Solutions for College Algebra With Intermediate Algebra A Blended Course 1st Us Edition by Beecher

Page 1


Chapter2

Graphs,Functions,andApplications

ExerciseSet2.1

RC2. 4y 3x =0

4y =3x y = 3 4 x

Theansweris(b).

RC4. 3y +4x = 12 3y = 4x 12 y = 4 3 x 4

Theansweris(c).

2. 4.

Parallelogram

A = bh =9 4=36squareunits

6. t =4 3s 4?4 3 3 4 9 5FALSE

Since4= 5isfalse,(3, 4)isnotasolutionof t =4 3s

8. 4r +3s =5 4 2+3 ( 1)?5Substituting2for r and |−1for s 8 3 (alphabeticalorderof | variables) 5

Since5=5istrue,(2, 1)isasolutionof4r +3s =5. 10. 2p 3q = 13 2( 5) 3 1? 13Substituting 5for p and | 1for q 10 3 13

Since 13= 13istrue,( 5, 1)isasolutionof2p 3q = 13.

12. y = x 3 2?5 3 2TRUE y = x 3 4? 1 3 4TRUE

Plotthepoints(5, 2)and( 1, 4)anddrawtheline throughthem.

Thelineappearstopassthrough(0, 3)aswell.Wecheck toseeif(0, 3)isasolutionof y = x 3. y = x 3

3?0 3 3TRUE

(0, 3)isasolution.Othercorrectanswersinclude ( 3, 6),( 2, 5),(1, 2),(2, 1),(3, 0),and(4, 1).

14. y = 1 2 x +3 5? 1 2 · 4+3 2+3 5TRUE y = 1 2 x +3 2? 1 2 ( 2)+3 1+3 2TRUE

Plotthepoints(4, 5)and( 2, 2)anddrawthelinethrough them.

Thelineappearstopassthrough(2, 4)aswell.Wecheck

toseeif(2, 4)isasolutionof y = 1 2 x +3. y = 1 2 x +3

4? 1 2 · 2+3 1+3 4TRUE

(2, 4)isasolution.Othercorrectanswersinclude( 6, 0), ( 4, 1),(0, 3),and(6, 6).

16. 4x 2y =10 4 0 2( 5)?10 0+10 10 TRUE 4x 2y =10 4 4 2 3?10 16 6 10 TRUE

Plotthepoints(0, 5)and(4, 3)anddrawthelinethrough them.

4224 4 2 2 4 531135 5 3 1 1 3 5 x y (2,4) (4,5) (2,2) 4224 4 2 2 4 531135 5 3 1 1 3 5 x y (4,3) (2,1) (0,5)

Thelineappearstopassthrough(5, 5)aswell.Wecheck

toseeif(5, 5)isasolutionof4x 2y =10.

4x 2y =10

4 5 2 5?10 20 10 10 TRUE

(5, 5)isasolution.Othercorrectanswersinclude(1, 3), (2, 1),and(3, 1).

18. x y 2 1 1 0 0 1 1 2 2 3 3 4

50.

52.

54. 2x 5 ≥−10 or 4x 2 < 10 2x ≥−5 or 4x< 12 x ≥− 5 2 orx> 3

Thesolutionsetis {x|x> 3},or( 3, ∞).

56. 13 < 3x +5 < 23 18 < 3x< 18

6 <x< 6

Thesolutionsetis {x|− 6 <x< 6},or( 6, 6).

58. Let h =theheightofthetriangle,infeet.

Solve: 1 2 · 16 · h =200 h =25ft

60. Let x =thesellingpriceofthehouse.Then x 100, 000= theamountthatexceeds$100,000.

Solve:

0 07(100, 000)+0 04(x 100, 000)=16, 200 x =$330, 000

62.

64.

66. Each y -coordinateis3timesthecorresponding x-coordinate,sotheequationis y =3x

68. Each y -coordinateis5lessthesquareofthecorresponding x-coordinate,sotheequationis y =5 x2

ExerciseSet2.2

RC2. f (0)=3

RC4. f (3)=0

2. Yes;eachmemberofthedomainismatchedtoonlyone memberoftherange.

4. No;amemberofthedomain(6)ismatchedtomorethan onememberoftherange.

6. Yes;eachmemberofthedomainismatchedtoonlyone memberoftherange.

8. Yes;eachmemberofthedomainismatchedtoonlyone memberoftherange.

10. Thiscorrespondenceisafunction,sinceeachpersonina familyhasonlyoneheight,ininches.

12. Thiscorrespondenceisnotafunction,sinceeachstatehas twosenators.

14. a) g (0)=0 6= 6

b) g (6)=6 6=0

c) g (13)=13 6=7

d) g ( 1)= 1 6= 7

e) g ( 1 08)= 1 08 6= 7 08

f) g 7 8 = 7 8 6= 5 1 8

16. a) f (6)= 4 6= 24

b) f 1 2 = 4 1 2 =2

c) f (0)= 4 0=0

d) f ( 1)= 4( 1)=4

e) f (3a)= 4 3a = 12a

f) f (a 1)= 4(a 1)= 4a +4

18. a) h(4)=19

b) h( 6)=19

c) h(12)=19

d) h(0)=19

e) h 2 3 =19

f) h(a +3)=19

20. a) f (0)=3 02 2 0+1=1

b) f (1)=3 12 2 1+1=3 2+1=2

c) f ( 1)=3( 1)2 2( 1)+1=3+2+1=6

d) f (10)=3 102 2 10+1=300 20+1=281 Copyright c 2017PearsonEducation,Inc.

e) f ( 3)=3( 3)2 2( 3)+1=27+6+1=34

f) f (2a)=3(2a)2 2(2a)+1=3 4a2 4a +1= 12a2 4a +1

22. a) g (4)= |4 1| = |3| =3

b) g ( 2)= |− 2 1| = |− 3| =3

c) g ( 1)= |− 1 1| = |− 2| =2

d) g (100)= |100 1| = |99| =99

e) g (5a)= |5a 1|

f) g (a +1)= |a +1 1| = |a|

24. a) f (1)=14 3=1 3= 2

b) f ( 1)=( 1)4 3=1 3= 2

c) f (0)=04 3=0 3= 3

d) f (2)=24 3=16 3=13

e) f ( 2)=( 2)4 3=16 3=13

f) f ( a)=( a)4 3= a4 3

26. In1980, h =1980 1945=35.

A(35)=0 059(35)+53 ≈ 55 1years

In2013, h =2013 1945=68

A(68)=0 059(68)+53 ≈ 57 0years

28. T (5)=10 5+20=50+20=70◦ C

T (20)=10 · 20+20=200+20=220◦ C

T (1000)=10 · 1000+20=10, 000+20=10, 020◦ C

30. C (62)= 5 9 (62 32)= 5 9 30= 50 3 =16 2 3 ◦ C

C (77)= 5 9 (77 32)= 5 9 45=25◦ C

C (23)= 5 9 (23 32)= 5 9 ( 9)= 5◦ C 32.

46. x y 5 0 4 3 3 4 2 3 1 0 0 5 1 12

48.

50. x f (x)

52. No;itfailstheverticallinetest.

54. Yes;itpassestheverticallinetest.

56. Yes;itpassestheverticallinetest.

58. No;itfailstheverticallinetest.

60. About1.3millionchildren

62. About280,000pharmacists

64. 6x 31=11+6(x 7) 6x 31=11+6x 42

6x 31=6x 31 31= 31 Wegetatrueequation,soallrealnumbersaresolutions.

66. 2 3 (4x 2) > 60 4x 2 > 90 4x> 92 x> 23 {x|x> 23},or(23, ∞)

68. 4(x 5)=3(x +2) 4x 20=3x +6 x =26

70. 1 2 x +10 < 8x 5 15 < 15 2 x 2 <x {x|x> 2},or(2, ∞)

72. 1 16 x +4= 5 8 x 1 5= 9 16 x 80 9 = x

74. x +5=3when x = 2.Find h( 2). h( 2)=( 2)2 4=4 4=0

76. g ( 1)=2( 1)+5=3,so f (g ( 1))= f (3)= 3 · 32 1=26. f ( 1)=3( 1)2 1=2,so g (f ( 1))= g (2)=2 2+5=9.

ExerciseSet2.3

RC2. 5 x =0for x =5,sothedomainis

{x|x isarealnumber andx =5}.Theansweris(b).

RC4. |x 5| =0for x =5,sothedomainis

{x|x isarealnumber andx =5}.Theansweris(b).

RC6. x +5=0for x = 5,sothedomainis

{x|x isarealnumber andx = 5}.Theansweris(d).

2. a) f (1)=1

b) Thesetofall x-valuesinthegraphis

{−3, 1, 1, 3, 5}.

c) Theonlypointwhosesecondcoordinateis2is(3, 2), sothe x-valueforwhich f (x)=2is3.

d) Thesetofall y -valuesinthegraphis

{−1, 0, 1, 2, 3}.

4. a) f (1)= 2

b) Thesetofall x-valuesinthegraphis

{x|− 4 ≤ x ≤ 2},or[ 4, 2].

c) Theonlypointwhosesecondcoordinateis2isabout ( 2, 2),sothe x-valueforwhich f (x)=2isabout 2.

d) Thesetofall y -valuesinthegraphis

{y |− 3 ≤ y ≤ 3},or[ 3, 3].

6. a) f (1)= 1

b) Noendpointsareindicatedandweseethatthe graphextendsindefinitelybothhorizontallyand vertically,sothedomainisthesetofallrealnumbers.

c) Theonlypointwhosesecondcoordinateis2is ( 2, 2),sothe x-valueforwhich f (x)=2is 2.

d) Therangeisthesetofallrealnumbers.(Seepart (b)above.)

8. a) f (1)=3

b) Noendpointsareindicatedandweseethatthe graphextendsindefinitelyhorizontally,sothedomainisthesetofallrealnumbers.

c) Therearetwopointsforwhichthesecondcoordinateis2.Theyareabout( 1 4, 2)and(1 4, 2),so the x-valuesforwhich f (x)=2areabout 1 4and 1.4.

d) Thelargest y -valueis4.Noendpointsareindicated andweseethatthegraphextendsdownwardindefinitelyfrom(0, 4),sotherangeis {y |y ≤ 4},or (−∞, 4].

