LectureNotesandTeachingTips
Thischapterincludeschapteroverviews,section-by-sectionlecturenotes,andteachingtipsforthelecturenotes. Thelecturenotesincludehomeworkassignments.
Theteachingtipsforthelecturenotesdescribetypicalstudentdifficultiesandwhataninstructorcandoto helpstudentsovercometheseobstacles.
CHAPTER1OVERVIEW
Chapter1containsalargenumberofconcepts.Ifyoucannotaffordthetimetoaddressthemall,focuson Sections1.1,1.2,and1.7becausetheycontainimportantalgebraconcepts.
Ofthesethreesections,Section1.7isthemostimportantbecauseitcontainsthekeyconceptsexponents, squareroots,orderofoperations,andscientificnotation.Exponentsandscientificnotationarepresentedsoearly becausetheyarenecessarytointerpretcalculatoroutputswhenfindingnormalprobabilitiesinSection5.4.I consideredpostponingthesetwoconceptsuntilChapter5,butIwasconcernedthatdoingsowouldbreaktheflow ofstudentslearningstatisticsinChapters2–5.
Proportions(Section1.3)shouldbediscussedbecausetheywillbeusedthroughoutChapters2–5.Converting units(Section1.3)willcomeinhandyforafewexercisesinsubsequentchapters.Theconceptchangeina quantity(Section1.5)shouldbediscussedbecausethisconceptlaysthefoundationforslopeofalineandother concepts.Ratiosandpercents(Section1.6)shouldalsobeaddressed.
Istronglyadviseobtainingdataaboutyourstudentsbyanonymouslysurveyingthem.Althoughthereare plentyofcurrent,compelling,authenticdatasetstochoosefrominthetextbook,studentswillgetakickoutof analyzingdataaboutthemselves.ThisdatacanfirstbeusedinChapter3.Collectingitnowwillbuyyoutimeto inputitelectronically,althoughStatCrunchandothertechnologiescandothatautomatically.
HerearequestionsItypicallyincludeinmysurvey:
1. Howmanyunitsareyoutakingrightnow?
2. Howmanyclassesareyoutakingrightnow?
3. Whatisyourmajor?(Ifyoudon’thaveone,write"undecided.")
4. Howmanyhoursdoyouworkperweekduringthissemesteronaverage?
5. Whatisyourgender?(maleorfemale)
6. Whatisthetotalnumberofpeoplelivinginyourhouseholdatthistime(includeyourself)?
7. Doyouexercise?Ifyes,howmanyminutesdoyouspendexercisingperday,onaverage?
8. Whatisyourfavoritegenreofmusic?(hiphop,rap,electronic,rock,country,classical,folk,etc) Copyright c 2016PearsonEducation,Inc.
9. Howmanynovelsdoyoureadperyearforfun(notforaclass)?
10. Whichpoliticalpartydoyoutendtobeinlinewith(e.g.Republican,Democrat,Independent,etc)?
11. Whatisyourreligiousaffiliation(e.g.Catholic,Protestant,Mormon,etc)
12. Howmanyfriendsdidyouhaveduringyoursenioryearinhighschool?Howmanyofthosepeopleareyou stillintouchwithandconsidertostillbefriendswith?
13. Howmanycigarettesdidyousmokeinthelastmonth?
14. Doyoudriveacar?Ifyes,haveyoueverintentionallyenteredanintersectionwhenthelightwasred("run" aredlight)?
15. Howmanyhoursdoyouspendonlineonaweekday?
16. HowmanyhoursdoyouspendwatchingTVshows,movies,andvideosonaweekday?
17. Whatisyourage?
18. Whatisyourheight?
19. Howmanylanguagesdoyouspeak?
20. Whatisthetotalnumberofcarsownedbypeopleinyourhousehold?
21. Howmanytattoosdoyouhave?
22. Estimateyourprofessor’s(JayLehmann’s)age.
23. Isyourmotheralive?Ifyes,whatisherage?
24. Howmanystateshaveyoulivedin?
25. Howmanytimesdoyounottellthetruthperday?
26. Howoftendoyougotochurch?(never,onceamonth,onceaweek,twiceaweek,daily)
27. Howmanytimesdoyougotoamovietheatereachmonth?
28. DoyouhaveaFacebookaccount?Ifyes,howmanyfriendsdoyouhaveonFacebook?
29. Circlethesocialmediathatyouuse: FacebookTwitterInstagramPinterestVineSnapchat
30. Howmanytextsdoyousendonaweekday?
31. Howmanye-mailsdoyousendonaweekday?
32. Howmanytweetsdoyousendonaweekday?
33. Howmanytimesdoyoueatatarestaurant(includingfast-food)perweek?
34. Howmanytimesdoyoueatatfast-foodrestaurantsperweek?
35. Ifyoucouldhaveonesuperpower,whatwoulditbe?
36. Howmanyalcoholicdrinksdoyouhaveperweek?
Copyright c 2016PearsonEducation,Inc.
Alsoconsideraddinganotherdimensiontoyourcoursebyfindingdataaboutyourcollege,thecollege’s neighborhood,andbreakingnewsaboutyourstate.Analysisofsuchdatawillimpressuponstudentsthatstatistics istrulyrelevant.
SECTION1.1LECTURENOTES
Objectives
1. Describethemeaningof variable and constant.
2. Describethemeaningof countingnumbers, integers, rationalnumbers, irrationalnumbers, realnumbers, positivenumbers,and negativenumbers
3. Useanumberlinetodescribenumbers.
4. Graphdataonanumberline.
5. Plotpointsonacoordinatesystem.
6. Describethemeaningof inequalitysymbols and inequality.
7. Graphaninequalityandacompoundinequalityonanumberline.
8. Useinequalitynotation,intervalnotation,andgraphstodescribepossiblevaluesofavariableforan authenticsituation.
9. Describeaconceptorprocedure.
OBJECTIVE1
Definition Variable
A variable isasymbolthatrepresentsaquantitythatcanvary.
1. Let p betheprice(indollars)toseeaModestMouseconcert.Whatisthemeaningof p =60?
2. Let t bethenumberofyearssince2010.Whatisthemeaningof t =7?of t = 5?
3. Chooseasymboltorepresentthenumberofstudentsinaclass.Explainwhythesymbolisavariable.Give twonumbersthatthevariablecanrepresentandtwonumbersthatitcannotrepresent.
Definition Constant
A constant isasymbolthatrepresentsaspecificnumber(aquantitythatdoes not vary).
4. Arectanglehasanareaof16squarefeet.Let W bethewidth(infeet), L bethelength(infeet),and A be thearea(insquarefeet).
a. Sketchthreepossiblerectanglesofarea16squarefeet.
Copyright c 2016PearsonEducation,Inc.
b. Whichofthesymbols W , L,and A arevariables?Explain.
c. Whichofthesymbols W , L,and A areconstants?Explain.
OBJECTIVE2
• The countingnumbers,or naturalnumbers,arethenumbers1,2,3,4,5,....
• The integers arethenumbers..., 3, 2, 1,0,1,2,3,....
• The positiveintegers arethenumbers1,2,3, .
• The negativeintegers arethenumbers 1, 2, 3,....
• Thenumber0isneitherpositivenornegative.
• The rationalnumbers arethenumbersthatcanbewrittenintheform n d ,where n and d areintegersand d isnonzero.
• Thenumbersrepresentedonthenumberlinethatare not rationalarecalled irrationalnumbers
• The realnumbers areallofthenumbersrepresentedonthenumberline.
OBJECTIVE3
5. Graphtheintegersbetween 4 and2,inclusive,ononenumberline.
6. Graphtheintegersbetween 4 and2ononenumberline.
7. Graphallofthenumbers3, 5, 7 2 ,0, 2.7,and 1.3 ononenumberline.
OBJECTIVE4
8. Theaveragestudentdebtsperborrowerareshowninthefollowingtableforthefivestateswiththelargest per-studentdebts.
AverageStudentDebt State(thousandsofdollars) Georgia30.4 Maryland30.0 Virginia28.5 SouthCarolina28.3 Florida27.9
Source: U.S.DepartmentofEducation
Let d beastate’saveragestudentdebt(inthousandsofdollars).Graphtheaveragedebtsshowninthetable onanumberline.
Whenwewritenumbersonanumberline,theyshouldincreasebyafixedamountandbeequally spaced.
Copyright c 2016PearsonEducation,Inc.
OBJECTIVE2(revisited)
• The negativenumbers aretherealnumberslessthan0.
• The positivenumbers aretherealnumbersgreaterthan0.
9. Let T bethetemperature(indegreesFahrenheit).Whatvalueof T representsthetemperature20degrees Fahrenheitbelow0?Graphthenumberonanumberline.
OBJECTIVE5
10. Plotthepoints (2, 5), ( 3, 1), ( 2, 4),and (6, 3) onacoordinatesystem.
OBJECTIVE6
Herearethedefinitionsof inequalitysymbols:
SymbolMeaning < islessthan
≤ islessthanorequalto > isgreaterthan ≥ isgreaterthanorequalto
An inequality containsoneofthesymbols <, ≤, >,and ≥ withaconstantorvariableononesideanda constantorvariableontheotherside.
11. Decidewhethertheinequalitystatementistrueorfalse.
OBJECTIVE7
Writetheinequalityinintervalnotation,andgraphthevaluesof x. 12. x< 4 13. x ≥−3
OBJECTIVE8
2 <x ≤ 5
15. Apersonheldhisbreathforatleast50seconds.Let t bethelengthoftime(inseconds)thatheheldhis breath.Describethelengthoftimeheheldhisbreathusinginequalitynotation,intervalnotation,anda graph.
16. Let t bethetime(inminutes)ittakesforastudenttodrivetocollege.Interpretandgraphtheinequality 19 <t< 23
OBJECTIVE9
Herearesomeguidelinesonwritingagoodresponse:
• Createanexamplethatillustratestheconceptoroutlinestheprocedure.Lookingatexamplesorexercises mayjump-startyouintocreatingyourownexample.
• Usingcompletesentencesandcorrectterminology,describethekeyideasorstepsofyourexample.You canreviewthetextforideas,butwriteyourdescriptioninyourownwords.
Copyright c 2016PearsonEducation,Inc.
18CHAPTER2LectureNotesandTeachingTips
• Describealsotheconceptortheprocedureingeneralwithoutreferringtoyourexample.Itmayhelpto reflectonseveralexamplesandwhattheyallhaveincommon.
• Insomecases,itwillbehelpfultopointoutthesimilaritiesandthedifferencesbetweentheconceptorthe procedureandotherconceptsorprocedures.
• Describethebenefitsofknowingtheconceptortheprocedure.
• Ifyouhavedescribedthestepsinaprocedure,explainwhyit’spermissibletofollowthesesteps.
• Clarifyanycommonmisunderstandingsabouttheconcept,ordiscusshowtoavoidmakingcommonmistakeswhenfollowingtheprocedure.
17. Describehowinequalitynotation,intervalnotation,andgraphscanbeusedtodescribepossiblevaluesofa variableforanauthenticsituation.
HW 1,3,5,15,21,29,31,47,51,55,71,81,85,99,107
SECTION1.1TEACHINGTIPS
Thissectioncontainsalotofobjectives,butstudentshaveaneasytimewiththissection,soIadvisenotgettingtoo boggeddown.Asidefromtheobviousimportanceofvariables,it’sagoodideatofocusoninequalitiesbecause theseareusedsomuchwithprobability(Chapter5).Students’greatestchallengeinthissectiontendstobeusing intervalnotationcorrectly.
OBJECTIVE1COMMENTS
Problem2isgoodpreparationforworkingwithtime-seriesdatabecausestudentswillsometimesgetanegative valuewhenusingamodeltomakeanestimatefortheexplanatoryvariable.Moststudentsthinkthattimecannot benegativeandaresurprisedthat t = 5 representstheyear2005.
InProblem3,discussingunreasonablevaluesofthevariableisaniceprimerfortheconceptofmodelbreakdown(Section6.3).
