CircuitVariables
AssessmentProblems
AP1.1Useaproductofratiostoconverttwo-thirdsthespeedoflightfrommeters persecondtomilespersecond:
Nowsetupaproportiontodeterminehowlongittakesthissignaltotravel 1100miles:
AP1.2Tosolvethisproblemweuseaproductofratiostochangeunitsfrom dollars/yeartodollars/millisecond.Webeginbyexpressing$10billionin scientificnotation:
$100billion=$100 ⇥ 109
Nowwedeterminethenumberofmillisecondsinoneyear,againusinga productofratios:
Nowwecanconvertfromdollars/yeartodollars/millisecond,againwitha productofratios:
AP1.3RememberfromEq.1.2,currentisthetimerateofchangeofcharge,or i = dq dt Inthisproblem,wearegiventhecurrentandaskedtofindthetotalcharge. Todothis,wemustintegrateEq.1.2tofindanexpressionforchargeinterms ofcurrent:
q (t)= Z t 0 i(x) dx.
Wearegiventheexpressionforcurrent, i,whichcanbesubstitutedintothe aboveexpression.Tofindthetotalcharge,welet t !1 intheintegral.Thus wehave
AP1.4RecallfromEq.1.2thatcurrentisthetimerateofchangeofcharge,or i = dq dt .Inthisproblemwearegivenanexpressionforthecharge,andaskedto findthemaximumcurrent.Firstwewillfindanexpressionforthecurrent usingEq.1.2:
Nowthatwehaveanexpressionforthecurrent,wecanfindthemaximum valueofthecurrentbysettingthefirstderivativeofthecurrenttozeroand solvingfor t
Since e ↵t neverequals0forafinitevalueof t,theexpressionequals0only when(1 ↵t)=0.Thus, t =1/↵ willcausethecurrenttobemaximum.For thisvalueof t,thecurrentis
Rememberintheproblemstatement, ↵ =0.03679.Usingthisvaluefor ↵, i = 1 0 03679 e 1 ⇠ = 10A.
AP1.5Startbydrawingapictureofthecircuitdescribedintheproblemstatement:
AlsosketchthefourfiguresfromFig.1.6:
[a] Nowwehavetomatchthevoltageandcurrentshowninthefirstfigure withthepolaritiesshowninFig.1.6.Rememberthat4Aofcurrent enteringTerminal2isthesameas4AofcurrentleavingTerminal1.We get
(a) v = 20V,i = 4A;(b) v = 20V, i =4A; (c) v =20V, i = 4A;(d) v =20V, i =4A.
[b] UsingthereferencesysteminFig.1.6(a)andthepassivesignconvention, p = vi =( 20)( 4)=80W.
[c] Sincethepowerisgreaterthan0,theboxisabsorbingpower.
AP1.6 [a] Applyingthepassivesignconventiontothepowerequationusingthe voltageandcurrentpolaritiesshowninFig.1.5, p = vi.Tofindthetime atwhichthepowerismaximum,findthefirstderivativeofthepower withrespecttotime,settheresultingexpressionequaltozero,andsolve fortime:
Therefore,
Solving,
[b] Themaximumpoweroccursat2ms,sofindthevalueofthepowerat2 ms: p(0.002)=120 ⇥ 104 (0.002)2 e 2 =649.6mW.
[c] FromEq.1.3,weknowthatpoweristhetimerateofchangeofenergy,or p = dw/dt.Ifweknowthepower,wecanfindtheenergybyintegrating Eq.1.3.Tofindthetotalenergy,theupperlimitoftheintegralis infinity:
AP1.7AttheOregonendofthelinethecurrentisleavingtheupperterminal,and thusenteringthelowerterminalwherethepolaritymarkingofthevoltageis negative.Thus,usingthepassivesignconvention, p = vi.Substitutingthe valuesofvoltageandcurrentgiveninthefigure,
Thus,becausethepowerassociatedwiththeOregonendofthelineis negative,powerisbeinggeneratedattheOregonendofthelineand transmittedbythelinetobedeliveredtotheCaliforniaendoftheline.
ChapterProblems
P1.1(4cond.) (845mi) 5280ft 1mi 2526lb 1000ft 1kg 2.2lb =20 5 ⇥ 106 kg.