10. f (x)= 7 5 x

Solve:5 x =0 x =5

Thedomainis {x|x isarealnumber andx =5},or (−∞, 5) ∪ (5, ∞).

12. f (x)=4 5x

Wecancalculate4 5x foranyvalueof x,sothedomain isthesetofallrealnumbers.

14. f (x)= x2 2x +3

Wecancalculate x2 2x +3foranyvalueof x,sothe domainisthesetofallrealnumbers.

16. f (x)= x 2 3x +4

Solve:3x +4=0 x = 4 3

Thedomainis x|x isarealnumber andx = 4 3 ,or

−∞, 4 3 ∪ 4 3 , ∞

18. f (x)= |x 4|

Wecancalculate |x 4| foranyvalueof x,sothedomain isthesetofallrealnumbers.

20. f (x)= 4 |2x 3|

Solve: |2x 3| =0 x = 3 2

Thedomainis x|x isarealnumber andx = 3 2 ,or

−∞, 3 2 ∪ 3 2 , ∞ .

22. g (x)= 11 4+ x

Solve:4+ x =0 x = 4

Thedomainis {x|x isarealnumber andx = 4},or (−∞, 4) ∪ ( 4, ∞).

24. g (x)=8 x2

Wecancalculate8 x2 foranyvalueof x,sothedomain isthesetofallrealnumbers.

26. g (x)=4x3 +5x2 2x Wecancalculate4x3 +5x2 2x foranyvalueof x,sothe domainisthesetofallrealnumbers.

28. g (x)= 2x 3 6x 12

Solve:6x 12=0 x =2

Thedomainis {x|x isarealnumber andx =2},or (−∞, 2) ∪ (2, ∞).

30. g (x)= |x| +1

Wecancalculate |x| +1foranyvalueof x,sothedomain isthesetofallrealnumbers.

32. g (x)= x2 +2x |10x 20|

Solve: |10x 20| =0 x =2

Thedomainis {x|x isarealnumber andx =2},or (−∞, 2) ∪ (2, ∞).

34. {x|x isaninteger}

36. |x| = 8

Sinceabsolutevaluemustbenonnegative,thesolutionset is {} or ∅.

38. |2x +3| =13 2x +3= 13 or 2x +3=13

2x = 16 or 2x =10 x = 8 orx =5

Thesolutionsetis {−8, 5}

40. |5x 6| = |3 8x| 5x 6=3 8xor 5x 6= (3 8x) 13x =9 or 5x 6= 3+8x

x = 9 13 or 3x =3

x = 9 13 orx = 1

Thesolutionsetis 1, 9 13

42. |3x 8| =0

3x 8=0

3x =8 x = 8 3

Thesolutionsetis 8 3

44. Grapheachfunctiononagraphingcalculator,anddeterminetherangefromthegraph.

ForthefunctioninExercise22,therangeis

{x|x isarealnumber andx =0},or (−∞, 0) ∪ (0, ∞).

ForthefunctioninExercise23,therangeis

{x|x ≥ 0},or[0, ∞).

ForthefunctioninExercise24,therangeis

{x|x ≤ 8},or(−∞, 8].

ForthefunctioninExercise30,therangeis

{x|x ≥ 1},or[1, ∞).

46. Wemusthave2 x ≥ 0,or2 ≥ x.Thus,thedomainis

{x|x ≤ 2},or(−∞, 2].

ExerciseSet2.4

RC2. (f g )(x)= f (x) g (x)

= x2 1 (x +3)

= x2 1 x 3

= x2 x 4

Answer(c)iscorrect.

RC4. (g f )(x)= g (x) f (x)

= x +3 (x2 1)

= x +3 x2 +1

= x2 + x +4

Answer(e)iscorrect.

2. Since f (4)= 2 4+3= 8+3= 5and g (4)=42 5= 16 5=11,wehave

f (4)+ g (4)= 5+11=6.

4. Since f (2)= 2 2+3= 4+3= 1and g (2)=22 5= 4 5= 1,wehave

f (2) g (2)= 1 ( 1)= 1+1=0.

6. Since f ( 1)= 2( 1)+3=2+3=5and g ( 1)= ( 1)2 5=1 5= 4,wehave

f ( 1) g ( 1)=5( 4)= 20.

8. Since f (3)= 2 3+3= 6+3= 3and g (3)=32 5= 9 5=4,wehave

f (3)/g (3)= 3 4 = 3 4

10. Since g ( 3)=( 3)2 5=9 5=4and f ( 3)= 2( 3)+3=6+3=9,wehave

g ( 3)/f ( 3)= 4 9 .

12. (f g )(x)= f (x) g (x) = 2x +3 (x2 5) = 2x +3 x2 +5 = x2 2x +8

14. (g/f )(x)= g (x)/f (x) = x2 5 2x +3

16. Since F (a)= a2 2and G(a)=5 a,wehave (F + G)(a)= F (a)+ G(a) = a2 2+5 a = a2 a +3

Or(F + G)(x)= F (x)+ G(x) = x2 2+5 x = x2 x +3,

so(F + G)(a)= a2 a +3

18. Since F (2)=22 2=4 2=2and G(2)=5 2=3,we have

(F G)(2)= F (2) G(2) =2 3= 1

Or(F G)(x)= F (x) G(x) = x2 2 (5 x) = x2 2 5+ x = x2 + x 7, so(F G)(2)=22 +2 7=4+2 7= 1

20. (G · F )(x)= G(x) · F (x) =(5 x)(x2 2) =5x2 10 x3 +2x, or x3 +5x2 +2x 10

22. (G F )(x)= G(x) F (x) =5 x (x2 2) =5 x x2 +2 = x2 x +7

24. Since F ( 1)=( 1)2 2= 1and G( 1)= 5 ( 1)=6, wehave(F/G)( 1)= F ( 1)/G( 1)= 1 6 = 1 6 Alternatively,wecouldfirstfind(F/G)(x).

(F/G)(x)= F (x)/G(x)= x2 2 5 x Then(F/G)( 1)= ( 1)2 2 5 ( 1) = 1 6 = 1 6

26. Since G(6)=5 6= 1,wehave

(G G)(6)= G(6) G(16)= 1( 1)=1.

Alternatively,wecouldfirstfind(G G)(x).

(G G)(x)= G(x) G(x) =(5 x)(5 x) =25 10x + x2

Then(G G)(6)=25 10 6+62 =25 60+36=1.

28. (r/t)(x)= r (x)/t(x) = 5 x2 3 2x = 5 x2 2x 3 = 5 2 x / x / x 3 = 10 3x

30. (r + t)(x)= r (x)+ t(x) = 5 x2 + 3 2x = 10 2x2 + 3x 2x2 = 10+3x 2x2

32. (t r )(x)= t(x) r (x) = 3 2x 5 x2 = 3x 2x2 10 2x2 = 3x 10 2x2

34. 0 8+2 9=3 7million

36. 21 11=10

38. f (x)=5x 1, g (x)=2x2

Domainof f =Domainof g = {x|x isarealnumber}, soDomainof f + g =Domainof f g =Domainof f · g = {x|x isarealnumber}

40. f (x)=3x2 , g (x)= 1 x 9

Domainof f = {x|x isarealnumber}

Domainof g = {x|x isarealnumber andx =9}

Domainof f + g =Domainof f g =Domainof f · g = {x|x isarealnumber andx =9}

42. f (x)= x3 +1, g (x)= 5 x

Domainof f = {x|x isarealnumber}

Domainof g = {x|x isarealnumber andx =0}

Domainof f + g =Domainof f g =Domainof f g = {x|x isarealnumber andx =0}

44. f (x)=9 x2 , g (x)= 3 x +6

Domainof f = {x|x isarealnumber}

Domainof g = {x|x isarealnumber andx = 6}

Domainof f + g =Domainof f g =Domainof f g = {x|x isarealnumber andx = 6}

46. f (x)= 5 3 x , g (x)= 1 4x 1

Domainof f = {x|x isarealnumber andx =3}

Domainof g = x|x isarealnumber andx = 1 4

Domainof f + g =Domainof f g =Domainof f · g = x|x isarealnumber andx =3 andx = 1 4

48. f (x)=2x3 , g (x)=5 x

Domainof f =Domainof g = {x|x isarealnumber} and g (5)=0,soDomainof f/g = {x|x isarealnumber andx =5}

50. f (x)=5+ x, g (x)=6 2x

Domainof f =Domainof g = {x|x isarealnumber} and g (3)=0,soDomainof f/g =

{x|x isarealnumber andx =3}

52. f (x)= 1 2 x , g (x)=7+ x

Domainof f = {x|x isarealnumber andx =2}

Domainof g = {x|x isarealnumber } andwehave g ( 7)=0.

Domainof f/g = {x|x isarealnumber andx =2 andx = 7}

54. f (x)= 7x x 2 , g (x)=3x +7

Domainof f = {x|x isarealnumber andx =2}

Domainof g = {x|x isarealnumber} and g 7 3 =0

Domainof f/g = x|x isarealnumber andx =2 andx = 7 3

56. (F G)(6)= F (6) G(6)=0(3.5)=0 (F G)(9)= F (9) G(9)=1 2=2

58. (F/G)(3)= F (3)/G(3)= 2 1 =2 (F/G)(7)= F (7)/G(7)= 1 4 = 1 4

60. Domainof F = {x|0 ≤ x ≤ 9}; F (6)=0and F (8)=0

Domainof G = {x|3 ≤ x ≤ 10}

Domainof F G =Domainof F · G = {x|3 ≤ x ≤ 9}

Domainof G/F = {x|3 ≤ x ≤ 9 andx =6 andx =8}

62. Let p =thenumberofpointsIsaiahscored.Then p 5= thenumberofpointsTerrencescored.

Solve: p + p 5=27 p =16,soTerrencescored p 5=16 5=11points.

