauselim x!3 f (x)= f (3).Infact, f (3)=2andlim x!3 f (x)=lim x!3 (x 3)(x 1) x 3 = lim x!3(x 1)=2.
2.6.23 f isdiscontinuousat4,because4isnotinthedomainof f ; f (4)isnotdefined.
2.6.24 f isdiscontinuousat 1becauselim x! 1 f (x)=lim x! 1 x(x +1) x +1 =lim x! 1 x = 1 = f ( 1)=2.
2.6.25 Because p isapolynomial,itiscontinuousonallof R =( 1, 1).
2.6.26 Because g isarationalfunction,itiscontinuousonitsdomain,whichisallof R =( 1, 1).(Because x2 + x +1hasnorealroots.)
2.6.27 Because f isarationalfunction,itiscontinuousonitsdomain.Itsdomainis( 1, 3) [ ( 3, 3) [ (3, 1).
2.6.28 Because s isarationalfunction,itiscontinuousonitsdomain.Itsdomainis( 1, 1) [ ( 1, 1) [ (1, 1).
2.6.29 Because f isarationalfunction,itiscontinuousonitsdomain.Itsdomainis( 1, 2) [ ( 2, 2) [ (2, 1).
2.6.30 Because f isarationalfunction,itiscontinuousonitsdomain.Itsdomainis( 1, 2) [ ( 2, 2) [ (2, 1).
2.6.31 Because f (x)= x8 3x6 1 40 isapolynomial,itiscontinuouseverywhere,includingat0.Thus lim x!0 f (x)= f (0)=( 1)40 =1.
2.6.32 Because f (x)= ✓ 3 2x5 4x2 50 ◆4 isarationalfunction,itiscontinuousatallpointsinitsdomain, includingat x =2.Solim x!2 f (x)= f (2)= 81 16 .
2.6.33 Because x3 2x2 8x = x(x2 2x 8)= x(x 4)(x +2),wehave(aslongas x =4) r x3 2x2 8x x 4 = px(x +2).
Thus,lim x!4 r x3 2x2 8x x 4 =lim x!4 px(x +2)= p24,usingTheorem2.12andthefactthatthesquareroot isacontinuousfunction.
2.6.34 Notethat t 4=(pt 2)(pt +2),sofor t =4,wehave t 4 pt 2 = pt +2
Thus,lim t!4 t 4 pt 2 =lim t!4(pt +2)=4.ThenusingTheorem2.12andthefactthatthetangentfunctionis continuousat4,wehavelim t!4 tan ✓ t 4 pt 2 ◆ =tan ✓ lim t!4 t 4 pt 2 ◆ =tan4.
Copyright c 2019PearsonEducation,Inc.
2.6.35 Because f (x)= ⇣ x+5 x+2 ⌘4 isarationalfunction,itiscontinuousatallpointsinitsdomain,including at x =1.Thuslim x!1 f (x)= f (1)=16.
2.6.36 lim x!1 ✓ 2x +1 x ◆3 =lim x!1 (2+(1/x))3 =23 =8.
2.6.37 Notethat
!5
2.6.38 Firstnotethat
Thenbecause f (x)= x1/3 iscontinuousat1/8,wehavelim x!0 ✓ x p16x +1 1
Theorem2.12.
2.6.39
a. f isdefinedat1.Wehave f (1)=12 +(3)(1)=4.Toseewhetherornotlim x!1 f (x)exists,weinvestigate thetwoone-sidedlimits.lim x!1 f (x)=lim x!1 2x =2,andlim x!1+ f (x)=lim x!1+ (x 2 +3x)=4,solim x!1 f (x) doesnotexist.Thus f isdiscontinuousat x =1.
b. f iscontinuousfromtheright,becauselim x!1+ f (x)=4= f (1).
c. f iscontinuouson( 1, 1)andon[1, 1).
2.6.40
a. f isdefinedat0,infact f (0)=1.However,lim x!0 f (x)=lim x!0 (x 3 +4x +1)=1,whilelim x!0+ f (x)= lim x!0+ 2x 3 =0.Solim x!0 f (x)doesnotexist.
b. f iscontinuousfromtheleftat0,becauselim x!0 f (x)= f (0)=1.
c. f iscontinuouson( 1, 0]andon(0, 1).
2.6.41 f isdefinedandiscontinuouson( 1, 5].Itiscontinuousfromtheleftat5.
2.6.42 f isdefinedandiscontinuouson[ 5, 5].Itiscontinuousfromtherightat 5andiscontinuous fromtheleftat5.
