Solutions for Electric Circuits 11th Us Edition by Nilsson

Page 1


CircuitVariables

AssessmentProblems

AP1.1Useaproductofratiostoconverttwo-thirdsthespeedoflightfrommeters persecondtomilespersecond:

Nowsetupaproportiontodeterminehowlongittakesthissignaltotravel 1100miles:

AP1.2Tosolvethisproblemweuseaproductofratiostochangeunitsfrom dollars/yeartodollars/millisecond.Webeginbyexpressing$10billionin scientificnotation:

$100billion=$100 ⇥ 109

Nowwedeterminethenumberofmillisecondsinoneyear,againusinga productofratios:

Nowwecanconvertfromdollars/yeartodollars/millisecond,againwitha productofratios:

AP1.3RememberfromEq.1.2,currentisthetimerateofchangeofcharge,or i = dq dt Inthisproblem,wearegiventhecurrentandaskedtofindthetotalcharge. Todothis,wemustintegrateEq.1.2tofindanexpressionforchargeinterms ofcurrent:

q (t)= Z t 0 i(x) dx.

Wearegiventheexpressionforcurrent, i,whichcanbesubstitutedintothe aboveexpression.Tofindthetotalcharge,welet t !1 intheintegral.Thus wehave

AP1.4RecallfromEq.1.2thatcurrentisthetimerateofchangeofcharge,or i = dq dt .Inthisproblemwearegivenanexpressionforthecharge,andaskedto findthemaximumcurrent.Firstwewillfindanexpressionforthecurrent usingEq.1.2:

Nowthatwehaveanexpressionforthecurrent,wecanfindthemaximum valueofthecurrentbysettingthefirstderivativeofthecurrenttozeroand solvingfor t

Since e ↵t neverequals0forafinitevalueof t,theexpressionequals0only when(1 ↵t)=0.Thus, t =1/↵ willcausethecurrenttobemaximum.For thisvalueof t,thecurrentis

Rememberintheproblemstatement, ↵ =0.03679.Usingthisvaluefor ↵, i = 1 0 03679 e 1 ⇠ = 10A.

AP1.5Startbydrawingapictureofthecircuitdescribedintheproblemstatement:

AlsosketchthefourfiguresfromFig.1.6:

[a] Nowwehavetomatchthevoltageandcurrentshowninthefirstfigure withthepolaritiesshowninFig.1.6.Rememberthat4Aofcurrent enteringTerminal2isthesameas4AofcurrentleavingTerminal1.We get

(a) v = 20V,i = 4A;(b) v = 20V, i =4A; (c) v =20V, i = 4A;(d) v =20V, i =4A.

[b] UsingthereferencesysteminFig.1.6(a)andthepassivesignconvention, p = vi =( 20)( 4)=80W.

[c] Sincethepowerisgreaterthan0,theboxisabsorbingpower.

AP1.6 [a] Applyingthepassivesignconventiontothepowerequationusingthe voltageandcurrentpolaritiesshowninFig.1.5, p = vi.Tofindthetime atwhichthepowerismaximum,findthefirstderivativeofthepower withrespecttotime,settheresultingexpressionequaltozero,andsolve fortime:

Therefore,

Solving,

[b] Themaximumpoweroccursat2ms,sofindthevalueofthepowerat2 ms: p(0.002)=120 ⇥ 104 (0.002)2 e 2 =649.6mW.

[c] FromEq.1.3,weknowthatpoweristhetimerateofchangeofenergy,or p = dw/dt.Ifweknowthepower,wecanfindtheenergybyintegrating Eq.1.3.Tofindthetotalenergy,theupperlimitoftheintegralis infinity:

AP1.7AttheOregonendofthelinethecurrentisleavingtheupperterminal,and thusenteringthelowerterminalwherethepolaritymarkingofthevoltageis negative.Thus,usingthepassivesignconvention, p = vi.Substitutingthe valuesofvoltageandcurrentgiveninthefigure,

Thus,becausethepowerassociatedwiththeOregonendofthelineis negative,powerisbeinggeneratedattheOregonendofthelineand transmittedbythelinetobedeliveredtotheCaliforniaendoftheline.