64. 7x +16=5x 20 2x = 36 x = 18

66. fx)= 3x 2x +5 , g (x)= x4 1 3x +9

Domainof f = x|x isarealnumber andx = 5 2

Domainof g = {x|x isarealnumber andx = 3}

g (x)=0when x4 1=0orwhen x =1 orx = 1

Domainof f/g = x|x isarealnumber and x = 5 2 andx = 3 andx =1 andx = 1

68. Theinputsthatareinthedomainsofboth f and g are 2, 1,0,and1,soDomainof f + g =Domainof f g =

Domainof f g = {−2, 1, 0, 1}.

g ( 1)=0,soDomainof f/g = {−2, 0, 1}.

Chapter2Mid-ChapterReview

1. True;afunctionisaspecialtypeofrelationinwhicheach memberofthedomainispairedwithexactlyonemember oftherange.

2. False;seethedefinitionofafunctiononpage85ofthe text.

3. True;forafunction f (x)= c,where c isaconstant,all theinputshavetheoutput c

4. True;seethevertical-linetestonpage90ofthetext.

5. False;forexample,seeExercise3above.

6. Wesubstitute 2for x and 1for y (alphabeticalorder ofvariables.)

5y +6=4x 5( 1)+6?4( 2) 5+6 8 1 FALSE

Thus,( 2, 1)isnotasolutionoftheequation.

7. Wesubstitute 1 2 for a and0for b (alphabeticalorderof variables.)

8a =4 b

8 1 2 ?4 0 4 4TRUE

Thus, 1 2 , 0 isasolutionoftheequation.

8. Yes;eachmemberofthedomainismatchedtoonlyone memberoftherange.

9. No;thenumber15inthedomainismatchedto2numbers oftherange,25and30.

10. Thesetofall x-valuesonthegraphextendsfrom 3 through3,sothedomainis {x|− 3 ≤ x ≤ 3},or[ 3, 3]. Thesetofall y -valuesonthegraphextendsfrom 2 through1,sotherangeis {y |− 2 ≤ y ≤ 1},or[ 2, 1].

11. g (x)=2+ x g ( 5)=2+( 5)= 3

12. f (x)= x 7 f (0)=0 7= 7

13. h(x)=8 h 1 2 =8

14. f (x)=3x2 x +5 f ( 1)=3( 1)2 ( 1)+5=3 · 1+1+5=3+1+5=9

15. g (p)= p4 p3 g (10)=104 103 =10, 000 1000=9000

16. f (t)= 1 2 t +3 f ( 6)= 1 2 ( 6)+3= 3+3=0

17. Noverticallinewillintersectthegraphmorethanonce. Thus,thegraphisthegraphofafunction.

18. Itispossibleforaverticallinetointersectthegraphmore thanonce.Thus,thegraphisnotthegraphofafunction.

19. Noverticallinewillintersectthegraphmorethanonce. Thus,thegraphisthegraphofafunction.

20. g (x)= 3 12 3x

Since 3 12 3x cannotbecalculatedwhenthedenominator is0,wefindthe x-valuethatcauses12 3x tobe0: 12 3x =0 12=3x 4= x

Thus,thedomainof g is {x|x isarealnumber andx =4}, or(−∞, 4) ∪ (4, ∞).

21. f (x)= x2 10x +3

Sincewecancalculate x2 10x +3foranyrealnumber x, thedomainisthesetofallrealnumbers.

22. h(x)= x 2 x +2

Since x 2 x +2 cannotbecalculatedwhenthedenominatoris 0,wefindthe x-valuethatcauses x +2tobe0: x +2=0 x = 2

Thus,thedomainof g is {x|x isarealnumber andx = 2},or(−∞, 2) ∪ ( 2, ∞). Copyright c 2017PearsonEducation,Inc.

23. f (x)= |x 4|

Sincewecancalculate |x 4| foranyrealnumber x,the domainisthesetofallrealnumbers.

24. y = 2 3 x 2

Wefindsomeorderedpairsthataresolutions.

When x = 3, y = 2 3 ( 3) 2=2 2=0.

When x =0, y = 2 3 · 0 2=0 2= 2.

When x =3, y = 2 3 3 2= 2 2= 4. x y 3 0 0 2 3 4

Plotthesepoints,drawthelinetheydetermine,andlabel it y = 2 3 x 2.

25. f (x)= x 1

Wefindsomeorderedpairsthataresolutions.

f ( 3)= 3 1= 4.

f (0)=0 1= 1.

f (4)=4 1=3.

x f (x) 3 4 0 1 4 3

Plotthesepoints,drawthelinetheydetermine,andlabel it f (x)= x 1.

When x =2, y =2 2+ 1 2 =4+ 1 2 =4 1 2

Plotthesepoints,drawthelinetheydetermine,andlabel it h(x)=2x + 1 2

27. g (x)= |x|− 3

26. h(x)=2x + 1 2

Wefindsomeorderedpairsthataresolutions.

When x = 2, y =2( 2)+ 1 2 = 4+ 1 2 = 3 1 2

When x =0, y =2 0+ 1 2 =0+ 1 2 = 1 2 .

Wefindsomeorderedpairsthataresolutions.

g ( 4)= |− 4|− 3=4 3=1

y x 2 3 y x 2 y x f (x ) x 1 y x 1 2 h (x ) 2x y x g ( x ) |x | 3

g ( 1)= |− 1|− 3=1 3= 2

g (0)= |0|− 3=0 3= 3

g (2)= |2|− 3=2 3= 1

g (3)= |3|− 3=3 3=0 x g (x) 4 1 1 2 0 3 2 1 3 0

Plotthesepoints,drawthelinetheydetermine,andlabel it g (x)= |x|− 3.

28. y =1+ x2

Wefindsomeorderedpairsthataresolutions.

When x = 2, y =1+( 2)2 =1+4=5.

When x = 1, y =1+( 1)2 =1+1=2.

When x =0, y =1+02 =1+0=1.

When x =1, y =1+12 =1+1=2.

When x =2, y =1+22 =1+4=5.

x y 2 5 1 2 0 1 1 2 2 5

Plotthesepoints,drawthelinetheydetermine,andlabel it y =1+ x2

Domainof f + g =Domainof f g =Domainof f g = {x|x isarealnumber}

Since g (x)=0when x = 4,wehaveDomainof f/g = {x|x isarealnumber andx = 4}

34. f (x)= 7 x 9 , g (x)=6 x

Domainof f = {x|x isarealnumber andx =9}

Domainof g = {x|x isarealnumber}

Domainof f + g =Domainof f g =Domainof f · g = {x|x isarealnumber andx =9}

Since g (x)=0when x =6,wehaveDomainof f/g = {x|x isarealnumber andx =9 andx =6}

35. No;sinceeachinputhasexactlyoneoutput,thenumber ofoutputscannotexceedthenumberofinputs.

29. f (x)= 1 4 x Wefindsomeorderedpairsthataresolutions.

f ( 4)= 1 4 ( 4)=1

f (0)= 1 4 0=0

f (4)= 1 4 · 4= 1 x f (x) 4 1 0 0 4 1

Plotthesepoints,drawthelinetheydetermine,andlabel it f (x)= 1 4 x.

y x y 1 x 2 y x f (x ) x 1 4

30. (f g )(x)= f (x) g (x) =3x 1 (x2 +2)

=3x 1 x2 2 = x2 +3x 3

31. f ( 2)=3( 2) 1= 6 1= 7

g ( 2)=( 2)2 +2=4+2=6

f ( 2) g ( 2)= 7 6= 42

32. (g/f )(a)= g (a)/f (a)= a2 +2 3a 1

33. f (x)=5x2 , g (x)= x +4

Domainof f =Domainof g = {x|x isarealnumber}

36. When x< 0,then y< 0andthegraphcontainspoints inquadrantIII.When0 <x< 30,then y< 0andthe graphcontainspointsinquadrantIV.When x> 30,then y> 0andthegraphcontainspointsinquadrantI.Thus, thegraphpassesthroughthreequadrants.

37. Theoutput 3correspondstotheinput2.Thenumber 3intherangeispairedwiththenumber2inthedomain. Thepoint(2, 3)isonthegraphofthefunction.

38. Thedomainofafunctionisthesetofallinputs,andthe rangeisthesetofalloutputs.

ExerciseSet2.5

RC2. m = 3 0 3 ( 2) = 3 1 =3

Theansweris(b).

RC4. Thisisahorizontalline,sotheslopeis0.Theanswer is(c).

RC6. m = 1 ( 2) 1 3 = 3 4 = 3 4

Theansweris(a).

2. Slopeis 5; y -interceptis(0, 10).

4. Slopeis 5; y -interceptis(0, 7).

6. Slopeis 15 7 ; y -interceptis 0, 16 5

8. Slopeis 3 1; y -interceptis(0, 5).

10. 8x 7y =24

7y =8x +24

y = 8 7 x 24 7

Slopeis 8 7 ; y -interceptis 0, 24 7

12. 9y +36 4x =0

9y =4x 36 y = 4 9 x 4

Slopeis 4 9 ; y -interceptis(0, 4).

14. 5x = 2 3 y 10

5x +10= 2 3 y 15 2 x +15= y

Slopeis 15 2 ; y -interceptis(0, 15).

16. 3y 2x =5+9y 2x 6y =5

y = 5 6 , or0x 5 6

Slopeis0; y -interceptis 0, 5 6

18. Wecanuseanytwopointsontheline,suchas( 3, 4) and(0, 3).

m = changein y changein x = 3 ( 4) 0 ( 3) = 1 3

20. Wecanuseanytwopointsontheline,suchas(2, 4)and (4, 0).

m = changein y changein x = 0 4 4 2 = 4 2 = 2

22. Slope= 1 7 2 8 = 8 6 = 4 3

24. Slope= 15 ( 12) 9 17 = 3 26 = 3 26

26. Slope= 17 6 ( 7 8) 12 5 14 4 = 9 8 26 9 = 98 269

28. m = 43 33 1238 = 7 200 ,orabout3.5%

30. m = 7 11 =0 63=63 63%

32. Rateofchange= 16 5 4 2050 2011 = 10 6 39 ≈ 0 27

Therateofchangeisabout0.27million,or270,000people peryear.

34. Wecanusethecoordinatesofanytwopointsontheline. We’lluse(0, 100)and(9, 40).

Slope= changein y changein x = 40 100 9 0 = 60 9 = 20 3 , or 6 2 3 mpersecond

36. Rateofchange= 41 33 2012 2002 = 8 10 =0 8

Therateofchangeis0.8million,or800,000peopleper year.

