Solutions for Basic Technical Mathematics 11th Us Edition by Washington

Page 1


INSTRUCTOR’S SOLUTIONS MANUAL

MATTHEW G. HUDELSON

B ASIC T ECHNICAL

M

ATHEMATICS AND

B ASIC T ECHNICAL

M ATHEMATICS WITH C ALCULUS

ELEVENTH EDITION

Allyn J. Washington

Dutchess Community College

Richard S. Evans

Corning Community College

The author and publisher of this book have used their best efforts in preparing this book. These efforts include the development, research, and testing of the theories and programs to determine their effectiveness. The author and publisher make no warranty of any kind, expressed or implied, with regard to these programs or the documentation contained in this book. The author and publisher shall not be liable in any event for incidental or consequential damages in connection with, or arising out of, the furnishing, performance, or use of these programs.

Reproduced by Pearson from electronic files supplied by the author.

Copyright © 2018, 2014, 2009 Pearson Education, Inc.

Publishing as Pearson, 330 Hudson Street, NY NY 10013

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher. Printed in the United States of America.

ISBN-13: 978-0-13-443589-3

ISBN-10: 0-13-443589-3

Chapter 1

Basic Algebraic Operations

1.1 Numbers

1. Thenumbers–7and12areintegers.Theyarealsorationalnumberssincetheycanbewrittenas7 1 and 12 1

2. Theabsolutevalueof–6is6,andtheabsolutevalueof–7is7.Wewritetheseas66 −= and77 −=

3. 64−<− ;–6istotheleftof–4. –7–6–5–4–3–2–101

4. Thereciprocalof3 2 is 122 1 3/233 =×=

5. 3isaninteger,rational3 1    ,andreal. 4isimaginary.

6. 7 3isirrational(because7isanirrationalnumber)andreal.

6isaninteger,rational16    ,andreal.

7. 6 π isirrational(because π isanirrationalnumber)andreal. 1 8 isrationalandreal.

8. 6isimaginary. 233 2.33 100 −= isrationalandreal.

9. 33 = 33−= 22

10. 0.8570.857−= 22 = 1919 44 −=

11. 68 < ;6istotheleftof8. 34567891011

12. 75 > ;7istotherightof5. 34567891011

13. 3.1416; π < (3.1415926) π … istotheleftof3.1416. ( π )(3.1416) 3.1415923.1416

14. 40−< ;–4istotheleftof0.

–6–5–4–3–2–1012

15. 43−<−− ;–4istotheleftof3, () () 333 −−=−=− .

–6–5–4–3–2–1012

16. 21.42;−>− ( () 21.414.1.414),2 −=−…=−…− istotherightof–1.42.

–1.44–1.43–1.42–1.41–1.40

17. 232 ;0.666 33 4 −>−−=−… istotherightof5 3 4 0.7−=−

–0.8–0.7–0.6–0.5–0.4

18. 0.60.2−< ;–0.6istotheleftof0.2.

–0.6–0.5–0.4–0.3–0.2–0.100.10.2

19. Thereciprocalof3is 1 3

Thereciprocalof 413 is 3434 −−=−

Thereciprocalof 1 is yb byby =

20. Thereciprocalof 113 is3 31/31 −−=−=−

Thereciprocalof 114 0.25is4 41/41 === .

Thereciprocalof2x is 1 2 x

21. Find2.5, 123 2.4;0.75;31.732... 54 −=−−=−= 12 5 3 4 32.5

–4–3–2–101234

22. Find721.414123 2.333...;0.707;223.146.28;6.47 32219 π −=−−=−=−=×…== 3 72 2 2π 123 19 –3–2–101234567

23. Anabsolutevalueisnotalwayspositive,00 = whichisnotpositive.

24. Since 217 2.17 100 −=− ,itisrational.

25. Thereciprocalofthereciprocalofanypositiveornegativenumberisthenumberitself.

Thereciprocalof n is 1 n ;thereciprocalof 11 is1 1/1 n n nn =⋅= .

26. Anyrepeatingdecimalisrational,so2.72isrational.Itturnsoutthat30 2.72 11 =

27. Itistruethatanynonterminating,nonrepeatingdecimalisanirrationalnumber.

28. No, baba −=− ,asshownbelow.

If0, a > then aa =

If ba > and0 a > ,then bb =

Ifb a > then0 ba−> ,then baba −=− .

Therefore, bababa −=−=−

Thetwosidesoftheexpressionareequivalent,onesideisnotlessthantheother.

29. Listthesenumbersfromsmallesttolargest:1,9,3.14,52.236,88,33,3.1 π −==−=−−=−−

–3.13-15 π 89

–4–3–2–10123456789

So,fromsmallesttolargest,theyare3.1,3,1,5,,8,9 π

30. Listthesenumbersfromsmallesttolargest: 1 0.20,103.16...,66,4,0.25,3.14... 5 π =−=−−−=−−−= .

–6–410 1 5 0.25 π

–6–5–4–3–2–101234567

So,fromsmallesttolargest,theyare 1 6,4,10,,0.25, 5 π

31. If a and b arepositiveintegersand ba > ,then

(a) ba isapositiveinteger.

(b) ab isanegativeinteger.

(c) ba ba + ,thenumeratoranddenominatorarebothpositive,butthenumeratorislessthanthedenominator,sothe answerisapositiverationalnumberthanislessthan1.

32. If a and b arepositiveintegers,then (a) a + b isapositiveinteger (b) / ab isapositiverationalnumber (c) ab × isapositiveinteger

33. (a) Istheabsolutevalueofapositiveoranegativeintegeralwaysaninteger? xx = ,sotheabsolutevalueofapositiveintegerisaninteger. - xx = ,sotheabsolutevalueofanegativeintegerisaninteger.

(b) Isthereciprocalofapositiveornegativeintegeralwaysarationalnumber? If x isapositiveornegativeinteger,thenthereciprocalof x is 1 x .Sinceboth1and x areintegers,thereciprocal isarationalnumber.

34. (a) Istheabsolutevalueofapositiveornegativerationalnumberrational? xx = ,soif x isapositiveornegativerationalnumber,theabsolutevalueofitisalsoarationalnumber. (b) Isthereciprocalofapositiveornegativerationalnumberarationalnumber?

Arationalnumberisanumberthatcanbeexpressedasafractionwhereboththenumeratoranddenominatorare integersandthedenominatorisnotzero.Soarationalnumberinteger integer a b hasareciprocalof 1integer integerinteger integer b aa b = ,whichisalsoarationalnumberifinteger a isnotzero.

35. (a) If0 x > ,then x isapositivenumberlocatedtotherightofzeroonthenumberline. x

–4–3–2–101234

(b) If4 x <− ,then x isanegativenumberlocatedtotheleftof–4onthenumberline. x

–6–5–4–3–2–1012

36. (a) If1 x < ,then11 x −<< x

–4–3–2–101234

(b) 2 x > ,then2or2 xx<−> xx

–4–3–2–101234

37. If 1 1,then x x > isapositivenumberlessthan1.Or 1 01 x << 1 x –4–3–2–101234

38. If0 x < ,then x isapositivenumbergreaterthanzero. x

–4–3–2–101234

39. 1 abjab+=+− isarealnumberwhen1iseliminated,whichiswhen b =0.So abj + isarealnumberforall realvaluesof a and b =0.

40. Thevariablesare w and t Theconstantsare c,0.1,and1.

41. 12 111 T CCC =+ .Find TC ,where10.0040F C = and20.0010F C = . 111

0.00400.0010 TC =+

0.00400.0010 TC + = ×

11(0.0040)1(0.0010)

0.00400.00100.0050 TC × == + 0.00080F TC =

0.00400.00100.0000040

42. 100100VV = 200200VV−= 200100VV−>

43. bits1000byteskilobytesbytes1kilobyte a Nn =×× 1000bitsNan =

44. x Ly lengthofbaseinm theshortenedlengthincentimetres. 100lengthofbaseincm 100,alldimensionsincm 100 x y x yLx Lxy = = = += =−

45. Yes,20C30C

46. For4A,12 IR<>Ω

1.2 Fundamental Operations of Algebra

1. ()() 162216416420 −×−=−−=+=

2. ()()() 18 5233568614 6 +−−=+−−=+=

3. () 1251124 224 822(1)62 +=+=−+−=−

4. 7642 isundefined 000 × == × ,notindeterminate.

5. () 58583 +−=−=−

6. () 474711 −+−=−−=−

7. 396−+= oralternatively ()() 399366 −+=+−=+=

8. 18213 −=− oralternatively 1821(2118)(3)3 −=−−=−=−

9. () 191619163 −−−=−+=−

10. () 8108102 −−−=−+=

11. () 74(74)28 −=−×=−

12. () 9327−=−

13. () 75(75)35 −−=+×=

14. 9 3 3 =−

15. 6(2010)6(10)6020 333 ===

16. 282828 4 7(56)7(1)7 ===−

17. ()()() 2458540 −−=−−=

18. ()()() 34616272−−−==−

19. ()() 22710251010101 −÷=−÷=−÷=−

20. 64646464 8 248242(4)8 ====

21. 162(4)8(4)32 ÷−=−=−

22. 205(4)4(4)16 −÷−=−−=

23. 9210989817 −−−=−−−=−−=−

24. ()()() 7757020 −÷−=÷−=

25. 17710isundefined 770 =

26. (77)(2)0(2)0isindeterminate (77)(1)0(1)0 ==

27. () 83481220 −−=+=

28. 208420218 −+÷=−+=−

29. () 8 2612412416 2 −−+=+−=+=

30. |2|21 22 ==−

31. ( ) ( ) 1083(1050)10(8)(3)(40) 80(3)(40) 240(40) 6 −−÷−=−−÷−

32. 75752 1 1(2)22 ===

33. () 2424 49(49)1236243(5)2 −−=+×=−+= +−−

34. 184|6|184626628 31311 −=−=−−=−−=−

35. () () () 1414 7368732 22321 14 73(2) 2 776 776 6 −−−−=−−−− =−−− =−−−− =−+− =−

36. () 6 73|9|(73)29 3 2129 14 −−+−−=+×+− =+− =

37. 3|92(3)|3|96| 1109

38. () 201240(15)240600360isundefined 989898980 −+ ===

39. ()() 6776 = demonstratesthecommutativelawofmultiplication.

40. 6886 +=+ demonstratesthecommutativelawofaddition.

41. ()()() 6316361 +=+ demonstratesthedistributivelaw.

42. () 45(45)×=×ππ demonstratestheassociativelawofmultiplication.

43. ()() 359359 ++=++ demonstratestheassociativelawofaddition.

44. ()()() 8328382 −=− demonstratesthedistributivelaw.

45. ()5395(39) ××=×× demonstratestheassociativelawofmultiplication.

46. ()3677(36) ××=×× demonstratesthecommutativelawofmultiplication.

47. () abab −+−=−− ,whichisexpression(d).

48. () babaab −−=+=+ ,whichisexpression(a).

49. () babaab −−−=−+=− ,whichisexpression(b).

50. () ababba −−−=−+=− ,whichisexpression(c).

51. Since|5(2)||52||7|7 −−=+== and|5(2)||52||3|3 −−−=−+=−= , |5(2)||5(2)| −−>−−−

52. Since|3|7|||37||10|10 −−−=−−=−= and||3|7||37||4|4 −−=−=−= , |3|7||||3|7| −−−>−− .

53. (a) Thesignofaproductofanevennumberofnegativenumbersispositive. () Example:3618 −−= (b) Thesignofaproductofanoddnumberofnegativenumbersisnegative. Example: ()() 54240−−−=−

54. Subtractionisnotcommutativebecause xyyx −≠− .Example:752doesnotequal572 −=−=−

55. Yes,fromthedefinitioninSection1.1,theabsolutevalueofapositivenumberisthenumberitself,andtheabsolute valueofanegativenumberisthecorrespondingpositivenumber.Soforvaluesof x where0 x > (positive)or0 x = (neutral)then xx = .

Example:44 =

Theclaimthatabsolutevaluesofnegativenumbers xx =− isalsotrue.

Example: () ifis6,then666. x −−=−−=

56. Theincorrectanswerwasachievedbysubtractingbeforemultiplyingordividingwhichviolatestheorderofoperations.

2462318239327 −÷×≠÷×=×=

Thecorrectvalueis: 24623243324915 −÷×=−×=−=

57. (a) 1 xy −= istrueforvaluesof x and y thatarenegativereciprocalsofeachotheror 1 y x =− ,providingthatthe number x inthedenominatorisnotzero.Soif12 x = ,then

(b) 1 xy xy = istrueforallvaluesof x and y,providingthat xy ≠ topreventdivisionbyzero.

58. (a) xyxy +=+ istrueforvalueswhereboth x and y havethesamesignoreitherarezero: xyxy +=+ ,when0and0 xy≥≥ orwhen0and0 xy≤≤

Example: 63639and 63639 Also, 6(3)99 63639 +=+= +=+= −+−=−= −+−=+= xyxy +=+ isnottruehowever,whenxandyhaveoppositesigns xyxy +≠+ ,whenx0and0;or0and0 yxy ><<> .

Example: 2161515, 2162162715 −+=−= −+=+=≠

4(5)11, 454591 +−=−= +−=+=≠

(b) Inorderfor xyxy −=+ itisnecessarythattheyhaveoppositesignsoreithertobezero. Symbolically, xyxy −=+ when0and0 xy≥≤ ;orwhen0and0 xy≤≥ .

Example: 6(3)639and 63639 −−=+= +−=+=

Example: 1171818 11711718 −−=−= −+−=+=

xyxy −=+ isnottrue,however,when x and y havethesamesigns. xyxy −≠+ ,whenx0and0;or0and0 yxy >><< .

Example: 2161515, 2162715 −== +=≠

59. Thetotalchangeinthepriceofthestockis0.680.420.06(0.11)0.020.29 −+++−+=− .

60. Thedifferenceinaltitudeis86(1396)1396861310m −−−=−=

61. Thechangeinthemeterenergyreading E wouldbe:

2.1kWh4.5kWh 2.4kWh changeusedgenerated change change change EEE E E E =−

()2.1kWh1.5kW3.0h

62. Assumingthatthisbattingaverageisforthecurrentseasononlywhichisjuststarting,thenumberofhitsiszeroand thetotalnumberofat-batsisalsozerogivingusa numberofhits0 battingaverageatbats0 == whichisindeterminate,not 0.000.

63. Theaveragetemperaturefortheweekis: 7(3)231(4)(6)C 7 7323146 C 7 14 C2.0C 7 avg avg

64. Theverticaldistancefromtheflaregunis ()()()() () 7051625 350400 350400 50m d d d d =+− =+− =− =− Theflareis50mbelowtheflaregun.