P1.2 [a] Tobegin,wecalculatethenumberofpixelsthatmakeupthedisplay:
npixels =(3840)(2160)=8,294,400pixels.
Eachpixelrequires24bitsofinformation.Since8bitsequalonebyte, eachpixelrequires3bytesofinformation.Wecancalculatethenumber ofbytesofinformationrequiredforthedisplaybymultiplyingthe numberofpixelsinthedisplayby3bytesperpixel:
nbytes = 8,294,400pixels 1display 3bytes 1pixel =24,883,200bytes/display.
Finally,weusethefactthatthereare106 bytesperMB: 24,883,200bytes 1display · 1MB 106 bytes =24.88MB/display.
[b] 24,883,200bytes 1image · 30images 1s · 60s 1min · 60min 1hr · 2hr 1video =5.375 ⇥ 1012 bytes/video=5.375TB/video.
[c] 24,883,200bytes 1image 8bits 1byte 30images 1sec =5,971,968,000bits/s =5.972Gb/s.
P1.3 [a] Wecansetuparatiotodeterminehowlongittakesthebambootogrow 10 µmFirst,recallthat1mm=103 µm.Let’salsoexpresstherateof growthofbamboousingtheunitsmm/sinsteadofmm/day.Usea productofratiostoperformthisconversion: 250mm 1day · 1day 24hours · 1hour 60min · 1min 60sec = 250 (24)(60)(60) = 10 3456 mm/s
Usearatiotodeterminethetimeittakesforthebambootogrow10 µm: 10/3456 ⇥ 10 3 m 1s = 10 ⇥ 10 6 m x s so x = 10 ⇥ 10 6 10/3456 ⇥ 10 3 =3.456s.
[b] 1celllength 3.456s 3600s 1hr (24)(7)hr 1week =175,000celllengths/week
P1.4 (480)(320)pixels 1frame 2bytes 1pixel 30frames 1sec =9 216 ⇥ 106 bytes/sec;
(9.216 ⇥ 106 bytes/sec)(x secs)=32 ⇥ 230 bytes;
x = 32 ⇥ 230 9 216 ⇥ 106 =3728sec=62min ⇡ 1hourofvideo.
P1.5 [a] 20,000photos (11)(15)(1)mm3 = x photos 1mm3 ;
x = (20,000)(1) (11)(15)(1) =121photos
[b] 16 ⇥ 230 bytes (11)(15)(1)mm3 = x bytes (0 2)3 mm3 ;
x = (16 ⇥ 230 )(0 008) (11)(15)(1) =832,963bytes.
P1.6 (260 ⇥ 106 )(540) 109 =104 4gigawatt-hours
P1.7FirstweuseEq.1.2torelatecurrentandcharge:
i = dq dt =24cos4000t.
Therefore, dq =24cos4000tdt.
Tofindthecharge,wecanintegratebothsidesofthelastequation.Notethat wesubstitute x for q ontheleftsideoftheintegral,and y for t ontheright sideoftheintegral:
Z q (t) q (0) dx =24 Z t 0 cos4000ydy.
Wesolvetheintegralandmakethesubstitutionsforthelimitsoftheintegral, rememberingthatsin0=0: q (t) q (0)=24 sin4000y 4000 t 0 = 24 4000 sin4000t 24 4000 sin4000(0)= 24 4000 sin4000t.
But q (0)=0byhypothesis,i.e.,thecurrentpassesthroughitsmaximum valueat t =0,so q (t)=6 ⇥ 10 3 sin4000t C=6sin4000t mC.
P1.8 w = qV =(1.6022 ⇥ 10 19 )(6)=9.61 ⇥ 10 19 =0.961aJ.
P1.9 n = 35 ⇥ 10 6 C/s 1.6022 ⇥ 10 19 C/elec =2 18 ⇥ 1014 elec/s
P1.10
[a] FirstweuseEq.1.2torelatecurrentandcharge:
i = dq dt =0 125e 2500t
Therefore, dq =0 125e 2500t dt.
Tofindthecharge,wecanintegratebothsidesofthelastequation.Note thatwesubstitute x for q ontheleftsideoftheintegral,and y for t on therightsideoftheintegral:
Z q (t)
q (0) dx =0 125 Z t 0 e 2500y dy.