ChapterProblems

P1.1(4cond.) (845mi) 5280ft 1mi 2526lb 1000ft 1kg 2.2lb =20 5 ⇥ 106 kg.

P1.2 [a] Tobegin,wecalculatethenumberofpixelsthatmakeupthedisplay:

npixels =(3840)(2160)=8,294,400pixels.

Eachpixelrequires24bitsofinformation.Since8bitsequalonebyte, eachpixelrequires3bytesofinformation.Wecancalculatethenumber ofbytesofinformationrequiredforthedisplaybymultiplyingthe numberofpixelsinthedisplayby3bytesperpixel:

nbytes = 8,294,400pixels 1display 3bytes 1pixel =24,883,200bytes/display.

Finally,weusethefactthatthereare106 bytesperMB: 24,883,200bytes 1display · 1MB 106 bytes =24.88MB/display.

[b] 24,883,200bytes 1image · 30images 1s · 60s 1min · 60min 1hr · 2hr 1video =5.375 ⇥ 1012 bytes/video=5.375TB/video.

[c] 24,883,200bytes 1image 8bits 1byte 30images 1sec =5,971,968,000bits/s =5.972Gb/s.

P1.3 [a] Wecansetuparatiotodeterminehowlongittakesthebambootogrow 10 µmFirst,recallthat1mm=103 µm.Let’salsoexpresstherateof growthofbamboousingtheunitsmm/sinsteadofmm/day.Usea productofratiostoperformthisconversion: 250mm 1day · 1day 24hours · 1hour 60min · 1min 60sec = 250 (24)(60)(60) = 10 3456 mm/s

Usearatiotodeterminethetimeittakesforthebambootogrow10 µm: 10/3456 ⇥ 10 3 m 1s = 10 ⇥ 10 6 m x s so x = 10 ⇥ 10 6 10/3456 ⇥ 10 3 =3.456s.

[b] 1celllength 3.456s 3600s 1hr (24)(7)hr 1week =175,000celllengths/week

P1.4 (480)(320)pixels 1frame 2bytes 1pixel 30frames 1sec =9 216 ⇥ 106 bytes/sec;

(9.216 ⇥ 106 bytes/sec)(x secs)=32 ⇥ 230 bytes;

x = 32 ⇥ 230 9 216 ⇥ 106 =3728sec=62min ⇡ 1hourofvideo.

P1.5 [a] 20,000photos (11)(15)(1)mm3 = x photos 1mm3 ;

x = (20,000)(1) (11)(15)(1) =121photos

[b] 16 ⇥ 230 bytes (11)(15)(1)mm3 = x bytes (0 2)3 mm3 ;

x = (16 ⇥ 230 )(0 008) (11)(15)(1) =832,963bytes.

P1.6 (260 ⇥ 106 )(540) 109 =104 4gigawatt-hours

P1.7FirstweuseEq.1.2torelatecurrentandcharge:

i = dq dt =24cos4000t.

Therefore, dq =24cos4000tdt.

Tofindthecharge,wecanintegratebothsidesofthelastequation.Notethat wesubstitute x for q ontheleftsideoftheintegral,and y for t ontheright sideoftheintegral:

Z q (t) q (0) dx =24 Z t 0 cos4000ydy.

Wesolvetheintegralandmakethesubstitutionsforthelimitsoftheintegral, rememberingthatsin0=0: q (t) q (0)=24 sin4000y 4000 t 0 = 24 4000 sin4000t 24 4000 sin4000(0)= 24 4000 sin4000t.

But q (0)=0byhypothesis,i.e.,thecurrentpassesthroughitsmaximum valueat t =0,so q (t)=6 ⇥ 10 3 sin4000t C=6sin4000t mC.

P1.8 w = qV =(1.6022 ⇥ 10 19 )(6)=9.61 ⇥ 10 19 =0.961aJ.

P1.9 n = 35 ⇥ 10 6 C/s 1.6022 ⇥ 10 19 C/elec =2 18 ⇥ 1014 elec/s

P1.10

[a] FirstweuseEq.1.2torelatecurrentandcharge:

i = dq dt =0 125e 2500t

Therefore, dq =0 125e 2500t dt.