65. Thesumofthevoltagesis ()() 6V2V8V5V3V 6V2V8V5V3V 10V

66. (a) Thechangeinthecurrentforthefirstintervalisthesecondreading–thefirstreading 222 12lb/in7lb/in9lb/inChange =−−=−

(b) Thechangeinthecurrentforthemiddleintervalsisthethirdreading–thesecondreading () 22222 29lb/in2lb/in9lb/in2lb/in7lb/inChange =−−−=−+=− .

(c) Thechangeinthecurrentforthelastintervalisthelastreading–thethirdreading () 22222 36lb/in9lb/in6lb/in9lb/in3lb/inChange =−−−=−+=

67. Theoildrilledbythefirstwellis100m200m300m += whichequalsthedepthdrilledbythesecondwell 200m100m300m += 100m200m200m100m +=+ demonstratesthecommutativelawofaddition.

68. Thefirsttankleaks () L 127h84L h = .Thesecondtankleaks () L 712h h 84L. = 127712 ×=× demonstratesthecommutativelawofmultiplication.

69. Thetotaltimespentbrowsingthesewebsitesisthetotaltimespentbrowsingthefirstsiteoneachday+thetotaltime spentbrowsingthesecondsiteoneachday minutesminutes 7days257days15dayday

280min t t t t t t

175min105min

280min OR minutes 7days(2515)day minutes 7days40day

whichillustratesthedistributivelaw.

70. Distance=rate×time () () kmkm

600503h hh kmkm

6003h+503h hh

1800km150km1950km OR kmkm 600503h hh km 6503h h 1950km d d d d d d

Thisillustratesthedistributivelaw.

1.3 Calculators and Approximate Numbers

1. 0.390hasthreesignificantdigitssincethezeroisafterthedecimal.Thezeroisnotnecessaryasaplaceholderand shouldnotbewrittenunlessitissignificant.

2. 35.303roundedofftofoursignificantdigitsis35.30.

3. Infindingtheproductoftheapproximatenumbers,2.530.576.25 ×= ,butsince2.5has2significantdigits,theanswer is76.

4. 38.321.9(3.58)116.702 −−= usingexactnumbers;ifweestimatetheresult,4020(4)120 −−=

5. 8cylindersisexactbecausetheycanbecounted.55km/hisapproximatesinceitismeasured.

6. 0.002mmthickisameasurementandisthereforeanapproximation.$7.50isanexactprice.

7. 24hrand1440min(60min/h×24h=1140min)arebothexactnumbers.

8. 50keysisexactbecauseyoucancountthem;50hofuseisapproximatesinceitisameasurementoftime.

9. Both1cmand9garemeasuredquantitiesandsotheyareapproximate.

10. Thenumbers90and75areexactcountsofwindowswhile15yearsisameasurementoftime,henceitisapproximate.

11. 107has3significantdigits;3004has4significantdigits;1040has3significantdigits(thefinalzeroisaplaceholder.)

12. 3600has2significantdigits;730has2significantdigits;2055has4significantdigits.

13. 6.80has3significantdigitssincethezeroindicatesprecision;6.08has3significantdigits;0.068has2significant digits(thezerosareplaceholders.)

14. 0.8730has4significantdigits;0.0075has2significantdigits;0.0305has3significantdigits.

15. 3000has1significantdigit;3000.1has5significantdigits;3000.10has6significantdigits.

16. 1.00has3significantdigitssincethezerosindicateprecision;0.01has1significantdigitsinceleadingzerosarenot significant;0.0100has3significantdigits,countingthetrailingzeros.

17. 5000has1significantdigit;5000.0has5significantdigits;5000has4significantdigitssincethebaroverthefinal zeroindicatesthatitissignificant.

18. 200has1significantdigit;200has3significantdigits;200.00has5significantdigits.

19. (a) 0.010hasmoredecimalplaces(3)andismoreprecise. (b) 30.8hasmoresignificantdigits(3)andismoreaccurate.

20. (a) Both0.041and7.673havethesameprecisionastheyhavethesamenumberofdecimalplaces(3). (b) 7.673ismoreaccuratebecauseithasmoresignificantdigits(4)than0.041,whichhas2significantdigits.

21. (a) Both0.1and78.0havethesameprecisionastheyhavethesamenumberofdecimalplaces. (b) 78.0ismoreaccuratebecauseithasmoresignificantdigits(3)than0.1,whichhas1significantdigit.

22. (a) 0.004ismoreprecisebecauseithasmoredecimalplaces(3). (b) 7040ismoreaccuratebecauseithasmoresignificantdigits(3)than0.004,whichhasonly1significantdigit.

23. (a) 0.004ismoreprecisebecauseithasmoredecimalplaces(3). (b) Bothhavethesameaccuracyastheybothhave1significantdigit.

24. Theprecisionandaccuracyof8.914and8.914arethesame.

(a) Both50.060and8.914havethesameprecisionastheyhavethesamenumberofdecimalplaces(3). (b) 50.060ismoreaccuratebecauseithasmoresignificantdigits(5)than8.914,whichhas4significantdigits.

25. (a) 4.936roundedto3significantdigitsis4.94. (b) 4.936roundedto2significantdigitsis4.9.

26. (a) 80.53roundedto3significantdigitsis80.5. (b) 80.53roundedto2significantdigitsis81.

27. (a) -50.893roundedto3significantdigitsis-50.9. (b) -50.893roundedto2significantdigitsis-51.

28. (a) 7.004roundedto3significantdigitsis7.00. (b) 7.004roundedto2significantdigitsis7.0.

29. (a) 5968roundedto3significantdigitsis5970. (b) 5968roundedto2significantdigitsis6000.

30. (a) 30.96roundedto3significantdigitsis31.0. (b) 30.96roundedto2significantdigitsis31.

31. (a) 0.9449roundedto3significantdigitsis0.945. (b) 0.9449roundedto2significantdigitsis0.94.

32. (a) 0.9999roundedto3significantdigitsis1.00. (b) 0.9999roundedto2significantdigitsis1.0.

33. (a) Estimate:131212 +−= (b) Calculator:12.781.04951.63312.1965, +−= whichis12.20to0.01precision

34. (a) Estimate:41768 ×= (b) Calculator:3.64(17.06)62.0984, = whichis62.1to3significantdigits

35. (a) Estimate0.7496 ×−=− (b) Calculator:0.65723.948.6516.061632, ×−=− whichis6.06to3significantdigits

36. (a) Estimate40264406.534 −÷=−= (b) Calculator:41.526.43.734.3648649, −÷= whichis34to2significantdigits

37. (a) Estimate9(1)(4)9413 +=+= (b) Calculator:8.75(1.2)(3.84)13.358, += whichis13to2significantdigits

38. (a) Estimate2030301020 2 −=−=

(b) Calculator:28, 20.955 18.475 2.2 = whichis18to2significantdigits

39. (a) Estimate9(15)1356, 91524 == + to1significantdigit

(b) Calculator:, 8.75(15.32)5.569173 8.7515.32 = + whichis5.57to3significantdigits

40. (a) Estimate9(4)365, 257 == + to1significantdigit

(b) Calculator:, 8.97(4.003)5.296 2.04.78 = + whichis5.3to2significantdigits

41. (a) Estimate2(300)4.53.0, 400 −= to2significantdigits

(b) Calculator:2.056(309.6)4.522.9093279, 395.2 −= whichis2.91to3significantdigits

42. (a) Estimate15812, 22 += + to2significantdigits

(b) Calculator:14.98.19512.1160526, 1.72.1 += + whichis12to2significantdigits

43. 0.978814.915.8788 += sincetheleastprecisenumberinthequestionhas4decimalplaces.

44. 17.31122.985.669 −=− sincetheleastprecisenumberinthequestionhas3decimalplaces.

45. 3.142(65)204.23 −=− ,whichis-204.2becausetheleastaccuratenumberhas4significantdigits.

46. 8.6217280.004988 ÷= ,whichis0.00499becausetheleastaccuratenumberhas3significantdigits.

47. Withafrequencylistedas2.75MHz,theleastpossiblefrequencyis2.745MHz,andthegreatestpossiblefrequencyis 2.755MHz.Anymeasurementsbetweenthoselimitswouldroundto2.75MHz.

48. Foranenginedisplacementstatedat2400cm3,theleastpossibledisplacementis2350cm3,andthegreatestpossible displacementis2450cm3.Anymeasurementsbetweenthoselimitswouldroundto2400cm3 .

49. Thespeedofsoundis3.25mi15s0.21666...mi/s=1144.0...ft/s ÷= .However,theleastaccuratemeasurementwas timesinceithasonly2significantdigits.Thecorrectansweris1100ft/s.

50. 4.4s2.72s1.68s −= , buttheanswermustbegivenaccordingtoprecisionoftheleastprecisemeasurementinthe question,sothecorrectansweris1.7s.

51. (a) 2.23.84.52.2(3.84.5)19.3 +×=+×= (b) (2.23.8)4.56.04.527 +×=×=

52. (a) 6.032.251.77(6.032.25)1.774.45 ÷+=÷+= (b) 6.03(2.251.77)6.034.021.5 ÷+=÷=

53. (a) 202 += (b) 202 −= (c) 022 −=− (d) 200 ×= (e) 20÷= error;fromSection1.2,anequationthathas0inthedenominatorisundefinedwhenthenumeratorisnot also0.

54. (a) 20.000120000 ÷= ;20÷= error (b) 0.00010.00011 ÷= ;00÷= error

(c) Anynumberdividedbyzeroisundefined.Zerodividedbyzeroisindeterminate.

55. 3.14159265... π = (a) 3.1416 π < (b) 2273.1428 (227) π ÷= <÷

56. (a) 8330.2424...0.24 ÷== (b) 3.14159265... π =

57. (a) 130.333... ÷= Itisarationalnumbersinceitisarepeatingdecimal. (b) 5110.454545... ÷= Itisarationalnumbersinceitisarepeatingdecimal. (c) 250.400... ÷= Itisarationalnumbersinceitisarepeatingdecimal(0istherepeatingpart).

58. 1249900.12525.... ÷= thecalculatormayshowtheansweras0.1252525253becauseithasroundedupforthenext5 thatdoesn’tfitonthescreen.

59. 32.4MJ26.704MJ36.23MJ95.334MJ ++= .Theanswermustbetothesameprecisionastheleastprecise measurement.Theansweris95.3MJ.

60. Wewouldcompute8(68.6)5(15.3)625.3 += androundtothreesignificantdigitsforatotalweightof625lb.The values8and5areexact.

61. Wewouldcompute12(129)16(298.8)6328.8 += androundtothreesignificantdigitsforatotalweightof6330g.The values12and16areexact.

62. (15.25.64101.23)3.55A 122.073.55A 433.3485V 433Vto3significantdigits V

63. 100(40.6352.96)59.1386%59.14%to4signficiantdigits 105.3052.96 + == +

64. 50.45(9.80)91.779N=92Nto2significantdigits 1100.923 T == +÷

65. (a) Estimate851030, ×−= to1significantdigit. (b) Calculator:7.844.93211.31727.34988 ×−= whichis27.3to3significantdigits.

66. (a) Estimate20501015 −÷= to2significantdigit. (b) Calculator:21.653.149.6416.0875519 −÷= whichis16.1to3significantdigits.

1.4 Exponents and Unit Conversions

1. 2 32323266 ()(1)(1)()(1) xxxxx

−=−=−==

2. 0 22(1)2 x ==

3. 34347 xxxx + ==

4. 27279 yyyy + ==

5. 42426222 bbbb + ==

6. 5516333 kkkk + ==

7. 5 532 3 m mm m ==

8. 6 2615 22 x xx x =−=−

9. 5594 94 1 77 77 nnn nn =−=−=−

10. 143 43 33 33 s ss ss ===

11. () 4 22(4)8 PPP ==

12. ()3 88(3)24 xxx ==

13. ()30 2302(30)3060 aTaTaT ==

14. ()3 232(3)6 3(3)27 rrr ==

==

15. 33 33 2(2)8 bbb

16. 2020 20 FF tt

=

17. 4 22(4)8 4 21(2)6 xxx

==

18. 33 33(3)9 3(3)27 nnn

==

19. () 0 81 a =

20. 01 v −=−

21. 0 33(1)3 x −=−=−

22. 0 (2)1(1)1 −−=−=−

23. 1 1 11 6 66 ==

24. 5 5 1 w w −=−

25. 2 2 1 R R =

26. 48 48 1 t t

27. 7 27272(7)1414 ()(1)()(1)(1) ttttt

28. 5 35353(5)1515 ()(1)()(1)(1) yyyyy

29. 3 3(5)2 5 L LL L −=−=−

30. 407040(70)30 30 2 222 iiii i

31. 444 4444 2221 (2)(2)()168 vvv vvv

32. 23235 232(3)6 1 () xxxx xxxx + ===

33. 242(4)8 424(2)8 ()1 () nnn nnn ===

34. () 111 11 (3)(3)1 33339 ttt ttt ===

35. 02110(1)2(1)1(1)021 ()2 a xaxaxa x πππ===

36. 4 24222(2)4(2)248 (3)(3)8 3 9 m mnmnmn n ===

37. 6 13221(2)3(2) 2 (8)(8)64 s gsgs g −=−=

38. 63 223232(3)316327 2 ()(1)()()aax axaxaxaxaxax x + −=−=−=−=−

39. 3 131(3)3 11(3)3 4(4) 64 xxx aaa

==

40. 2 222(2)410 55(2)104 2(2) 44 bbby yyyb  ===  

41. 252(1)3 16 1555 3 nTnn nTTT ==

42. 2323232(2)2(32)32346432343234 232323232(64)96 ()nRTnRTnRTnRnR RTTTTT ====

43. () 2 74(5)282553 −−−=−−=−

44. 5 62(2)(8)632(16)6321610 −−−−=−−−=−+=−

45. 23 (26.5)(9.85)(702.25)(955.671625)253.421625 −−−−=−−−= whichgetsroundedto253because702.25and–955.671625arebothaccuratetoonly3significantdigitsduetothe originalnumbershavingonly3significantdigits.

46. 2626 0.711(0.809)(1)(0.711)(0.809)(1)(0.505521)(0.2803439122)0.7858649122 −−−−=−−−=−−=− whichgetsroundedto3significantdigits:–0.786.

47. 4 3.07(1.86)5.71025.71020.420956185 (1.86)1.59611.968832161.59613.56483216 === + −+ whichgetsroundedto3significantdigits:–0.421.

48. 24 15.66(4.017)245.2356260.37982269215.1442226923.941837074 1.044(3.68)3.841923.84192 === whichgetsroundedto3significantdigits:3.94.