AftercompletingProblems1–3,Iquicklymentionseveralmoreexamplesofvariables,pointingoutthat variables“areallaroundus.”Isuggestthatthroughouttherestoftheday,mystudentsshouldnoticequantities thatcanberepresentedbyvariables.Isaythatavariableisakeybuildingblockofalgebraandstatistics.
InSection2.1,akeydistinctionwillbemadebetweenhowvariablesaredefinedandusedinalgebraand statistics.ButfornowIrestrictmydiscussionaboutvariablestothescopeofalgebra.
Whendiscussingconstants,Igive π andanumbersuchas5asexamples.
BeforecompletingProblem4,Idiscussthemeaningoftheareaofaflatsurface.Moststudentsdonotknow thatthearea(insquareinches)isthenumberofsquareinchesthatittakestocoverthesurface.Iremindmy studentsthattheareaofarectangleisequaltotherectangle’slengthtimesitswidthandexplainthisbybreaking uparectangleintounitsquares.Althoughthesearesimpleconcepts,theyarecriticaldevelopmentforthefrequent useofdensityhistogramsinChapters3–5.
OBJECTIVE2COMMENTS
WhenIdefinecountingnumbersandintegers,Imakesurethatstudentsunderstandthemeaningoftheellipsis. Iquicklydefinethevarioustypesofnumbers,givingespeciallylighttreatmenttodefiningrationalandirrational numbersbecauseeventhoughtheseterminologiesareusedinthetextbook,asuperficialunderstandingofthem willsuffice.
Comparingthedifferencesbetweentheintegersandtherealnumberscanhelppreparestudentstolearnabout discreteandcontinuousvariables(Section3.3).
OBJECTIVE3COMMENTS
Graphingnumbersonthenumberlineisgoodpreparationforconstructingdotplots,time-seriesplots,andscatterplots.Discussinghowtographdecimalnumbersisespeciallyimportantforworkwithauthenticdata(Problem8).
Copyright c 2016PearsonEducation,Inc.
MoststudentsdonotunderstandhowProblems5and6differ.Thisissuewillkeepcomingupthroughoutthe course(e.g."Findtheprobabilitythatarandomlyselectedtestscoreisbetween80and89points,inclusive.").
OBJECTIVE4COMMENTS
ForProblem8,Iemphasizethatthenumber-linesketchshouldincludeatitle,thevariable"d",andtheunitsof d.Ialsoemphasizethatwhenwewritenumbersonanumberline,theyshouldincreasebyafixedamountand beequallyspaced.Withoutgivingsuchawarningseveraltimes,manystudentswillmakerelatederrorswhen constructingnumberlinesandvarioustypesofstatisticaldiagrams.
TofurtherengagestudentswhendiscussingProblem8,Iaskthemtoidentifyinwhichregion(s)thestatesare located.AndIaskforsomepossiblereasonswhytheaveragestudentdebtishigherinthosefivestates.ThenI generalize,suggestingthatstudentsshouldbethisengagedwhenworkingwithdatasetsthroughoutthecourse.
GROUPEXPLORATION:ReasonableValuesofaVariable
Theexplorationisagoodprimerfortheconceptofmodelbreakdown(Section6.3).
OBJECTIVE2(REVISITED)COMMENTS
Iemphasizethat0isneithernegativenorpositive.
OBJECTIVE5COMMENTS
Whenplottingapoint,Iremarkthatit’ssimilartolookingupadateonacalendar.Thisskillisaprecursorto constructingtime-seriesplots(Section3.3)andscatterplots(Section6.1).
OBJECTIVE6COMMENTS
StudentstendtohavedifficultywithProblem11(b)andsometimes11(c).
OBJECTIVE7COMMENTS
Evenifstudentshaveseenintervalnotationbefore,theytendtohaveforgottenit.Understandingthemeaning oftheinequalitiesinProblems12–15willbegoodpreparationforprobabilityproblems(Sections5.1–5.3)and normaldistributionproblems(Sections5.4and5.5).Problem14alsoprovidesalead-intoconfidenceintervals, whosefoundationwillbefurtherdevelopedinSection8.5.
OBJECTIVE8COMMENTS
Throughoutthecourse,Ilookforeveryopportunitytohavestudentsworkwiththephrases lessthan, atmost, greaterthan,and atleast becausemanystudentsstrugglewiththeirmeaningsinintroductorystatistics.Problem15isagreatwaytogetthatprocessstarted.
AsubtleissuetoexploreforProblem15isthatananswerof (50, ∞) doesnotimplythatwebelievethe personcouldholdtheirbreathforanextremelylongtimesuchasa1000minutes.Rather,itisimpossibleto knowwhatupperlimittochoose.Forexample,itmaysurpriseyouoryourstudentsthatStigSeverinsenseta GuinnessWorldRecordbyholdinghisbreathfor22minutes.Here’salinkattheGuinnessWorldRecordssite: http://www.guinnessworldrecords.com/world-records/24135-longest-time-breath-held-voluntarily-male.
OBJECTIVE9COMMENTS
Whenaskedtodescribeconcepts,studentstendtowriteasinglesentenceortwo.Theyneedmetomodel athoroughresponse:describingaconcept’smeaning,listingbenefitsanddrawbacks,comparing,contrasting, statingexceptions,andsoon.Moststudentsareastoundedbyhowmuchthereistosay.
Iwillmodelthisforstudentsseveraltimesthroughoutthecourse,butinthemeantimeItellthemtoread Example12inthetextbookandthepreceding“GuidelinesonWritingaGoodResponse”onpage12ofthe textbookathome.Studentswillbeaskedtoexplainconceptsorproceduresinmosthomeworksections.This isverymuchinlinewithintroductorystatistics,wherestudentswillhavetodescribestatisticalpracticesand interpretconceptsandresults.
Copyright c 2016PearsonEducation,Inc.
SECTION1.2LECTURENOTES
Objectives
1. Describethemeaningof expression and evaluateanexpression
2. Useexpressionstodescribeauthenticquantities.
3. Evaluateexpressions.
4. TranslateEnglishphrasestoandfrommathematicalexpressions.
5. Evaluateexpressionswithmorethanonevariable.
OBJECTIVES1–3
1. Apersonisdriving3milesperhouroverthespeedlimit.Foreachspeedlimitshown,findthedivingspeed. a. 55mph b. 70mph c. s mph
Wecall s +3 isan expression
Definition Expression
An expression isaconstant,avariable,orcombinationofconstants,variables,operationsymbols,and groupingsymbols,suchasparentheses.
Herearesomeexamplesofexpressions: x +9,5, x 7, π, 20 x , xy.
2. Substitute65for s intheexpression s +3 anddiscussthemeaningoftheresult(seeProblem1).
Wesaywehave evaluatedtheexpression s +3 at s =65.
Definition Evaluateanexpression
We evaluateanexpression bysubstitutinganumberforeachvariableintheexpressionandthencalculating theresult.Ifavariableappearsmorethanonceintheexpression,thesamenumberissubstitutedforthat variableeachtime.
3. Acertaintypeofpencosts$3.
a. Completethefollowingtabletohelpfindanexpressionthatdescribesthetotalcost(indollars)of n pens.Showthearithmetictohelpseethepattern.
b. Evaluateyourresultfor n =10.Whatdoesitmeaninthissituation?
• Weavoidusing × forthemultiplicationoperation.
• Eachofthefollowingexpressionsdescribesmultiplying3by n: 3n, 3 n, 3(n), (3)n,and (3)(n)
OBJECTIVE4
Mathematicsisalanguage.
Definition Product,factor,andquotient
Let a and b benumbers.Then
• The product of a and b is ab.Wecall a and b factors of ab
• The quotient of a and b is a ÷ b,where b isnotzero.
4. Usephrasessuchas“2plus x”andsentencessuchas“Add2and x.”tocompletethesecondcolumnofthe followingtable.
MathematicalExpressionEnglishPhraseorSentence 2+ x 2 x 2 x 2 ÷ x
Warning:Subtracting2from7is 7 2,not 2 7
5. Let x beanumber.TranslatetheEnglishphraseintoamathematicalexpressionorviceversa,asappropriate:
a. Thedifferenceofthenumberand9 b. Theproductof5andthenumber
c. 7+ x d. x ÷ 4
6. Let x beanumber.Translatethesentence“Subtractthenumberfrom10.”intoamathematicalexpression. Evaluatetheexpressionat x =7
OBJECTIVE5
Recallthattheareaofarectangleisequaltothelengthtimesthewidthoftherectangle.
7. Let W bethewidth(infeet)and L bethelength(infeet)ofarectangle.Evaluatetheexpression LW for L =7 and W =5.Whatdoesyourresultmeaninthissituation?
8. Writethephrase"thequotientof x and y"asamathematicalexpression,andthenevaluatetheresultfor x =24 and y =3
HW 1,3,11,13,19,21,23,29,35,49,53,59,61,63,67
Copyright c 2016PearsonEducation,Inc.
SECTION1.2TEACHINGTIPS
Themostimportantskillinthissectionisevaluatingexpressions,whichstudentspickuponquickly.Emphasizing translatingEnglishtoandfrommathematicshelpsbuildengagedreading,whichisakeyingredientforsuccessin introductorystatistics.
OBJECTIVES1–3COMMENTS
ForPart(a)ofProblem3,studentswanttosimplywritetheanswers,butIemphasizethatwewanttoshowthe arithmetictohelpseethepattern.Insistingthatstudentsdothisnowwillformgoodhabitssothatstudentswill beabletofindmorechallengingexpressionsoftheform mx + b inSection1.7.Theformofstudents’answers willvaryforPart(a),andtheywillbereassuredtoknowthat 3n = n(3).Thecommutativelawformultiplication willbeformallydiscussedinSection8.1.
WhendiscussingProblem3,Iemphasizethatwecandescribethenumberofpensandtheirtotalcostby thevariable n andtheexpression 3n,respectively.So,bytheabstractionofalgebraweareabletorelatetwo quantities.Thisisthefundamentalideabetweenrelations(Section7.4),functions(Section7.4),andultimately regression(Chapters9and10).
GROUPEXPLORATION:ExpressionsUsedtoDescribeaQuantity
Inthisexploration,studentsworkbackwardsandfindanauthenticquantitythatcanbedescribedbythegiven expression.Ideally,thispromptsstudentstoreflectonhowexpressionsconnecttotheirworld.Infact,asa follow-uporreplacementfortheexploration,youcouldhavegroupsofstudentscreatetheirownexpressionsthat describeauthenticquantitiesthatareimportantorinterestingtothem.Thismightstumpthem,sobepreparedto modelhowtodothis.
OBJECTIVE4COMMENTS
Iemphasizethatmathematicsisalanguage.Moststudentshaveneverthoughtofmathematicsinthisway.
Moststudentsdonotknowthemeaningsof product, quotient,and ratio.Theseterminologieswillbeused extensivelyinthetextbook.Inparticular,devotingsomeattentiontoratioswillserveasagoodprimerforrate ofchangeandslope(Section7.2).Computingratiosaboutyourclass(e.g.ratioofnursingmajorstopsychology majors)andcomparingthemtoyourcollege’sstudentbodycanbeinterestingandinstructive.
Althoughstudentswon’thavetotranslateEnglishphrasestoandfrommathematicalexpressionsinintroductorystatistics,theywillhavetoreadpassagescarefullyformeaning.Thisimportantprocesscanbefosteredin partbypracticingtranslating.
Iemphasizethat“Subtracting2from7”is 7 2,not 2 7.Ipointoutthatifyoutake2CDs from 7CDs, then5CDsremain.Thismayhelpstudentsseewhywesubtractthenumbers“outoforder.”
OBJECTIVE5COMMENTS
Studentshaveaneasytimewiththisobjective.IadviseworkingwiththeareaofarectanglesuchasinProblem7 tocontinuetopreparestudentsfordensityhistograms,whichwillbeemphasizedinChapters3–5.
Copyright c 2016PearsonEducation,Inc.
SECTION1.3LECTURENOTES
Objectives
1. Describethemeaningofafraction.
2. Explainwhydivisionbyzeroisundefined.
3. Describetherulesfor a 1, a 1 ,and a a
4. Performoperationswithfractions.
5. Findtheprimefactorizationofanumber.
6. Simplifyfractions.
7. Findproportions.
8. Convertunitsofquantities.
OBJECTIVE1
1. Shadeaportionofacircletoillustratethemeaningof 5 8 ofapizza.
2. Usetwopizzaswith4sliceseachtoshowthat 8 4 =8 ÷ 4=2
Thefraction a b means a ÷ b.