2.6.43 f iscontinuouson( 1, p8]andon[p8, 1).Itiscontinuousfromtheleftat p8andfromthe rightat p8.
2.6.44 g (x)= px2 3x +2= p(x 1)(x 2)isdefinedandiscontinuouson( 1, 1]andon[2, 1).Itis continuousfromtheleftat1andfromtherightat2.
2.6.45 Because f isthecompositionoftwofunctionswhicharecontinuouson( 1, 1),itiscontinuouson ( 1, 1).
Copyright c 2019PearsonEducation,Inc.
2.6.46 f iscontinuouson( 1, 1]andon[1, 1).Itiscontinuousfromtheleftat 1andfromtheright at1.
2.6.47 Because f isthecompositionoftwofunctionswhicharecontinuouson( 1, 1),itiscontinuouson ( 1, 1).
2.6.48 f iscontinuouson[1, 1).Itiscontinuousfromtherightat1.
2.6.49 lim x!2 r 4x +10 2x 2 = r 18 2 =3.
2.6.50 lim x! 1 ⇣x 2 4+ 3 px2 9⌘ =( 1)2 4+ 3 p( 1)2 9= 3+ 3 p 8= 3+ 2= 5.
2.6.51 lim x!⇡ cos2 x +3cos x +2 cos x +1 =lim x!⇡ (cos x +1)(cos x +2) cos x +1 =lim x!⇡ (cos x +2)=1.
2.6.52 lim x!3⇡ /2 sin2 x +6sin x +5 sin2 x 1 =lim x!3⇡ /2 (sin x +5)(sin x +1) (sin x 1)(sin x +1) =lim x!3⇡ /2 sin x +5 sin x 1 = 4 2 = 2
2.6.53 lim x!3 px2 +7= p9+7=4.
2.6.54 lim t!2 t2 +5 1+ pt2 +5 = 9 1+ p9 = 9 4 .
2.6.55 lim x!⇡ /2 sin x 1 psin x 1 =lim x!⇡ /2 (psin x +1)=2.
2.6.56 lim ✓ !0 1 2+sin ✓ 1 2 sin ✓ · (2)(2+sin ✓ ) (2)(2+sin ✓ ) =lim ✓ !0 2 (2+sin ✓ ) (sin ✓ )(2)(2+sin ✓ ) =lim ✓ !0 1 2(2+sin ✓ ) = 1 4
2.6.57 lim x!0 cos x 1 sin2 x =lim x!0 cos x 1 1 cos2 x =lim x!0 cos x 1 (1 cos x)(1+cos x) =lim x!0 1 1+cos x = 1 2
2.6.58 lim x!0+ 1 cos2 x sin x =lim x!0+ sin2 x sin x =lim x!0+ sin x =0.
2.6.59 lim x!0 e4x 1 ex 1 =lim x!0 (e2x +1)(e2x 1) ex 1 =lim x!0 (e2x +1)(ex 1)(ex +1) ex 1 = lim x!0(e 2x +1)(ex +1)=2 2=4
2.6.60 lim x!e2 ln2 x 5ln x +6 ln x 2 =lim x!e2 (ln x 2)(ln x 3) ln x 2 =lim x!e2 (ln x 3)= 1.
2.6.61 f (x)=csc x isn’tdefinedat x = k ⇡ where k isaninteger,soitisn’tcontinuousatthosepoints.Soitis continuousonintervalsoftheform(k ⇡ , (k +1)⇡ )where k isaninteger.lim x!⇡ /4 csc x = p2.lim x!2⇡ csc x = 1
2.6.62 f isdefinedon[0, 1),anditiscontinuousthere,becauseitisthecompositionofcontinuousfunctions definedonthatinterval.lim x!4 f (x)= e 2 .lim x!0 f (x)doesnotexist—butlim x!0+ f (x)= e 0 =1,because f is continuousfromtheright.
2.6.63 f isn’tdefinedforanynumberoftheform ⇡ /2+ k ⇡ where k isaninteger,soitisn’tcontinuous there.Itiscontinuousonintervalsoftheform(⇡ /2+ k ⇡ , ⇡ /2+(k +1)⇡ ),where k isaninteger. lim x!⇡ /2 f (x)= 1.lim x!4⇡ /3 f (x)= 1 p3/2 1/2 = p3 2.
Copyright c 2019PearsonEducation,Inc.
2.6.64 Thedomainof f is(0, 1],and f iscontinuousonthisintervalbecauseitisthequotientoftwo continuousfunctionsandthefunctioninthedenominatorisn’tzeroonthatinterval.
lim x!1 f (x)=lim x!1 ln x sin 1 (x) = ln1 sin 1 (1) = 0 ⇡ /2 =0.