49. 2 3 254 2.38(60.7)1.17 254 2.38(3684.49)1.601613=− 8769.0862158.5901213339=− 8610.4960786661 = whichgetsroundedto3significantdigits:8610.

50. 2 0.889 4.2(4.6)1.891.09 + 0.889 19.32 1.891.1881 =+ 0.889 19.32 0.7019

19.320.889880728 20.209880728 =+ =+ = whichgetsroundedto2significantdigits:20

51. 11 11(1) 111 xxx

,whichisthereciprocalof x

52.

53. If35 a = ,then () () 123(4) 1234 124 12 5 625 aa aa a a = = = =

,since01 a = requiresthat0 a ≠

54. Foranynegativevalueof a , a willbenegative,and2 a willbepositive,makingallvaluesof2 1 a greaterthan 1 a Therefore,itisneverthecasefornegativevaluesof a , 21 . aa <

55. 55050(5)0 ()()()1 aaaa xxxxxx ⋅===== ,providedthat0 x ≠

56. 2()22222(2)4()((1))(1)() ababababaaa yyyyyy −+ −++ −⋅=−=−== .

57.

58. 12 ()()123 GmMGM GmMmrr mrr + ==

59.

60. 2

61. () 24 250010.04224 $25001.0105 4

$2500(1.28490602753)

$3212.26700688

$3212.27

62. 23 6.85(100020(6.85)(6.85))6.85(100020(46.9225)321.419125) 18501850

6.85(1321.419125938.45) 1850 6.85(382.969125) 1850 2623.33850625 1850 1.418020814 1.42cm

63. 110 1001000 1 If()1then(1)22.000,(10)1.12.594, (100)1.012.705,and(1000)1.0012.717.

64. We10101010102010102040 have1TB2GB2(2MB)2(2(2bytes))2bytes2bytes ++ =====

= 

65. () ft 28.29.81s276.642ftwhichisroundedto277ft. s

66. () mi 40.53.7gal149.85miwhichisroundedto150mi. gal

=

67. 2 222 m1ft60sftft 7.2585,629.92whichisroundedto85,600. 0.3048m1min sminmin

=

68. 3 33 238kg1000g1mg0.238. 1kg100cm mcm

=

69. 1L 15.7qt15.7qt14.8533586Lwhichisroundedto14.9L. 1.057qt

=×=

=×=

70. 7.501hpW7.50W0.01005362hpwhichisroundedto0.0101hp. 746.0W

71. 2 2222 1in 245cm245cm37.975076inwhichisroundedto38.0in. 2.54cm

=×=

72. 2 2222 1km 85.7mi85.7mi221.941401kmwhichisroundedto222km. 0.6214mi

73. mm60s1ftftft 65.265.212834.6457whichisroundedto12800. ss1min0.3048mminmin

74. mimi1km1galkmkm 25.025.010.6292562whichisroundedto10.6. galgal0.6214mi3.785LLL

75. 15.62.54cmin15.6in39.624cmwhichisroundedto39.6cm. 1in

76. 1km 12,500mi12,500mi20,115.8674kmwhichisroundedto20,100km. 0.6214mi

77. galgal1day3.785LLL 575,000575,00090,682.2917whichisroundedto90,700. dayday24hr1galhrhr

78. galgal1min3.785LLL 85855.3620833whichisroundedto5.4. minmin60s1galss

79. ftft60s60min0.3084m1kmkmkm 113011301254.5712whichisroundedto1250. ss1min1hr1ft1000mhrhr

=×××=

80. kmkm1hr1min1000mm 720072002000. hrhr60min60s1kms

81. 22 222 lblb4.448N1in100cmN 14.714.7101,347.883whichisroundedto101,000Pa. inin1lb2.54cm1mm

=×××=

82. 3 3333 3 lblb1kg1ftkgkg 62.462.4999.381whichisroundedto999. ftft2.205lb0.3048mmm (Thekg actualvalueis1000.) m =××=

1.5 Scientific Notation

1. 3 8.06108060 ×=

2. -111-1 -1-11 -11 -12 750000000000(7.510) 7.510 0.1333...10 1.3310 =× =× =× =× roundedto3significantdigits.

3. 4 4.51045,000 ×= 4. 7 6.81068,000,000 ×=

5. 3 2.01100.00201 ×=

6. 5 9.61100.0000961 ×=

7. 0 3.23103.2313.23 ×=×=

8. 0 810818 ×=×= 9. 1.861018.6 ×= 10. 1 1100.1 ×= 11. 34000410 =×

12. 564 0005.610 =× 13. 0.00878.7103 =× 14. 0.000747.4104 =× 15. 8609,000,0006.0910 =×

16. 110110 =×

17. 0.05285.28102 =×

18. 0.00009089.08105 =×

19. 4913 28,000(2,000,000,000)2.810(210)5.610 =××=×

20. 432 50,000(0.006)510(610)300310 =××==×

21. 4 8 4 88,0008.8102.210 0.0004410 × ==× ×

22. 5 12 6 0.00003310 510 6,000,000610 × ==× ×

23. 635,600,00035.610 =×

24. 0.00000565.6106 =×

25. 0.097397.3103 =×

26. 9925,000,000,00092510 =×

27. 0.000000475475109 =×

28. 3370,00037010 =×

29. 3534343434 2103100.2103103.210 ×+×=×+×=×

30. 121010101012 5.3103.710530103.710526.3105.26310 ×−×=×−×=×=×

31. 293329(3)87 (1.210)1.2101.72810 ×=×=×

32. 165516(5)8078 (210)2100.03125103.12510 ×=×=×=×

33. 101320(649,000)(85.3)7.307480410 =× whichgetsroundedto10 7.3110 ×

34. 0.0000569(3,190,000)181.511 = whichgetsroundedto2 1.8210 ×

35. 0.0732(6710)491.1727 1.586780310 0.00134(0.0231)0.000030954 ==× whichgetsroundedto7 1.5910 × .

36. 0.004520.0045211 1.91563574110 2430(97,100)235,953,000 ==× whichgetsroundedto11 1.9210 ×

37. 853 (3.64210)(2.73610)9.96451210 ××=× whichgetsroundedto3 9.96510 × .

38. 12 18 2019 (7.30910)0.534214813.5665672339410 5.9843(2.503610)1.4978702910 × ==× ××

whichgetsroundedto18 3.56710 ×

39. 72115 (3.6910)(4.6110)1.701091016 3.3751785714210 0.05040.0504 ××× ==× whichgetsroundedto16 3.3810 × .

40. 712272432 33 5 (9.90710)(1.0810)(9.90710)(1.166410)1.01555248101.5614388204510 (3.60310)(2054)0.074005620.07400562 ××××× ===× × whichgetsroundedto33 1.5610 ×

41. 500,000,0008tweets510tweets =×

42. 17,200,000,00010bytes1.7210bytes =×

43. 0.0000036W310W =×

44. 0.00753mm7.510mm =×

45. 1,200,000,0009Hz=1.2×10Hz

46. 12 1.84101,840,000,000,000 ×=

47. 21 12,000,000,00002 m1.210m =×

48. 16 3.08610m=30,860,000,000,000,000m ×

49. 12 1.610W=0.0000000000016W ×

50. 43 2.4100.00000000000000000000000000000000000000000024 ×=

51. (a) 3 23002.310=2.3kW =× (b) 3 0.2323010230mW =×=

(c) 6 2,300,0002.3102.3MW =×= (d) 6 0.0002323010230W μ =×=

52. (a) 6 80900008.09108.09M =×=Ω (b) 809300080910809k =×=Ω (c) 3 0.080980.91080.9m =×=Ω

53. (a) 100100googol11010 =×= (b) 100googol10googolplex1010 ==

54. 100 1001007921 79 10 googol10,sotofindtheratio1010 10 == = Agoogolis2110timeslargerthanthenumberofelectronsintheuniverse.

55. 9 sun's77 diameter1.410m earth'sdiameter1.2727210mwhichisroundedto1.310m. 110110 × ===××

56. 3099 21,073,741,8241.07374182410110 ==×≈ ×

57. 15 7.510s68 5.610additions4.210s addition × ××=×

58. 0.000000039%0.00000000039 = 0.000000000390.0851111 mg3.31510mg=3.310mg×=××

59. 8770.078ms2.998102.338440010mwhichroundsto2.310m s ××=× ×

60. (a) 244 h60min60s 1day××86400s8.6410s dayhmin ×== × (b) 365.259100day24h60min60s year××××3155760000s3.1557600×10s yeardayhmin ==

61. -271 81 1.66×108 kg1.6×10amu×1.2510oxygenatoms3.3210kg amuoxygenatoms ×× =×

62. 4 -8424 -8494 2 2 5.710WK×(3.03×10K) 5.710WK×8.428892481×10K =4.80446871417×10W =4.8×10W WkT W W W W = =× =×

63. () -82-82 22--592 2.196×10 Ω m2.196×10 Ω m ==3.43296626857 Ω =3.433 Ω 7.998×10m6.3968004×10m k R d ==

64. 8 55 2 1.49610kmAU2.99799599198×10kms2.99810kms AU4.9910s × ×==× × ThisisthesamespeedmentionedinQuestion56asthespeedofradiowaves.

1.6 Roots and Radicals

1. 33 3 64(4)4 −=−=−

2. (15)(5)

Neither15nor5isaperfectsquare,sothisexpressionisnotasuseful.However,ifwefurtherfactorthe15 to2(3)(5)(5)3(5)53 == ,theresultcanstillbeobtained.

3. 2 1691441212 ×===

4. 64isstillimaginarybecauseanevenroot(inthiscase n =2)ofanegativenumberisimaginary,regardlessofthe numericalfactorplacedinfrontoftheroot.

5. 2 4977 ==

6. 225(25)(9)2595315 ==×=×=

7. 2 1211111−=−=−

8. 2 3666 −=−=−

9. 2 6488 −=−=−

10. 111 0.250.5 42 4 ====

11. 993 0.090.3 10010 100 ====

12. 900(9)(100)910031030 −=−=−×=−×=−

13. 33312555 == 14. 4441622 == 15. 4448133 == 16. () 55 5 32(2)22 −−=−−=−−=

17. () 2 5555 =×=

18. ()3 3333 3131313131 =××=

19. () () () 33 3 3347147(1)(47)47 −−=−−=−−=

20. ()5 52323 −=−

21. () () () 44 4 44 53153(1)(53)53 −=−==

22. 75(25)(3)25353 ==×=

23. 18(9)(2)9232 ==×=

24. 32(16)(2)16242 −=−=−×=−

25. 1200(100)(4)(3)100431023203 ==××=××=

26. 50(25)(2)2525252 ==×=×=

27. 2842(4)(21)24212221421 ==××=××=

28. (36)(3) 10836363 33 2222 ×× ====

29. 8080 2045452525 374 ===×=×=×=

30. 22 8110811091090 ×=×=×=

31. 323 33 864(4)4 −=−=−=−

32. 4424 4 98133 ===

33. 2 2 781(49)(9)(49)(9) (3)49(9)(7) == (9) 7 (7) =

34. 5 55 5 2 2243323(32)(3) 3144312 =−=− (3) 8 (12)3 =−

35. 2 36641001010 +===

36. 2 251441691313 +===

37. 22 3998190(9)(10)910310 +=+===×=

38. 22 84641648(16)(3)16343 −=−===×=

39. 85.49.24121204171 = ,whichisroundedto9.24

40. 376261.3351449007 = ,whichisroundedto61.34

41. 0.81520.9028842672 = ,whichisroundedto0.9029

42. 0.06270.25039968051 = ,whichisroundedto0.250

43. (a) 12962304360060 +== ,whichisexpressedas60.00 (b) 12962304364884 +=+= ,whichisexpressedas84.00

44. (a) 10.62762.160912.78853.57610122899 +== ,whichisroundedto3.57610 (b) 10.62762.16093.261.474.73 +=+= ,whichisexpressedas4.7300

45. (a) 22 0.04290.01830.001840410.00033489 0.00150552 0.03880103091 0.0388 −=− = = = (b) 22 0.04290.01830.04290.0183 0.0246 −=− =

46. (a) 22 3.6250.61413.1406250.376996 13.517621 3.67663174658 3.677 +=+ = = = (b) 22 3.6250.6143.6250.614 4.239 +=+ =

47. 24(24)(150)360060mi/h s ===

48. 2222 22 2 (5.362)(2.875) 28.7510448.265625 20.485419 4.52608208056 4.526 ZX−=Ω−Ω =Ω−Ω =Ω

49. 9 33 2.1810Pa 1.0310kg/m B d × = ×

2116504.85436 kg/m kgm/s/m

2116504.85436 kg/m

2116504.85436m/s 1454.82124481m/s 1450m/s

50. 40(40)(75) 3000 54.7722557505

51. 2222 22 2 (52.3in)(29.3in)

2735.29in858.49in

3593.78in 59.948144258in 59.9in

52.

53. (9.8)(3500) 34300 185.20259 190m/s

54. 4242 87 8 1.27101.2710(9500)(9500) =1.2065109.02510 =2.10910 =14522.3965 whichisroundedto15000km

55. 2 aa = isnotnecessarilytruefornegativevaluesof a because a2willbeapositivenumber,regardlesswhether a is negativeorpositive.Theprincipalrootcalculatedisassumedtobepositive,buttherearealwaystwosolutionstoa squareroot,2aa =± since22 ()aa+= and22 ()aa−= (seetheintroductiontothischaptersection),soitissometimes trueandsometimesfalsefornegativevaluesof a,dependingonwhichrootsolutionisdesired.If onlyprincipalroots areconsidered,thenitwill not betruefornegativevaluesof a.Forexample,2(4)1644 −==≠− .

56. (a) xx > when1 x > .Anynumbergreaterthan1willhaveasquarerootthatissmallerthanitself.For example,221.41 >= (b) xx = when1 x = or0 x = becausetheonlynumbersthataretheirownsquaresare0and1(i.e.,200 = and 2 11 = ).