OBJECTIVE2
Usetheconceptthatdivisionisrepeatedsubtractiontoshowwhydivisionby0isundefined(seethetopofpage24 ofthetextbook).
DivisionbyZero
Thefraction a b isundefinedif b =0.Divisionby0isundefined.
OBJECTIVE3
• a 1= a
• a 1 = a
• a a =1,where a isnonzero
• Whenwewritestatementssuchas a 1= a,wemeanthatifweevaluate a 1 and a for any valueof a in bothexpressions,theresultswillbeequal.
• Wesaytheexpressions a · 1 and a are equivalentexpressions.
Copyright c 2016PearsonEducation,Inc.
OBJECTIVE4
MultiplyingFractions
If b and d arenonzero,then a b c d = ac bd 3. 3 5 · 7 2 4. 4 9 · 5 7
OBJECTIVE5
5. Primefactor24. 6. Primefactor36.
OBJECTIVE6
Useadrawingofapizzatoshowthat 6 8 = 3 4
SimplifyingaFraction
Tosimplifyafraction.
1. Findtheprimefactorizationsofthenumeratorandthedenominator.
2. Findanequalfractioninwhichthenumeratorandthedenominatordonothavecommonpositive factorsotherthan1byusingtheproperty
where a and c arenonzero.
7. Simplify 6 8 8. Simplify 24 18 9. Simplify 7 49
OBJECTIVE4(revisited)
DividingFractions
Whenyouuseacalculatortocheckworkwithfractions,encloseeachfractioninparentheses.
14. Useadrawingofapizzatoshowthat 3 8 + 4 8 = 7 8 . Copyright c 2016PearsonEducation,Inc.
AddingFractionswiththeSameDenominator
If b isnonzero,then a b + c b = a + c b
Useadrawingofapizzatoshowthat 7
If b isnonzero,then
SubtractingFractionswiththeSameDenominator
Adding(orSubtracting)FractionswithDifferentDenominators
Toadd(orsubtract)twofractionswithdifferentdenominators,usethefactthat a a =1,where a isnonzero, towriteanequalsum(ordifference)offractionsforwhicheachdenominatoristheLCD.
Throughoutthecourse,ifaresultisafraction,itmustbesimplified.
OBJECTIVE7
Definition Proportion
Instatistics,a proportion isafractionofthewhole.Aproportioncanalsobewrittenasadecimalnumber.
Aproportionisalwaysbetween0and1,inclusive.
SumoftheProportionsEquals1
Ifanobjectismadeupoftwoormoreparts,thenthesumoftheirproportionsequals1. Wewillusecapitalletterstoemphasizethemathematicalmeaningsof"AND,""OR,"and"NOT."
22. About 3 20 of1.2millionpeoplesurveyedthinkthatFiveGuyshasthebestburgeroutofallfastfoodchains (Source: YouGov).WhatproportionofthosesurveyeddoNOTthinkFiveGuyshasthebestburgeroutof allfastfoodchains?
Copyright c 2016PearsonEducation,Inc.
ProportionoftheRest
Let a b betheproportionofthewholethathasacertaincharacteristic.Thentheproportionofthewholethat doesNOThavethatcharacteristicis
23. Ofallbribesmadeinthemultinationalindustry, 1 10 ofthebribesaremadeinextraction(ofoil,coal,and soon)and 3 20 ofthebribesaremadeinconstruction(Source: OECD).Whatproportionofthebribesare madeinsectorsotherthanextractionandconstruction?
24. Atotalof1012AmericanswereaskedwhetherGodplaysaroleindeterminingwhichteamwinsasporting event.Theirresponsesaresummarizedinthefollowingtable.
GodPlaysaRoleinSportingEvents CompletelyMostlyMostlyCompletelyDon’t AgreeAgreeDisagreeDisagreeKnow/Refused Total NumberofPeople10116220351630 1012
Source: PublicReligionResearchInstitute
Findtheproportion(roundedtothethirddecimal)ofthosesurveyedwho
a. completelyagreed.
b. didNOTcompletelyagree.
c. mostlydisagreedORcompletelydisagreed.
OBJECTIVE8
Maketheindicatedunitconversions.Roundapproximateresultstotwodecimalplaces.
25. TheSearsTowerinChicagois1450feettall.Whatisitsheightinyards?
26. Ajugcontains5gallonsofwater.Howmanycupsofwaterdoesitcontain?
27. Acartravelsataspeedof65milesperhour.Whatisthecar’sspeedinfeetpersecond?
ConvertingUnits
Toconverttheunitsofaquantity,
1. Writethequantityintheoriginalunits.
2. Multiplybyfractionsequalto1sothattheunitsyouwanttoeliminateappearinonenumeratorand onedenominator.
HW 1,3,21,25,33,41,49,67,73,81,87,93,95,99,103,107
Copyright c 2016PearsonEducation,Inc.
SECTION1.3TEACHINGTIPS
Becausesomestudentshavedifficultywiththismaterial,thisisagoodtimetoremindthemofyouravailability duringofficehoursandotherformsofcollegesupportsuchasmathcentertutoring.Students’greatestdifficulty isusuallywithaddingandsubtractingfractionswithdifferentdenominators.So,itiswisetogoquicklythrough therestofthematerialsoyouhaveadequatetimetofocusonthismoredifficultskill.
OBJECTIVE1COMMENTS
Somestudentswillneedareminderaboutthemeaningofafraction(seeProblem1).
OBJECTIVE2COMMENTS
Iuserepeatedsubtractiontoshowthatdivisionbyzeroisundefined.Moststudentsreallyappreciatethisexplanation,becausetheyhaveneverbeentold why divisionbyzeroisundefined.
OBJECTIVE3COMMENTS
Althoughtheserulesareverybasic,theyarethefoundationforperformingoperationswithfractions.
OBJECTIVE4COMMENTS
Afterwehavediscussedhowtosimplifyfractions(Objective6),wewilldiscusshowtomultiplyfractionswhich canbesimplified.
OBJECTIVE5COMMENTS
Inarithmetic,studentslearnavarietyofwaystoprimefactoranumber.AlthoughIallowstudentstouseany method,IencouragethemtousethemethodshowninExample2onpage26ofthetextbook,becausethismethod clearlyportraysthatthefactorizationisequaltotheoriginalnumber.
OBJECTIVE6COMMENTS
Moststudentscansuccessfullysimplifyafraction,butmostarenotawareoftheconceptsinvolved.Imakesure theyunderstandthatweusetheproperty a a =1,where a =0,tosimplifyafraction.Thetextbookavoidsusing theterminology“reduce,”becausemanyprofessorsthinkthatthisterminologysuggeststhatreducingafraction makesitsmaller.Thetextbookalsoavoidsusingthetechniqueof"canceling,"becausestudentsmisapplythis techniqueinamyriadofways.
OBJECTIVE4(REVISITED)COMMENTS
Oncemystudentsknowhowtosimplifyfractions,Idiscusshowtomultiplyfractionsinwhichtheresultneedsto besimplified.
Usingadrawingofapizzatoshowthat 3 8 + 4 8 = 7 8 helpsstudentsunderstandwhyitdoesn’tmakesenseto addthedenominators.
Whenaddingfractionswithdifferentdenominators,IlistmultiplesofthedenominatorstofindtheLCD. Whenaddingfractionssuchas 5 6 and 3 8 (Problem18),Ishowatleastoncethatwearemultiplyingfractionsby1 togeteachdenominatortobetheLCD:
GROUPEXPLORATION:IllustrationsofSimplifyingFractionsandOperationswith
Fractions
Thisexplorationisanicewayforstudentstolearntovisualizetheirworkwithfractions.
OBJECTIVE7COMMENTS
Thepropertyaboutthesumoftheproportionsequals1isgoodpreparationforthefactthatthesumoftherelative frequenciesofallthecategoriesofacategoricalvariableequals1.Italsopreparesstudentsforthesimilarproperty aboutnumericalvariablesandultimatelythattheareaunderthenormalcurveis1.Aquickdiscussionmaysuffice toexplainthisconceptoryoucoulddemonstrateitbyworkingwithacategoricalvariablethatdescribesyour class.
Althoughitisabitjarringtoreadthewords AND, OR,and NOT inalluppercaseletters,thisisahelpfulsignal tostudentsthatthewordsarebeingusedinamathematicalway.Theword AND willnotbeusedinthehomework untilChapter3,butitisdiscussedbrieflyinthissectionforcompleteness.Thewords AND and OR willbemore carefullydescribedandcomparedinSection3.1(seepage137ofthetextbook).Ifyoupostponediscussing AND and OR untilthen,besuretoavoidassigningExercise93(aiii)andExercise94(aiii)becausetheybothincludethe word OR.
Theword NOT andtheproportionoftherestpropertyareemphasizedinthehomeworkandshouldbediscussednow.Beforeintroducingtheboxedgeneralstatementoftheproportionoftherestproperty,Ifirsthave studentssolveProblem22becausetheyarecapableofsolvingitwithoutmyhelp.Thenit’seasytobridgetothe generalstatement.
Ofcourse,theproportionoftherestpropertyisverysimilartothecomplementrulebutIdon’treferto itassuchbecausethecomplementrulehastodowithprobabilities.Nonetheless,studentswillhavelotsof practicewiththeproportionoftherestpropertyinChapters1,3,and4,readyingthemforthecomplementrule (Section5.2),whichwillbeespeciallyhelpfulwhenworkingwithnormaldistributions(Sections5.4and5.5).
ThereareseveralwaystosolveProblem24(b).Considerhavinggroupsofstudentssolvetheproblemand sharetheirmethodswiththeclass.
OBJECTIVE8COMMENTS
Theskillofconvertingunitswillcomeinhandyseveraltimesinthetextwhenstudentsworkwithunitswith whichtheyarenotasfamiliar.Forexample,inExercise22ofHomework6.2,studentswillconvertEarth’sescape velocityfrom11.2km/stounitsofmi/h.
JustaswithObjective7,Iprefertoproblemsolvefirstandthenpresenttheboxedsummarystatementbecause Idon’tbelievethesummarywillmeanmuchuntilI’vegivensomespecificexamples.
Iemphasizethatweperformconversionsbymultiplyingbyfractionsequalto1,soaconversiondescribesthe samequantity.Someequivalentunitsareshowninthemarginonpage34ofthetextbook.
SECTION1.4LECTURENOTES
Objectives
1. Findtheoppositeofanumber.
2. Findtheabsolutevalueofanumber.
3. Addtworealnumberswiththesamesign.
4. Addtworealnumberswithdifferentsigns.
5. Addrealnumberspertainingtoauthenticsituations. Copyright c 2016PearsonEducation,Inc.
OBJECTIVE1
• Twonumberarecalled opposites ofeachotheriftheyarethesamedistancefrom0onthenumberline,but areonoppositesidesof0.
• Tofindtheoppositeofanumber,wereflectthenumberacross0onthenumberline.
• Theoppositeof5is 5.Theoppositeof 5 is5.[Drawafigure.]
Usereflectionswithanumberlinetoshowthat ( a)= a 1. ( 6)
( ( 5))
Weuseparenthesestoseparatetwooppositesymbolsoranoperationsymbolandanoppositesymbol.
OBJECTIVE2
Definition Absolutevalue
The absolutevalue ofanumberisthedistancethatthenumberisfrom0onthenumberline.[Drawa figure.]
3. |4|
OBJECTIVE3
7. a. Apersonhasacreditcardbalancewitha0dollarbalance.Ifsheuseshercreditcardtomaketwo purchasesfor$3and$4,whatisthenewbalance?
b. WriteasumthatisrelatedtothecomputationinPart(a).
c. UseanumberlinetoillustratethesumfoundinPart(b).