Tofindthecharge,wecanintegratebothsidesofthelastequation.Note thatwesubstitute x for q ontheleftsideoftheintegral,and y for t on therightsideoftheintegral:

Z q (t)

q (0) dx =0 125 Z t 0 e 2500y dy.

Wesolvetheintegralandmakethesubstitutionsforthelimitsofthe integral:

q (t) q (0)=0.125 e 2500y 2500 t 0 =50 ⇥ 10 6 (1 e 2500t ).

But q (0)=0byhypothesis,so

q (t)=50(1 e 2500t ) µC.

[b] As t !1, qT =50 µC.

[c] q (0 5 ⇥ 10 3 )=(50 ⇥ 10 6 )(1 e( 2500)(0 0005) )=35 675 µC.

P1.11 [a] FirstweuseEq.(1.2)torelatecurrentandcharge: i = dq dt =40te 500t .

Therefore, dq =40te 500t dt.

Tofindthecharge,wecanintegratebothsidesofthelastequation.Note thatwesubstitute x for q ontheleftsideoftheintegral,and y for t on therightsideoftheintegral:

Z q (t) q (0) dx =40 Z t 0 ye 500y dy.

Wesolvetheintegralandmakethesubstitutionsforthelimitsofthe integral:

q (t) q (0)=40 e 500y ( 500)2 ( 500y 1)

=160 ⇥ 10 6 (1 500te 500t e

But q (0)=0byhypothesis,so

q (t)=160(1 500te 500t e 500t ) µC

[b] q (0.001)=(160)[1 500(0.001)e 500(0 001) e 500(0 001) =14.4 µC.

P1.12 [a] InCarB,thecurrent i isinthedirectionofthevoltagedropacrossthe 12Vbattery(thecurrent i flowsintothe+terminalofthebatteryof CarB).Thereforeusingthepassivesignconvention, p = vi =(40)(12)=480W. Sincethepowerispositive,thebatteryinCarBisabsorbingpower,so CarBmusthavethe“dead”battery.

[b] w (t)= Z t 0 pdx;1 5min=1 5 60s 1min =90s;

w (90)= Z 90 0 480 dx;

w =480(90 0)=480(90)=43,200J=43.2kJ.

P1.13AssumewearestandingatboxAlookingtowardboxB.Usethepassivesign conventiontoget p = vi,sincethecurrent i isflowingintothe+terminalof thevoltage v .Nowwejustsubstitutethevaluesfor v and i intotheequation forpower.Rememberthatifthepowerispositive,Bisabsorbingpower,so thepowermustbeflowingfromAtoB.Ifthepowerisnegative,Bis generatingpowersothepowermustbeflowingfromBtoA.

[a] p =(30)(6)=180W180WfromAtoB;

[b] p =( 20)( 8)=160W160WfromAtoB;

[c] p =( 60)(4)= 240W240WfromBtoA;

[d] p =(40)( 9)= 360W360WfromBtoA.

P1.14 p =(12)(0.1)=1.2W;4hr · 3600s 1hr =14,400s;

w (t)= Z t 0 pdt; w (14,400)= Z 14,400 0 1.2 dt =1.2(14,400)=17.28kJ.

P1.15 [a]

p = vi =( 20)(5)= 100W. Powerisbeingdeliveredbythebox.

[b] Entering.

[c] Gain.

P1.16 [a] p = vi =( 20)( 5)=100W,sopowerisbeingabsorbedbythebox.

[b] Leaving.

[c] Lose.

P1.17 p = vi; w = Z t 0 pdx.

Sincetheenergyistheareaunderthepowervs.timeplot,letusplot p vs. t

Notethatinconstructingtheplotabove,weusedthefactthat60hr =216,000s=216ks.

p(0)=(6)(15 ⇥ 10 3 )=90 ⇥ 10 3 W;

P1.19 [a] p = vi =(15e 250t )(0 04e 250t )=0 6e 500t W; p(0.01)=0.6e 500(0 01) =0.6e 5 =0.00404=4.04mW.

P1.20 [a] p = vi

=[(1500t +1)e 750t ](0 04e 750t )

=(60t +0 04)e 1500t ; dp dt =60e 1500t 1500e 1500t (60t +0 04) = 90,000te 1500t .