2.6.65 Thisfunctioniscontinuousonitsdomain,whichis( 1, 0) [ (0, 1).
lim x!0 f (x)=lim x!0 ex 1 ex = 1,whilelim x!0+ f (x)=lim x!0+ ex 1 ex = 1
2.6.66 Thisfunctioniscontinuousonitsdomain,whichis( 1, 0) [ (0, 1).
lim x!0 f (x)=lim x!0 e2x 1 ex 1 =lim x!0 (ex +1)(ex 1) ex 1 =lim x!0(ex +1)=2.
2.6.67
a. Notethat f (x)=2x3 + x 2iscontinuouseverywhere,soinparticularitiscontinuouson[ 1, 1]. Notethat f ( 1)= 5 < 0and f (1)=1 > 0.Because0isanintermediatevaluebetween f ( 1)and f (1),theIntermediateValueTheoremguaranteesanumber c between 1and1where f (c)=0.
b. Usingagraphingcalculatorandacomputeralgebrasystem,weseethattherootof f isabout 0 835
2.6.68
a. Notethat f (x)= px4 +25x3 +10 5iscontinuousonitsdomain,soinparticularitiscontinuous on[0, 1].Notethat f (0)= p10 5 < 0and f (1)=6 5=1 > 0.Because0isanintermediate valuebetween f (0)and f (1),theIntermediateValueTheoremguaranteesanumber c between0and 1where f (c)=0.
b. Usingagraphingcalculatorandacomputeralgebrasystem,weseetherootof f (x)isatabout 834.
2.6.69
a. Notethat f (x)= x3 5x2 +2x iscontinuouseverywhere,soinparticularitiscontinuouson[ 1, 5].
Notethat f ( 1)= 8 < 1and f (5)=10 > 1.Because 1isanintermediatevaluebetween f ( 1) and f (5),theIntermediateValueTheoremguaranteesanumber c between 1and5where f (c)= 1.
b.
Usingagraphingcalculatorandacomputeralgebrasystem,weseethatthereareactuallythree di↵erentvaluesof c between 1and5forwhich f (c)= 1.Theyare c ⇡ 0 285, c ⇡ 0 778,and c ⇡ 4 507.
2.6.70
a. Notethat f (x)= x5 4x2 +2px +5iscontinuousonitsdomain,soinparticularitiscontinuouson [0, 3].Notethat f (0)=5 > 0and f (3) ⇡ 270.5 < 0.Because0isanintermediatevaluebetween f (0) and f (3),theIntermediateValueTheoremguaranteesanumber c between0and3where f (c)=0.
b. Usingagraphingcalculatorandacomputeralgebrasystem,weseethatthevalueof c guaranteed bythetheoremisabout1.141.
2.6.71
a. Notethat f (x)= ex + x iscontinuousonitsdomain,soinparticularitiscontinuouson[ 1, 0].Note that f ( 1)= 1 e 1 < 0and f (0)=1 > 0.Because0isanintermediatevaluebetween f ( 1)and f (0),theIntermediateValueTheoremguaranteesanumber c between 1and0where f (c)=0.
b. Usingagraphingcalculatorandacomputeralgebrasystem,weseethatthevalueof c guaranteed bythetheoremisabout 0 567.
2.6.72
a. Notethat f (x)= x ln x 1iscontinuousonitsdomain,soinparticularitiscontinuouson[1,e].Note that f (1)=ln1 1= 1 < 0and f (e)= e 1 > 0.Because0isanintermediatevaluebetween f (1) and f (e),theIntermediateValueTheoremguaranteesanumber c between1and e where f (c)=0.
b. Usingagraphingcalculatorandacomputeralgebrasystem,weseethatthevalueof c guaranteed bythetheoremisabout1 76322.
2.6.73
a. True.If f isrightcontinuousat a,then f (a)existsandthelimitfromtherightat a existsandisequal to f (a).Becauseitisleftcontinuous,thelimitfromtheleftexists—sowenowknowthatthelimit as x ! a of f (x)exists,becausethetwoone-sidedlimitsarebothequalto f (a).
b. True.Iflim x!a f (x)= f (a),thenlim x!a+ f (x)= f (a)andlim x!a f (x)= f (a).
c. False.Thestatementwouldbetrueif f werecontinuous.However,if f isn’tcontinuous,thenthe statementdoesn’thold.Forexample,supposethat f (x)= 8 < : 0if0 x< 1; 1if1 x 2, Notethat f (0)=0and f (2)=1,butthereisnonumber c between0and2where f (c)=1/2.
d. False.Consider f (x)= x2 and a = 1and b =1.Then f iscontinuouson[a,b],but f (1)+f ( 1) 2 =1, andthereisno c on(a,b)with f (c)=1.