(c) xx < when01 x << .Anynumberbetween0and1willhaveasquarerootlargerthanitself.For example,0.250.250.5 <=

57. (a) 3214012.8865874254 = ,whichisroundedto12.9 (b) 30.2140.59814240297 −=− ,whichisroundedto–0.598

58. (a) 70.3820.87155493458 = ,whichisroundedto0.872 (b) 73822.33811675837 −=− ,whichisroundedto–2.34

59. 6 11 22(3.1416)0.250(40.5210) f

6.2832(0.003172144385) 1 0.0199312175998 50.172549 whichisroundedto50.2Hz = × = = =

6.283210.062510

60. 2 standarddeviation=variance 80.5kg 8.972179222kg whichisroundedto8.97kg = =

1.7 Addition and Subtraction of Algebraic Expressions

1. 32533 xyyxy +−=−

2. 3(2)3224 cbccbcbc −−=−+=−+

3. 3[(5)2]3[52] 3[5] 35 45 axaxsaxaxaxsax axaxs axaxs axs −−−=−−− =−−− =++ =+

4. 2222 22 22 22 2 3{[2(2)]}3{[22]} 3{22} 3{222} 3222 522 abaabababaabab abaabab abaabb abaabb abab −−−+=−−−− =−−++ =−−+ =−+− =−−

5. 5748 xxxx +−=

6. 634tttt −−=−

7. 244 yyxyx −+=+

8. 4610 CLCCL −+−=−+

9. 343055 tststss −−−=−=−

10. 812404 abababa −−++=+=

11. 2223532 FTFTFT −−+−=−−

12. 2323 xyxyzxyz −−−+=−−+

13. 2222222 2 ababababab −−=−−

14. 2222222 323 xyxyxyxyxy −−+=−

15. 2(62)266 pppppp +−−=−−=−

16. 5(34)53448 npnpnp +−+=+−+=−++

17. (792)79297 vxvvxvvx −−+=−+−=−+−

18. 111312()222222 abaabaab −−−=−−+=−−

19. 23(45)14555 aaa −−−=−−+=−

20. (2)3234 AhAAAhAAAh +−−=+−−=−+

21. (3)(56)35652 aaaaa −+−=−+−=−+

22. (4)(24)42463 xyxyxyxyxy −−−−=−++=+

23. (2)(3)2325 tuuttuuttu −−+−=−++−=−+

Section 1.7 AdditionandSubtractionofAlgebraicExpressions33

24. 2(63)(54)126548 xyyxxyyxxy −−−−=−+−+=−+

25. 3(2)(5)63578 rssrrssrrs +−−−=+++=+

26. 3()2(2)3324 ababababab −−−=−−+=+

27. 7(63)2(4)4221281950 jjjjj −−−+=−+−−=−

28. 22222 (5)2(32)564745 taasttaastastt −+−−=−−−+=−+−

29. [(46)(3)][463] [77] 77 nnnn n n −−−−=−−−+ =−−+ =−

30. [()()][] [22] 22 ABBAABBA AB AB −−−−=−−−+ =−− =−+

31. 22 2 2 2[4(5)]2[45] 2[9] 218 tt t t −−=−+ =−+ =−+

32. 228 3[3(4)]3[3] 333 21 3[] 33 21 aa a a −−−−−=−−++ =−− =−+

33. 2[2()]2[2] 2[3] 6 xaaxxaax a a −−−−−=−−−−+ =−− =

34. 2[3(2)4]2[364] 2[310] 620 xyyxyy xy xy −−−+=−−++ =−−+ =−

35. [3(4)][34] [1] 1 21 aZaZaZaZ aZaZ aZaZ aZ −−+=−−− =−−− =++ =+

36. 9[6(4)4]9[644] 9[510] 9510 410 vvvvvv vv vv v −−−−+=−+++ =−+ =−− =−

Copyright©2018PearsonEducation,Inc.

37. 5{8[4(21)]}5{8[421]} 5{8421} 5{52} 552 35 zzzz zz zz zz z −−−+=−−−− =−−++ =−+ =−− =−

38. 7{[2()]}7{[2]} 7{[3]} 7{3} 7{2} 72 9 yyyxyyyyxy yyyx yyyx yyx yyx xy −−−−=−−−+ =−−− =−−+ =−−+ =+− =−+

39. 5(2)[3()]52[3] 52[4] 74 85 pqpqpqpqpqpq pqpqp pqqp pq −−−−−=−+−−+ =−+−− =−−+ =−

40. (4)[(57)(62)]4[5762] 4[9] 49 25 LCLCLCLCLCLC LCLC LCLC LC −−−−−+=−+−−−− =−+−−− =−+++ =+

41. 2222 22 2 2 2{(4)[3(4)]}2{4[34]} 2{434} 2{211} 422 xxxx xx x x −−−−+−=−−+−+− =−−+−−+ =−− =−+

42. {[(2)]()}{[2]} {2} {32} 32 xabaxxabax xabax abx abx −−−−−−−=−−−+−−+ =−−+−+ =−−++ =−−

43. 2222 22 22 2 5(6(23))5(623) 5(23) 523 73 VVVV VV VV V −−+=−−− =−−+ =+− =−

44. 22((21)5)22(215) 22(26) 2412 212 FFFF FF FF F −+−−=−+−− =−+− =−+− =−

Copyright©2018PearsonEducation,Inc.

Section 1.7 AdditionandSubtractionofAlgebraicExpressions35

45. (3(72(56)))(3(7256)) (3(313)) (3313) (613) 613 tttttt tt tt t t −−+−−=−−+−+ =−−−+ =−+− =−− =−+

46. 2222 22 22 22 22 2 2(5(72(2)3))2(5(7243)) 2(5(72)) 2(572) 2(212) 424 324 axaxxaxaxx axax axax aa aa a −−−−−−=−−−−+− =−−−−+ =−−−+− =−− =−+ =−+

47. ( ) 4[42.5(2)1.52]4[42.5531.5] 4[6] 244 RZRRZRZRRZ RZ RZ −−−−−=−−+−+ =−− =−+

48. 3{2.11.3[2(5)]}3{2.11.3[210]} 3{2.11.3[29]} 3{2.12.611.7} 3{4.711.7} 14.135.1 efefefef eef eef ef ef −−−−−=−−−−+

49. 3()32 DDdDDdDd −−=−+=+

50. 12212212 (23)2342 iiiiiiii −−+=−++=+−

51. [] 42424442 22 33333333 6 3 3

BBBBBBBB

++−−+−−=++−−+−+

αααααααα

52. Distance30km/h(1)h40km/h(2)h 30(1)km40(2)km (30304080)km (7050)km tt tt tt t =×−+×+ =−++ =−++ =+

53. Memory(4terabytes)+(25)(8terabytes) (48200)terabytes (12200)terabytes xx xx x =+ =++ =+

Copyright©2018PearsonEducation,Inc.

$2[4070] $(80140) nn nn n n =+−− =+−+ =+ =+

54. Difference2[(21)($30)(2)($20)]

$2[60302040]

55. (a) 2222 2 (22)(3)223

xyayxbxyayxb xyab −++−−=−++−− =++− (b) 2222

(22)(3)223

xyayxbxyayxb

56. 2332323323

(3)(22)(443)322443

abccbacbabccbacb abc +−+−−−−+=+−+−−−+− =+−−

57. Thefinalshouldbeaddedandthefinal3shouldbesubtracted.Thecorrectfinalansweris222. yxy−−+

58. Thefinaloccurrenceof2shouldbeaddedratherthansubtracted,resultinginthefinalanswerof762. cabc

59. () () 1() 1() 1 abab ba ba ba ba ba −=−−+ =−− =−×− =−×− =×− =−

60. ()abcabc −−=−−

However,()abcabc −−=−+

Sincetheyarenotequivalent,subtractionisnotassociative. Forexample,(105)2523 −−=−= isnotthesameas10(52)1037 −−=−=

1.8 Multiplication of Algebraic Expressions

1. 3432333122 6122 813 2()(4)2(1)(4) 2(4) 8 sststsstst stst st −=− =− =−

2. 22 23 23 2(34)(2)(3)(2)(4) (6)(8) 68 axaxyzaxaxaxyz axaxyz axaxyz −−=−−− =−−− =−+

3. 2 2 (2)(3)()(3)(2)()(2)(3) 326 56 xxxxxx xxx xx −−=+−+−+−− =−−+ =−+

4. 2 22 22 (2)(2)(2) (2)(2)(2)()(2)()()() 422 44 ababab aaababbb aababb aabb −=−− =+−+−+−− =−−+ =−+

5. 23()()aaxax =

6. 2334(2)()2 xyxyxy =

7. 2223433 () acacxacx −=−

8. 222 222 34 (2)(4)(2)(4)(4) (2)(16) 32 cscscscscs cscs cs −−=−−− =− =−

9. 2222 24 35 (2)(2)(2)(2)(2) (4)(2) 8 axaxaxaxax axax ax −=− =− =−

10. 322322 324 37 (6)(3)(6)(3)(3) (6)(9) 54 pqpqpqpqpq pqpq pq = = =

11. 222 33 (2)()()()(2) 2 iRiriiRiiri iRir +=+ =+

12. 2()(2)()(2)() 22 xpqxpxq pxqx −−=−− =−−

13. 22 3 3(5)(3)()(3)(5) 315 sstssst sst −−=−+−− =−+

14. 22 32 3(2)(3)(2)(3)() 63 bbbbbbb bb −−=−+−− =−+

15. 22 32 5(3)(5)()(5)(3) 515 mmnmnmmnmmn mnmn +=+ =+

16. 22222 32232 (23)()(2)()(3) 23 abcacbcabcacabcbc abcabc −=+− =−

17. 2 3(2)(3)()(3)()(3)(2) 336 MMNMMMNM MMNM −−+=−+−+ =−−+

18. 222222 3322 4(92)(4)(9)(4)(2)(4)() 3684 cgccgccgcccg cgccg −−−+=−−+−−+− =+−

19. 2333 333 434 ()()() ()()()() xytxxytxyxy txyxtxyy txytxy +=+ =+ =+

20. 33 33 234 2(3)(34)6(34) (6)(3)(6)(4) 1824 stststst stsstt stst −−−=− =+− =−

21. 2 2 (3)(5)()()()(5)(3)()(3)(5) 5315 215 xxxxxx xxx xx −+=++−+− =+−− =+−

22. 2 2 (7)(1)()()()(1)(7)()(7)(1) 77 87 aaaaaa aaa aa ++=+++ =+++ =++

23. 2 2 (5)(21)()(2)()(1)(5)(2)(5)(1) 2105 295 xxxxxx xxx xx +−=+−++− =−+− =+−

24. 121211122122 22 112122 22 1122 (4)(23)(4)(2)(4)(3)()(2)()(3) 81223 8103 tttttttttttt tttttt tttt +−=+−++− =−+− =−−

25. 2 2 (8)(8)()()()(8)(8)()(8)(8) 8864 64 yyyyyy yyy y +−=+−++− =−+− =−

26. 2 2 (4)(4)()()()(4)(4)()(4)(4) 4416 16 zzzzzz zzz z −+=++−+− =+−− =−

27. 22 22 (2)(23)(2)(2)(2)(3)()(2)()(3) 4623 672 abbaabaabbba ababab aabb −−+=−++−−+− =−++− =−+

28. 22222 242 42 (34)(31)(3)(3)(3)(1)(4)(3)(4)(1) 93124 12133 wwwwww www ww −+−=−+−−++− =−++− =−+

29. 22 22 (27)(35)(2)(3)(2)(5)(7)(3)(7)(5) 6102135 61135 ststsssttstt sststt sstt +−=+−++− =−+− =+−

30. 22 22 (52)(8)(5)()(5)(8)(2)()(2)(8) 540216 53816 pqpqpppqqpqq ppqpqq ppqq −+=++−+− =+−− =+−

31. 222 32 (1)(25)()(2)()(5)(1)(2)(1)(5) 2525 xxxxxx xxx −+=++−+− =+−−

32. 222 32 (32)(29)(3)(2)(3)(9)(2)(2)(9)(2) 627418 yyyyyy yyy +−=+−++− =−+−

33. 22 22 (24)(24)

()()()(2)()(4)(2)()(2)(2)(2)(4)(4)()(4)(2)(4)(4) 242484816 4416 xyxy xxxyxyxyyyxy xxyxxyyyxy xyxy −−−+ =+−++−+−−+−+−+−−+− =−+−+−−+− =+−−

34. 22 22 (231)(231) (2)(2)(2)(3)(2)(1)(3)(2)(3)(3)(3)(1)(1)(2)(1)(3)(1)(1) 462693231 49121 abab aaabababbbab aabaabbbab abab +++− =++−+++−+++− =+−++−++− =++−

35. 2 2 2 2(1)(9)2[()()()(9)(1)()(9)(1)] 2[99] 2[89] 21618 aaaaaa aaa aa aa +−=+−++− =−+− =−− =−−

36. 2 2 2 5(3)(6)5[()()()(6)(3)()(3)(6)] 5[6318] 5[318] 51590 yyyyyy yyy yy yy −−+=−++−+− =−+−− =−+− =−−+

37. 2 2 2 3(32)(32)3[(3)(3)(3)(2)(2)(3)(2)(2)] 3[6946] 3[656] 181518 TTTTTT TTT TT TT −−+=−++−+− =−−+−+ =−−++ =−−

38. 2 2 32 2(5)(65)2[()(6)()(5)(5)(6)(5)(5)] 2[653025] 2[62525] 125050 nnnnnnnn nnnn nnn nnn −++=−+−++ =−−++ =−++ =−++

39. 2 2 32 2(1)(4)2[()(4)()()(1)(4)(1)()] 2[44] 2[34] 268 LLLLLLLL LLLL LLL LLL +−=+−++− =−+−+ =−++ =−++

40. 222 32 432 (4)(7)[()(7)()()(4)(7)(4)()] [4728] 4728 axxxaxxxxx axxxx axaxaxax +−=+−++− =−−++ =−−++

41. 2 2 2 (37)(37)(37)

(3)(3)(3)(7)(7)(3)(7)(7) 9212149 94249 xxx xxxx xxx xx −=−− =+−+−+−− =−−+ =−+

42. 2 22 22 (3)(3)(3) ()()()(3)(3)()(3)(3) 339 69 xyxyxy xxxyyxyy xxyxyy xxyy −=−− =+−+−+−− =−−+ =−+

43. 2 12121211122122 22 112122 22 1122 (3)(3)(3)()()()(3)(3)()(3)(3) 339 69 xxxxxxxxxxxxxx xxxxxx xxxx +=++=+++ =+++ =++

44. 2 2 2 (71)(71)(71) (7)(7)(7)(1)(1)(7)(1)(1) 49771 49141 mmm mmmm mmm mm −−=−−−− =−−+−−+−−+−− =+++ =++

45. 2 222 222 (2)(2)(2)

()()()(2)(2)()(2)(2) 224 44 xyzxyzxyz xyzxyzxyzxyz xyzxyzxyz xyzxyz −=−− =+−+−+−− =−−+ =−+

46. 2222 2222 4222 422 (6)(6)(6) (6)(6)(6)()()(6)()() 3666 3612 xbxbxb xxxbbxbb xbxbxb xbxb −+=−+−+ =−−+−+−+ =−−+ =−+