AddingTwoNumberswiththeSameSign Toaddtwonumberswiththesamesign,
1. Addtheabsolutevaluesofthenumbers.
2. Thesumoftheoriginalnumbershasthesamesignasthesignoftheoriginalnumbers.
OBJECTIVE4
11. a. Abrotheroweshissister$5.Ifhethenpaysherback$2,howmuchdoeshestilloweher?
b. WriteasumthatisrelatedtoyourworkinPart(a).
c. UseanumberlinetoillustratethesumyoufoundinPart(b).
Copyright c 2016PearsonEducation,Inc.
AddingTwoNumberswithDifferentSigns
Toaddtwonumberswithdifferentsigns:
1. Findtheabsolutevaluesofthenumbers.Thensubtractthesmallerabsolutevaluefromthelarger absolutevalue.
2. Thesumoftheoriginalnumbershasthesamesignastheoriginalnumberwiththelargerabsolute value.
12. 9+2 13. 7+( 4)
OBJECTIVE5
19. Apersonbouncesseveralchecksandischargedservicefeessuchthatthebalanceofthecheckingaccount is 78 dollars.Thepersonthendeposits$250.Findthebalance.
20. Twohoursago,thetemperaturewas 9◦F.Ifthetemperaturehasincreasedby 4◦Finthelasttwohours, whatisthecurrenttemperature?
HW 1,3,5,15,23,25,39,45,53,59,63,67,69,71,75
SECTION1.4TEACHINGTIPS
Inthissection,studentsaddrealnumbersandfindexpressionstomodelauthenticquantities.Theywillusethese skillsthroughoutthecourse.
OBJECTIVE1COMMENTS
Althoughfindingtheoppositeofanumberisaneasytopic,Idiscussreflectinganumberacross0onthenumber linetosetthestageforObjective2.
TheconceptoffindingtheoppositeoftheoppositewillhelpstudentssubtractnumbersinSection1.5:
OBJECTIVE2COMMENTS
Absolutevaluecomesinhandywhendiscussingnotonlyhowtoaddsignednumbersbutalsotointerpreta correlationcoefficient.
OBJECTIVES3and4COMMENTS
Mostofmystudentsprefertothinkofaddingrealnumbersintermsofmoney(asopposedtothenumberlineor absolutevalue).Iquicklygoovertherulesandspendmoretimehavingmystudentsdomixedsetsofproblems suchasProblems12–18.
GROUPEXPLORATION:AddingaNumberandItsOpposite
Thisexplorationisanicewayforstudentstolearnthat a +( a)=0.
OBJECTIVE5COMMENTS
WhensolvingProblems19and20,Iemphasizethattheresultsmustincludeunits.
Copyright c 2016PearsonEducation,Inc.
SECTION1.5LECTURENOTES
Objectives
1. Findthechangeinaquantity.
2. Subtractrealnumbers.
3. Findachangeinelevation.
4. Determinethesignofthechangeforanincreasingordecreasingquantity.
OBJECTIVE1
1. a. Ifthepriceofabasketofstrawberriesincreasesfrom$2to$5,findthechangeintheprice.
b. WriteadifferencethatisrelatedtothecomputationinPart(a).
ChangeinaQuantity
Thechangeinaquantityistheendingamountminusthebeginningamount:
Changeinthequantity = Endingamount Beginningamount
2. TherevenuesofFacebookareshowninthefollowingtableforvariousyears.
FacebookRevenue
Source: Facebook
a. Fortheperiod2009–2013,findeachofthechangesinannualrevenuefromoneyeartothenext.
b. Fromwhichyeartothenextdidtheannualrevenueincreasethemost?
OBJECTIVE2
3. a. Thevolumeofgasolineinacar’sgasolinetankdecreasesfrom6gallonsto2gallons.Whatisthe changeinthevolumeofgasolineinthetank?
b. WriteadifferencethatisrelatedtothecomputationinPart(a).
c. FromPart(b),wefoundthat 2 6= 4.Find 2+( 6).Explainwhywecanconcludethat 2 6=2+( 6)
SubtractingaRealNumber
a b = a +( b)
Copyright c 2016PearsonEducation,Inc.
7. a. Thetemperatureincreasesfrom 3◦Fto 2◦F.Findthechangeintemperature. b. WriteadifferencethatisrelatedtotheworkinPart(a).
c. FindthedifferenceobtainedinPart(b)byusingtherule a b = a +( b).
11. Translatethesentence“Subtractthenumberfrom5.”intoamathematicalexpression.Thenevaluatethe expressionfor x = 3.
OBJECTIVE3
20. ThelowestelevationinLouisianaisinEasternNewOrleans( 8 ft),andthehighestelevationisatthetop ofDriskillMountain(535ft).FindthechangeinelevationfromEasternNewOrleanstoDriskillMountain.
OBJECTIVE4
RefertoProblem2tomotivatethefollowingproperties.
ChangesofIncreasingandDecreasingQuantities
• Anincreasingquantityhasapositivechange.
• Adecreasingquantityhasanegativechange.
21. ThenumberofmoviesshotinGeorgiaareshowninthefollowingtableforvariousyears.
Source: GeorgiaFilm,Music,andDigitalEntertainmentOffice
a. FindthechangeinthenumberofmoviesshotinGeorgiafrom2006to2007.
b. In2008,Georgiaincreasedthetaxincentivestoshootmoviesinthestate.Findthechangeinthe numberofmoviesshotinGeorgiafrom2008to2013.
Copyright c 2016PearsonEducation,Inc.
HW 1,3,5,15,19,33,47,53,57,61,65,73,79,81,85
SECTION1.5TEACHINGTIPS
Inthissection,studentssubtractrealnumbers,askillthattheywillusethroughoutthecourse.Inthissection, studentsfindthechangeinaquantity.Unfortunately,thisimportantconceptisoverlookedinmostarithmeticand algebratextbooks.Thisisacentralconceptneededtounderstandthatingoingfromapoint (x1,y1) toapoint (x2,y2), y2 y1 istheverticalchangeand x2 x1 isthehorizontalchange.Thisgivesmeaningtotheslope formula m = y2 y1 x2 x1 .Anotherkeypieceofthepuzzleaboutslopewillbetodiscussthemeaningofratios inSection1.6.Understandinghowtofindthechangeinaquantitywillalsohelpstudentsmakesenseofthe techniquesweusetosubtractrealnumbers.
OBJECTIVE1COMMENTS
Problem1nicelymotivatesthechangeinaquantityproperty.NotethattheresultsofPart(a)ofProblem2are ratesofchange(Section7.2)forvariousyears.
OBJECTIVE2COMMENTS
Problem3suggeststheproperty a b = a +( b).Problem7suggestshowtosubtractanegativenumber. Problems12–19serveasasummaryofSections1.4and1.5.
GROUPEXPLORATION:SubtractingNumbers
Thisactivityisanicewayforgroupsofstudentstodiscoverthat a b = a +( b).Somegroupswillneedhelp withProblems4and5ofthisexploration.
OBJECTIVE3COMMENTS
AftersolvingProblem20,Isketchafiguretoillustratewhytheresultmakessense.
OBJECTIVE4COMMENTS
AlthoughIaddresstheconceptsaboutthesignificanceofsignsofchangeinObjectives1and2,itisniceto reinforcetheseimportantconceptsattheendofthissection.Problem21servesasgoodpreparationforworkwith time-seriesplots(Section3.3),scatterplots(Section6.1),andratesofchange(Section7.2).
SECTION1.6LECTURENOTES
Objectives
1. Findtheratiooftwoquantities.
2. Describethemeaningof percent
3. Convertpercentagestoandfromdecimalnumbers.
4. Useproportionsandpercentagestodescribeauthenticsituations.
5. Findthepercentageofaquantity.
6. Multiplyanddividerealnumbers.
7. Describewhichfractionswithnegativesignsareequaltoeachother. Copyright c 2016PearsonEducation,Inc.
OBJECTIVE1
• Supposethatthereare8womenand4menonasoftballteam.Theratioofwomentomenis 8women 4men = 2women 1men
• Thismeansthatthereare2womento1man.Thisratioiscalleda unitratio
• A unitratio isaratiowrittenas a b oras a : b with b =1
1. Theblinkofaneyetakes400milliseconds.Onebeatofahummingbird’swingstakes20milliseconds.Find theunitratioofthetimeittakesfortheblinkofaneyetothetimeittakesforonebeatofahummingbird’s wings.Whatdoesyourresultmeaninthissituation?
2. Themediansalespricesofexistinghomesandthemedianhouseholdincomesin2011areshowninthe followingtableforfourregionsoftheUnitedStates.
MedianSalesPriceMedianHousehold ofExistingHomesIncome Region(dollars)(dollars) Northeast237,50051,862 Midwest135,40049,549 South135,20042,590 West201,30053,367
Sources: U.S.Census;FederalReserveBankofSt.Louis
a. Findtheunitratioofthemediansalespriceofexistinghomestothemedianhouseholdincomeinthe Northeast.Whatdoestheresultmean?
b. Foreachofthefourregions,findtheunitratioofthemediansalespriceofexistinghomestothe medianhouseholdincome.Takingintoaccountthemedianhouseholdincomeofeachregion,listthe regionsinorderofaffordabilityofexistinghomes,fromgreatesttoleast.
c. ApersonbelievesthatexistinghomesintheSoutharemoreaffordablethanintheMidwest,because themedianpriceofexistinghomesislowerintheSouththanintheMidwest.Whatwouldyoutell thatperson?
OBJECTIVE2
• If57of100songsarehiphop,then57%ofthesongsarehiphop.
• Percent means“foreachhundred”: a%= a 100
• Apercentisaratio.
OBJECTIVE3
ConvertingPercentagestoandfromDecimalNumbers
• Towriteapercentageasadecimalnumber,removethepercentsymbolanddividethenumberby100 (movethedecimalpointtwoplacestotheleft).
• Towriteadecimalnumberasapercentage,multiplythenumberby100(movethedecimalpointtwo placestotheright)andinsertapercentsymbol.
Copyright c 2016PearsonEducation,Inc.
3. Write8%asadecimalnumber. 4. Write0.145asapercent.
Warning:8%isequalto0.08,not0.8.
OBJECTIVE4
5. About63%ofAmericansfeelthedistributionofmoneyandwealthintheUnitedStatesshouldbemore evenlydistributed(Source: CBSNewsPoll).Useaproportiontodescribethissituation.
6. TheproportionofYahooemployeeswhoareAsianis0.39(Source: Yahoo).Useapercentagetodescribe thissituation.
7. Of905surveyeddrivers,163driverssaidittakesthematleastthreetriestoparallelpark(Source: Hankook TireFallGaugeIndexsurvey).Useapercentagetodescribethesituation.
OBJECTIVE5
FindingthePercentageofaQuantity
Tofindthepercentageofaquantity,multiplythedecimalformofthepercentageandthequantity.
8. Of4672surveyedstudentsingrades3–5,85%knewhowtouseakeyboardtotypeanswerstoquestions (Source: Idaho’sSmarterBalancedFieldTestsurvey).Howmanyofthestudentsknewhowtousea keyboard?
9. Apersonbuyssometake-outfoodfor$8(notincludingstatemealstax)inBoston,Massachusetts,which hasastatemealstaxof6.25%.Howmuchmoneyisthestatemealstax?
OneHundredPercentofaQuantity
Onehundredpercentofaquantityis all ofthequantity.
OBJECTIVE6
Userepeatedadditiontoshowthat 4( 3)= 12
MultiplyingTwoNumberswithDifferentSigns
Theproductoftwonumberthathavedifferentsignsisnegative.
10. a. Findtheproducts 3( 4)= 12, 2( 4)= 8, 1( 4)= 4, 0( 4)=0
b. ExplainwhytheresultsofPart(a)suggestthat 1( 4)=4, 2( 4)=8,and 3( 4)=12.
c. Formatheoryaboutthesignoftheproductoftwonumbersthathavethesamesign.
MultiplyingTwoNumberswiththeSameSign
Theproductoftwonumbersthathavethesamesignispositive.
Copyright c 2016PearsonEducation,Inc.
3( 8)
Therulesfordividingnumbersaresimilartothoseformultiplyingnumbers,becausetodividebyanumber, wemultiplybythereciprocalofthenumber.