Copyright c 2019PearsonEducation,Inc.
2.6.74
a. Because m isacontinuousfunctionof r on[0.04, 0.05],andbecause m(0.04) ⇡ 1193.54and m(0.05) ⇡ 1342 05,(and1300isanintermediatevaluebetweenthesetwonumbers)theIntermediateValueTheoremguaranteesavalueof r between0 04and0 05where m(r )=1300.
b. Usingacomputeralgebrasystem,weseethatthe requiredinterestrateisabout0 047.
2.6.75
a. Because A isacontinuousfunctionof r on[0, 0 08],andbecause A(0)=5000and A(0 08) ⇡ 11098 2, (and7000isanintermediatevaluebetweenthesetwonumbers)theIntermediateValueTheorem guaranteesavalueof r between0and0 08where A(r )=7000.
b. Solving5000(1+(r/12))120 =7000for r ,wesee that(1+(r/12))120 =7/5,so1+ r/12= 120p7/5, so r =12( 120p7/5 1) ⇡ 0 034.
2.6.76
a. Notethat A(0.01) ⇡ 2615.55and A(0.1) ⇡ 3984.36.BytheIntermediateValueTheorem,theremust beanumber r0 between0.01and0.1sothat A(r0 )=3500.
b. Thedesiredvalueis r0 ⇡ 0.0728or7.28%.
2.6.77 Considerthefunction f (x)=cos x 2x ontheinterval[0, 1].Notethat f (0)=1and f (⇡ /2)= ⇡ < 0.SobytheIntermediateValueTheorem,theremustbearootof f ontheinterval[0, ⇡ /2].Usinga computeralgebrasystem,wefindarootofapproximately0.45.
2.6.78 Let f (x)= |x|
Forvaluesof a otherthan0,itisclearthatlim x!a |x| = |a| because f isdefinedtobeeitherthepolynomial x (forvaluesgreaterthan0)orthepolynomial x (forvalueslessthan0.)Forthevalueof a =0,wehave lim x!0+ f (x)=lim x!0+ x =0= f (0).Also,lim x!0 f (x)=lim x!0 ( x)= 0=0.Thuslim x!0 f (x)= f (0),so f is continuousat0.
2.6.79 Because f (x)= x3 +3x 18isapolynomial,itiscontinuouson( 1, 1),andbecausetheabsolute valuefunctioniscontinuouseverywhere, |f (x)| iscontinuouseverywhere.
2.6.80 Let f (x)= x +4 x2 4 .Then f iscontinuouson( 1, 2) [ ( 2, 2) [ (2, 1).So g (x)= |f (x)| isalso continuousonthisset.
2.6.81 Let f (x)= 1 px 4 .Then f iscontinuouson[0, 16) [ (16, 1).So h(x)= |f (x)| iscontinuouson thissetaswell.
2.6.82 Because x2 +2x +5isapolynomial,itiscontinuouseverywhere,asis |x2 +2x +5|.So h(x)= |x2 +2x +5| + px iscontinuousonitsdomain,namely[0, 1).
2.6.83
Thegraphshownisn’tdrawncorrectlyattheintegers.Ataninteger a,thevalueofthefunction is0,whereasthegraphshownappearstotakeon allthevaluesfrom0to1. Notethatinthecorrectgraph,lim x!a f (x)=1and lim x!a+ f (x)=0foreveryinteger a
2.6.84
Thegraphasdrawnonmostgraphingcalculatorsappearstobecontinuousat x =0,butitisn’t,of course(becausethefunctionisn’tdefinedat x =0).Abetterdrawingwouldshowthe“hole”inthegraph at(0, 1).
c. Itappearsthatlim x!0 sin x x =1.
2.6.85 Withslightmodifications,wecanusetheexamplesfromtheprevioustwoproblems.
a. Thefunction y = x bxc isdefinedat x =1but isn’tcontinuousthere.
b. Thefunction y = sin(x 1) x 1 hasalimitat x =1, butisn’tdefinedthere,soisn’tcontinuousthere.
2.6.86 Inorderforthisfunctiontobecontinuousat x = 1,werequirelim x! 1 f (x)= f ( 1)= a.Sothe valueof a mustbeequaltothevalueoflim x! 1 x2 +3x +2 x +1 =lim x! 1 (x +2)(x +1) x +1 =lim x! 1(x +2)=1.Thus wemusthave a =1.