Therefore, dp dt =0when t =0 so pmax occursat t =0.

[b] pmax =[(60)(0)+0 04]e0 =0 04 =40mW.

[c] w = Z t 0 pdx = Z t 0 60xe 1500x dx + Z t 0 0 04e 1500x dx = 60e 1500x ( 1500)2 ( 1500x 1) t 0 +0.04 e 1500x 1500

t 0 . When t = 1 alltheupperlimitsevaluatetozero,hence w = 60 225 ⇥ 104 + 0 04 1500 =53.33 µJ.

P1.21 [a] p = vi =0 25e 3200t 0 5e

t ; p(625 µs)=42 2mW.

[b] w (t)= Z

J; w (625 µs)=12 14 µJ.

[c] wtotal =140 625 µJ.

P1.22 [a] p = vi =[104 t +5)e

= e 800t [400,000t2 +700t +0.25]; dp dt = {e 800t [800 ⇥ 103 t +700]

t Therefore, dp dt =0when3,200,000t2 2400t 5=0 so pmax occursat t =1.68ms.

t2

} =[ 3,200,000t2 +2400t +5]100e

.

[b] pmax =[400,000(.00168)2 +700(.00168)+0.25]e 800( 00168) =666 34mW.

[c]

When t !1 alltheupperlimitsevaluatetozero,hence w = (400,000)(2)

P1.23 [a] Wecanfindthetimeatwhichthepowerisamaximumbywritingan expressionfor p(t)= v (t)i(t),takingthefirstderivativeof p(t) andsettingittozero,thensolvingfor t.Thecalculationsareshownbelow: p =0 t< 0,p =0 t> 40s; p = vi = t(1 0.025t)(4

dt =4 0.6t +0.015t2 =0.015(t2 40t +266.67); dp dt =0when t2 40t +266.67=0; t1 =8 453s; t2 =31 547s; (usingthepolynomialsolveronyourcalculator) p(t1 )=4(8.453) 0.3(8.453)2 +0.005(8.453)3 =15.396W; p(t2 )=4(31 547) 0 3(31 547)2 +0 005(31 547)3 = 15 396W.

Therefore,maximumpowerisbeingdeliveredat t =8 453s.

[b] Themaximumpowerwascalculatedinpart(a)todeterminethetimeat whichthepowerismaximum: pmax =15.396W(delivered).

[c] Aswesawinpart(a),theother“maximum”powerisactuallya minimum,orthemaximumnegativepower.Aswecalculatedinpart(a), maximumpowerisbeingextractedat t =31.547s.

[d] Thismaximumextractedpowerwascalculatedinpart(a)todetermine thetimeatwhichpowerismaximum: pmax =15.396W(extracted).

[e] w = Z t 0 pdx = Z t 0 (4x 0.3x2 +0.005x3 )dx =2t2 0.1t3 +0.00125t4 .

w (0)=0J; w (30)=112.5J; w (10)=112.5J; w (40)=0J; w (20)=200J.

Togiveyouafeelforthequantitiesofvoltage,current,power,andenergy andtheirrelationshipsamongoneanother,theyareplottedbelow:

P1.24 [a] p = vi =2000cos(800⇡ t)sin(800⇡ t)=1000sin(1600⇡ t)W

Therefore, pmax =1000W.

[b] pmax (extracting)=1000W.

P1.25 [a] v (20ms)=100e 1 sin3=5 19V; i(20ms)=20e 1 sin3=1.04A; p(20ms)= vi =5.39W.

P1.26 [a]

=9J.

[b] i(t)=10+0.5 ⇥ 10 3 t mA,0  t  10ks;

i(t)=15mA, 10ks  t  20ks;

i(t)=25 0 5 ⇥ 10 3 t mA,20ks  t  30ks;

i(t)=0, t> 30ks.

p = vi =120i so

p(t)=1200+0.06t mW,0  t  10ks;

p(t)=1800mW,10ks  t  20ks;

p(t)=3000 0.06t mW,20ks  t  30ks;

p(t)=0, t> 30ks.