MultiplyingorDividingRealNumbers
Theproductorquotientoftwonumbersthathavedifferentsignsisnegative.Theproductorquotientoftwo numbersthathavethesamesignispositive.
19. Apersonhascreditcardbalancesof 3580 dollarsonaDiscoverR accountand 1590 dollarsonaMasterCardR account.
a. FindtheunitratiooftheDiscoverbalancetotheMasterCardbalance.
b. Ifthepersonwishestograduallypayoffbothaccountsinthesameamountoftime,describehowthe resultinPart(a)canhelpguidethepersoninmakinghisnextpayment.
20. 4 ( 7) 21. 8 ÷ ( 2)
15+11
OBJECTIVE7
( 7)( 10)
5.8+2.9
Comparetheresultsof 6 3 , 6 3 ,and 6 3 tomotivatethefollowingproperty.
EqualFractionswithNegativeSigns If b =0,then
HW 1,3,9,11,15,19,27,29,35,45,55,65,69,77,83,87,89,97
SECTION1.6TEACHINGTIPS
Inthissection,studentsworkwithratios,proportions,percents,andmultiplyinganddividingrealnumbers.It maybetemptingtoskipordeemphasizeratios,butthisconcept,togetherwiththeconceptofchange,willbevery helpfulinintroducingrateofchangeandtheslopeformula m = y2 y1 x2 x1 (Section7.2).Moststudentshavelittle experienceworkingwithratios.
Copyright c 2016PearsonEducation,Inc.
OBJECTIVE1COMMENTS
Moststudentshaveaneasytimecomputingratiosbuthaveahardertimethinkingaboutthesignificanceof comparingratiossuchasinProblem2.Part(c)addressestheextremelyimportantconceptinintroductorystatistics thatitusuallyismorehelpfultocompareunitratios(orproportions)thanitistocomparequantities.Thetextbook willcontinuetoemphasizethisconceptinChapters3and5.
OBJECTIVE2COMMENTS
Moststudentshaveaweakunderstandingofpercents,whichisimportantforworkwithproportions(Chapter3) andprobabilities(Chapter5).
OBJECTIVE3COMMENTS
Iusethedefinitionofpercenttosuggesthowtoconvertpercentagestoandfromdecimalnumbers.
ForProblem3,somestudentsthinkthattheresultis0.8.
OBJECTIVE4COMMENTS
Problems5and6canbeabitchallengingforsomestudentsbecausetheymustchangethestructureofthe sentences.
OBJECTIVE5COMMENTS
Ifirstusethedefinitionofpercenttofindthepercentageofaquantityandthenstreamlinetheprocess.For Problems8and9,Iremindstudentstoincludeunitsintheirresults.
Studentswillneedtoknowthatonehundredpercentofaquantityisallofthequantityformanyreasons, includingrecognizingwhenmodelbreakdownhasoccurredwhenmakingpredictionswithlinearandexponential models(Chapters6–10).
OBJECTIVE6COMMENTS
Studentshaveaneasytimewiththeseskills.
Writing 4( 3)=( 3)+( 3)+( 3)+( 3)= 12 suggeststheruleformultiplyingtwonumberswith differentsigns.Problem10suggeststheruleformultiplyingtwonumberswiththesamesign.
ForProblem13,manystudentsthinkthat 0 2( 0 1)=0 2.ForProblem14,somestudentsneedtobe remindedtosimplifytheirresult.
Thetextbookincludesadetailedexplanationaboutwhythesignrulesfordivisionarethesameasformultiplication(seepages59and60ofthetextbook).Duetotimeconstraints,Iusuallyjustsaytherulesfordividing numbersaresimilartothoseformultiplyingnumbersbecausetodividebyanumber,wemultiplybythereciprocal ofthenumber.
Problem19tiesratiosinnicelywithdividingtwonegativenumbers.Manystudentswhohavecreditcarddebt coulddirectlybenefitfromlearninghowtodosuchworkwithcreditcardbalances.
IbudgetplentyoftimeforstudentstocompleteProblems20–27,whichserveasagoodsummaryofSections1.3–1.6.
GROUPEXPLORATION:FindingtheProductofaPositiveNumberandaNegative
Number
Groupsofstudentscandiscoverhowtomultiplytwonumberswithdifferentsignsbycompletingthisexploration. Itellstudentsthatthemoretheycanunderstandwhypropertiesmakesense,thebettertheywillbeabletokeep themstraight.
OBJECTIVE7COMMENTS
Iemphasizetheproperty a b = a b = a b ,where b =0,becauseitwillbeusefulwhenworkingwithslope.It seemsthatnoamountofemphasisistoomuchbecausesomestudentscompletelyforgetthispropertybythetime weneedtouseitforslope(Sections7.2and7.3).
Itellmystudentstowritetheirresultswhicharenegativefractionsintheform a b ratherthan a b or a b .
Copyright c 2016PearsonEducation,Inc.
SECTION1.7LECTURENOTES
Objectives
1. Describethemeaningof exponent.
2. Describethemeaningoftheexponentzero.
3. Describethemeaningofanegative-integerexponent.
4. Describethemeaningof squareroot and principalsquareroot
5. Approximateaprincipalsquareroot.
6. Usetherulesfororderofoperationstoperformcomputationsandevaluateexpressions.
7. Usetherulesfororderofoperationstomakepredictions.
8. Findtheareaofpartofanobject.
9. Usescientificnotation.
OBJECTIVE1
24 =2 2 2 2=16
Definition Exponent
43 =4 4 4=64
Foranycountingnumber n, bn = b b b ... b n factorsof b
Wereferto bn asthe power,the nthpowerof b,or b raisedtothe nthpower.Wecall b the base and n the exponent
Foranexpressionoftheoftheform bn,wecalculate bn beforetakingtheopposite.
OBJECTIVE2
Findthepowers 24 , 23 , 22,and 21 andhavestudentsguesstheresultfor 20
Definition Zeroexponent Fornonzero b, b0 =1
OBJECTIVE3
Findthepowers 22 , 21 , 20,andhavestudentsguesstheresultfor 2 1 , 2 2,and 2 3
Definition Negative-integerexponent
If n isacountingnumberand b isnonzero,then
OBJECTIVE4
Definition Principalsquareroot
If a isanonnegativenumber,then √a isthenonnegativenumberwesquaretoget a.Wecall √a the principalsquareroot of a.
• Thesymbol"√ "iscalleda radicalsign.
• Anexpressionunderaradicalsigniscalleda radicand
• Aradicalsigntogetherwitharadicandiscalleda radical
• Anexpressionthatcontainsaradicaliscalleda radicalexpression.
• Asquarerootofanegativenumberisnotarealnumber.
Findthesquareroot.
OBJECTIVE5
Statewhetherthesquarerootisrationalorirrational.Ifthesquarerootisrational,findthe(exact)value.Ifthe squarerootisirrational,estimateitsvaluebyroundingtotheseconddecimalplace. 13. √144 14. √24
OBJECTIVE6
• Wedooperationsthatliewithingroupingsymbolsbeforeweperformotheroperations.
• Theorderofoperationsdoesmatter: (4+2) 5=6 5=30 4+(2 5)=4+10=14
Copyright c 2016PearsonEducation,Inc.
• Forafractionsuchas 2+5 9 4 ,thefollowinguseofparenthesesisassumed: 2+5 9 4 = (2+5) (9 4) = 7 5
• Foraradicalexpressionsuchas √16+9,thefollowinguseofparenthesesareassumed:
Warning: √16+9 does not equal √16+ √9.
(4 8)(9 2)
OrderofOperations
Weperformoperationsinthefollowingorder:
1. First,performoperationswithinparenthesesorothergroupingsymbols,startingwiththeinnermost group.
2. Thenperformexponentiations.
3. Next,performmultiplicationsanddivisions,goingfromlefttoright.
4. Last,performadditionsandsubtractions,goingfromlefttoright.
17. 3 8 ÷ 4
18. 4+( 2)3
19. 2(5 8) (4 9)
20. 3 [6 2(3+4)]
21. 33 2(3 5)2 ÷ ( 4)
OperationComputationwith10s
Exponentiation 1010 =10, 000, 000, 000 Multiplication 10 · 10=100 Addition 10+10=20
OrderofOperationsandtheStrengthsofOperations
Afterwehaveperformedoperationsinparentheses,theorderofoperationsgoesfromthemostpowerful operation,exponentiation,tothenext-most-powerfuloperations,multiplicationanddivision,totheweakest operations,additionandsubtraction.
25. (1 3)2 +(2 3)2 +(6 3)2 3 1 26. (44 35) 4 42 2 + 72 49
27. Useacalculatortoperformtheindicatedoperationsfor
28. Evaluate a b c d for a = 3, b =5, c =4,and d = 6.
29. Evaluate x t s √n for x =12, t =3, s =10,and n =25.
30. Let x beanumber.Translatethesentence“Subtract5fromtheproductofthenumberand 3.”Then evaluatetheexpressionfor x = 2
OBJECTIVE7
31. ThenumberofkneereplacementsurgeriesamongMedicareparticipantswasabout244thousandin2010 andhasincreasedbyapproximately8thousandsurgeriesperyearuntil2014(Source: JournaloftheAmericanMedicalAssociation).Completethefollowingtabletohelpfindanexpressionthatstandsforthe numberofsuchsurgeriesat t yearssince2010.Showthearithmetictohelpseeapattern.
NumberofKneeReplacementSurgeries YearsAmongMedicareParticipants Since2010(inthousands)
Evaluateyourresultfor t =4 anddiscusswhattheresultmeansinthissituation.
32. Thenumberofage-relatedretirementsofU.S.pilotswas226retirementsin2010,anditincreasedby20.8% in2011(Source: KitDarby.comAviationConsulting).Whatwasthenumberofage-relatedretirementsin 2011?
OBJECTIVE8
33. Usethefactthatthetotalareaofthefollowingobjectis1tofindtheareaoftheshadedbar.Theobjecthas notbeendrawntoscale.
OBJECTIVE9
Definition Scientificnotation
Anumberiswrittenin scientificnotation ifithastheform N × 10k,where k isanintegerandtheabsolute valueof N isbetween1and10orisequalto1.
Examples: 6 74 × 107 , 9 2 × 10 6
Copyright c 2016PearsonEducation,Inc.
Writethenumberinstandarddecimalnotation.
34. 5 36 × 103 35. 8 192 × 106
ConvertingfromScientificNotationtoStandardDecimalNotation
Towritethescientificnotation N × 10k instandarddecimalnotation,wemovethedecimalpointofthe number N asfollows:
• If k is positive,wemultiply N by10 k timesandhencemovethedecimalpoint k placestothe right.
• If k is negative,wedivide N by10 k timesandhencemovethedecimalpoint k placestothe left.
Writethenumberinscientificnotation.
38. ThefirstevidenceoflifeonEarthdatesbackto 3.6 × 109 yearsago.
39. Thewavelengthofvioletlightisabout0.00000047meter.
ConvertingfromStandardDecimalNotationtoScientificNotation
Towriteanumberinscientificnotation,countthenumber k ofplacesthatthedecimalpointmustbemoved sothattheabsolutevalueofthenewnumber N isbetween1and10orisequalto1.
• Ifthedecimalpointismovedtotheleft,thenthescientificnotationiswrittenas N × 10k
• Ifthedecimalpointismovedtotheright,thenthescientificnotationiswrittenas N × 10 k
• Somecalculatorsrepresent 7 29 × 1026 as7.29E26.
• Somecalculatorsrepresent 5 96 × 10 23 as5.96E 23
HW 1,3,5,19,25,39,45,53,67,71,73,79,81,85,87,91,97,103,105,109,117,123,129,131
SECTION1.7DETAILEDCOMMENTS
Inthissection,studentsworkwithexponentsandusetherulesfororderofoperationstoperformcomputations andevaluateexpressions.Studentswillusethismaterialthroughoutthecourse.
OBJECTIVE1COMMENTS
Itwillbeespeciallyhelpfulforstudentstoknowthemeaningof exponent, base,and power whenworkingwith exponentialmodelsinChapter10.Manystudentsthinkthat power meansthesamethingas exponent.Explain that bn isapowerof b andthat n istheexponent.