2.6.87
a. Inorderfor g tobecontinuousfromtheleftat x =1,wemusthavelim x!1 g (x)= g (1)= a.Wehave
lim x!1 g (x)=lim x!1 (x 2 + x)=2.Sowemusthave a =2.
b. Inorderfor g tobecontinuousfromtherightat x =1,wemusthavelim x!1+ g (x)= g (1)= a.Wehave
lim x!1+ g (x)=lim x!1+ (3x +5)=8.Sowemusthave a =8.
c. Becausethelimitfromtheleftandthelimitfromtherightat x =1don’tagree,thereisnovalueof a whichwillmakethefunctioncontinuousat x =1.
2.6.88 lim
Thereisaverticalasymptoteat x =0,andtheline y = 5isahorizontalasymptote.
2.6.89 lim x!0 2ex +10e x ex + e x = 12 2 =6.
lim x! 1
Therearenoverticalasymptotes.Thelines y =2and y =10arehorizontalasymptotes.
2.6.90 Let f (x)= x3 +10x2 100x +50.Notethat f ( 20) < 0, f ( 5) > 0, f (5) < 0,and f (10) > 0. Becausethegivenpolynomialiscontinuouseverywhere,theIntermediateValueTheoremguaranteesusa rooton( 20, 5),atleastoneon( 5, 5),andatleastoneon(5, 10).Becausetherecanbeatmost3roots andthereareatleast3roots,theremustbeexactly3roots.Therootsare x1 ⇡ 16.32, x2 ⇡ 0.53and x3 ⇡ 5.79.
2.6.91 Let f (x)=70x3 87x2 +32x 3.Notethat f (0) < 0, f (0 2) > 0, f (0 55) < 0,and f (1) > 0. Becausethegivenpolynomialiscontinuouseverywhere,theIntermediateValueTheoremguaranteesusa rooton(0, 0 2),atleastoneon(0 2, 0 55),andatleastoneon(0 55, 1).Becausetherecanbeatmost3 rootsandthereareatleast3roots,theremustbeexactly3roots.Therootsare x1 =1/7, x2 =1/2and x3 =3/5.
2.6.92
a. Wehave f (0)=0, f (2)=3, g (0)=3and g (2)=0.
b. h(t)= f (t) g (t), h(0)= 3and h(2)=3.
c. BytheIntermediateValueTheorem,because h isacontinuousfunctionand0isanintermediatevalue between 3and3,theremustbeatime c between0and2where h(c)=0.Atthispoint f (c)= g (c), andatthattime,thedistancefromthecaristhesameonbothdays,sothehikerispassingoverthe exactsamepointatthattime.
2.6.93 Wecanargueessentiallylikethepreviousproblem,orwecanimagineanidenticaltwintotheoriginal monk,whotakesanidenticalversionoftheoriginalmonk’sjourneyupthewindingpathwhilethemonkis takingthereturnjourneydown.Becausetheymustpasssomewhereonthepath,thatpointistheonewe arelookingfor.
Copyright c 2019PearsonEducation,Inc.
2.6.94
a. Because | 1| =1, |g (x)| =1,forall x
b. Thefunction g isn’tcontinuousat x =0,becauselim x!0+ g (x)=1 = 1=lim x!0 g (x).
c. Thisconstantfunctioniscontinuouseverywhere,inparticularat x =0.
d. Thisexampleshowsthatingeneral,thecontinuityof |g | doesnotimplythecontinuityof g .
2.6.95 Thediscontinuityisnotremovable,becauselim x!a f (x)doesnotexist.Thediscontinuitypicturedisa jumpdiscontinuity.
2.6.96 Thediscontinuityisnotremovable,becauselim x!a f (x)doesnotexist.Thediscontinuitypicturedis aninfinitediscontinuity.
2.6.97 Notethatlim x!2 x2 7x +10 x 2 =lim x!2 (x 2)(x 5) x 2 =lim x!2(x 5)= 3.Becausethislimitexists,the discontinuityisremovable.
2.6.98 Notethatlim x!1 x2 1 1 x =lim x!1 (x 1)(x +1) 1 x =lim x!1[ (x +1)]= 2.Becausethislimitexists,the discontinuityisremovable.
2.6.99 Notethat h(x)= x3 4x2 +4x x(x 1) = x(x 2)2 x(x 1) .Thuslim x!0 h(x)= 4,andthediscontinuityat x =0is removable.However,lim x!1 h(x)doesnotexist,andthediscontinuityat x =1isnotremovable(itisinfinite.)