[c] Tofindtheenergy,calculatetheareaundertheplotofthepower:

w (10ks)= 1 2 (0.6)(10,000)+(1.2)(10,000)=15kJ;

w (20ks)= w (10ks)+(1.8)(10,000)=33kJ;

w (10ks)= w (20ks)+ 1 2 (0 6)(10,000)+(1 2)(10,000)=48kJ

P1.27 [a] q =areaunder i vs. t plot = 1 2 (8)(12,000)+(16)(12,000)+ 1 2 (16)(4000) =48,000+192,000+32,000=272,000C.

[b] w = Z pdt = Z vidt;

v =250 ⇥ 10 6 t +8, 0  t  16ks.

0  t  12,000s:

i =24 666.67 ⇥ 10 6 t; p =192+666 67 ⇥ 10 6 t 166 67 ⇥ 10 9 t2 ; w1 = Z 12,000 0 (192+666 67 ⇥ 10 6 t 166 67 ⇥ 10 9 t2 ) dt =(2304+48 96)103 =2256kJ.

12,000s  t  16,000s: i =64 4 ⇥ 10 3 t;

896 789.33)103 =362.667kJ; wT = w1 + w2 =2256+362 667=2618 667kJ.

P1.28 [a] 0s  t< 4s:

v =2.5t V; i =1 µA; p =2.5tµW;

4s <t  8s:

v =10V; i =0A; p =0W; 8s  t< 16s:

v = 2 5t +30V; i = 1 µA; p =2 5t 30 µW;

16s <t  20s:

v = 10V; i =0A; p =0W; 20s  t< 36s:

v = t 30V; i =0.4 µA; p =0.4t 12 µW;

36s <t  46s:

v =6V; i =0A; p =0W; 46s  t< 50s:

v = 1 5t +75V; i = 0 6 µA; p =0 9t 45 µW; t> 50s:

v =0V; i =0A; p =0W.

[b] Calculatetheareaunderthecurvefromzerouptothedesiredtime:

w (4)= 1 2 (4)(10)=20 µJ;

w (12)= w (4) 1 2 (4)(10)=0J;

w (36)= w (12)+ 1 2 (4)(10) 1 2 (10)(4)+ 1 2 (6)(2.4)=7.2 µJ;l

w (50)= w (36) 1 2 (4)(3 6)=0J.

P1.29Weusethepassivesignconventiontodeterminewhetherthepowerequation is p = vi or p = vi andsubstituteintothepowerequationthevaluesfor v and i,asshownbelow:

pa = va ia = ( 18)( 0.051)= 918mW;

pb = vb ib =( 18)(0 045)= 810mW;

pc = vc ic =(2)( 0.006)= 12mW;

pd = vd id = (20)( 0.020)=400mW;

pe = ve ie = (16)( 0 014)=224mW;

pf = vf if =(36)(0.031)=1116mW.

Rememberthatifthepowerispositive,thecircuitelementisabsorbing power,whereasisthepowerisnegative,thecircuitelementisdeveloping power.Wecanaddthepositivepowerstogetherandthenegativepowers together—ifthepowerbalances,thesepowersumsshouldbeequal:

XPdev =918+810+12=1740mW;

XPabs =400+224+1116=1740mW.

Thus,thepowerbalancesandthetotalpowerdevelopedinthecircuitis1740 mW.

P1.30 [a] Rememberthatifthecircuitelementisabsorbingpower,thepoweris positive,whereasifthecircuitelementissupplyingpower,thepoweris

negative.Wecanaddthepositivepowerstogetherandthenegative powerstogether—ifthepowerbalances,thesepowersumsshouldbe equal: XPsup =600+50+600+1250=2500W; XPabs =400+100+2000=2500W. Thus,thepowerbalances.

[b] Thecurrentcanbecalculatedusing i = p/v or i = p/v ,withproper applicationofthepassivesignconvention:

ia = pa /va = ( 600)/(400)=1.5A;

ib = pb /vb =( 50)/( 100)=0 5A;

ic = pc /vc =(400)/(200)=2.0A;

id = pd /vd =( 600)/(300)= 2.0A;

ie = pe /ve =(100)/( 200)= 0 5A;

if = pf /vf = (2000)/(500)= 4.0A;

ig = pg /vg =( 1250)/( 500)=2 5A.