38. 9{2x 3[5x +2( 3x + y 0 2)]}

=9{2x 3[5x +2( 3x +1 2)]} (y 0 =1)

=9{2x 3[5x +2( 3x 1)]}

=9{2x 3[5x 6x 2]}

=9{2x 3[ x 2]}

=9{2x +3x +6}

=9{5x +6}

=45x +54

40. 54 ÷ 625 ÷ 52 · 57 ÷ 53

=1 ÷ 52 57 ÷ 53

=5 2 57 ÷ 53

=55 ÷ 53

=52 , or25

42. |5x 8|≥ 32 5x 8 ≤−32 or 5x 8 ≥ 32 5x ≤−24 or 5x ≥ 40 x ≤− 24 5 orx ≥ 8

Thesolutionsetis x x ≤− 24 5 orx ≥ 8 ,or

−∞, 24 5 ∪ [8, ∞).

44. |5x 8| =32

5x 8= 32 or 5x 8=32

5x = 24 or 5x =40 x = 24 5 orx =8

Thesolutionsetis 24 5 , 8

ExerciseSet2.6

RC2. False;the y -interceptof y = 2x +7is(0, 7).

RC4. True

RC6. False;seepage209inthetext.

2.

18. y = 2 5 x 4

Slope: 2 5 ; y -intercept:(0, 4)

Startingat(0, 4),findanotherpointbymoving2units upand5unitstotherightto(5, 2).

Startingat(0, 4)again,move2unitsdownand5units totheleftto( 5, 6).

20. y = 2 5 x +3

Slope: 2 5 ; y -intercept:(0, 3)

Startingat(0, 3),findanotherpointbymoving2unitsup and5unitstotherightto(5, 5).

Startingat(0, 3)again,move2unitsdownand5unitsto theleftto( 5, 1).

22. x 3y =6

3y = x +6 y = 1 3 x 2

Slope: 1 3 ; y -intercept:(0, 2)

Startingat(0, 2),findanotherpointbymoving1unit upand3unitstotherightto(3, 1).

From(3, 1),move1unitupand3unitstotheleftagain to(6, 0).

24. 2x +6y =12

6y = 2x +12 y = 1 3 x +2

Slope: 1 3 ; y -intercept:(0, 2)

Startingat(0, 2),findanotherpointbymoving1unitup and3unitstotheleftto( 3, 3).Startingat(0, 2)again, move1unitdownand3unitstotherightto(3, 1).

26. g (x)= 0 25x +2

Slope: 0 25,or 1 4 ; y -intercept:(0, 2)

Startingat(0, 2),findanotherpointbymoving1unitup and4unitstotheleftto( 4, 3).Startingat(0, 2)again, move1unitdownand4unitstotherightto(4, 1).

28. 3 f (x)=4x +6 f (x)= 4 3 x +2

Slope: 4 3 ; y -intercept:(0, 2)

Startingat(0, 2),findanotherpointbymoving4unitsup and3unitstotherightto(3, 6).Startingat(0, 2)again, move4unitsdownand3unitstotheleftto( 3, 2).

30. Theslopeisnotdefined.

32. Theslopeis0.

34. Theslopeis0.

36. Theslopeisnotdefined.

4224 4 2 2 4 531135 5 3 1 1 3 5 x y x 0

38. 4 g (x)+3x =12+3x 4 g (x)=12 g (x)=3

4224 4 2 2 4 531135 5 3 1 1 3 5 x y 4 g (x) 3x 12 3x

Theslopeis0.

40. 3 f (x)=2 1= f (x)

4224 4 2 2 4 531135 5 3 1 1 3 5 x y 3 f (x) 2

Theslopeis0.

42. Writebothequationsinslope-interceptform.

y =2x 7(m =2)

y =2x +8(m =2)

Theslopesarethesameandthe y -interceptsaredifferent, sothelinesareparallel.

44. Writebothequationsinslope-interceptform.

y = 6x 8(m = 6)

y =2x +5(m =2)

Theslopesarenotthesame,sothelinesarenotparallel.

46. Writebothequationsinslope-interceptform.

y = 7x 9(m = 7)

y = 7x 7 3 (m = 7)

Theslopesarethesameandthe y -interceptsaredifferent, sothelinesareparallel.

48. Thegraphof5y = 2,or y = 2 5 ,isahorizontalline;the graphof 3 4 x =16,or x = 64 3 ,isaverticalline.Thus,the graphsarenotparallel.

50. Writebothequationsinslope-interceptform.

y = 2 5 x + 3 5 m = 2 5

y = 2 5 x + 4 5 m = 2 5 2 5 2 5 = 4 25 = 1,sothelinesarenot perpendicular.

52. y = x +7(m = 1) y = x +3(m =1) 1 1= 1,sothelinesareperpendicular.

54. y = x (m =1) y = x (m = 1) 1( 1)= 1,sothelinesareperpendicular.

56. Sincethegraphsof 5y =10,or y = 2,and y = 4 9 are bothhorizontallines,theyarenotperpendicular.

58. Movethedecimalpoint5placestotheright.Thenumber issmall,sotheexponentisnegative.

0 000047=4 7 × 10 5

60. Movethedecimalpoint7placestotheleft.Thenumber islarge,sotheexponentispositive.

99, 902, 000=9.9902 × 107

62. Theexponentispositive,sothenumberislarge.Movethe decimalpoint8placestotheright.

9 01 × 108 =901, 000, 000

64. Theexponentisnegative,sothenumberissmall.Move thedecimalpoint2placestotheleft.

8 5677 × 10 2 =0 085677

66. 12a +21ab =3a(4+7b)

68. 64x 128y +256=64(x 2y +4)

70.

72. x +7y =70

y = 1 7 x +10 m = 1 7 y +3= kx y = kx 3(m = k )

Inorderforthegraphstobeperpendicular,theproduct oftheslopesmustbe 1. 1

7 k = 1 k =7

74. The x-coordinatemustbe 4,andthe y -coordinatemust be5.Thepointis( 4, 5).

76. Allpointsonthe y -axisarepairsoftheform(0,y ).Thus anynumberfor y willdoand x mustbe0.Theequation is x =0.Thegraphfailsthevertical-linetest,sothe equationisnotafunction.

78. 2y = 7x +3b 2( 13)= 7 0+3b 26=3b 26 3 = b

ExerciseSet2.7

RC2. y = 5isahorizontalline,soitsslopeis0. a)0

b)notdefined

RC4. y = 5 6 x + 4 3 a) 5 6 b) 6 5

RC6. 10x +5y =14

5y = 10x +14

y = 2x + 14 5

a) 2 b) 1 2

2. y =5x 3

4. y = 9 1x +2

6. f (x)= 4 5 x +28

8. f (x)= 7 8 x 7 11

10. Usingthepoint-slopeequation:

y y1 = m(x x1 )

y 2=4(x 5)

y 2=4x 20

y =4x 18

Usingtheslope-interceptequation:

y = mx + b

2=4 5+ b

18= b

y =4x 18

12. Usingthepoint-slopeequation:

y y1 = m(x x1 )

y 8= 2(x 2)

y 8= 2x +4

y = 2x +12

Usingtheslope-interceptequation:

y = mx + b

8= 2 2+ b

12= b

y = 2x +12

14. Usingthepoint-slopeequation:

y y1 = m(x x1 )

y ( 2)=3(x ( 2))

y +2=3(x +2)

y +2=3x +6 y =3x +4

Usingtheslope-interceptequation:

y = mx + b

2=3( 2)+ b

4= b

y =3x +4

16. Usingthepoint-slopeequation:

y y1 = m(x x1 )

y 0= 3(x ( 2))

y = 3(x +2)

y = 3x 6

Usingtheslope-interceptequation:

y = mx + b

0= 3( 2)+ b

6= b

y = 3x 6

18. Usingthepoint-slopeequation:

y y1 = m(x x1 )

y 4=0(x 0)

y 4=0

y =4

Usingtheslope-interceptequation:

y = mx + b

4=0 · 0+ b

4= b

y =0x +4,or y =4

20. Usingthepoint-slopeequation:

y y1 = m(x x1 )

y 3= 4 5 (x 2)

y 3= 4 5 x + 8 5

y = 4 5 x + 23 5

Usingtheslope-interceptequation:

y = mx + b

3= 4 5 2+ b 23 5 = b

y = 4 5 x + 23 5

22. m = 7 5 4 2 = 2 2 =1

Usingthepoint-slopeequation:

y y1 = m(x x1 )

y 5=1(x 2)

y 5= x 2

y = x +3

Usingtheslope-interceptequation:

y = mx + b

5=1 · 2+ b

3= b

y =1 x +3,or y = x +3

24. m = 9 ( 1) 9 ( 1) = 10 10 =1

Usingthepoint-slopeequation:

y y1 = m(x x1 )

y 9=1(x 9)

y 9= x 9

y = x

Usingtheslope-interceptequation:

y = mx + b

9=1 9+ b

0= b

y =1 x +0,or y = x

26. m = 0 ( 5) 3 0 = 5 3

Usingthepoint-slopeequation:

y y1 = m(x x1 )

y 0= 5 3 (x 3)

y = 5 3 x 5

Usingtheslope-interceptequation:

y = mx + b 5= 5 3 0+ b

5= b

y = 5 3 x 5

28. m = 1 ( 7) 2 ( 4) = 6 2 =3

Usingthepoint-slopeequation:

y y1 = m(x x1 )

y ( 7)=3(x ( 4))

y +7=3(x +4)

y +7=3x +12

y =3x +5

Usingtheslope-interceptequation:

y = mx + b 7=3( 4)+ b 5= b

y =3x +5

30. m = 7 0 4 0 = 7 4

Usingthepoint-slopeequation:

y y1 = m(x x1 )

y 0= 7 4 (x 0)

y = 7 4 x

Usingtheslope-interceptequation:

y = mx + b

0= 7 4 0+ b

0= b

y = 7 4 x +0,or y = 7 4 x

32. m = 5 6 3 2 3 2 3 = 4 6 11 3 = 2 11

Usingthepoint-slopeequation:

y y1 = m(x x1 )

y 5 6 = 2 11 (x ( 3))

y 5 6 = 2 11 (x +3)

y 5 6 = 2 11 x + 6 11

y = 2 11 x + 91 66

Usingtheslope-interceptequation:

y = mx + b 5 6 = 2 11 ( 3)+ b 91 66 = b

y = 2 11 x + 91 66

34. 2x y =7Givenline

y =2x 7 m =2

Usingtheslope,2,andthe y -intercept(0, 3),wewritethe equationoftheline: y =2x +3.