2.6.100 Thisisajumpdiscontinuity,becauselim x!2+ f (x)=1andlim x!2 f (x)= 1.
2.6.101
a. Notethat 1 sin(1/x) 1forall x =0,so x x sin(1/x) x (for x> 0.For x< 0wewould have x x sin(1/x) x.)Becauseboth x ! 0and x ! 0as x ! 0,theSqueezeTheoremtellsus thatlim x!0 x sin(1/x)=0aswell.Becausethislimitexists,thediscontinuityisremovable.
b. Notethatas x ! 0+ ,1/x !1,andthuslim x!0+ sin(1/x)doesnotexist.Sothediscontinuityisnot removable.
2.6.102 Because g iscontinuousat a,as x ! a, g (x) ! g (a).Because f iscontinuousat g (a),as z ! g (a), f (z ) ! f (g (a)).Let z = g (x),andsuppose x ! a.Then g (x)= z ! g (a),so f (z )= f (g (x)) ! f (g (a)),as desired.
2.6.103
a. Consider g (x)= x +1and f (x)= |x 1| x 1 .Notethatboth g and f arecontinuousat x =0.However f (g (x))= f (x +1)= |x| x isnotcontinuousat0.
b. Theprevioustheoremsaysthatthecompositionof f and g iscontinuousat a if g iscontinuousat a and f iscontinuousat g (a).Itdoesnotsaythatif g and f arebothcontinuousat a thatthecomposition iscontinuousat a
2.6.104 TheIntermediateValueTheoremrequiresthatourfunctionbecontinuousonthegiveninterval.In thisexample,thefunction f isnotcontinuouson[ 2, 2]becauseitisn’tcontinuousat0.
Copyright c 2019PearsonEducation,Inc.
2.6.105
a. Usingthehint,wehave
Notethatas x ! a,wehavethatcos(x a) ! 1andsin(x a) ! 0.
So,
b. Usingthehint,wehave
2.7PreciseDefinitionsofLimits
2.7.1 Notethatallthenumbersintheinterval(1, 3)arewithin1unitofthenumber2.So |x 2| < 1is trueforallnumbersinthatinterval.Infact, {x :0 < |x 2| < 1} isexactlytheset(1, 3)with x =2.
2.7.2 Notethatallthenumbersintheinterval(2, 6)arewithin2unitsofthenumber4.So |f (x) 4| < " for " =2(oranynumbergreaterthan2).
2.7.3
a. Thisissymmetricabout x =5,because 1+9 2 =5.
b. Thisissymmetricabout x =5,because 4+6 2 =5.
c. Thisisnotsymmetricabout x =5,because 3+8 2 =5.
d. Thisissymmetricabout x =5,because 4 5+5 5 2 =5.
2.7.4 Theset {x : |x a| < } istheinterval(a ,a + )and {x :0 < |x a| < } isthesetofallpoints intheinterval(a ,a + )excludingthepoint a
2.7.5 lim x!a f (x)= L ifforanyarbitrarilysmallpositivenumber ",thereexistsanumber ,sothat f (x)is within " unitsof L foranynumber x within unitsof a (butnotincluding a itself).
2.7.6 Thesetofall x forwhich |f (x) L| < " isthesetofnumberssothatthevalueofthefunction f at thosenumbersiswithin " unitsof L
2.7.7 Wearegiventhat |f (x) 5| < 0 1forvaluesof x intheinterval(0, 5),soweneedtoensurethatthe setof x valuesweareallowingfallinthisinterval. Notethatthenumber0istwounitsawayfromthenumber2andthenumber5isthreeunitsawayfrom thenumber2.Inordertobesurethatwearetalkingaboutnumbersintheinterval(0, 5)whenwewrite |x 2| < ,wewouldneedtohave =2(oranumberlessthan2).Infact,thesetofnumbersforwhich |x 2| < 2istheinterval(0, 4)whichisasubsetof(0, 5).
Ifweweretoallow tobeanynumbergreaterthan2,thenthesetofall x sothat |x 2| < would includenumberslessthan0,andthosenumbersaren’tontheinterval(0, 5).
Copyright c 2019PearsonEducation,Inc.
2.7.8
lim x!a f (x)= 1,ifforany N> 0,thereexists > 0
sothatif0 < |x a| < then f (x) >N
L
2.7.9
a. Inorderfor f tobewithin2unitsof5,itappearsthatweneed x tobewithin1unitof2.So =1.
b. Inorderfor f tobewithin1unitof5,itappearsthatwewouldneed x tobewithin1/2unitof2.So =0 5.