ForProblem4,moststudentsaresurprisedthat 52 isnotequalto25.Itellstudentsthatforanexpressionof theoftheform bn,wecalculate bn beforetakingtheopposite.Italsohelpstopointoutthatthebaseof ( 5)2 is 5 andthatthebaseof 52 is5.
OBJECTIVE2COMMENTS
Manystudentsaresurprisedtolearnthat b0 isnotequalto0.
OBJECTIVE3COMMENTS
Thereasonnegative-integerexponentsareincludedinthissectionistopreparestudentsforscientificnotation,
Copyright c 2016PearsonEducation,Inc.
LectureNotesandTeachingTips43 whichwillbedisplayedbycalculatorswhenstudentscomputeprobabilitiesforthenormaldistribution(Section5.4).
OBJECTIVE4COMMENTS
Squarerootsareincludedinthissectionbecausestudentswillworkwithsquarerootswhencomputingstandard deviation(Section4.2).Tokeepthingsmoving,Iskipallthedefinitionsforprincipalsquareroot,radicalsign, radicand,andsoonandjustdoProblems9–12.
OBJECTIVE5COMMENTS
Ifstudentsareusingavarietyofcalculators,itcanbechallengingtotellthemallhowtoaccessthesquareroot command.Ifstudentshavetrouble,ItellthemtowaituntiltheynextworkingroupssoIcanthengoaboutthe classroomhelpingstudentsindividually.
OBJECTIVE6COMMENTS
Whendiscussingtheorderofoperations,Iemphasizethatmultiplicationanddivisionareonthesamelevelofthe hierarchy;somestudentsthinkthat“goingfromlefttoright”meansthatallmultiplicationsshouldbedonebefore alldivisions,becausetheword“multiplications”appearstotheleftoftheword“divisions”intheinstructionsfor theorderofoperations.Thesamegoesforadditionandsubtraction.
Sometimesitseemsthattheonlythingsstudentshavelearnedfrompastmathcoursesaretheacronyms "PEMDAS"and"FOIL."Idislike"PEMDAS"becauseitlacksdetailsneededforstudentstouseitcorrectly. Evenwithcommas,theacronym“P,E,MD,AS”lacksnecessarydetails.Nonetheless,Ipresent"PE,MD,AS" becauseifIdon’t,studentswillaskaboutitanyway.ThenIemphasizehowtheacronymisincomplete.
Eventhoughorderofoperationsisareviewtopicfromarithmetic,somestudentsarechallengedbyProblems17–24.Problems23,25,and27aregoodpreparationforcalculatingthemean(Section4.1),variance (Section4.2),andstandarddeviation(Section4.3),respectively.Problem28relatestocomputingslopeofaline (Section7.2).Finally,Problems26and29relatetofindingconfidencesintervals,althoughconfidencesintervals arenotaddressedinthiscourse.
WhenstudentspracticeProblem27,Iencouragethemtosavetimebycomputingtheentirenumeratorrather thancomputingandrecordingthevaluesofthethreetermsbeforeadding.
GROUPEXPLORATION:OrderofOperations
Inthisactivity,groupsofstudentsdiscoverthatitmattersinwhichorderweaddandmultiply.
OBJECTIVE7COMMENTS
InProblem31,studentscontinuetheirworkwithbuildingexpressionsbyrecognizingpatternsintheirarithmetic. AlthoughstudentswilluseadifferentmethodtofindlinearmodelsinSection7.3,thetwomethodshavesome overlapandtothedegreethattheydiffertheycanserveaschecksofeachother.
OBJECTIVE8COMMENTS
IhavegroupsofstudentsworkonProblem33,whichisexcellentpreparationforthedevelopmentofdensityhistograms,whichwillbeemphasizedinChapters3–5.Althoughstudentshavealreadyworkedwiththeproportion oftherestpropertyinSection1.3,theytendtohaveatoughtimewiththisproblem.Forgroupsthatgetstuck,I askthemwhethertheycanfindtheareasofalltheunshadedrectangles.Whentheysayyes,Iremindthemofthe proportionoftherestproperty,whichusuallyisabigenoughhint.
OBJECTIVE9COMMENTS
Deemphasizingscientificnotationisonewaytohandlegettingthroughthislongsection.However,ifyour studentsareusingTI-84graphingcalculators,makesurethattheyknowhowtointerprettheircalculators’wayof expressingscientificnotation,becausestudentswillrunintothisnotationwhenfindingprobabilitiesfornormal distributions(Section5.4).
Onewaytomotivatescientificnotationistoaskstudentstousetheirgraphingcalculatorstocompute 250 or 2 50
Copyright c 2016PearsonEducation,Inc.
Forconvertingscientificnotationtoandfromstandarddecimalnotation,studentsarenotsurewhethertomove thedecimalpointtotherightorleft.First,Idemonstratethattomultiplyby10,wemovethedecimalpointone placetotheright,andtodivideby10,wemovethedecimalpointoneplacetotheleft.ThenIbridgetopowers of10.Forexample,for 3 56 × 10 8,3.56isdividedby 108 (aproductofeight10’s),soweneedtomovethe decimalpoint8placestotheleft.
Copyright c 2016PearsonEducation,Inc.
CHAPTER2OVERVIEW
Howmanytimeshaveyouquestionedthevalidityofconclusionsdrawnbythemediaorcorporationsbecauseof nonsamplingerrororsomeotherbadpracticeofstatistics?Itwouldbeapowerfullifelessonforyourstudentsto enhancetheirabilitytodothis.Ibelievethatshouldbethehighestgoalofthischapter.Infact,onecouldargue thatthisisthemostimportantobjectiveoftheentirecoursebecausesomestudentsmaynotusestatisticsmuchin theircareersbutweallaresubjecttobadpracticesofstatisticsbythemediaandadvertisements.
Thischapterisalsohugelyimportantbecauseitprovidesthebigpicturefortherestofthecourseandevenfor thesubsequentcourseinintroductorystatistics.
Inmyopinion,thesinglemostimportantconceptofthechapterisrandomness.Notonlydomanystudents havemisconceptionsaboutthisconcept,theyalsohavemuchtogainbylearningaboutconceptsrelatedtorandomnesssuchasrandomsampling,randomselection,andprobability.
AclosesecondinimportanceisthedistinctionmadebetweenexperimentsandobservationalstudiesinSection2.3.Itisthisdistinctionthatallowsstudentstodiscern,forthemostpart,whetherastudycandeterminethat thereiscausality.ThisconceptwillbeneededformanypartsofexercisesinChapters3–5.
SomeoftheHands-OnResearchexercisesandtheHands-onProjectassignmentsrequirestudentstoperform surveysorphysicalexperiments.ThesamplingmethodsdiscussedinSection2.2willexpandstudents’options ofcollectingsuchdata.AndthedescriptionsofvarioustypesofbiasinSection2.1willserveaswarningsfor collectingmeaningfuldata.
InSection2.3,bepreparedtocoachstudentsonhowtoreaddescriptionsofstudies.Iprovidesometipsin thismanualforthatsection.ThehigherreadingleveloftheexamplesandtheexercisesinSection2.3isthe naturalresultoftryingtoexpresscomplexideasaboutauthenticstudies.Ifstudentscanlearntocomprehendsuch descriptions,theywillbewellpreparedtodigestsimilardescriptionsinintroductorystatisticscoursesaswellas intheircareers.
Ifyouhavenotalreadysurveyedyourstudents,thiswouldbegoodtimetodosobecausethedatawillcome inhandyatthestartofChapter3,wheretheclasswillbegintoconstructstatisticaldiagrams.
SECTION2.1LECTURENOTES
Objectives
1. Identifythe individuals,the variables,andthe observations ofastudy.
2. Describethefivestepsof statistics
3. Identifythe sample andthe population ofastudy.
4. Identify descriptivestatistics and inferentialstatistics
5. Selecta simplerandomsample
6. Identifythe samplingbias,the nonresponsebias,andthe responsebias ofastudy.
7. Identifysamplingandnonsamplingerror.
OBJECTIVE1
Individuals arethepeopleorobjectswewanttolearnabout.
Definition Variable
Instatistics,a variable isacharacteristicoftheindividualstobemeasuredorobserved.
Copyright c 2016PearsonEducation,Inc.
Observations aredatathatweobserveforavariable.
1. ThenumberoflistensofcertainsongsduringtheweekendingSunday,February,2015onLast.fmare showninthefollowingtable.
SongBandGenreNumberofListens "Breezeblocks"Alt-JAlternative1436 "10Bands"DrakeHip-Hop5817 "BackseatFreestyle"KendrickLamarHip-Hop1466 "Chandelier"SiaPop3256 "BlueMoon"BeckAlternative5360
Source: Last.fm
a. Identifytheindividuals.
b. Identifythevariables.
c. Identifytheobservationsforeachvariable.
d. Ofthesongslistedinthetable,whichonewaslistenedtothemost?
OBJECTIVE2
Definition Statistics
Statistics isthepracticeofthefollowingfivesteps:
1. Raiseaprecisequestionaboutoneormorevariables.
2. Createaplantoanswerthequestion.
3. Collectthedata.
4. Analyzethedata.
5. Drawaconclusionaboutthequestion.
2. Motivationalenhancementtherapy (MET)isacounselingprocessthataimstomotivatedrugabusersto stopusingdrugs.SomeresearcherswantedtotestwhetherMETreallyworks.Outof70drugabusers whoparticipatedinthestudy,35receivedthestandarddrugtreatmentprovidedatahospital.Theother 35individualsreceivedMETinadditiontothestandarddrugtreatment.Afterreceivingtreatmentfor 12weeks,all70individualstookaquestionnairewhichmeasuresadrugabuser’smotivationtostopusing drugs.TheresearchersconcludedthatMETeffectivelymotivatesdrugabuserstostopusingdrugs.(Source: MotivationalEnhancementTherapyforSubstanceAbusers:AQuasiExperimentalStudy,SeemaRaniet al.).Describethefivestepsofthestudy.Ifnodetailsaregivenaboutastep,sayso.
OBJECTIVE3
Definition Population
A population isthe entire groupofindividualsaboutwhichwewanttolearn.
Copyright c 2016PearsonEducation,Inc.
A census isastudyinwhichdataarecollectedabout all membersofthepopulation.
Definition Sample
A sample isthepartofapopulationfromwhichdataarecollected.
Collectingdatafromasample,ratherthantheentirepopulation,savestime,money,andeffort.
3. Inapollof1000Americanadults,13%ofrespondentssaidthatconcernsaboutglobalwarmingareunwarranted.ThestudythenmadeaconclusionaboutallAmericanadults(Source: NBCNews/WallStreet Journal).
a. Defineavariableforthestudy.
b. Identifythesample.
c. Identifythepopulation.
OBJECTIVE4
• Descriptivestatistics isthepracticeofusingtables,graphs,andcalculationsaboutasampletodrawconclusionsaboutonlythesample.
• Inferentialstatistics isthepracticeofusinginformationfromasampletodrawconclusionsaboutthe entire population.Whenweperforminferentialstatistics,wecalltheconclusions inferences
4. ResearcherswantedtofindouthowarestricteddietwouldaffectaLabradorRetriever’slifespan.Of48 LabradorRetrieversbeingobserved,24werefedanormaldietand24werefedarestricteddiet.Thedogs’ lifetimeswererecorded.ThestudyconcludedthatatypicalLabradorRetrieveronarestricteddiettendsto livelongerthanatypicalLabradorRetrieveronanormaldiet(Source:EffectsofDietRestrictiononLife SpanandAge-RelatedchangesinDogs,RichardD.Kealy,PhD,etal.).
a. Whatquestionweretheresearcherstryingtoanswer?
b. Identifythepopulation
c. Identifythesample.
d. Identifytheconclusion.Isitpartofdescriptiveorinferentialstatistics?
OBJECTIVE5
Whenastudymakesuseofasample,itisimportantthatthesamplerepresentsthepopulationwell.