36. 2x + y = 3Givenline

y = 2x 3 m = 2

Usingthepoint-slopeequation:

y y1 = m(x x1 )

y ( 5)= 2(x ( 4))

y +5= 2(x +4)

y +5= 2x 8

y = 2x 13

Usingtheslope-interceptequation:

y = mx + b

5= 2( 4)+ b 13= b

y = 2x 13

38. 5x +2y =6Givenline

y = 5 2 +3 m = 5 2

Usingthepoint-slopeequation:

y y1 = m(x x1 )

y 0= 5 2 (x ( 7))

y = 5 2 (x +7)

y = 5 2 x 35 2

Usingtheslope-interceptequation:

y = mx + b 0= 5 2 ( 7)+ b

35 2 = b

y = 5 2 x 35 2

40. x 3y =9Givenline

y = 1 3 x 3 m = 1 3

Usingthepoint-slopeequation:

y y1 = m(x x1 )

y 1= 3(x 4)

y 1= 3x +12

y = 3x +13

Usingtheslope-interceptequation:

y = mx + b 1= 3 4+ b

13= b

y = 3x +13

42. 5x 2y =4Givenline

y = 5 2 x 2 m = 5 2

Usingthepoint-slopeequation:

y y1 = m(x x1 )

y ( 5)= 2 5 (x ( 3))

y +5= 2 5 (x +3)

y +5= 2 5 x 6 5

y = 2 5 x 31 5

Usingtheslope-interceptequation:

y = mx + b 5= 2 5 ( 3)+ b

31 5 = b

y = 2 5 x 31 5

44. 3x +6y =2Givenline

y = 1 2 x + 1 3 m = 1 2

Usingthepoint-slopeequation:

y y1 = m(x x1 )

y ( 4)= 2(x ( 3))

y +4= 2(x +3)

y +4= 2x 6

y = 2x 10

Usingtheslope-interceptequation:

y = mx + b 4= 2( 3)+6 10= b

y = 2x 10

46. a) C (t)=24 95t +165 b)

c) C (14)=24 95(14)+165=$514 30

48. a) V (t)=3800 50t b)

c) V (10.5)=3800 50(10.5)=$3275

50. a) Thedatapointsare(0, 174)and(5, 245).

m = 245 174 5 0 = 71 5 =14 2

Usingtheslopeandthe y -intercept,wewritethe function:

D (x)=14 2x +174,where x isthenumberofyears since2007and D (x)isinbillionsofdollars.

b) In2010, x =2010 2007=3.

D (3)=14 2(3)+174=$216 6billion

In2015, x =2015 2007=8.

D (8)=14 2(8)+174=$287 6billion

52. a) Thedatapointsare(0, 46 8)and(40, 43 8).

m = 43 8 46 8 40 0 = 3 40 = 0 075

Usingtheslopeandthe y -intercept,wewritethe function R(x)= 0 075x +46 8.

b) R(73)= 0 075(73)+46 8=41 325sec

R(76)= 0.075(76)+46.8=41.1sec

c) Solve: 0 075x +46 8=40 x ≈ 91

Therecordwillbe40secabout91yrafter1930,or in2021.

54. a) Thedatapointsare(0, 79 27)and(8, 89 73).

m = 89 73 79 27 8 0 = 10 46 8 ≈ 1 308

Usingtheslopeandthe y -interceptwewritethe function:

E (t)=1 308t +79 27,where t isthenumberofyears since2003.

b) In2016, t =2016 2003=13.

E (13)=1 308(13)+79 27 ≈ 96 27years

56. |2x +3| =51

2x +3=51 or 2x +3= 51

2x =48 or 2x = 54

x =24 orx = 27

Thesolutionsetis {24, 27}

58. 2x +3 ≤ 5x 4 7 ≤ 3x 7 3 ≤ x

Thesolutionsetis x x ≥ 7 3 ,or 7 3 , ∞

60. |2x +3| = |x 4|

2x +3= x 4 or 2x +3= (x 4)

x = 7 or 2x +3= x +4

x = 7 or 3x =1

x = 7 orx = 1 3

Thesolutionsetis 7, 1 3

62. 12 ≤ 2x +3 < 51

15 ≤ 2x< 48 15 2 ≤ x< 24

Thesolutionsetis x 15 2 ≤ x< 24 ,or 15 2 , 24

64. Firstfindtheslopeofthelinethrough( 1, 3)and(2, 9). m = 9 3 2 ( 1) = 6 3 =2

Thentheslopeofalineperpendiculartothislineis 1 2

Nowwefindtheequationofthelinewithslope 1 2 passing through(4, 5).

y y1 = m(x x1 )

y 5= 1 2 (x 4)

y 5= 1 2 x +2

y = 1 2 x +7

Chapter2VocabularyReinforcement

1. Thegraphof x = a isavertical linewith x-intercept(a, 0).

2. Thepoint-slope equationofalinewithslope m andpassing through(x1 ,y1 )is y y1 = m(x x1 ).

3. Afunction isacorrespondencebetweenafirstset,called thedomain,andasecondset,calledtherange,suchthat eachmemberofthedomain correspondstoexactlyone memberoftherange

4. Theslope ofalinecontainingpoints(x1 ,y1 )and(x2 ,y2 ) isgivenby m =thechangein y /thechangein x,also describedasrise/run.

5. Twolinesareperpendicular iftheproductoftheirslopes is 1.

6. Theequation y = mx + b iscalledtheslope-intercept equationofalinewithslope m and y -intercept(0,b).

7. Linesareparallel iftheyhavethesameslopeanddifferent y -intercepts.

Chapter2ConceptReinforcement

1. False;theslopeofaverticallineisnotdefined.See page123inthetext.

2. True;seepage113inthetext.

3. False;parallellineshavethesameslopeand different yintercepts.Seepage124inthetext.

Chapter2StudyGuide

1. Amemberofthedomainismatchedtomorethanone memberoftherange,sothecorrespondenceisnotafunction.

2. g (x)= 1 2 x 2

g (0)= 1 2 0 2=0 2= 2

g ( 2)= 1 2 ( 2) 2= 1 2= 3

g (6)= 1 2 · 6 2=3 2=1

3. y = 2 5 x 3

Wefindsomeorderedpairsthataresolutions,plotthem, anddrawandlabeltheline.

When x = 5, y = 2 5 ( 5) 3= 2 3= 5.

When x =0, y = 2 5 0 3=0 3= 3.

When x =5, y = 2 5 5 3=2 3= 1.

x y 5 5 0 3 5 1

y x (5,5) (0,(5,1) 3) 2 5 y x 3

4. Noverticallinecancrossthegraphatmorethanonepoint, sothegraphisthatofafunction.

5. Thesetofall x-valuesonthegraphextendsfrom 4 through5,sothedomainis {x|− 4 ≤ x ≤ 5},or[ 4, 5].

Thesetofall y -valuesonthegraphextendsfrom 2 through4,sotherangeis {y |− 2 ≤ y ≤ 4},or[ 2, 4].

6. Since x 3 3x +9 cannotbecalculatedwhen3x +9is0,we solve3x +9=0. 3x +9=0

3x = 9 x = 3

Thus,thedomainof g is {x|x isarealnumber and x = 3},or(−∞, 3) ∪ ( 3, ∞).

7. f (x)=2x2 +3, g (x)=1 x

a) (f + g )(x)= f (x)+ g (x) =2x2 +3+1 x =2x2 x +4

b) f ( 4)=2( 4)2 +3=2 · 16+3=32+3=35

g ( 4)=1 ( 4)=1+4=5 (f g )( 4)=35 5=30

c) f (6)=2 62 +3=2 36+3=72+3=75

g (6)=1 6= 5

(f/g )(6)= 75 5 = 15

d) f (1)=2 12 +3=2+3=5 g (1)=1 1=0

(f g )(1)=5 0=0

8. f (x)= 6 4x +3 , g (x)= x 2

Wehave4x +3=0when x = 3 4 ,soDomainof

f = x|x isarealnumber andx = 3 4

Domainof g = {x|x isarealnumber}

Domainof f + g =Domainof f g =Domainof f g = x|x isarealnumber andx = 3 4

Since g (x)=0when x =2,wehaveDomainoff/g = x x isarealnumber andx = 3 4 andx =2

9. m = 8 2 2 ( 3) = 10 5 = 2

10. 3x = 6y +12 3x 12= 6y 1 2 x +2= y Dividingby 6

Theslopeis 1 2 ,andthe y -interceptis(0, 2).

11. 3y 3= x

Tofindthe y -intercept,let x =0andsolvefor y 3y 3=0

3y =3 y =1

The y -interceptis(0, 1). Copyright c 2017PearsonEducation,Inc.

Tofindthe x-intercept,let y =0andsolvefor x 3 · 0 3= x 0 3= x 3= x

The x-interceptis( 3, 0).

Weplotthesepointsanddrawtheline.

Wefindathirdpointasacheck.Let x =3.

3y 3=3

3y =6 y =2

Weseethatthepoint(3, 2)isontheline.

12. y = 1 4 x 3

Firstweplotthe y -intercept(0, 3).Thenweconsiderthe slope 1 4 .Startingatthe y -intercept,wefindanotherpoint bymoving1unitupand4unitstotheright.Wegetto thepoint(4, 2).Wecanalsothinkoftheslopeas 1 4

Weagainstartatthe y -interceptandmovedown1unit and4unitstotheleft.Wegettoathirdpoint( 4, 4). Weplotthepointsanddrawthegraph.