47. 2 2 2 2 2(8)2[(8)(8)] 2[()()()(8)(8)()(8)(8)] 2[8864] 2[1664] 232128 xxx xxxx xxx xx xx +=++ =+++ =+++ =++ =++

48. 2 2 2 2 3(34)3[(34)(34)] 3[(3)(3)(3)(4)(4)(3)(4)(4)] 3[9121216] 3[92416] 277248 RRR RRRR RRR RR RR −=−− =+−+−+−− =−−+ =−+ =−+

49. 2 2 22 322 32 (2)(3)(1)[(623)](1) (1)[6] ()()()()(6)()(1)()(1)()(1)(6) 66 256 xxxxxxx xxx xxxxxxx xxxxx xxx +−−=−+−− =−−++ =−+++−−+−+− =−+++−− =−++−

50. 23222 2242 2224 222224224 22463224 64 (3)(3)(3)(3) [(3)(3)33)](3) (3)[96] ()(9)()(6)()()(3)(9)(3)(6)(3)() 9627183 927 cxcxcxcx xxcxcxccx cxxcxc cxccxccxxxcxxc cxcxcxcxcx ccx −+=−+−+−+ =−−+−+ =−+−+ =−+−−+−+++−++ =−+−+−+ =−+− 223 27 cxx +

51. 2 2 2 32 3(2)(21)3[()(2)()(1)(2)(2)(2)(1)] 3[242] 3[242] 3[232] 696 TTTTTTTT TTTT TTTT TTT TTT +−=+−++− =−+− =−+− =+− =+−

52. 22 [(2)(2)] xx−+ 22 22 2 [(2)(2)(2)][(2)(2)(2)] [(2)[()()(2)()(2)()(2)(2)]][(2)[()()(2)()(2)()(2)(2)]] [(2)[224]][(2)[224]] [(2)[4]][(2)[4]] [()()(4)()(2) xxxxxx xxxxxxxxxx xxxxxxxx xxxx xxx =−−+−−+ =−+−++−−+−++− =−−+−−−+− =−−−− =+−+− 222 3232 333233232222 32 ()(2)(4)][()()(4)()(2)()(2)(4)] [248][248] ()()()(2)()(4)()(8)(2)()(2)(2)(2)(4)(2)(8) (4)()(4)(2)(4)(4)(4)( xxxxx xxxxxx xxxxxxxxxxxxxx xxxxxxx +−−+−+−+−− =−−+−−+ =+−+−++−+−−+−−+− +−+−−+−−+− 32 6543543243232 65432 8)(8)()(8)(2)(8)(4)(8)(8) 248248164816328163264 4432166464 xxx xxxxxxxxxxxxxxx xxxxxx ++−+−+ =−−+−++−−++−+−−+ =−−+−−+

53. (a) 222 2222 222 ()(34)749 3491625 () 4925 xy xy xyxy +=+== +=+=+= +≠+ ≠

54. Onecanwrite5(3)(3)(3)(3)(3)(3) xxxxxx +=+++++ andthenperformthemultiplicationsusingtherightmost pairoftermsateachstep.

55.

56.

57. 2 2 2 (10.01)(10.01)(10.01) [(1)(1)(1)(0.01)(0.01)(1)(0.01)(0.01)] [10.010.010.0001] 0.00010.02 PrPrr Prrrr Prrr rPrPP +=++ =+++ =+++ =++

58. 2

1000(10.0025)1000(10.0025)(10.0025)

1000[(1)(1)(1)(0.0025)(0.0025)(1)(0.0025)(0.0025)] 1000[10.00250.00250.0000625] 10002.50.0625 rrr

59.

Theroomwillbe5510feetwideand525210feetlong.Itsareais (10)(210)()(2)()(10)(10)(2)(10)(10)

60. 2 (300.01) 300.01 Rxp xx xx = =− =−

61. 22222

(2)()(2)(2)()

62. 3232332 5432 (23)(3)(2)()(2)()(2)(3)(3)()(3)()(3)(3) 226339 TTTTTTTTTT TTTTT +−−=+−+−++−+− =−−+−−

Numberofswitchesforelements

63. 2 2 2

64.

65.

66. 223 2 222 222 222 2724(6)(12)

2724(6)(6)(12)(12)(12)

27246636(12)1212144

27241236(12)24144

2724288864()()()(24)()(144)(12) xxx xxxxxx xxxxxxxx xxxxxx xxxxxxxx =−−−−−−− =−−−+−−−−+ =−−+−−−+ =−+−−+−++− 2 2322 32 ()(12)(24)(12)(144) 328886424144122881728 39144864 xx xxxxxxx xxx +−−+− =+−−+−+−+ =−+−+

1.9 Division of Algebraic Expressions

1. 222211 25523 663 22 axyax axyyy

==

2. 33223322 2222 3121 3122 2121 2 2 482482 2222 2 4 2 4 xyxyxyxyxyxy xyxyxyxy xx xy yy xx x yy −+ =−+ =−+ =−+

3. 2 2 32 21672 63 42 42 0 x xxx xx x x −−+ −+ −+

4. 232 3 2 2 32 22 21 418403 8-2 423 41 22 84322 21 4141 x xxxx xx xx x x xxx x xx −−++ −++ + −++ =−+

5. 32 831212 44 2 xy xyxy xy =−=−

6. 73 71326 2 18 1818 bc bcbc bc =−=−

7. 35514 5532 1644 4 rttt rtrr ==

8. 5523 2221 5133 17 mnnn mnmm ==

9. 23 (15)(2)3031112 33 1010 xyxzxyz xyzxz xyxy ===

10. 2334 33422 3232 (5)(8)4044 1010 sTsTsT sTT sTsT ===

11. 3232 3222 222 (4)(2)4(4)1 (4)16 axax axa axax ===

12. 2222 2224413 121244 (3)933 ababa ababbb ===

13. 2221111 36363622 33333 axxyaxxyaxxy ay xxx + =+=+=+

14. 22 2626211133 222 mnmnmnmn mnmnmnn mmm =−=−+=−+

15. 2222 36361111211122 22 333 rstrstrstrst rstrstrtt rsrsrs =−=−=−+

16. 2222 5105102111112122 555 anananan ananan ananan =−=−−=−−

17. 32253225 2222 113221221152 3 48164816 4444 24 42 pqpqpqpqpqpq pqpqpqpq pqpqpq qpq +− =+− =+− =−++

18. 223223 12111211 1111 2111211311111 1211 22 211 axxaxaxaxxaxax axaxaxax axxaxax axx +− =+− =+− =+−

19. 22 11 1121 22 2 2 fLfRfLfR fRfRfR fLfR R L R R ππππ πππ =− =− =−

20. 4444 333 444 33 41431143 3 9()69()6 333 96 33 32 32 aBaBaBaB aBaBaB aBaB aBaB aBaB aBB =− =−+ =−+ =−+

21. 223223 22222222 2222 322 2121 2 7142171421 14141414 3 22 113 22 ababaababa abababab ab ab ba a bab −+− =−+− =−+− =−+−

22. 22 2 2 2424 222 2 2 nnnn nnn nnnn xaxxax xxx xax xa ++ −+− + =+ =+ =+

23. 2121 21 6464 222 32 32 nnnn nnn nnnn n yayyay yyy yay yay ++ −−+ =− =− =−

25. 2 2 2 5 4920 4 520 520 0 920 5 4 x xxx xx x x xx x x + +++ + + + ++ =+ +

26. 2 2 2 9 2718 2 918 918 0 718 9 2 x xxx xx x x xx x x + −+− +− =+

39. 2 32 32 2 2 39 30027 3 30 39 9y27 9y27 0 yy yyyy yy yy yy −+ ++++ + −+ + + 3 27239 3 y yy y + =−+ +

40.

41. 22 2 2 2 2 0 xy xyxxyy xxy xyy xyy −−+ −+ −+ 22 2 xxyy xy xy −+ =−

42. 22 2 2 2 2 34 3352 39 42 412 14 rR rRrrRR rrR rRR rRR R + −−+ + 222 35214 34 33 rrRRR rR rRrR −+ =++

43. 232 32 2 2 2 24008 24 248 248 0 t ttttt ttt tt tt ++++− ++ 3 2 8 2 24 t t tt =− ++

45. Weknowthat21 x + multipliedby xc + willgiveus2295 xx ,so 2 295 xx dividedby21 x + willgiveus xc + : 2 2 5 21295 2

46.

55.

56.

1. (a) 312 33123 9 x x x −=− −+=−+ =− (b) 312 33123 15 x x x +=− +−=−− =− (c) 12 3 33(12) 3 36 x x x =−

17. 523 235 8 2 4 y

5818 5188

19. 37 37 27 7 2 xx

20. 6453 4356 71 1 7 LL

21. 2(34)5 685 658 8 qq qq qq q

22. 3(4) 123 312 212 12 2 6 nn nn

23. (4)62 462 22 32 2 3 rr

24. (2)55 552 53 63 31 62 xx xx xx x x

25. 8(5)2 8402 8240 1040 40 10 4 yy yy yy y y y

26. 4(7)7 2847 4728 3535 44 F F F F

27. 0.10.5(2)2 5(2)2(10) 51020 42010 105 42 xx xx xx x x

28. 1.50.3(4)6 153(4)6(10) 1531260 126012 48 12 4 xx xx xx x x x

29. 43(12)72 43672 7627 477 0 4 0 pp pp pp p p p

30. 36(23)5

31. 42(4)8

32. 25(73)2 4 4(2)35152

36. 71 71or71 1717 68 6or8 x xx xx xx xx

37. 5.80.3(6.0)0.5 0.55.80.31.8 0.50.37.6 0.87.6 7.6 0.8 9.5 xx xx xx x x

38. 1.90.5(4.0)0.8 1.92.00.50.8 1.90.51.2 2.41.2 1.2 2.4 0.50 tt tt tt

39. 0.24(0.50)0.63 0.240.120.63 0.240.630.12 0.240.51

40. 27.5(5.171.44)73.4 142.17539.673.4 39.673.4142.175 39.668.775 68.775 39.6 1.736742424 1.74 x x x x x x x

41. 17 2.06.0 17 2.0 6.0 5.6666666...

42. 3.0 7.042 3.0 42 7.0 18 R R R = = =

43. 16513 22315 151651513 132231315 2475 2899 0.85374267 0.85 V V V V V = = = = =

44. 2761360 17.046.4 1360 27617 46.4 498.2758621 276 1.805347326 1.81 x x x x x =

45. (a) 2332 2323 xx xx +=+ +=+ Isanidentity,sinceitistrueforallvaluesof x. (b) 2332 46 63 42 xx x x −=− = == Isconditionalas x hasoneansweronly.

46. Therearenovaluesof a thatresultinaconditionalequation.If0 a = ,thentheidentity22xx = results.If0 a ≠ , thenacontradictionresults.

47. 73(68) 03687 0415 3.75 xxx xxx x x

48. 0.05950.5258.85(0.0316)0 0.5950.5258.850.279660 9.3750.315340 0.033636266 0.0336 ii ii i i i

49. 0.030.06(2000)96 0.031200.0696

50. 15(5.5)24(5.5) 82.51513224 152413282.5 3949.5 49.5 39 1.269230769km/h 1.3km/h vv vv

51. 1.1(76) 40 40(1.1)76 4476 4476 120C T

52. 1.120.67(10.5)0 1.127.0350.670

53. 0.140.06(2000)0.09(2000)

54. 210(3)55.338.5(8.253)

63055.3317.625115.5

63055.3115.5317.625

690.2317.625 317.625 690.2 0.4601927m 0.460m

55. 30kWh 350mi107mi 30kWh 350mi 107mi 98kWh x x x = =×

56. 20min 250cal400cal 20min 400cal 250cal 32min x x x

1.11 Formulas and Literal Equations

3. 00 00 0000 0000 00 0 0 [1()] [1] VVbTT VVbTbT

4. 00 00 0 0 VVVT VVVT VV VT β β

EIR

pVnRT

7. 21 12 12 rLgg grLg ggrL =− += =−

8. d d d WSTQ QWST QSTW =− += =−

9. 12 12 12 nTWL B BnTWL B n TWL = = = 10. 2 2 PTf P T

11. a a a ppdgh ppdgh hpp dg =+

21. 112 21 21211 212211 221121 1121 2 2 () Kmm Km KmmKm KmKmKm KmKmKm KmKm m K + = += += =− =

23. 2 2 (2)2 22 22 22 mg a Mm aMmgm aMamgm aMgmam gmam M a = + += += =− =

24. ()VmM v m mvmVMV MVmvmV mvmV M V + = =+ =− =

26. 1

(1)AAM

27. ()NrAs NArrs rsNAr rsArN ArN s r

28. 21 21 12 12 2 1 3() 33 33 33 3 3 TTT

29. 21 21 21 12 100 100100 100100 100100 h TT TTh hTT

30. 2111 2111 21 11 (1) (1) (1) pprpp pprpp pp r pp =+− −=− =

31. 121 121 211 11 2 ()QPQQ QPQPQ PQQPQ QQPQ P =− =− =+ +

32. () 21 21 12 12 a a a a ppdgyy pp yydg pp yy dg pp yydg

33. 12 12 22 1 (1) (1) NNTNT NTNNT NNNT N T =−− =+− +− =

34. (1) acm acmm amcm mcma cma m ttht tttht thttt htttt ttt h t =+− =+− +=+ =+− +− =

35. 1212 1212 1212 212 1 ()22 22 22 22 Lrrxx Lrrxx rLrxx

36. () 21 12 12211 11221 1221 1 1 VRVR I RR IRRVRVRVR VRIRRVRVR IRRVRVR VR μ μ μ μ ++ = =++ =−+ −+

37. 121 2 121 2 121 2 1 2 1 ()VVV P gJ gJPVVV VVVgJP VVgJP V =

38. () 12 12 21 1 2 WTSSQ WQTSTS TSTSWQ STSWQ T

39. 12 12 1212 12 12 2 () ()2 () 2 eAkk C dkk CdkkeAkk Cdkk e Akk = + += + =

40. 23 23 23 3 2 3 6 63 36 6 3 LPxPx d EI dEILPxPx LPxdEIPx dEIPx L Px = =− =+ + =

41. 1 n VC N =− Cn VC N Cn VC N Cn CV N CnCNNV CNNV n C

42. () pAI PBAI pBAIAIP pBAIpAIP pBAIPAIp A BIPAIp p = +

43. () pCnnA −+= 1 1 1 1 (1) (1) 1 13.0L0.25(15.0L) 10.25 13.0L3.75L 0.75 9.25L 0.75 12.333333L 12L pCpnnA pnApC pnApC ApC n p n T T T T

44. 2 (10.500)2 tc PPm π =+ 2 2 10.500 680W

10.500(0.925) 680W

10.500(0.855625) 680W

10.4278125 680W

1.4278125 476.253009W 476W

VBLbL

2(38.6ft)(2.63ft)(16.1ft) 16.1ft

77.2ft42.343ft 16.1ft

34.857ft 16.1ft 2.16503106ft 2.16ft

(12.0V)(3.56)(3.56) 6.30V 6.7809523813.56 3.220952381 3.22

48. 1 (1)qpq

[ ] (1)1 (1)1 (1)1 1 (1) 1(0.66)(0.83) 0.66(10.83) 10.5478 0.66(0.17) 0.4522 0.1122 4.03030303 4processors qpq qpq pqq q p q p p p p p

49.