Definition Simplerandomsample
Aprocessofselectingasampleofsize n is simplerandomsampling ifeverysampleofsize n hasthesame chanceofbeingchosen.Asampleselectedbysuchaprocessiscalleda simplerandomsample
• Ifweallowanindividualtobeselectedmorethanonce,thenwearesamplingwithreplacement.
• Ifwedonotallowanindividualtobeselectedmorethanonce,thenwearesamplingwithoutreplacement.
• A frame isanumberedlistofalltheindividualsinthepopulation.
5. a. Createaframeofallthestudentsinyourclass.
Copyright c 2016PearsonEducation,Inc.
b. Usetechnologytorandomlyselect6studentswithoutreplacement.
6. In2013,1523outof4270collegeswere2-yearcolleges(Source: U.S.DepartmentofEducation).
a. Whatproportionofthecollegeswere2-yearcolleges?
b. Byusingthenumbers1through1523torepresentthe2-yearcollegesandthenumbers1524through 4270torepresenttheothercolleges,theauthorusedtechnologytorandomlyselect500colleges withoutreplacement.Therewere1732-yearcollegesinthesample.Whatproportionofthesample was2-yearcolleges?
c. Ifyoudidnotknowtheproportionofthepopulationthatare2-yearcollegesandusedtheresultyou foundinPart(b)toestimateit,wouldthatbepartofdescriptivestatisticsorinferentialstatistics? Explain.
Definition Samplingerror
Samplingerror istheerrorinvolvedinusingasampletoestimateinformationaboutapopulationdueto randomnessinthesample.
7. FindthesamplingerrorfortheestimationyoumadeinProblem6.
Ifrandomsamplingisusedtoselectalargeenoughsample,thesamplingerrorwillnotbetoolarge.
OBJECTIVE6
Definition Bias
Asamplingmethodthatconsistentlyunderemphasizesoroveremphasizessomecharacteristic(s)ofthepopulationissaidtobe biased.
Ifasamplingmethodisbiased,thenanyinferencesmadewillbemisleading. Therearethreetypesofbias:
1. Samplingbias occursifthesamplingtechniquefavorsonegroupofindividualsoveranother.
2. Nonresponsebias happensifindividualsrefusetobepartofthestudyoriftheresearchercannottrack downindividualsidentifiedtobeinthesample.
3. Responsebias occursifsurveyedpeople’sanswersdonotmatchwithwhattheyreallythink.
GuidelinesforConstructingSurveyQuestions
Whenconstructingasurveyquestion:
• Donotincludejudgmentalwords.
• Avoidaskingayes/noquestion.
• Ifthequestionincludestwoormorechoices,switchtheorderofthechoicesfordifferentrespondents.
• Addressjustoneissue.
Foreachstudy,identifypossibleformsofbias.Also,discusssamplingerror.
Copyright c 2016PearsonEducation,Inc.
8. Aliberalradiostationconductsacall-insurvey,askingcallers,"ShouldCongressdotherightthingand increasethebudgetforeducation?"Ofthe1140callers,969answeredyes.Thestationconcludesthat85% ofallAmericansthinkthatthebudgetforeducationshouldbeincreased.
9. Agroupofstudentssurveysotherstudentswhoenterandexitthegymandfindsthat67studentsoutof100 studentsexerciseeveryday.Thegroupconcludesthat67%ofallstudentsatthecollegeexerciseeveryday.
OBJECTIVE7
Definition Nonsamplingerror
Nonsamplingerror iserrorfromusingbiasedsampling,recordingdataincorrectly,andanalyzingdata incorrectly.
10. Ahotelrandomlyselectssomecustomerswhostayedatthehotelinthepastmonth,askingwhetherthey hadtakenclotheshangersand/ortowelsfromtheirroom.Theproportionofthesampledcustomerswho saidtheyhadtakenclotheshangersand/ortowelswas0.01.Butthepopulationproportionisactually0.12. Identifywhethersamplingerror,nonsamplingerror,orbothhavelikelyoccurred.
HW 1,3,7,11,13,19,21,23,27,33,35,41,43,58,59
SECTION2.1TEACHINGTIPS
Onecouldarguethatthemostimportanttopicofthissectionissimplerandomsamplingbecauseitisthefirstof severalsamplingmethodsthatwillbeaddressedinthischapter.Plus,theconceptofrandomnesswillalsocome upwhendiscussingprobability(Chapter5).ThissectionlaysthefoundationforSection2.3,whichdescribeskey featuresofanexperiment.
OBJECTIVE1COMMENTS
Studentsoftenconfusethemeaningsof individuals, variables,and observations.IprefertointroducetheterminologiesasIworkonProblem1sostudentscanseeconcreteexamples.ThenIpresentthegeneraldefinitions.
Astimepasses,studentstendtoslipintothinkingthattheterminology individuals referstopeopleandnot objects,soitwillhelptoremindthemofthecorrectdefinitioninafewdays.
OBJECTIVE2COMMENTS
Thefivestepsofstatisticslaysthefoundationnotonlyforthiscourse,whichaddressesdescriptivestatistics,but alsoforintroductorystatisticscourses,whichaddressbothdescriptiveandinferentialstatistics.Iquicklydiscuss thestepsgenerallyandthenhavegroupsofstudentscompleteProblem2,whichtheyhaveaneasytimewith.
OBJECTIVE3COMMENTS
Studentsarequicktopickuponthebasicideaofthemeaningsof population and sample,buttherearesubtleties thatcanbechallenging.
Forexample,somestudentsthinkthatindividualsinthecontrolgrouparenotpartofthesample.Itishelpful topointoutthatsuchindividualsarepartofthesamplebecausedataarecollectedfromthem.(Controlgroups willbedefinedinSection2.3.)
Whenreadingstatisticalreports,itcanbedifficultforstudentstodeterminethepopulationbecauseitisoften implied.Forexample,inExercise22ofHomework2.1,astudentmightconcludethatthepopulationisall sexuallyconfidentwomen.Actually,acomparisonisbeingmadebetweenwomenwhoaresexuallyconfidentand thosewhoarenot,sothepopulationisallwomen.Also,ifallthewomeninthesamplewererandomlyselected fromtheUnitedStates,thenthepopulationwouldbeallAmericanwomenratherthanallwomenintheworld.
Copyright c 2016PearsonEducation,Inc.
Anotherissueisthatsomestudentsunderstandhowtoidentifythesampleandpopulation,buttheygivevague referencestoeach.Itellthemthatstatingthenumberofindividualsinthesample(ifprovided)andusingthe word"all"whendescribingthepopulationcanhelpclarifywhichindividualsareinwhichgroups.
IprefertoassignthesimplerexercisesaboutsampleandpopulationinHomework2.1sothatstudentsgain someconfidence.OncewereachSection2.3,theexercisesthatcontinuetoaddresspopulationandsamplewill raisestudents’understandingtoahigherlevel.
OBJECTIVE4COMMENTS
Somestudentsstrugglewithdistinguishingdescriptivestatisticsfrominferentialstatistics.I’mnotsurewhy.To helpclarify,Igivealotofexamplesofeach.AlthoughChapters3–10willfocusondescriptivestatistics,there areexamplesofinferencessprinkledthroughoutthetextinwhichstudentsmustidentifythemassuch.
OBJECTIVE5COMMENTS
Onecouldarguethatsimplerandomsamplingisthemostimportantconceptofthissectionbecauseitisthekey ideaofformingsamples,performingrandomassignment(Section2.3),andprobability(Chapter5).
Manystudentshavemisconceptionsaboutrandomness.Somestudentsbelievesixflipsofafaircoinwould resultinthreeheadsandthreetails.Somestudentsbelievethatflipsofafaircoinwouldnotresultinstreaks. Todismantlethesemisconceptions,Iflipacoininclass20timesandrecordtheresultsontheboard.Thenwe identifythelongeststreakandalsocomparethefrequenciesofheadsandtails.Iftherehappentobe10ofeach, wecomparethefrequenciesofheadsandtailsafterthefirst n flips,where n isevenandthenumbersofheadsand tailsarenotequal.
Afterdiscussinghowtorandomlyselectpeopleusingnamesinahat,Idiscusshowtousetechnology.For exams,Itellstudentswhatnumbertouseasaseedsothatitwon’tbetoocumbersometograde,butthefact thatallstudentsthengeneratethesamerandomnumbersmuddiesthewatersaboutthemeaningofrandomness. Pointingoutthattechnology simulates randomselectioncanhelpclarify.
Anotherthingthatiscuriousaboutaseedisthatbeforewecanusetechnologytorandomlyselectsome numbers,wemustrandomlyselecttheseed.Thetextbookusesthecurrentdate,time,ortemperaturetoselecta seed,butstudentsmightthinkaseedmustalwaysbeselectedinthoseways.Tossinga10-sideddieseveraltimes togeneratethedigitsofaseedmightbethebestwaytogo.
It’sagoodideatopointoutthatinmostcases,samplesareformedusingsamplingwithoutreplacement.
OBJECTIVE6COMMENTS
Iemphasizethemeaningof samplingbias, nonresponsebias,and responsebias becausesomanybadpractices ofstatisticsstemfromthesemisuses.Mosttextbooksaddresstheseconceptsinasinglechapteranddonot revisittheminsubsequentchaptersondescriptivestatistics.In Pathway,theseconceptsareaddressedmanytimes inChapters2–5.Chapters6–10willfocusontheprevalentmisunderstandingthatastrongassociationimplies causation.
DiscussingbiasatgreatlengthwillbetterpreparestudentsforsomeoftheHands-OnResearchexercisesas wellassomeoftheHands-OnProjectsthatrequirestudentstoperformsurveys.Duetostudents’limitedtimeand money,theirsurveyswillhavebias,buttheyarerequiredtodescribethebias(seeProblems7and8oftheSurvey aboutProportionsProjectonpage123ofthetextbook).
Beforediscussingsampling,nonresponse,andresponsebias,Ihavegroupsofstudentsidentifysampling issuesinProblems8and9.ThenIgeneralizetheircommentsbyprovidingthedefinitions.Havingstudentsfirst workwithconcreteexamplespreparesthemfordigestingthegeneraldefinitions.
Whensomestudentslearnaboutsamplingbias,theyhavedistortedideasabouthowtoavoidit.Forasurvey aboutpeople’sfavoritesport,somestudentsmayseethepitfallinpollingpeopleatabasketballgamebutmay thinkthatpollingpeopleatvarioussportingeventswouldbefine.Evenafteranin-depthclassroomdiscussion aboutsamplingbias,somestudentswillnotunderstandthattheonlywaytoavoidsamplingbiasistorandomly selectthesample.Asaresult,ImakesureIrevisitthisconceptseveraltimesthroughoutthecourse.
Ispendadisproportionateamountoftimediscussingresponsebiasbecauseithasmanyfacetsanditisthebias thatstudentswillbeabletocontrolthemostwhenperformingsurveysbycarefullyconstructingtheirquestions.
SamplingwillbefurtherdevelopedinSection2.2,whichdescribessystematic,stratified,andclustersampling.
Copyright c 2016PearsonEducation,Inc.
OBJECTIVE7COMMENTS
Studentsoftenconfusethemeaningof samplingerror withthemeaningof nonsamplingerror probablybecause theysoundsosimilar.Oncestudentscankeepstraightwhichiswhich,theyhaveaneasytimewithnonsampling error.Samplingerrorisamuchmorechallengingconcepttograsp.Studentstendtothinkthatthevalueofa statisticisequaltothevalueoftheparameter.Themediahasintroducedoratleastreinforcedthismisconception. Grapplingwithsamplingerrorisattheheartofstatistics,butitisdifficulttoaddressthisconceptinthemidstof descriptivestatistics.
UsingtechnologytosolveanexamplesimilartoExample6inthetextbookisanicewaytoexploresampling error,butIemphasizethatnormallywedonotknowthevalueofaparameter.Example6isalsomisleading becauseitsuggeststhatinstatisticsweusepointestimatestoestimateparameterswheninfactweuseconfidenceintervals.Forthisreason,Iseriouslyconsideredintroducingalighttreatmentofconfidenceintervalsin Section2.1,butIdecidedthatitwouldlikelycreatetoomanymisconceptionsaboutconfidenceintervals.