P1.31 pa = va ia = ( 3000)( 0 250)= 750W;

pb = vb ib = (4000)( 0.400)=1600W;

pc = vc ic = (1000)(0.400)= 400W;

pd = vd id =(1000)(0 150)=150W;

pe = ve ie =( 4000)(0.200)= 800W;

pf = vf if =(4000)(0.050)=200W. Therefore,

XPabs =1600+150+200=1950W;

XPdel =750+400+800=1950W= XPabs

Thus,theinterconnectiondoessatisfythepowercheck.

P1.32 [a] Ifthepowerbalances,thesumofthepowervaluesshouldbezero: ptotal =0 175+0 375+0 150 0 320+0 160+0 120 0 660=0 Thus,thepowerbalances.

[b] Whenthepowerispositive,theelementisabsorbingpower.Since elementsa,b,c,e,andfhavepositivepower,theseelementsare absorbingpower.

[c] Thevoltagecanbecalculatedusing v = p/i or v = p/i,withproper applicationofthepassivesignconvention:

va = pa /ia =(0 175)/(0 025)=7V;

vb = pb /ib =(0.375)/(0.075)=5V;

vc = pc /ic = (0.150)/( 0.05)=3V;

vd = pd /id =( 0 320)/(0 04)= 8V;

ve = pe /ie = (0.160)/(0.02)= 8V;

vf = pf /if =(0 120)/( 0 03)= 4V;

vg = pg /ig =( 0 66)/(0 055)= 12V.

P1.33 [a] Fromthediagramandthetablewehave

pa = va ia = (900)( 22 5)=20,250W;

pb = vb ib = (105)( 52.5)=5512.5W;

pc = vc ic = ( 600)( 30)= 18,000W;

pd = vd id =(585)( 52 5)= 30,712 5W;

pe = ve ie = ( 120)(30)=3600W;

pf = vf if =(300)(60)=18,000W;

pg = vg ig = (585)(82 5)= 48,262 5W;

ph = vh ih = ( 165)(82.5)=13,612.5W.

XPdel =18,000+30,712 5+48,262 5=96,975W;

XPabs =20,250+5512.5+3600+18,000+13,612.5=60,975W. Therefore, XPdel = XPabs andthesubordinateengineeriscorrect.

[b] Thedi↵erencebetweenthepowerdeliveredtothecircuitandthepower absorbedbythecircuitis

96,975 60,975=36,000

One-halfofthisdi↵erenceis18,000W,soitislikelythat pc or pf isin error.Eitherthevoltageorthecurrentprobablyhasthewrongsign.(In Chapter2,wewilldiscoverthatusingKCLatthetopnode,thecurrent ic shouldbe30A,not 30A!)Ifthesignof pc ischangedfromnegative topositive,wecanrecalculatethepowerdeliveredandthepower absorbedasfollows:

XPdel =30,712 5+48,262 5=78,975W;

XPabs =20,250+5512 5+18,000+3600+18,000+13,612 5=78,975W. Nowthepowerdeliveredequalsthepowerabsorbedandthepower balancesforthecircuit.

P1.34

pa = va ia =(120)( 10)= 1200W;

pb = vb ib = (120)(9)= 1080W;

pc = vc ic =(10)(10)=100W;

pd = vd id = (10)( 1)=10W;

pe = ve ie =( 10)( 9)=90W;

pf = vf if = ( 100)(5)=500W;

pg = vg ig =(120)(4)=480W;

ph = vh ih =( 220)( 5)=1100W.

XPdel =1200+1080=2280W;

XPabs =100+10+90+500+480+1100=2280W.

Therefore, XPdel = XPabs =2280W. Thus,theinterconnectionnowsatisfiesthepowercheck.

P1.35 [a] Therevisedcircuitmodelisshownbelow:

[b] Theexpressionforthetotalpowerinthiscircuitis

=(120)( 10) (120)(10) ( 120)(3)+120ig +( 240)( 7)=0.

Therefore, 120ig =1200+1200 360 1680=360 so ig = 360 120 =3A

Thus,ifthepowerinthemodifiedcircuitisbalancedthecurrentin componentgis3A.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.