(2h)(4h) (4h)(2h) (4h)(2h)

15

1.12 Applied Word Problems

1. Let x =thenumberof25Wlights. Let31 x =thenumberof40Wlights. 2540(31)1000 251240401000 1510001240 15240 16 xx

Thereare16ofthe25Wlightsand(31–16)=15ofthe40Wlights.

Check: 251640(3116)1000 40040(15)1000 4006001000 10001000 ⋅+−=

2. Letx =thenumberofslideswith5mg. Let x 3=thenumberofslideswith6mg. (5mg)(6mg)(3) (5mg)(6mg)18mg 18 18slides xx xx x x =−

Thereare18slideswith5mgand(183)=15slideswith6mg.

Check:

5mg(18)6mg(15) 90mg90mg = =

3. Let t =thetimefortheshuttletoreachthesatellite. (29500km/h)6000km(27100km/h) (2400km/h)6000km 6000km 2400km/h 2.500h tt t

Itwilltaketheshuttle2.500htoreachthesatellite.

Check: (29500km/h)(2.500h)6000km(27100km/h)(2.500h) 73750km6000km67750km 73750km73750km =+ =+ =

4. Let x =thenumberoflitresof50%methanolblendthatmustbeadded. 0.0600(7250L)0.500()0.100(7250L) 435L0.500()725L0.100 0.400()290L 290L 0.400 725L xx xx x x x +=+ +=+ = = = 725Lofthe50%methanolblendmustbeadded.

Check:

0.0600(7250L)0.500(725L)0.100(7250L725L) 435L362.5L0.1(7975L)

797.5L797.5L

5. Let x =thecostofthecar6yearsago.

Let x +$5000=thecostofthecarmodeltoday. ($5000)$49000 2$44000 $44000 2 $22000 xx x

Thecostofthecar6yearsagowas$22000,andthecostofthetoday’smodelis($22000+5000)=$27000.

Check:

$22000($22000$5000)$49000

$22000+$27000$49000

$49000$49000

6. Let x =theflowfromthefirststreaminm3/s.

Let x –1700ft3/s=theflowfromthesecondstreaminm3/s.

Thefirststreamflows33600ft/sandthesecondstreamflows3600ft3/s–1700ft3/s=1900ft3/s.

Check:

36001.9810ft ft/s(3600ft/s1700ft/s)3600s

7200ft/s1700ft/s5500ft/s 5500ft/s5500ft/s

7. Let x =thenumberofcarsrecycledthefirstyear.

Let x+500000=thenumberofcarsrecycledthesecondyear. (500000cars)6900000cars 2500000cars6900000cars 26400000cars 6400000cars 2 3200000cars xx x x x x

Thefirstyear,3.2×106carswererecycled,andthesecondyear(3200000+500000)=3.7×106carswererecycled.

Check: 3200000cars(3200000cars500000cars)6900000cars 3200000cars3700000cars6900000cars 6900000cars6900000cars ++=

8. Let x =thenumberofhitstothewebsiteonthefirstday. Let1/2 x =thenumberofhitsonthesecondday. 1/2495000hits

330000hits xx x x x += = = =

3/2495000hits

495000hits 3/2

Thefirstdaytherewere330000hits,theseconddaytherewere1/2(33000hits=165000hits.

Check: 330000hits1/2(330000hits)495000hits

330000hits165000hits495000hits

495000hits495000hits += += =

9. Let x =thenumberacresoflandleasedfor$200peracre. Let140– x =thenumberofacresoflandleasedfor$300peracre. $200/acre$300/acre(140acre)$37000

$100/acre()$5000

$5000

$100/acre

50acres

Thereare50acresleasedat$200peracreand(140acres–50acres)=90hectaresleasedfor$300perhectare.

Check:

$200/acre(50acres)$300/acre(140acres50acres)$37000

$10000+$27000$37000 $37000$37000

10. Let x =thefirstdoseinmg. Let x +660mg=theseconddoseinmg. 660mg2000mg 21340mg 1340mg 2 670mg xx x x x

Thefirstdoseis670mg,andtheseconddoseis(670mg+660mg)=1130mg.

Check: 670mg670mg660mg2000mg 670mg+1330mg2000mg 2000mg2000mg

11. Let x =theamountofpollutantaftermodificationinppm/h. (5h)(3h)150ppm/h 450ppm 5h 90ppm/h x x x = = =

Theamountofpollutantaftermodificationis90ppm/h.Thedevicereducedemissionsby (150ppm/h–90ppm/h)=60ppm/h.

Check: (5h)90ppm/h(3h)150ppm/h 450ppm450ppm = =

12. Let x –13=thenumberofteeththatthefirstmeshedspurhas. Let x =thenumberofteeththatthesecondmeshedspurhas. Let x +15=thenumberofteeththatthethirdmeshedspurhas. 13teeth15teeth107teeth

32107teeth 3105teeth 105teeth 3 35teeth xxx

Thefirstspurhas(35–13)=22teeth,thesecondspurhas35teeth,andthethirdspurhas(35+15)=50teeth.

Check: 35teeth13teeth35teeth35teeth15teeth107teeth 107teeth107teeth −+++= =

13. Let x =amountpaidpermonthforfirstsixmonths.

Let x +10=amountpaidpermonthforfinalfourmonths. (6mo)(4mo)($10/mo)$890 (10mo)$40$890 (10mo)$850

$850 10mo $85/mo

Thebillwas$85/moforthefirstsixmonthsand$95/moforthenextfourmonths.

Check:

(6mo)$85/mo(4mo)($85/mo$10/mo)$890

$510(4mo)($95/mo)$890

$510$380$890

$890$890

14. Let x =amountpaidpermonthforfirstyear.

Let x +30=amountpaidpermonthfornexttwoyears.

Let(x +30)+20= x +50=amountpaidpermonthforfinaltwoyears. (12mo)(24mo)($30/mo)(24mo)($50/mo)$7320 (12mo)(24mo)$720(24mo)$1200$7320 (60mo)$1920$7320 (60mo)$5400

$5400

60mo

$90/mo

Forthefirstyear,thebillwas$90/mo,duringyears2and3,thebillwas$120/mo,andduringyears4and5,thebill was$140/mo.

Check:

(12mo)($90/mo)(24mo)($90/mo$30/mo)(24mo)($90/mo$50/mo)$7320

$1080(24mo)($120/mo)(24mo)($140/mo)$7320

$1080$2880$3360$7320

$7320$7320

15. Let x =thefirstcurrentinA μ

Let2x =thesecondcurrentinA μ

Let x +9.2A μ =thethirdcurrentinA μ

29.2A0A 49.2A 9.2A 4 2.3A xxx x x x μμ μ μ μ +++= =− = =−

Thefirstcurrentis2.3A μ ,thesecondcurrentis2(2.3A μ )=4.6A μ ,andthethirdcurrentis (2.3A μ +9.2A μ )=6.9A μ

Check:

2.3A2(2.3A)(-2.3)A9.2A0A 2.3A4.6A2.3A9.2A0A

16. Let x =thenumberoftrucksinthefirstfleet. Let x +5=thenumberoftrucksinthesecondfleet. (8h)(6h)(5)198h (8h)(6h)30h198h (14h)168h 168h 14h 12trucks xx xx x x x ++= ++= = = =

Thereare12trucksinthefirstfleetand(12trucks+5trucks)=17trucksinthesecondfleet.

Check: (8h)(12)(6h)(125)198h

96h(6h)(17)198h 96h102h198h 198h198h ++= += += =

17. Let x =thelengthofthefirstpipelineinkm. Let x +2.6km=thelengthofthe3otherpipelines. 3(2.6km)35.4km 37.8km35.4km 427.6km 27.6km 4 6.9km xx xx x x x ++= ++= = = =

Thefirstpipelineis6.9kmlong,andtheotherthreepipelinesareeach(6.9km+2.6km)=9.5kmlong.

Check: 6.9km3(6.9km2.6km)35.4km

6.9km3(9.5km)35.4km 6.9km28.5km35.4km 35.4km35.4km ++= += += =

18. Let x =thepowerofthefirstgeneratorinMW. Let750MW x =thepowerofthesecondgeneratorinMW.

0.650.75(750MW)530MW

0.65562.5MW0.75530MW

0.132.5MW

32.5MW 0.1 325MW xx xx x x x +−= +−= −=− = =

Thefirstgeneratorproduces325MWofpower,andthesecondgeneratorproduces(750MW–325MW)=425MW ofpower.

Check:

0.65(325MW)0.75(750MW(325MW))530MW

211.25MW0.75(425MW)530MW

211.25MW318.75MW530MW 530MW530MW +−= += += =

19. Let x =thenumberofdeluxesystems. Let2x =thenumbereconomysystems. Let x+75=thenumberofecono-plussystems.

$140$40(2)$80(75)$42000

$140$80$80$6000$42000

$300$36000 120systems xxx xxx x x +++= +++= = =

Thereare120deluxesystems,240economysystems,and195econo-plussystemssold.

Check:

$140(120)$40(240)$80(195)$42000

$16800$9600$15600$42000

$42000$42000 ++= ++= =

20. Theamountoflotterywinningsaftertaxesis$20000×(10.25)=$15000. Let x =theamountofmoneyinvestedata40%gain.

Let$15000 x =theamountofmoneyinvestedata10%loss.

0.400.10($15000)$2000

0.40$15000.10$2000 0.50$3500 $3500 0.50

$7000 xx xx x x x −−= −+= = = =

The40%gaininvestmenthad$7000invested,andthe10%lossinvestmenthad($15000$7000)=$8000invested.

Check:

0.40($7000)0.10($15000$7000)$2000

$2800$15000.10($7000)$2000

$2800$1500$700$2000 $2000$2000 −−= −+= −+= =

21. Let x =theamountoftimeinsecondsbetweenwhenthestartofthetrainspasseachothertowhentheendofthetrains passeachother.

Thetotaldistancetheendsmusttravelinthistimeis960feet.Wefirstconvertmi/hrintoft/sec.

5280ft22ft22 1mi/hrft/s

3600s15s15 ===

Therefore,trainAtravelsat60(22/15)=88ft/sandtrainBtravelsat40(22/15)=176/3ft/s. (88ft/s)(176/3ft/s)960ft

(440/3ft/s)960ft

960ft

440/3ft/s 72 s 11 xx x x x += = = =

Thetrainscompletelypasseachotherinabout6.55seconds.

Check:

7272

(88ft/s)s(176/3ft/s)s960ft 1111

576ft+384ft960ft

960ft960ft += = =

22. Let x =themortgagepaymentand x/0.23=themonthlyincome.

/0.23$3850 11$3850 0.23

10.23$3850 0.230.23 0.77$3850

Themortgagepaymentis$1150andthemonthlyincomeis$5000.

Check:

$1150/0.23$1150$3850

$5000$1150$3850

$3850$3850

23. Let x =theamountoftimetheskierspendsontheskiliftinminutes. Let24minutes x =theamountoftimetheskierspendsskiingdownthehillinminutes. (50m/min)(150m/min)(24min) (50m/min)3600m(150m/min) (200m/min)3600m 3600m 200m/min 18min xx xx x x x

Thelengthoftheslopeis18minutes×50m/minute=900m.

Check:

(50m/min)18min(150m/min)(24min18min)

900m3600m(150m/min)(18min)

900m3600m2700m

900m900m

24. Let x =thespeedofsound.

Let x –120mi/h=speedtravelledfor1h. Let x +410mi/h=thespeedtravelledfor3h. 1h(120mi/h)3h(410mi/h)=3990mi (1h)(1h)(120mi/h)(3h)(3h)(410mi/h)=3990mi

(1h)120mi(3h)1230mi=3990mi (4h)=2880mi 2880mi 4h 720mi/h

Thespeedofsoundis720mi/h.

Check:

1h(720mi/h120mi/h)3h(720mi/h410mi/h)=3990mi (1h)(600mi/h)(3h)(1130mi/h)=3990mi

600mi3390mi=3990mi

3990mi=3990mi

25. Let x =thespeedthetrainleavingEnglandinkm/h.

Let x +8km/h=speedofthetrainleavingFranceinkm/h. Thedistancetravelledbyeachtrainisspeed×time. 17min17min 60min/h(8km/h)=50km 60min/h

(0.28333h)(8km/h)(0.28333h)=50km (0.28333h)(0.28333h)2.26667km=50km

(0.56666h)=47.73333km

47.73333km

0.56666h 84.2352942

84.2km/h

ThetrainleavingEnglandwastravellingat84.2km/h,andthetrainleavingFrancewastravellingat (84.2km/h+8km/h)=92.2km/h.

Check: 84.2352942117min17minkm/h(84.23529421km/h8km/h)=50km 60min/h60min/h

23.8666617minkm(92.23529421km/h)=50km 60min/h

23.86666km26.13333km=50km 50km50km

26. Let x =timeleftuntiltheappointment.

Let x–10.0min=timetakentogettotheappointmenttravellingat60.0mi/h. Let x–5.0min=timetakentogettotheappointmenttravellingat45.0mi/h. Thedistancetravelledbytheexecutiveineachscenarioisthesame.Distance=speed×time 10.0min5.0min 60.0mi/h45mi/h 60min/h60min/h

(60.010.0min5.0min mi/h)60mi/h(45mi/h)45mi/h60min/h60min/h

(60.0mi/h)10mi(45.0mi/h)3.75mi (15.0mi/h)6.

15.0mi/h

0.416666667h

0.416666667hx60min/h 25min x x x x

Thereis25minutesleftuntiltheexecutive’sappointment. Check:

60.010.0min5.0min mi/h0.41667h45mi/h0.41667h 60min/h60min/h

60.0mi/h(0.25h)45mi/h(0.33333h) 15mi=15mi

27. Let x –30.0s=timesincethefirstcarstartedmovingintheraceinseconds. Let x=timesincethesecondcarstartedtheraceinseconds.