2.7.10
a. Inorderfor f tobewithin1unitof4,itappearsthatwewouldneed x tobewithin1unitof2.So =1.
b. Inorderfor f tobewithin1/2unitof4,itappearsthatwewouldneed x tobewithin1/2unitof2. So =1/2.
2.7.11
a. Inorderfor f tobewithin3unitsof6,itappearsthatwewouldneed x tobewithin2unitsof3.So =2.
b. Inorderfor f tobewithin1unitof6,itappearsthatwewouldneed x tobewithin1/2unitof3.So =1/2.
2.7.12
a. Inorderfor f tobewithin1unitof5,itappearsthatwewouldneed x tobewithin3unitsof4.So =3.
b. Inorderfor f tobewithin1/2unitof5,itappearsthatwewouldneed x tobewithin2unitsof4. So =2.
2.7.13
a. If " =1,weneed |x3 +3 3| < 1.Soweneed |x| < 3 p1=1inorderforthistohappen.Thus =1willsu ce.
b. If " =0 5,weneed |x3 +3 3| < 0 5.Sowe need |x| < 3 p0 5inorderforthistohappen.Thus = 3 p0.5 ⇡ 0.79willsu ce.
2.7.14
a. Bylookingatthegraph,itappearsthatfor " =1, wewouldneed tobeabout0 4orless.
b. Bylookingatthegraph,itappearsthatfor " = 0 5,wewouldneed tobeabout0 2orless.
2.7.15
a. For " =1,therequiredvalueof wouldalsobe1.Alargervalueof wouldworktotherightof2, butthisisthelargestonethatwouldworktotheleftof2.
b. For " =1/2,therequiredvalueof wouldalsobe1/2.
c. Itappearsthatforagivenvalueof ",itwouldbewisetotake =min(", 2).Thisassuresthatthe desiredinequalityismetonbothsidesof2.
2.7.16
a. For " =2,therequiredvalueof wouldbe1(orsmaller).Thisisthelargestvalueof thatworkson eitherside. Copyright c 2019PearsonEducation,Inc.
b. For " =1,therequiredvalueof wouldbe1/2(orsmaller).Thisisthelargestvalueof thatworks ontherightof4.
c. Itappearsthatforagivenvalueof ",thecorrespondingvalueof =min(5/2, "/2).
2.7.17
a. For " =2,itappearsthatavalueof =1(orsmaller)wouldwork.
b. For " =1,itappearsthatavalueof =1/2(orsmaller)wouldwork.
c. Foranarbitrary ",avalueof = "/2orsmallerappearstosu ce.
2.7.18
a. For " =1/2,itappearsthatavalueof =1(orsmaller)wouldwork.
b. For " =1/4,itappearsthatavalueof =1/2(orsmaller)wouldwork.
c. Foranarbitrary ",avalueof2" orsmallerappearstosu ce.
2.7.19 Forany " > 0,let = "/8.Thenif0 < |x 1| < ,wewouldhave |x 1| < "/8.Then |8x 8| < ", so |(8x +5) 13| < ".Thislastinequalityhastheform |f (x) L| < ",whichiswhatwewereattempting toshow.Thus,lim x!1(8x +5)=13.
2.7.20 Forany " > 0,let = "/2.Thenif0 < |x 3| < ,wewouldhave |x 3| < "/2.Then |2x 6| < ", so | 2x +6| < ",so |( 2x +8) 2| < ".Thislastinequalityhastheform |f (x) L| < ",whichiswhatwe wereattemptingtoshow.Thus,lim x!3( 2x +8)=2.
2.7.21 Firstnotethatif x =4, f (x)= x 2 16 x 4 = x +4.
Nowif " > 0isgiven,let = ".Nowsuppose0 < |x 4| < .Then x =4,sothefunction f (x)can bedescribedby x +4.Also,because |x 4| < ,wehave |x 4| < ".Thus |(x +4) 8| < ".Thislast inequalityhastheform |f (x) L| < ",whichiswhatwewereattemptingtoshow.Thus,lim x!4 x2 16 x 4 =8.
2.7.22 Firstnotethatif x =3, f (x)= x 2 7x+12 x 3 = (x 4)(x 3) x 3 = x 4.
Nowif " > 0isgiven,let = ".Nowsuppose0 < |x 3| < .Then x =3,sothefunction f (x)canbe describedby x 4.Also,because |x 3| < ,wehave |x 3| < ".Thus |(x 4) ( 1)| < ".Thislast inequalityhastheform |f (x) L| < ",whichiswhatwewereattemptingtoshow.Thus,lim x!3 f (x)= 1.