14. x = 5 2

Allpoints 5 2 ,y aresolutions.Thegraphisavertical linethatintersectsthe x-axisat 5 2 , 0

13. y =3

Allorderedpairs(x, 3)aresolutions.Thegraphisahorizontallinethatintersectsthe y -axisat(0, 3).

y x (3,0) (3,2) (0,1) 3y 3 x y x (4,4) (4,2) (0,3) 1 4 y x 3 y x y 3 y x 5 2 x

15. Wefirstsolvefor y anddeterminetheslopeofeachline.

3x +8y = 8

8y =3x 8 y = 3 8 x 1

Theslopeof 3x +8y = 8is 3 8 .

8y =3x +40

y = 3 8 x +5

Theslopeof8y =3x +40is 3 8

Theslopesarethesameandthe y -intercepts,(0, 1)and (0, 5)aredifferent,sothelinesareparallel.

16. Wefirstsolvefor y anddeterminetheslopeofeachline.

5x 2y = 8

2y = 5x 8

y = 5 2 x +4

Theslopeof5x 2y = 8is 5 2

2x +5y =15

5y = 2x +15

y = 2 5 x +3

Theslopeof2x +5y =15is 2 5

Theslopesaredifferent,sothelinesarenotparallel.The productoftheslopesis 5 2 2 5 = 1,sothelinesare perpendicular.

17. y = mx + b Slope-interceptequation

y = 8x +0 3

18. Usingthepoint-slopeequation:

y ( 3)= 4 x 1 2

y +3= 4x +2

y = 4x 1

Usingtheslopeinterceptequation:

3= 4 1 2 + b

3= 2+ b 1= b

Then,substitutingin y = mx + b,wehave y = 4x 1.

19. Wefirstfindtheslope:

m = 3 7 4 ( 2) = 10 6 = 5 3

Weusethepoint-slopeequation.

y 7= 5 3 [x ( 2)]

y 7= 5 3 (x +2)

y 7= 5 3 x 10 3

y = 5 3 x + 11 3

20. Firstwefindtheslopeofthegivenline:

4x 3y =6

3y = 4x +6

y = 4 3 x 2

Alineparalleltothislinehasslope 4 3

Weusetheslope-interceptequation.

5= 4 3 (2)+ b

5= 8 3 + b 23 3 = b

Thenwehave y = 4 3 x 23 3

21. FromExercise20aboveweknowthattheslopeofthe givenlineis 4 3 .Theslopeofalineperpendiculartothis lineis 3 4

Weusethepoint-slopeequation.

y ( 5)= 3 4 (x 2)

y +5= 3 4 x + 3 2

3. g (x)= 2x +5

g (0)= 2 0+5=0+5=5

g ( 1)= 2( 1)+5=2+5=7

4. f (x)=3x2 2x +7

f (0)=3 02 2 0+7=0 0+7=7

f ( 1)=3( 1)2 2( 1)+7=3 1 2( 1)+7=3+2+7=12

5. C (t)=309 2t +3717 7

C (10)=309 2(10)+3717 7=3092+3717 7=6809 7 ≈ 6810

Weestimatethattheaveragecostoftuitionandfeeswill beabout$6810in2010.

6. y = 3x +2

Wefindsomeorderedpairsthataresolutions,plotthem, anddrawandlabeltheline.

When x = 1, y = 3( 1)+2=3+2=5.

When x =1, y = 3 1+2= 3+2= 1

When x =2, y = 3 · 2+2= 6+2= 4.

x y (x,y )

1 5 ( 1, 5)

1 1 (1, 1)

2 4 (2, 4)

7. y = 5 2 x 3

Wefindsomeorderedpairsthataresolutions,usingmultiplesof2toavoidfractions.Thenweplotthesepoints anddrawandlabeltheline.

When x =0, y = 5 2 0 3=0 3= 3.

When x =2, y = 5 2 · 2 3=5 3=2.

When x =4, y = 5 2 4 3=10 3=7.

x y (x,y )

0 3 (0, 3)

2 2 (2, 2)

4 7 (4, 7)

y x y 3x 2 y x 5 2 y x 3 Chapter2SummaryandReview:ReviewExercises67

y = 3 4 x 7 2

Chapter2ReviewExercises

1. No;amemberofthedomain,3,ismatchedtomorethan onememberoftherange.

2. Yes;eachmemberofthedomainismatchedtoonlyone memberoftherange.

8. y = |x 3|

Tofindanorderedpair,wechooseanynumberfor x and thendetermine y .Forexample,if x =5,then y = |5 3| = |2| =2.Wefindseveralorderedpairs,plotthem,and connectthem.

14. g (x)= x x2

9. y =3 x2

Tofindanorderedpair,wechooseanynumberfor x and thendetermine y .Forexample,if x =2,then3 22 = 3 4= 1.Wefindseveralorderedpairs,plotthem,and connectthemwithasmoothcurve.

y x y x 3 y x y 3 x 2

10. Noverticallinewillintersectthegraphmorethanonce. Thus,thegraphisthegraphofafunction.

11. Itispossibleforaverticallinetointersectthegraphmore thanonce.Thus,thisisnotthegraphofafunction.

12. a) Locate2onthehorizontalaxisandthenfindthe pointonthegraphforwhich2isthefirstcoordinate. Fromthatpoint,looktotheverticalaxistofindthe corresponding y -coordinate,3.Thus, f (2)=3.

b) Thesetofall x-valuesinthegraphextendsfrom 2 to4,sothedomainis {x|− 2 ≤ x ≤ 4},or[ 2, 4].

c) Todeterminewhichmember(s)ofthedomainare pairedwith2,locate2ontheverticalaxis.From therelookleftandrighttothegraphtofindany pointsforwhich2isthesecondcoordinate.One suchpointexists.Itsfirstcoordinateappearstobe 1.Thus,the x-valueforwhich f (x)=2is 1.

d) Thesetofall y -valuesinthegraphextendsfrom1 to5,sotherangeis {y |1 ≤ y ≤ 5},or[1, 5].

13. f (x)= 5 x 4

Since 5 x 4 cannotbecalculatedwhenthedenominatoris 0,wefindthe x-valuethatcauses x 4tobe0: x 4=0

x =4Adding4onbothsides

Thus,4isnotinthedomainof f ,whileallotherreal numbersare.Thedomainof f is {x|x isarealnumber andx =4},or(−∞, 4) ∪ (4, ∞).

Sincewecancalculate x x2 foranyrealnumber x,the domainisthesetofallrealnumbers.

15. (f/g )(x)= f (x)/g (x)= x2 3x x +10

16. (f g )(x)= f (x) g (x) = x2 3x (x +10) = x2 3x x 10 = x2 4x 10

(f g )( 2)=( 2)2 4( 2) 10=4+8 10=2

17. f (x)= 2x2 , g (x)= x +6

Domainof f =Domainof g = {x|x isarealnumber}

Domainof f + g =Domainof f g =Domainof f · g = {x|x isarealnumber}

Since g (x)=0when x = 6,wehaveDomainof f/g = {x|x isarealnumber andx = 6}

18. f (x)= 3 7 x , g (x)=5 x

Since7 x =0when x =7,wehaveDomainof f = {x|x isarealnumber andx =7}

Domainof g = {x|x isarealnumber}

Domainof f + g =Domainof f g =Domainof f g = {x|x isarealnumber andx =7}

Since g (x)=0when x =5,wehaveDomainof f/g = {x|x isarealnumber andx =7 andx =5}

19. f (x)= 3x +2

  f (x)= mx + b

Theslopeis 3,andthe y -interceptis(0, 2).

20. Firstwefindtheslope-interceptformoftheequationby solvingfor y .Thisallowsustodeterminetheslopeand y -intercepteasily.

4y +2x =8

4y = 2x +8

4y 4 = 2x +8 4 y = 1 2 x +2

Theslopeis 1 2 ,andthe y -interceptis(0, 2).

21. Slope= changein y changein x = 4 7 10 13 = 11 3 = 11 3

22. 2y + x =4

Tofindthe x-interceptwelet y =0andsolvefor x

2y + x =4

2 0+ x =4 x =4

The x-interceptis(4, 0).

Tofindthe y -interceptwelet x =0andsolvefor y

2y + x =4

2y +0=4

2y =4 y =2

The y -interceptis(0, 2).

Weplotthesepointsanddrawtheline.

y x (0,2) (4,0)

Weuseathirdpointasacheck.Wechoose x =4and solvefor y 2y =6 3 4

2y =6 12 2y = 6 y = 3

Weplot(4, 3)andnotethatitisontheline.

24. g (x)= 2 3 x 4

Firstweplotthe y -intercept(0, 4).Wecanthinkofthe slopeas 2 3 .Startingatthe y -interceptandusingthe slope,wefindanotherpointbymoving2unitsdownand 3unitstotheright.Wegettoanewpoint(3, 6).

Weuseathirdpointasacheck.Wechoose x = 2and solvefor y .

2y +( 2)=4

2y =6 y =3

Weplot( 2, 3)andnotethatitisontheline.

23. 2y =6 3x

Tofindthe x-interceptwelet y =0andsolvefor x

2y =6 3x

2 0=6 3x 0=6 3x

3x =6 x =2

The x-interceptis(2, 0).

Tofindthe y -interceptwelet x =0andsolvefor y .

2y =6 3x

2y =6 3 0

2y =6 y =3

The y -interceptis(0, 3).

Weplotthesepointsanddrawtheline.

2y x 4 y x (0,3) (2,0)

Wecanalsothinkoftheslopeas 2 3 .Weagainstartat the y -intercept(0, 4).Wemove2unitsupand3unitsto theleft.Wegettoanothernewpoint( 3, 2).Weplot thepointsanddrawtheline.

2y 6 3x y x 2 3 g (x ) x 4 y x 5 2 f (x ) x 3

25. f (x)= 5 2 x +3

Firstweplotthe y -intercept(0, 3).Thenweconsiderthe slope 5 2 .Startingatthe y -interceptandusingtheslope, wefindanotherpointbymoving5unitsupand2unitsto theright.Wegettoanewpoint(2, 8).

Wecanalsothinkoftheslopeas 5 2 .Weagainstartat the y -intercept(0, 3).Wemove5unitsdownand2units totheleft.Wegettoanothernewpoint( 2, 2).We plotthepointsanddrawtheline.

26. x = 3

Since y ismissing,allorderedpairs( 3,y )aresolutions. Thegraphisparalleltothe y -axis.