Thedistancetravelledbyeachcarwillbethesameatthepointwherethefirstcarovertakesthesecondcar. Distance=speed×time.

260.0ft/s(30.0s)240.0ft/s()

(260.0ft/s)(260.0ft/s)(30.0s)(240.0ft/s)

(260.0ft/s)7800ft(240.0ft/s)

(20.0ft/s)7800ft

7800ft

20.0ft/s 390s

Thefirstcarwillovertakethesecondcarafter390s.Thefirstcartravels260ft/s×(390s–30s)=93600ftbythis point.8lapsaroundthetrackis2.5mi/lap.8laps×5280ft/mi=105,600ft,sothefirstcarwillalreadybeintheleadat theendofthe8thlap.

Check:

260.0ft/s(390.0s30.0s)240.0ft/s(390s) 260.0ft/s(360.0s)240.0ft/s(390s) 93,600ft93,600ft

28. Let x =thenumberofthefirstchipsthatisdefective0.50%.

Let6100 x =thenumberofthesecondchipsthatisdefective0.80%. 0.0050()0.0080(6100chips)38chips (0.0050)48.8chips(0.0080)38chips (0.0030)10.8chips 10.8chips 0.0030 3600chips

Thereare3600chipsthatare0.50%defectiveand(6100chips–3600chips)=2500chipsthataredefective0.80%.

Check:

0.0050(3600chips)0.0080(6100chips3600chips)38chips

18chips0.0080(2500chips)38chips

18chips20chips38chips

38chips=38chips

Assumingthatthecustomerislocatedbetweenthetwogasolinedistributors: Let x =thedistanceinkmtothefirstgasolinedistributorthatcosts$2.90/gal. Let228mi x=thedistanceinkmtothesecondgasolinedistributorthatcosts$2.70/gal.

$2.90$0.002()$2.70$0.002(228)

$2.90$0.002()$2.70$0.456$0.002()

$0.004()$0.256

$0.256

$0.004

Thecustomeris64miawayfromthefirstgasdistributor($2.90/gal)and(228mi–64mi)=164miawayfromthe secondgasdistributor($2.70).

Check:

$2.90$0.002(64)$2.70$0.002(22864)

$2.90$0.128$2.70$0.002(164)

$3.028$2.70$0.328

$3.028$3.028

30. ?L75%Gas

(100%Gas)8.0Lgascan(needstobefullof93.75%gas/oilmixture)

A15:1gas/oilmixtureis15/16gasoline=93.75%.

Let x =theamountof100%gasolineaddedinL.

Let8.0L– x =theamountof75%gasolinemixtureinL.

1.00()0.75(8.0L)0.9375(8.0L)

1.00()6.0L0.75()7.5L

6.0Lof100%gasolinemustbeaddedtothe75%gas/oilmixturetomake8Lof15:1gasoline/oil.

Check:

1.00(6.0L)0.75(8.0L6.0L)0.9375(8.0L)

6L0.75(2.0L)7.5L

6L1.5L7.5L

7.5L7.5L

100%Antifreeze12.0Lradiator(needstobefilledwith50%mixture)

Let x =theamountinLof25%antifreezeleftinradiator

Let12.0L– x =theamountof100%antifreezeaddedinL.

0.25()1.00(12.0L)0.5(12.0L)

0.25()12.0L1.00()6.0L

0.75()6.0L 6.0L 0.75 8.0L xx xx x x x +−= +−= −=− = =

Thereneedstobe8Lof25%antifreezeleftinradiator,so(12.0L–8.0L)=4.0Lmustbedrained.

Check:

0.25(8.0L)1.00(12.0L8.0L)0.5(12.0L)

2.0L1.00(4.0L)6.0L 2.0L4.0L6.0L 6.0L6.0L +−= += += =

32. (x)lb Sand 250lbCement (22%SandMixture)

Let x =theamountofsandadded. Let250lb+ x =theamountinlbofthefinal25%sandmixture.

Copyright©2018PearsonEducation,Inc.

(x)Lof25%antifreeze

1.00()0.22(250lb)0.25(250lb) 1.00()55lb62.5lb0.25() 0.75()7.5lb 7.5lb 0.75 10lb xx xx x x x +=+ +=+ =

Check:

1.00(10lb)0.22(250lb)0.25(250lb10lb) 10lb55lb62.5lb2.5lb 65lb65lb +=+

33. (x)km/hm 70km/h

5.0m20.0m

Let x =thespeedthecarneedstotravelinkm/htopassthesemiin10s. Speed=distance/time.10sis10s/3600s/h=0.002777777h. () distanceneededtopasstruck+distancetravelledbytruckin10s 10

79km/h x s x x x x = + = + = = =

0.025km70km/h0.0027777h 0.0027777h

0.025km0.19444km 0.0027777h 2.19444km 0.0027777h

Thecarneedstotravelataspeedof79km/htopassthesemitrailerin10s.

Check:

() 0.025km70km/h0.0027777h 79km/h 0.0027777h

790.025km0.19444km km/h 0.0027777h 79km/h79km/h +

34. 5km/s8km/s

Seismic Station (?)km

Let x =thetimethefirstwavetakestotraveltotheseismicstationins. Let x +120s=thetimethefirstwavetakestotraveltotheseismicstationins. Distance=speed×time.Thedistancestravelledbybothwavestotheseismicstationarethesame.2.0minis (2.0min×60s/min)=120s.

8.0km/s()=5.0km/s(120s)

8.0km/s()=5.0km/s()(5km/s)(120s)

3.0km/s()=600km

600km

3.0km/s

200s xx xx x x x + + = =

Thedistancetotheseismicstationis(200s×8.0km/s)=1600km.

Check:

8.0km/s(200s)=5.0km/s(200s120s)

1600km=5.0km/s(320s)

1600km1600km + =

Review Exercises

1. False,because00 = whichisnotapositivevalue.

2. True.Theorderofoperationsdictatesperformingthedivisionfirst,thenthesubtraction.

3. False.Thereportedanswershouldhaveonlytwosignificantdigits.

4. False.Hadtheproblembeengivenas33 (2)8aa = ,thenitwouldbetrue.

5. True.

6. False.Theleft-handside,4,isnotarealnumber,infact.

7. False.Theleft-handsidesimplifiesto4(23)42323 xxxxx −+=−−=−

8. True.

9. False.Theleft-handsidesimplifiesto626231 222 xx x + =+=+

10. True.

11. False.Solvingfor c yields abcd bcda da c b da c b −= −=− = =−

12. False.Itislikelythatoneshouldsetupaphrasesuchas‘let x bethenumberofgearsofthefirsttype…’

13. (2)(5)325310 −+−−=−−−=−

14. 68(4)6842 −−−=−+=

15. (5)(6)(4)(20)(6) (2)(3) = (6) 20=−

16. (9)(12)(4)108(4)43218 242424 ===−

17. 15 52(6)512(5)512522 3 −−−+=−−−+−=−−−=−

18. 12 3532355(3)35(5)362519 4 −−−−=−−−−=−+=−=−

19. 2 1818 (4)(4)(4)91625352 −−=−−−=−−=−

20. 288827431 (3)(3)(3)9(2)4(2)46333 −−−=−−−−=−−=−−=−

21. 1664(4)(4)(8)(8)484 −=−=−=−

22. 81144225(5)(5)(3)(3)(3)(5)15 −+=−=−=−=−

23. 233 (7)8(7)(7)(2)(2)(2)725 −=−=−=

24. 424 16(6)(2)(2)(2)(2)(6)(6)264 −+=−+=−+=

25. 22222224(2)(2)4 x rtrtrt−=−=

26. 02333236 6 27 (3)(3)(1)27(1) abbb b ×− ===

27. 534135421 2 24 3(8)(3)(8)24 t mntmnmntmnt mn −−+−− −= −= −=

28. 4241 5 153 5 pqrpr pqr = 52 qr 3 3 3 p q =

29. 222121133 01 16()888 2(1)(1) NNTNTNTT NTN + +− ===

30. 12111232 111 35()77 5 xyxyyxyx xyx −+ + −+ == 2 x 73 y =−

31. 45(5)(3)(3)35 ==

32. 93645(5)(3)(3)35 +===

33. 8000has1significantdigit.Roundedto2significantdigits,itis8000.

34. 21490has4significantdigits.Roundedto2significantdigits,itis21000.

35. 9.050has4significantdigits.Roundedto2significantdigits,itis9.0.

36. 0.7000has4significantdigits.Roundedto2significantdigits,itis0.70.

37. 2 37.316.92(1.067)37.316.92(1.138489) 37.319.26323388 18.03676612 −=− =− = whichroundsto18.0.

38. 1212 13 8.896108.89610 3.59546.04499.6403 9.22792859110 ×× = =−× whichroundsto-9.228×10-13

39. 2 0.19582.8443.0398 3.142(65)3.142(4225) 1.743502223 13274.95 0.000131337 + = = = whichroundsto1.3×10-4

40. 2 13746637466 28.02690583 0.03568877.9369 29.63 28.0269058342.67504874 70.70195457 +=+ =+ = whichroundsto70.70,assumingthatthe1isexact.

41. 778.2ftlb1.356J 875Btu875Btu 1Btu1ftlb 923,334.3J =×× = whichroundsto923,000J.

42. 2.54cm1m 18.4in18.4in 1in100cm 0.46736m =×× = whichroundsto0.467m.

43. kmkm1hr0.6214mi5280ft 6565 hh3600s1km1mi ft 59.2401333 s =××× = whichroundsto59ft/s.

44. 3 3 12.25gg28.32L1kg2.205lb 12.25 LL1000g1kg 1ft lb 0.7649586 ft =××× = whichroundsto0.7650lb/ft3

45. 550ftlb/s1.356J60s 225hp225hp1hp1ftlb1min J 10068300 min ⋅ =××× = whichroundsto7 101000001.0110 =× J/min.

46. 2 22 2 lblb4.448N1in 89.789.7 inin1lb2.54cm N 61.8428917 cm =×× = whichroundsto61.8N/cm2

47. 322 aabaababa −−+=−−

48. 5436 xyyyxyxyy −−−=−−

49. 6(3)6373 LCLCLCLCLC −−=−+=−

50. (2)3(5)231516 xbxbxbxbbx −−−−−=−+++=+

51. 2 2 (21)(5)(2)(5)(2)()(1)(5)(1)() 1025 295 xxxxxx xxx xx −+=++−+− =+−− =+−

52. 22 22 (4)(2)()()()(2)(4)()(4)(2) 248 294 CDDCCDCCDDDC CDCDCD CCDD −−=+−+−+−− =−−+ =−+−

53. 2 2 2 (8)(8)(8) ()()()(8)(8)()(8)(8) 8864 1664 xxx xxxx xxx xx +=++ =+++ =+++ =++

54. 2 22 22 (29)(29)(29) (2)(2)(2)(9)(9)(2)(9)(9) 4181881 43681 rsrsrs rrrssrss rrsrss rrss −=−− =+−+−+−− =−−+ =−+

55. 32453245 222 32214251 24 2626 222 3 3 hkhkhkhk hkhkhk hkhk hkhk =− =− =−+

56. 234234 222 2132 4848 222 4 2 axaxaxax axaxax a ax =− =−+ 42 x a 2 42xax=−

57. [ ] [ ] [] 42(34)4234 463 463 76 RrRrRrRr RrR RrR Rr −−−=−−+ =−− =−+ =−

58. [ ] [ ] [] 33(3)44333 4323 4323 26 baabaabaab abab abab ab −−−−+=−−−+ =−−+ =−−− =−

59. [ ] [ ] [] 2{35(76)}2{3576)} 2{3117} 2{3117} 2{1011} 21011 1310 xyzxyzxyxyzxyzxy xyzxyz xyzxyz xyzxy xyzxy xyz −−−−=−−−+ =−−− =−−+ =−− =−+ =−

60. [ ] [ ] [] 22 2 2 2 3()3(2)3633) 3523 3523 223 xbbybyzxbbybyz xbbyz xbbyz xbyz ++−−−+=++−−+− =++−+− =+−+− =−+−

61. 222 322 32 (21)(3)(2)()(2)()(2)(3)(1)()(1)()(1)(3) 2263 273 xxxxxxxxxx xxxxx xxx +−−=+−+−++−+− =−−+−− =−−−

62. 222 322 32 (3)(213)()(2)()(1)()(3)(3)(2)(3)(1)(3)(3) 23639 29103 xxxxxxxxxx xxxxx xxx −+−=++−+−+−+−− =+−−−+ =−+−

63. 2 22 22 223 3(4)3(4)(4) 3[()()()(4)(4)()(4)(4)] 3[4416] 3[816] 32448 yxyyxyxy yxxxyyxyy yxxyxyy yxxyy xyxyy −−=−−− =−+−+−+−− =−−−+ =−−+ =−+−

64. 2 22 22 322 (43)(43)(43) [(4)(4)(4)(3)(3)(4)(3)(3)] [1612129] [16249] 16249 sstsstst ssssttstt ssststt ssstt sstst −−=−−− =−+−+−+−− =−−−+ =−−+ =−+−

65. 22 3[()2(13)]3[26] 3[36] 1893 pqppqpqpppq pqppq pqppq −−−=−−+ =−+ =−+

66. 2 3[24(2)]3[248] 3[274] 21126 xyrxrxyrxr xyrx rxxxy −−−=−−+ =+− =−+

67. 32453245 4444 214 43 12461246 2222 62 pqpqpqpqpqpq pqpqpqpq qpq

68. 32423242 2222 42 3221 2718927189 9999 2 3 stststststst stststst st st −+ =−+ =−+ t 92st 92st 2 231 sst =−−

69. 2 2 25 62730 212 530 530 0 x xxx xx x x ++− +

70.