Wesolvetheintegralandmakethesubstitutionsforthelimitsofthe integral:
q (t) q (0)=0.125 e 2500y 2500 t 0 =50 ⇥ 10 6 (1 e 2500t ).
But q (0)=0byhypothesis,so
q (t)=50(1 e 2500t ) µC.
[b] As t !1, qT =50 µC.
[c] q (0 5 ⇥ 10 3 )=(50 ⇥ 10 6 )(1 e( 2500)(0 0005) )=35 675 µC.
P1.11 [a] FirstweuseEq.(1.2)torelatecurrentandcharge: i = dq dt =40te 500t .
Therefore, dq =40te 500t dt.
Tofindthecharge,wecanintegratebothsidesofthelastequation.Note thatwesubstitute x for q ontheleftsideoftheintegral,and y for t on therightsideoftheintegral:
Z q (t) q (0) dx =40 Z t 0 ye 500y dy.
Wesolvetheintegralandmakethesubstitutionsforthelimitsofthe integral:
q (t) q (0)=40 e 500y ( 500)2 ( 500y 1)
=160 ⇥ 10 6 (1 500te 500t e
But q (0)=0byhypothesis,so
q (t)=160(1 500te 500t e 500t ) µC
[b] q (0.001)=(160)[1 500(0.001)e 500(0 001) e 500(0 001) =14.4 µC.
P1.12 [a] InCarB,thecurrent i isinthedirectionofthevoltagedropacrossthe 12Vbattery(thecurrent i flowsintothe+terminalofthebatteryof CarB).Thereforeusingthepassivesignconvention, p = vi =(40)(12)=480W. Sincethepowerispositive,thebatteryinCarBisabsorbingpower,so CarBmusthavethe“dead”battery.
[b] w (t)= Z t 0 pdx;1 5min=1 5 60s 1min =90s;
w (90)= Z 90 0 480 dx;
w =480(90 0)=480(90)=43,200J=43.2kJ.
P1.13AssumewearestandingatboxAlookingtowardboxB.Usethepassivesign conventiontoget p = vi,sincethecurrent i isflowingintothe+terminalof thevoltage v .Nowwejustsubstitutethevaluesfor v and i intotheequation forpower.Rememberthatifthepowerispositive,Bisabsorbingpower,so thepowermustbeflowingfromAtoB.Ifthepowerisnegative,Bis generatingpowersothepowermustbeflowingfromBtoA.
[a] p =(30)(6)=180W180WfromAtoB;
[b] p =( 20)( 8)=160W160WfromAtoB;
[c] p =( 60)(4)= 240W240WfromBtoA;
[d] p =(40)( 9)= 360W360WfromBtoA.
P1.14 p =(12)(0.1)=1.2W;4hr · 3600s 1hr =14,400s;
w (t)= Z t 0 pdt; w (14,400)= Z 14,400 0 1.2 dt =1.2(14,400)=17.28kJ.
P1.15 [a]
p = vi =( 20)(5)= 100W. Powerisbeingdeliveredbythebox.
[b] Entering.
[c] Gain.
P1.16 [a] p = vi =( 20)( 5)=100W,sopowerisbeingabsorbedbythebox.
[b] Leaving.
[c] Lose.
P1.17 p = vi; w = Z t 0 pdx.
Sincetheenergyistheareaunderthepowervs.timeplot,letusplot p vs. t
Notethatinconstructingtheplotabove,weusedthefactthat60hr =216,000s=216ks.
p(0)=(6)(15 ⇥ 10 3 )=90 ⇥ 10 3 W;
P1.19 [a] p = vi =(15e 250t )(0 04e 250t )=0 6e 500t W; p(0.01)=0.6e 500(0 01) =0.6e 5 =0.00404=4.04mW.
P1.20 [a] p = vi
=[(1500t +1)e 750t ](0 04e 750t )
=(60t +0 04)e 1500t ; dp dt =60e 1500t 1500e 1500t (60t +0 04) = 90,000te 1500t .
Therefore, dp dt =0when t =0 so pmax occursat t =0.
[b] pmax =[(60)(0)+0 04]e0 =0 04 =40mW.
[c] w = Z t 0 pdx = Z t 0 60xe 1500x dx + Z t 0 0 04e 1500x dx = 60e 1500x ( 1500)2 ( 1500x 1) t 0 +0.04 e 1500x 1500