30. Wefirstsolveeachequationfor y anddeterminetheslope ofeachline.

4y + x =3

4y = x +3

27. f (x)=4

Since x ismissing,allorderedpairs(x, 4)aresolutions. Thegraphisparalleltothe x-axis.

y x x 3 y x f (x ) 4

28. Wefirstsolveeachequationfor y anddeterminetheslope ofeachline.

y +5= x y = x 5

Theslopeof y +5= x is 1.

x y =2

x = y +2

x 2= y

Theslopeof x y =2is1.

Theslopesarenotthesame,sothelinesarenotparallel. Theproductoftheslopesis 1 · 1,or 1,sothelinesare perpendicular.

29. Wefirstsolveeachequationfor y anddeterminetheslope ofeachline.

3x 5=7y 3 7 x 5 7 = y

Theslopeof3x 5=7y is 3 7

7y 3x =7

7y =3x +7

y = 3 7 x +1

Theslopeof7y 3x =7is 3 7

Theslopesarethesameandthe y -interceptsaredifferent, sothelinesareparallel.

y = 1 4 x + 3 4

Theslopeof4y + x =3is 1 4

2x +8y =5

8y = 2x +5

y = 1 4 x + 5 8

Theslopeof2x +8y =5is 1 4 .

Theslopesarethesameandthe y -interceptsaredifferent, sothelinesareparallel.

31. x =4isaverticallineand y = 3isahorizontalline,so thelinesareperpendicular.

32. Weusetheslope-interceptequationandsubstitute4.7for m and 23for b.

y = mx + b

y =4.7x 23

33. Usingthepoint-slopeequation:

Substitute3for x1 , 5for y1 ,and 3for m

y y1 = m(x x1 )

y ( 5)= 3(x 3)

y +5= 3x +9

y = 3x +4

Usingtheslope-interceptequation:

Substitute3for x, 5for y ,and 3for m in y = mx + b andsolvefor b.

y = mx + b

5= 3 3+ b

5= 9+ b

4= b

Thenweusetheequation y = mx + b andsubstitute 3 for m and4for b

y = 3x +4

34. Firstfindtheslopeoftheline:

m = 6 3 4 ( 2) = 3 2 = 3 2

Usingthepoint-slopeequation:

Wechoosetousethepoint( 2, 3)andsubstitute 2for x1 ,3for y1 ,and 3 2 for m

y y1 = m(x x1 )

y 3= 3 2 (x ( 2))

y 3= 3 2 (x +2)

y 3= 3 2 x 3

y = 3 2 x

Usingtheslope-interceptequation:

Wechoose( 2, 3)andsubstitute 2for x,3for y ,and 3 2 for m in y = mx + b.Thenwesolvefor b.

3= 3 2 ( 2)+ b

3=3+ b

0= b

Finally,weusetheequation y = mx + b andsubstitute 3 2 for m and0for b

y = 3 2 x +0,or y = 3 2 x

35. Firstsolvetheequationfor y anddeterminetheslopeof thegivenline.

5x +7y =8Givenline

7y = 5x +8

y = 5 7 x + 8 7

Theslopeofthegivenlineis 5 7 .Thelinethrough (14, 1)musthaveslope 5 7 .

Usingthepoint-slopeequation:

Substitute14for x1 , 1for y1 ,and 5 7 for m.

y y1 = m(x x1 )

y ( 1)= 5 7 (x 14)

y +1= 5 7 x +10

y = 5 7 x +9

Usingtheslope-interceptequation:

Substitute14for x, 1for y ,and 5 7 for m andsolvefor b

y = mx + b

1= 5 7 14+ b

1= 10+ b

9= b

Thenweusetheequation y = mx + b andsubstitute 5 7 for m and9for b

y = 5 7 x +9

36. Firstsolvetheequationfor y anddeterminetheslopeof thegivenline.

3x + y =5Givenline

y = 3x +5

Theslopeofthegivenlineis 3.Theslopeoftheperpendicularlineistheoppositeofthereciprocalof 3.Thus, thelinethrough(5, 2)musthaveslope 1 3

Usingthepoint-slopeequation:

Substitute5for x1 ,2for y1 ,and 1 3 for m

y y1 = m(x x1 )

y 2= 1 3 (x 5)

y 2= 1 3 x 5 3

y = 1 3 x + 1 3

Usingtheslope-interceptequation:

Substitute5for x,2for y ,and 1 3 for m andsolvefor b

y = mx + b

2= 1 3 5+ b

2= 5 3 + b 1 3 = b

Thenweusetheequation y = mx + b andsubstitute 1 3 for

m and 1 3 for b.

y = 1 3 x + 1 3

37. a) Weformpairsofthetype(x,R)where x isthe numberofyearssince1972and R istherecord.We havetwopairs,(0, 44 66)and(40, 43 94).Theseare twopointsonthegraphofthelinearfunctionwe areseeking.

Firstwefindtheslope:

m = 43 94 44 66 40 0 = 0 72 40 = 0 018.

Usingtheslopeandthe y -intercept,(0, 44 66) wewritethefunction: R(x)= 0 018x +44 66, where x isthenumberofyearsafter1972.

b) 2000is28yearsafter1972,sotoestimatetherecord in2000,wefind R(28): R(28)= 0.018(28)+44.66 ≈ 44 16

Theestimatedrecordwasabout44.16secondsin 2000.

2010is38yearsafter1972,sotoestimatetherecord in2010,wefind R(38): R(38)= 0.018(38)+44.66 ≈ 43 98

Theestimatedrecordwasabout43.98secondsin 2010.

38. f (x)= x +3 x 2

Wecannotcalculate x +3 x 2 whenthedenominatoris0,so wesolve x 2=0. x 2=0 x =2

Thus,thedomainof f is(−∞, 2) ∪ (2, ∞).AnswerCis correct.

39. Firstwefindtheslopeofthegivenline.

3y 1 2 x =0

3y = 1 2 x y = 1 6 x

Theslopeis 1 6 .Theslopeofalineperpendiculartothe givenlineis 6.Weusethepoint-slopeequation.

y 1= 6[x ( 2)]

y 1= 6(x +2)

y 1= 6x 12

y = 6x 11, or 6x + y = 11

AnswerAiscorrect.

40. Thecostof x jarsofpreservesis$2 49x,andtheshippingchargesare$3 75+$0 60x.Thenthetotalcostis $2 49x +$3 75+$0 60x,or$3 09x +$3 75.Thus,alinear functionthatcanbeusedtodeterminethecostofbuying andshipping x jarsofpreservesis f (x)=3.09x +3.75.

41. Aline’s x-and y -interceptsarethesameonlywhenthe linepassesthroughtheorigin.Theequationforsucha lineisoftheform y = mx

42. Theconceptofslopeisusefulindescribinghowaline slants.Alinewithpositiveslopeslantsupfromleftto right.Alinewithnegativeslopeslantsdownfromleft toright.Thelargertheabsolutevalueoftheslope,the steepertheslant.

43. Findtheslope-interceptformoftheequation.

4x +5y =12

5y = 4x +12 y = 4 5 x + 12 5

Thisformoftheequationindicatesthatthelinehasa negativeslopeandthusshouldslantdownfromleftto right.Thestudentapparentlygraphed y = 4 5 x + 12 5

44. For R(t)=50t +35, m =50and b =35;50signifiesthat thecostperhourofarepairis$50;35signifiesthatthe minimumcostofarepairjobis$35.

45. m = changein y changein x Aswemovefromonepointtoanotheronaverticalline, the y -coordinatechangesbutthe x-coordinatedoesnot. Thus,thechangein y isanon-zeronumberwhilethe changein x is0.Sincedivisionby0isundefined,the slopeofaverticallineisundefined.

Aswemovefromonepointtoanotheronahorizontal line,the y -coordinatedoesnotchangebutthe x-coordinate does.Thus,thechangein y is0whilethechangein x isa non-zeronumber,sotheslopeis0.

46. Usingalgebra,wefindthattheslope-interceptformof theequationis y = 5 2 x 3 2 .Thisindicatesthatthe yinterceptis 0, 3 2 ,soamistakehasbeenmade.It appearsthatthestudentgraphed y = 5 2 x + 3 2

Chapter2Test

1. Yes;eachmemberofthedomainismatchedtoonlyone memberoftherange.

2. No;amemberofthedomain,LakePlacid,ismatchedto morethanonememberoftherange.

3. f (x)= 3x 4

f (0)= 3 0 4=0 4= 4

f ( 2)= 3( 2) 4=6 4=2

4. g (x)= x2 +7

g (0)=02 +7=0+7=7

g ( 1)=( 1)2 +7=1+7=8

5. h(x)= 6

h( 4)= 6

h( 6)= 6

6. f (x)= |x +7|

f ( 10)= |− 10+7| = |− 3| =3

f ( 7)= |− 7+7| = |0| =0

7. y = 2x 5

Wefindsomeorderedpairsthataresolutions,plotthem, anddrawandlabeltheline.

When x =0, y = 2 0 5=0 5= 5.

When x = 2, y = 2( 2) 5=4 5= 1.

When x = 4, y = 2( 4) 5=8 5=3.

8. f (x)= 3 5 x

Wefindsomefunctionvalues,plotthecorresponding points,anddrawthegraph.

f ( 5)= 3 5 ( 5)=3

f (0)= 3 5 0=0

f (5)= 3 5 5= 3

9. g (x)=2 −|x|

Wefindsomefunctionvalues,plotthecorresponding points,anddrawthegraph.

g ( 4)=2 −|− 4| =2 4= 2

g ( 2)=2 −|− 2| =2 2=0

g (0)=2 −|0| =2 0=2

g (3)=2 −|3| =2 3= 1

g (5)=2 −|5| =2 5= 3

10. f (x)= x2 +2x 3

Wefindsomefunctionvalues,plotthecorresponding points,anddrawthegraph.

f ( 4)=( 4)2 +2( 4) 3=16 8 3=5

f ( 3)=( 3)2 +2( 3) 3=9 6 3=0

f ( 1)=( 1)2 +2( 1) 3=1 2 3= 4

f (0)=02 +2 0 3= 3

f (1)=12 +2 1 3=1+2 3=0 f (2)=22 +2 2 3=4+4 3=5

11. y = f (x)= 3

Since x ismissing,allorderedpairs(x, 3)aresolutions. Thegraphisparalleltothe x-axis.