74. 2 32 32 2 2 462 2380143 812 1214 1218 43 46 3 xx xxxx xx xx xx x x −+ ++−+ + + + 3 814323 462 2323 xx xx xx −+ =−+− ++

75. 3{()2[(32)(2)]}3{2[322)]}

3{2[3]} 3{62]}

3{5} 1533 rstrstsrstrsts rstrt rstrt rst rst −+−−−−−=−+−−−−+ =−+−−− =−+−−+ =−−++ =−−

76. 22 22 22 2 (12)(3)(4)(43) [(1)()(1)(3)(2)()(2)(3)][()(4)()(3)(4)(4)(4)(3) [326][431612] [273][3816] 2733816 1519 xxxx xxxxxxxx xxxxxx xxxx xxxx xx −−−+− =+−+−+−−−+−++− =−−+−+−++− =−+−−−−+ =−+−++− =+−

77. 2 32 32 2 2 51 212975 21 107 105 25 21 4 yy yyyy yy yy yy y y +− −+−+ −+ −+ 32 297524 51 2121 yyy yy yy +−+ =+−+

78. 22 2 2 2 34 2654 63 84 84 0 xy xyxxyy xxy xyy xyy + −+−

79. 318 29 9 2 xx x x +=−

80. 4357 10 10 yy y y −=+

81. 53 72

2(5)3(7) 1021 21 10 x x x x = = = =

82. 2(4)5 34 285 34 4(28)3(5) 83215 847 47 8 N N N N N

83. 653(4) 65312 37 7 3 xx xx x

84. 2(4)3 823 8 yy yy y

85. 24(3)6 21246 26 6 2 3 ss ss s s s +−=

87. 32(7)5(21) 3142105 514105 519 19 5 ttt

88. (8)2(2) 842 834 24 4 2 2 xxx

89. 2.72.0(2.13.4)0.1 2.74.26.80.1 4.24.10.1 4.24.2 4.2 4.2 1.0 x x x x x

90. 0.250(6.7212.44)2.08 1.680250.6102.08 0.6100.39975 0.39975 0.610 0.655327868 0.655

91. 60,000,000,000,000bytes=6×1013bytes

92. 25,000mi/h=2.5×104mi/h

93. 15,400,000,000km=1.54×1010km

94. 1.02×109Hz=1,020,000,000Hz

95. 2.53×1013mi=25,300,000,000,000mi

96. 107ft2=10,000,000ft2

97. 10-12W/m2=0.000000000001W/m2

98. 0.00000015m=1.5×10-7 m

99. 1.5×10-1Bq/L=0.15Bq/L

100. 0.00000018m=1.8×10-7 m

108. () mumMv mumvMv mumvMv mumv M v =+ =+

109. 1233 1323 2133 133 2 () NTNNN NNNTNT NTNNNT NNNT N T =−+

110. 21 21 21 12 12 () () kAtTT QL QLkAtTT

111. 21 21 21 1 2 ()ATT R H HRATAT ATHRAT HRAT T A

+

112. 2 2 2 2 2 22 2 2 1 2 2 2 2() 22 Zk a Z Zk a Z Zk a aZkZ aZak Z λ λ λ

113. 2 2 223 223 23 2 [3()] [33] 33 33 3 3 dkxabx dkxabx dakxbkxkx akxdbkxkx dbkxkx a kx =+−

114. 021

115. 13 8 4 5.2510bytes8.20312510 6.410bytes × =× × whichroundsto8.2×108.Thenewercomputer’smemoryis8.2×108larger.

116. 0.25662.0310096s t == whichroundsto2.0s.Itwouldtaketheperson2.0stofall66ft.

117. 0.553km 1.25113122 0.442km = whichroundsto1.25.TheCNToweris1.25timestallerthantheSearstower.

118. 32 4.8102cells(1.8113207)3.280882876s2650 t

whichroundsto3.28s.Itwouldtakethecomputer3.28stocheck4800memorycells.

119. 12 12 2 (0.0275)(0.0590) 0.02750.0590 0.0016225 0.0865 0.018757225 RR RR ΩΩ = +Ω+Ω Ω = Ω =Ω whichroundsto0.0188 Ω .Thecombinedelectricresistanceis0.0188 Ω

120.

1.5101.5105.9810kg 1.9910kg

1111

1.5100.000003005 1.510(0.0017335) 260025124.4m m M × ×=× × =× =× = whichroundsto2.6×108m.Thedistancethespacecraftwillbefromtheearthis2.6×108 m.

121. (2)3ft/yd(2)233(2) 236 44 xaxaxaxa xaxa

Thesumoftheirlengthis4x +4a ft.

122. 2 2 22 322 ()(1)()(1)(1) ()[(1)(1)(1)()()(1)()()] ()[21] ()()()(2)()(1)()()()(2)()(1) 22 AiRiAiRii

123. 2 22 22 22 4()2()442()() 442[()()()()()()()()] 442[2] 44242 22444 ththththth thttthhthh ththth ththth thhtth +−+=+−++

124. 22222222 2222 2 22 krhkhrvkrhkhrv krkrkrkr kr −+ =−+

125. 318(96)54(3)18 318965496660 ×÷−=÷= ×÷−=÷−=−= Yes,theremovaloftheparenthesesdoesaffecttheanswer.

126. (318)965496660 318965496660 ×÷−=÷−=−= ×÷−=÷−=−= No,theremovaloftheparenthesesdoesnotaffecttheanswer.

127. (3)23 323 2323 xxx xxx xx −−=− −+=− −=−

Theequationisvalidforallvaluesoftheunknown,sotheequationisanidentity.

128. 7(2)2 722 52 52 xx xx xx −−=+ −+=+ +=+ =

Theequationhasnovaluesoftheunknownforwhichitisvalid,sotheequationisacontradiction.

129. (a) 222448 4 −=− =− (b) 22(4)26 12 −−= =

130. For a<0, |a|=–a.

131. Given30, 372 (3)72 372 4 x xx xx xx x −= −+= −−+= −++= =

Thisisconsistentwith30,so4. xx −==

132. 463 436 436or(4)36 22436 1104 andsotheonlypossiblesolutionsare 1or5/2. xx xx xxxx xxx xx xx

Thefirstpossibility,1 x = ,yields363or93, −+== whichisfalse. Thesecondpossibility,5/2 x = ,yields3/2615/2or15/215/2, −+== whichistrue,and sotheonlysolutionis5/2 x =

133. ()()()() () () () () () () ()()() () 3 3 xyxyxyxy yxyxyx yxyxyx yx −=−−−

134. Generally,()() Wedemonstratethisusing8,4,2: (84)2221 8(42)824 abcabc abc ÷÷≠÷÷ === ÷÷=÷=

Divisionisnotassociative.

135. 3 7 4 810 410 210 × =× ×

136. (2)(2)(10 436210 10 422 + ===

137. 746.0W1kW 250hp250hp1hp1000W 186.5kW =×× = Thisisroundedto190kW.

138. 22 22 2 lblb4.448N1in100cm 3232 inin1lb2.54cm1m N 220,621.241 m =××× = Thisisroundedto220,000N/m2

139. 1lb1ft 110Nm110Nm 4.448N0.3048m 81.1358787ftlb ⋅=⋅×× =⋅ Thisisroundedto81footpounds.

140. 2 66 22 5 2 AA1000mA1m 1.2101.210 mm1A100cm mA 1.210 cm ×=××× =×

141. Let x= thecostofthefirstcomputerprogram.

Let x +$72=thecostofthesecondcomputerprogram.

($72)$190

2$72$190

2$118 $118 2 $59 xx x x x x ++= += = = =

Thecostofthefirstcomputerprogramis$59,andtheotherprogramcosts($59+$72)=$131.

Check:$59+$131=190

142. Let x= thecosttorunthecommercialonthefirststation.

Let x +$1100=thecosttorunthecommercialonthesecondstation.

($1100)$9500

2$1100$9500

2$8400 $8400 2 $4200 xx x x x x ++= += = = =

Thecostoftherunthecommercialonthefirststationis$4200,andthecostfortheotherstationis ($4200+$1100)=$5300.

Check:$4200+$5300=$9500

143. Let2x =theamountofoxygenproducedincm3bythefirstreaction. Let x =theamountofoxygenproducedincm3bythesecondreaction. Let4x =theamountofoxygenproducedincm3bythethirdreaction. 3 3 3 3 24560cm 7560cm 560cm 7 80cm xxx x x x ++= = = =

Thefirstreactionproduces(2×80cm3)=160cm3ofoxygen,thesecondreactionproduces80cm3ofoxygen,andthe thirdreactionproduces(4×80cm3)=320cm3ofoxygen.

Check:160cm3+80cm3+320cm3=560cm3*

144. Let x =thespeedthattheriverisflowinginmi/h. Let x +5.5mi/h=thespeedthattheboattravelsdownstream. Let x +5.5mi/h=thespeedthattheboattravelsupstream. Thedistancethattheboattravelledisthesameinbothexperiments.Distance=speed×time. (5.5mi/h)(5.0h)(5.5mi/h)(8.0h) (5.0h)()(5.5mi/h)(5.0h)(8.0h)()(5.5mi/h)(8.0h) (5.0h)()(27.5mi)(8.0h)()(44mi) (13.0h)16.5mi 16.5mi 13h

1.269230769mi/h

whichroundsto1.3mi/h.Thepollutedstreamisflowingat1.3mi/h. Check: (1.269230769mi/h5.5mi/h)(5.0h)(1.269230769mi/h5.5mi/h)(8.0h) (6.769230769mi/h)(5.0h)(4.2mi/h)(8.0h) (33.8mi)(33.8mi)

145. Let x =theresistanceinthefirstresistorin Ω

Let x +1200 Ω =theresistanceinthesecondresistorin Ω

Voltage=current×resistance.2.4 Aμ =2.3×10-6A.12mV=0.0120V 66 666 6 6 6 (2.410A)()(2.410A)(1200)0.0120V (2.410A)()(2.410A)()(2.410A)(1200)0.0120V (4.810A)()(0.00288V)0.0120V (4.010A)()0.00912V 0.00912V 4.810A 1900 xx xx x x x x ×+×+Ω= ×+×+×Ω=

Thefirstresistor’sresistanceis1900 Ω andthesecondresistor’sis(1900 Ω +1200 Ω )=3100 Ω

Check: 66 (2.410A)(1900)(2.410A)(19001200)0.0120V 0.00456V0.00744V0.0120V 0.0120V0.0120V ×Ω+×Ω +Ω= += =

146. Let x =theconcentrationofthefirstpollutantinppm. Let4x =theconcentrationofthesecondpollutantinppm. 44.0ppm 54.0ppm 4.0ppm 5 0.8ppm xx x x x += = = =

Theconcentrationofthefirstpollutantis0.8ppm,andtheconcentrationofthesecondis(4×0.8ppm)=3.2ppm.

Check: 0.8ppm4(0.8ppm)4.0ppm 0.8ppm3.2ppm4.0ppm 4.0ppm4.0ppm += += =

147. Let x =thetimetakeninhoursforthecrewtobuild250mofroad. Thecrewworksatarateof450m/12h,whichis37.5m/h.Time=distance/speed. 250m

37.5m/h 6.666666667h x x = = whichroundsto6.7h.

148. Let x =theamountofoilinLinthemixture. Let15x =theamountofgasinLinthemixture. 156.6L

166.6L 6.6L 16 0.4125L xx x x x += = = = whichroundsto0.41L.Thereis0.41Lofoilinthemixtureand(15×0.41L)=6.2Lofgas. Check:

149.

0.4125L15(0.4125L)6.6L

0.4125L6.1875L6.6L 6.6L6.6L += += =

634km

Let x =thetimetakenbythesecondshipinhours. Let x +2h=theamounttimetakenbythefirstshipinhours. Thedistancetravelledaddsupto634km.Distance=speed×time.

21.8km/h()17.4km/h(2h)634km

21.8km/h()17.4km/h()17.4km/h(2h)634km

39.2km/h()34.8km634km

39.2km/h()599.2km

599.2km

39.2km/h 15.2857h

whichroundsto15.2h.Theshipswillpass15.2hafterthesecondshipentersthecanal. Check:

21.8km/h(15.2857h)17.4km/h(15.2857h2h)634km

333.23km300.77km634km 634km634km

150. Let x =thetimetakeinhforthehelicoptertotravelfromthepondtothefire. Let0.5h x =thetimetakeinhforthehelicoptertotravelfromthefiretothepond. 30min/60min/h=0.5h.Thedistancetravelledbythehelicopteristhesameforbothtrips.Distance=speed×time.

105mi/h(0.5h)70mi/h()

52.5mi105mi/h()70mi/h()

52.5mi175mi/h()

52.5mi

175mi/h 0.3h

whichisreportedas0.30htotwosignificantdigits.Itwilltakethehelicopter0.30htoflyfromthepondtothefire.

Check:

105mi/h(0.5h0.3h)70mi/h(0.3h)

105mi/h(0.2h)70mi/h(0.3h)

21mi21mi

151. Let x =thenumberoflitresof0.50%gradeoilused. Let1000L x thenumberoflitresof0.75%gradeoilused. 0.005()0.0075(1000L)0.0065(1000L)

0.005()7.5L0.0075()6.5L 0.0025()1.0L

Itwilltake400Lofthe0.50%gradeoiland(1000L–400L)=600Lofthe0.75%gradeoiltomake1000Lof0.65% gradeoil.

Check:

0.005(400L)0.0075(1000L400L)0.0065(1000L)

2L4.5L6.5L 6.5L6.5L

152. Let x =theamountofrockcontaining72L/Mgofoil.

Let18000– x =theremainingamountofrockcontaining150L/Mgofoil. (72L/Mg)()(150L/Mg)(18000Mg)(120L/Mg)(18000Mg) 72L/Mg()2700000L150L/Mg()2160000L 78L/Mg()540000L 540000L 78L/Mg 6923.07692Mg

whichroundsto6900Mg.Itwilltake6900Mgof72L/Mgrockand11100Mgof150L/Mgrocktomakethe 18000Mgof120L/Mgrock.

Check:

(72L/Mg)(6923.07692Mg)(150L/Mg)(18000Mg6923.07692Mg)(120L/Mg)(18000Mg) 498461.538L2700000L1038461.538L2160000L 2160000L2160000L

153. Let x =theareaofspaceinft2inthekitchenandbath.

ftoftileinthehouse 0.25 ftinthehouse

0.15(2200ft)0.25 (2200ft)

330ft0.25()(0.25)(2200ft)

330ft0.25()550ft

0.75220ft

whichroundsto290ft2.Thekitchenandbathareais290ft2

Check:

623.3333333ft

154. Let x =thenumberofgramsof9-karatgold.

Let200g– x =thenumberofgramsof18-karatgold.9-karatgoldis9/24gold=0.375,18-karatgoldis 18/24gold=0.75,and14-karatgoldis14/24gold=0.583333333. 0.375()0.75(200g)0.583333333(200g)

0.375()150g0.75()116.6666666g

0.375()33.3333334g 33.3333334g 0.375 88.88888907g

whichroundsto89g.Thereis89gof9-karatgoldand(200g–89g)=111gof18-karatgoldneededtomake 200gof14-karatgold.

Check:

0.375(88.88888907g)0.75(200g88.88888907g)0.583333333(200g) 33.3333334g83.3333332g116.6666666g 116.6666666g116.6666666g

155. 00

$6250(4.000years)

$1375 25000 0.055

Therateisequalto5.500%.

Onthecalculatortype: (76256250)/(62504.000) −×

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.