2.7.23 Let " > 0begivenandassumethat0 < |x 0| < where = ".Itfollowsthat ||x| 0| = |x| = |x 0| < = ".Wehaveshownthatforany " > 0, ||x| 0| < " whenever0 < |x 0| < ,provided0 < "
2.7.24 Let " > 0begivenandassumethat0 < |x 0| < where = " 5 .Itfollowsthat ||5x| 0| = 5|x 0| < 5 =5 " 5 = ".Wehaveshownthatforany " > 0, ||5x| 0| < " whenever0 < |x 0| < , provided0 < " 5
2.7.25 Let " > 0begivenandassumethat0 < |x 7| < where = "/3.If x< 7, |f (x) 9| = |3x 12 9| = 3|x 7| < 3 =3("/3)= ";if x> 7,then |f (x) 9| = |x +2 9| = |x 7| < = "/3 < ".We’veshownthat forany " > 0, |f (x) 9| < " whenever0 < |x 7| < ,provided0 < "/3.
2.7.26 Let " > 0begivenandassumethat0 < |x 5| < where = "/4.If x< 5, |f (x) 4| = |2x 6 4| = 2|x 5| < 2 =2("/4)= "/2 < ";if x> 5,then |f (x) 4| = | 4x +24 4| = | 4(x 5)| =4|x 5| < 4 = 4("/4)= ".We’veshownthatforany " > 0, |f (x) 4| < " whenever0 < |x 5| < ,provided0 < "/4.
2.7.27 Let " > 0begiven.Let = p".Thenif0 < |x 0| < ,wewouldhave |x| < p".Butthen |x2 | < ", whichhastheform |f (x) L| < ".Thus,lim x!0 f (x)=0.
Copyright c 2019PearsonEducation,Inc.
2.7.28 Let " > 0begiven.Let = p".Thenif0 < |x 3| < ,wewouldhave |x 3| < p".Butthen |(x 3)2 | < ",whichhastheform |f (x) L| < ".Thus,lim x!3 f (x)=0.
2.7.29 Let " > 0begivenandassumethat0 < |x 2| < where =min{1, "/8}.Byfactoring x2 +3x 10, wefindthat |x2 +3x 10| = |x 2||x +5|.Because |x 2| < and 1,wehave |x 2| < 1,whichimplies that 1 <x 2 < 1,or1 <x< 3.Itfollowsthat |x +5| = x +5 8.Wealsoknowthat |x 2| < "/8 because0 < |x 2| < and "/8.Therefore |x2 +3x 10| = |x 2||x +5| < ("/8) 8= ".Wehave shownthatforany " > 0, |x2 +3x 10| < " whenever0 < |x 2| < ,provided0 < min{1, "/8}
2.7.30 Let " > 0begivenandassumethat0 < |x 4| < where =min{1, "/14}.Observethat |2x2 4x +1 17| = |2x2 4x 16| =2|x 4||x +2|.Because |x 4| < and 1,wehave |x 4| < 1 whichimpliesthat 1 <x 4 < 1or3 <x< 5.Itfollowsthat |x +2| = x +2 7.Wealsoknowthat |x 4| < "/14because0 < |x 4| < and "/14.Therefore |2x2 4x +1| =2|x 4||x +2| < 2("/14) · 7= " Wehaveshownthatforany " > 0, |2x2 4x +1 17| < " provided0 < min{1, "/14}
2.7.31 Let " > 0begivenandassumethat0 < |x ( 3)| < where = "/2.Usingtheinequality ||a| |b|| |a b| with a =2x and b = 6,itfollowsthat ||2x| 6| = ||2x| | 6|| |2x ( 6)| = 2|x ( 3)| < 2 =2("/2)= " andtherefore ||2x| 6| < ".Wehaveshownthatforany " > 0, ||2x| 6| < " whenever0 < |x ( 3)| < ,provided0 < "/2.
2.7.32 Let " > 0begivenandassumethat0 < |x 25| < where =min{25, 5"}.Because |x 25| < and 25,wehave |x 25| < 25,whichimpliesthat 25 <x 25 < 25or0 <x< 50.Because x> 0,we have px +5 > 5anditfollowsthat 1 px+5 < 1 5 .Therefore |px 5| = |x 25| p
Wehaveshownthatforany " > 0, |px 5| < ",provided0 < min{25, 5"}.
2.7.33 Assume |x 3| < 1,asindicatedinthehint.Then2 <x< 4,so 1 4 < 1 x < 1 2 ,andthus 1 x < 1 2 Alsonotethattheexpression