12. 2x = 4 x = 2

Since y ismissing,allorderedpairs( 2,y )aresolutions. Thegraphisparalleltothe y -axis.

13. a) In2005, x =2005 1990=15.Wefind A(15). A(15)=0 233(15)+5 87=9 365 ≈ 9 4

Themedianageofcarsin2005wasabout9.4yr.

b) Substitute7.734for A(t)andsolvefor t 7 734=0 233t +5 87 1 864=0 233t 8= t

Themedianageofcarswas7.734yr8yearsafter 1990,orin1998.

14. Noverticallinewillintersectthegraphmorethanonce. Thus,thegraphisthegraphofafunction.

15. Itispossibleforaverticallinetointersectthegraphmore thanonce.Thus,thisisnotthegraphofafunction.

16. f (x)= 8 2x +3

Since 8 2x +3 cannotbecalculatedwhenthedenominator is0,wefindthe x-valuethatcauses2x +3tobe0: 2x +3=0

2x = 3 x = 3 2

Thus, 3 2 isnotinthedomainof f ,whileallotherreal numbersare.Thedomainof f is x x isarealnumber andx = 3 2 ,or −∞, 3 2 ∪ 3 2 , ∞ .

17. g (x)=5 x2

Sincewecancalculate5 x2 foranyrealnumber x,the domainisthesetofallrealnumbers.

18. a) Locate1onthehorizontalaxisandthenfindthepoint onthegraphforwhich1isthefirstcoordinate.From thatpoint,looktotheverticalaxistofindthecorresponding y -coordinate,1.Thus, f (1)=1.

b) Thesetofall x-valuesinthegraphextendsfrom 3 to4,sothedomainis {x|− 3 ≤ x ≤ 4},or[ 3, 4].

c) Todeterminewhichmember(s)ofthedomainare pairedwith2,locate2ontheverticalaxis.From therelookleftandrighttothegraphtofindany pointsforwhich2isthesecondcoordinate.Onesuch pointexists.Itsfirstcoordinateis 3,sothe x-value forwhich f (x)=2is 3.

d) Thesetofall y -valuesinthegraphextendsfrom 1 to2,sotherangeis {y |− 1 ≤ y ≤ 2},or[ 1, 2].

19. f (x)= 4x +3,g (x)= x2 1

f ( 2)= 4( 2)+3=8+3=11

g ( 2)=( 2)2 1=4 1=3

(f g )( 2)= f ( 2) g ( 2)=11 3=8

(f/g )(x)= f (x)/g (x)= 4x +3 x2 1

20. f (x)= 4 3 x , g (x)=2x +1

Domainof f = {x|x isarealnumber andx =3}

Domainof g = {x|x isarealnumber}

Domainof f + g =Domainof f g =Domainof f g = {x|x isarealnumber andx =3}

Since g (x)=0when x = 1 2 ,wehaveDomainof f/g = x|x isarealnumber andx =3 andx = 1 2

21. f (x)= 3 5 x +12

 

f (x)= mx + b

Theslopeis 3 5 ,andthe y -interceptis(0, 12).

22. Firstwefindtheslope-interceptformoftheequationby solvingfor y .Thisallowsustodeterminetheslopeand y -intercepteasily.

5y 2x =7

5y =2x +7

5y 5 = 2x +7 5 y = 2 5 x 7 5

Theslopeis 2 5 ,andthe y -interceptis 0, 7 5

23. Slope= changein y changein x = 2 3 2 6 = 5 8 = 5 8

24. Slope= changein y changein x = 5 2 5 2 4 4 ( 3 1) = 0 1 3 =0

25. Wecanusethecoordinatesofanytwopointsonthegraph.

We’lluse(10, 0)and(25, 12).

Slope= changein y changein x = 12 0 25 10 = 12 15 = 4 5

Theslope,orrateofchangeis 4 5 km/min.

26. 2x +3y =6

Tofindthe x-interceptwelet y =0andsolvefor x

2x +3y =6

2x +3 0=6

2x =6 x =3

The x-interceptis(3, 0).

Tofindthe y -interceptwelet x =0andsolvefor y

2x +3y =6

2 0+3y =6

3y =6 y =2

The y -interceptis(0, 2).

Weplotthesepointsanddrawtheline.

y x 2x 3y 6 y-intercept (0,2) x-intercept (3,0)

Weuseathirdpointasacheck.Wechoose x = 3and solvefor y 2( 3)+3y =6

6+3y =6

3y =12 y =4

Weplot( 3, 4)andnotethatitisontheline. Copyright c 2017PearsonEducation,Inc.

27. f (x)= 2 3 x 1

Firstweplotthe y -intercept(0, 1).Wecanthinkofthe slopeas 2 3 .Startingatthe y -interceptandusingthe slope,wefindanotherpointbymoving2unitsdownand 3unitstotheright.Wegettoanewpoint(3, 3).

Wecanalsothinkoftheslopeas 2 3 .Weagainstartat the y -intercept(0, 1).Wemove2unitsupand3units totheleft.Wegettoanothernewpoint( 3, 1).Weplot thepointsanddrawtheline.

y x 2 3 f (x ) x 1

28. Wefirstsolveeachequationfor y anddeterminetheslope ofeachline.

4y +2=3x 4y =3x 2

y = 3 4 x 1 2

Theslopeof4y +2=3x is 3 4

3x +4y = 12

4y =3x 12

y = 3 4 x 3

Theslopeof 3x +4y = 12is 3 4

Theslopesarethesameandthe y -interceptsaredifferent, sothelinesareparallel.

29. Theslopeof y = 2x +5is 2. Wesolvethesecondequationfor y anddeterminethe slope.

2y x =6

2y = x +6

y = 1 2 x +3

Theslopesarenotthesame,sothelinesarenotparallel. Theproductoftheslopesis 2 1 2 ,or 1,sothelinesare perpendicular.

30. Weusetheslope-interceptequationandsubstitute 3for m and4.8for b.

y = mx + b

y = 3x +4 8

31. y = f (x)= mx + b

f (x)=5 2x 5 8

32. Usingthepoint-slopeequation:

Substitute1for x1 , 2for y1 ,and 4for m

y y1 = m(x x1 )

y ( 2)= 4(x 1)

y +2= 4x +4

y = 4x +2

Usingtheslope-interceptequation:

Substitute1for x, 2for y ,and 4for m in y = mx + b andsolvefor b

y = mx + b

2= 4 1+ b

2= 4+ b

2= b

Thenweusetheequation y = mx + b andsubstitute 4 for m and2for b

y = 4x +2

33. Firstfindtheslopeoftheline:

m = 6 15 4 ( 10) = 21 14 = 3 2

Usingthepoint-slopeequation:

Wechoosetousethepoint(4, 6)andsubstitute4for x1 , 6for y1 ,and 3 2 for m

y y1 = m(x x1 )

y ( 6)= 3 2 (x 4)

y +6= 3 2 x +6

y = 3 2 x

Usingtheslope-interceptequation:

Wechoose(4, 6)andsubstitute4for x, 6for y ,and 3 2 for m in y = mx + b.Thenwesolvefor b

y = mx + b

6= 3 2 · 4+ b

6= 6+ b

0= b

Finally,weusetheequation y = mx + b andsubstitute 3 2 for m and0for b.

y = 3 2 x +0,or y = 3 2 x

34. Firstsolvetheequationfor y anddeterminetheslopeof thegivenline.

x 2y =5Givenline

2y = x +5

y = 1 2 x 5 2

Theslopeofthegivenlineis 1 2 .Thelinethrough(4, 1)

musthaveslope 1 2

Usingthepoint-slopeequation:

Substitute4for x1 , 1for y1 ,and 1 2 for m

y y1 = m(x x1 )

y ( 1)= 1 2 (x 4)

y +1= 1 2 x 2

y = 1 2 x 3

Usingtheslope-interceptequation:

Substitute4for x, 1for y ,and 1 2 for m andsolvefor b

y = mx + b

1= 1 2 (4)+ b

1=2+ b

3= b

Thenweusetheequation y = mx + b andsubstitute 1 2 for m and 3for b

y = 1 2 x 3

35. Firstsolvetheequationfor y anddeterminetheslopeof thegivenline.

x +3y =2Givenline

3y = x +2

y = 1 3 x + 2 3

Theslopeofthegivenlineis 1 3 .Theslopeoftheperpendicularlineistheoppositeofthereciprocalof 1 3 .Thus, thelinethrough(2, 5)musthaveslope3.

Usingthepoint-slopeequation:

Substitute2for x1 ,5for y1 ,and3for m

y y1 = m(x x1 )

y 5=3(x 2)

y 5=3x 6

y =3x 1

Usingtheslope-interceptequation:

Substitute2for x,5for y ,and3for m andsolvefor b

y = mx + b

5=3 2+ b

5=6+ b

1= b

Thenweusetheequation y = mx + b andsubstitute3for m and 1for b

y =3x 1

36. a) Notethat2010 1970=40.Thus,thedatapoints are(0, 23 2)and(40, 28 2).Wefindtheslope.

m = 28 2 23 2

40 0 = 5 40 =0.125

Usingtheslopeandthe y -intercept,(0, 23 2),we writethefunction: A(x)=0 125x +23 2

b) In2008, x =2008 1970=38.

A(38)=0 125(38)+23 2=27 95years

In2015, x =2015 1970=45.

A(45)=0 125(45)+23 2=28 825years

37. Usingthepoint-slopeequation, y y1 = m(x x1 ),with x1 =3, y1 =1,and m = 2wehave y 1= 2(x 3). Thus,answerBiscorrect.

38. Firstsolveeachequationfor y anddeterminetheslopes.

3x + ky =17

ky = 3x +17

y = 3 k x + 17 k

Theslopeof3x + ky =17is 3 k

8x 5y =26

5y = 8x +26

y = 8 5 x 26 5

Theslopeof8x 5y =26is 8 5

Ifthelinesareperpendicular,theproductoftheirslopes is 1.

3 k · 8 5 = 1 24 5k = 1

24=5k Multiplyingby 5k 24 5 = k

39. Answersmayvary.Onesuchfunctionis f (x)=3.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.