Despitetheseissues,Example6doesagreatjobofclarifyingsamplingerrorbecauseitissoconcrete.
GROUPEXPLORATION:UsingSamplingMethods
Tellingstudentshowtoconstructgoodsurveyquestionsisagoodfirststep.Buthavingstudentsconstructtheir ownquestionsandgettingfeedbackfromyouwillgreatlyenhancetheirunderstanding.Thisisagoodtimeto warnstudentstoavoidinappropriatequestions.
Providingadiagramofthenamesofstudentsandwheretheyareseatedcanmovethingsalong.Iemphasize thatgroupsshouldrecordtheseedtheyselected.Havingthemcarryouttheirsurveyscanbechaoticandinefficient unlessyouprovidesomestructure.Eachgroupcouldselectonemembertobethesurveyor.Thesurveyorscould circulatetheclassroomwhiletheotherstudentsremainseated.Classtimecouldbepreservedbyhavingthe studentsparticipateinthesurveysonline,butthiswouldrequiretimeandeffortonyourparttocoordinateposting students’questionsandresponses.
ThisexplorationisgoodpreparationfortheSurveyaboutProportionsProjectonpage123ofthetextbook.
SECTION2.2LECTURENOTES
Objectives
1. Identifyandexplain systematicsampling
2. Identifyandexplain stratifiedsampling.
3. Identifyandexplain clustersampling.
4. Comparesamplingmethods.
5. Describewhy conveniencesampling and voluntaryresponsesampling shouldneverbeused.
OBJECTIVE1
Definition Systematicsampling
Toperform systematicsampling,werandomlyselectanindividualoutofthefirst k individualsandalso selectevery kthindividualafterthefirstselectedindividual.
Warning:Once k ischosen,theresearchermustmakesurethatselectingevery kthindividualdoesnotmatch withsomepatterninthepopulation.
Copyright c 2016PearsonEducation,Inc.
1. ATargetmanagerwantstosurveycustomersastheyleavethestoreonacertainday.Thereareabout 925customerseachday.Themanagerwouldliketogetfeedbackfromatleast75customers.Frompast experience,themanagerknowsthatif100customersareapproached,about75ofthemwillparticipatein thesurvey.
a. Giventhatthemanagerwantstosurveycustomersastheyleavethestore,explainwhyitwouldnotbe possibletoperformsimplerandomsampling.
b. Themanagerdecidestoperformsystematicsampling.Ifevery kthcustomerisapproached,find k so that100customersareapproached.
c. Tofindwhichcustomershouldbefirstapproached,use822astheseedtofindarandomnumber between1and k,inclusive.
d. Listthefirst5customerswhoshouldbeapproached.
Weshouldalwaysrounddownwhencalculating k forsystematicsampling. Akeybenefitofsystematicsamplingisthataframeisnotrequired.
OBJECTIVE2
Definition Stratifiedsampling
Toperform stratifiedsampling,apopulationisdividedintosubgroupscalled strata (singular: stratum) andsimplerandomsamplingisperformedoneachstratum.Ineachstratum,theindividualssharesomecharacteristic.Theratiosofthenumberofindividualsselectedfromeachstratumareequaltothecorresponding ratiosofthestratumsizes.
Benefitsofstratifiedsampling:
• Individualsinsmallstrataarenotexcluded.
• Asmallersamplecanbeselectedthanbyusingsimplerandomsampling.Thissavestime,money,and effort.
2. EmoryUniversitywantstosurveyasampleof250studentsfromtheclassof2015,askingthemwhether theyfeelliketheybelong.Thenumbersofstudentsareshowninthefollowingtableforvariousethnicities. Howmanystudentsofeachethnicityshouldbeincludedinthestudy?
EthnicityNumberofStudents
Caucasian1826
AsianAmerican800
AfricanAmerican425
Latino507
Multi-Racial155
NativeAmerican1
International855
DidNotIdentify261
Source: EmoryUniversity
3. WesternIllinoisUniversity,QuadCities,wantstosurveyitsstudentsabouttheirfirst-semesterexperience. Becausefemaleundergraduates,maleundergraduates,femaletransferstudents,maletransferstudents,femalegraduatestudents,andmalegraduatestudentsmayhavehaddifferentexperiences,theuniversityplans tousethesesixtypesofstudentsasstrata.Thestatasizesareshowninthefollowingtable.Iftheuniversity wantstosurvey150students,howmanystudentsineachstratashouldbesurveyed?
Copyright c 2016PearsonEducation,Inc.
GenderFreshmenUndergraduateTransferFirst-TimeGraduate Female154234115 503 Male13018652 368 Total284420167 871
Source: WesternIllinoisUniversity
OBJECTIVE3
Definition Clustersampling
Toperform clustersampling,apopulationisdividedintosubgroupscalled clusters.Thensimplerandom samplingisusedtoselectsomeoftheclusters.Alloftheindividualsinthoseselectedclustersformthe sample.
Benefitsofclustersampling:
• Itdoesnotrequireconstructingaframeofindividuals.
• Itsavestime,money,andeffort.
4. BostonMayorMartyWalshwantsdatacollectorstoconductin-personinterviewswithsomeBostonresidents.Ifeachcityblockistreatedasacluster,describehowclustersamplingcouldbeaccomplished.
OBJECTIVE4
SamplingMethodRequirementBenefits SimpleRandomAframeofallindividuals.Worksfinefortelephoneande-mail surveysinwhichthereislittleriskof excludinganyone.
SystematicSelectingevery kthindividualmustNoframeisrequired. notmatchwithsomepatterninthe population.
StratifiedIneachstrain,individualsaresimilar.Individualsinsmallstrataarenot Aframeforindividualsineachstrata.excludedfromthesample.Cansave time,money,andeffort.
ClusterAframeofclusters.Noframeofindividualsisrequired. Cansavetime,money,andeffort.
OBJECTIVE5
Definition Conveniencesampling
Toperform conveniencesampling,wegatherdatathatareeasytocollectanddonotbotherwithcollecting themrandomly.
Althoughconveniencesamplingiseasytoperform,itshouldneverbedonebecausethesamplewill usuallynotrepresentthepopulationwell.
Copyright c 2016PearsonEducation,Inc.
Definition Voluntaryresponsesampling
Toperform voluntaryresponsesampling,weletindividualschoosetobeinthesample.
Neverperformvoluntaryresponsesamplingorthemoregeneralconveniencesampling. Identifywhetherthesamplingmethodissimplerandom,systematic,stratified,cluster,orconvenience.Explain.
5. Inastudyatauniversity,250studentsareselectedfromeachoftheclassesfreshmen,sophomores,juniors, andseniors.
6. HomeDepotcreatesaframeofallofits340thousandemployeesandrandomlyselectssomeoftheemployees.
7. Abloghostsanonlinesurvey,askingrespondentswhethertheygotothemoviesatleastoncepermonth.
8. TwentyBurgerKinglocationsintheUnitedStatesarerandomlyselectedandalltheemployeesatthose locationsaresurveyed.
9. Apoliceunitstopseveryfourthcaronahighwayandtestswhetherthedriverisdrivingundertheinfluence ofalcohol.
HW 1,3,5,7,9,11,13,19,27,29,31,33,39,43,45
SECTION2.2TEACHINGTIPS
Studentsarechallengedbyhavingtodistinguishbetweensimplerandomsamplingandthefivesamplingmethods introducedinthissection.Someofthedifficultystemsfromusingsomeofthesamewordstodescribedifferent methods.Andeventhoughthedifferentwords strata and cluster areusedtodescribesubgroupsforstratifiedand clustersamplingmethods,studentsstilltendtostruggletokeepthetwomethodsstraightbecausesimilarsteps aretakenbutinadifferentorder.
OBJECTIVE1COMMENTS
StudentsaresoaccustomedtotheusualroutineofroundingthatImakesuretheyunderstandthatwhendetermining k forsystematicsampling,weshouldalwaysrounddown.Thispracticeinvolvessomenicecriticalthinking andwillalsoleadtocorrectanswersforhomeworkexercises,butitisnotimportantformanyactualstudiesbecausethemaximumnumberofindividualsthatmightbesurveyedormeasuredisunclear.Forexample,thetotal numberofpeoplethatmightvisitastoreinonedayisunknown.
Althoughusingsystematicsamplingforqualitycontrolofproductsonanassemblylinemightnotimpress students,theydotendtofinditcompellingthattheSupremeCourtruledthatsobrietycheckpointsarelegal,but policedepartmentsmustfileaplanthatdescribeshowtheywillrandomlyselectdriversforsobrietytests.Infact, Exercise43describeshowamotoristarrestedfordrunkdrivingcontestedandwonhiscourtcasebecausethe policedidnotperformsystematicsamplingcorrectly.
Suchauthenticstorieswillmakethecoursecomealiveforyourstudents.Considerresearchinghowyourlocal policedepartmenthascarriedoutsobrietycheckpoints.
OBJECTIVE2COMMENTS
InsteadofusingtheethnicbreakdownatEmoryUniversityinProblem2todiscussstratifiedsampling,consider researchingtheethnicbreakdownatyourcollege.Oryoucouldresearchtheacademic-majorbreakdown.Itis idealifoneormoreofthecategorieshasapercentageclosetozerotoillustratethatstratifiedsamplingcanensure thatsuchcategoriesarerepresentedinthesample.
Copyright c 2016PearsonEducation,Inc.
AlthoughthecalculationsforProblem2suggestthattheNativeAmericanshouldnotbeincludedinthe sample,youcouldpointoutthatitmightbeagoodideatoincludethestudenttohearthestudent’spossibly uniqueperspective.
Forfearofcreatingmoreconfusionthanunderstanding,Ididnotstateinthetextbookthatstratifiedsampling canbeusedtosurveyadisproportionateamountofcategoriesandthatthiscanbecorrectedbyusingaweighted meanorothermeasure.Thisway,thetruecompositionofcategorieswithsmallpercentagesarewellrepresented. Itisprobablynotworththetroubletoincludeweightinginyourlessonplan–thisformofstratifiedsamplingisnot evenaddressedinmanyintroductorystatisticstextbooks–butifyouwanttodiscussit,Iadvisewaitinguntilyou reachSection4.1,whichintroducestheconceptofarithmeticmean.
ForProblem3,studentstendtoneedclarificationwhywefindtheappropriateproportionsbydividingthecells bythegrandtotal871ratherthanthesubtotals.SomereviewersfeelthatProblem3istoodifficultforstudents, butI’vefoundmystudentscanhandleit.Therealquestioniswhetherworkingwitha single variablesuchas ethnicitysufficestogetacrosstheideaofstratifiedsampling.Onebenefitofworkingwithtwo-waytablesisthat itwillprimethepumpforstudents’workwithtwo-waytablesinChapters3–5.
OBJECTIVE3COMMENTS
IprefertodiscussExample3inthetextbooktogetacrosstheideaofclustersamplingbecausestudentscanrelate tothesituation.Iemphasizewhywedividethe1000studentsbythe smallest classsize.Thisconcept,aswell aswhyweround k downforstratifiedsampling,makesforgoodconceptualquestionsonquizzesandexams.I alsoemphasizethatthebenefitofclustersamplingisthatnoframeofindividualsisrequiredanditcansavetime, money,andeffort.
OBJECTIVE4COMMENTS
Studentsoftenconfusestratifiedsamplingwithclustersampling.ReferringtoFigs.8and9onpage105ofthe textbookorcreatingyourowndiagramscanhelpyoucompareandcontrastthetwomethods.Table14onpage 105ofthetextbookprovidesanicecomparisonoftherequirementsandbenefitsofthefoursamplingmethods.
Evenforstudentswhoarenotintosports,comparingclusterandstratifiedsamplingbyreferringtofootball teams(orsomeothersport’steams)asclusters/strataseemstogetacrossthedifferenceinthetwosampling methods.
Evenoncestudentscanidentifythevarioustypesofsamplingmethods,theirunderstandingtendstoslipaway withtime.It’sagoodideatorevisitthistopicneartheendofChapter2andtoencouragestudentstoreviewthe methodsthoroughly.
GROUPEXPLORATION:PerformingSamplingMethods
Providingadiagramofthenamesofstudentsandwheretheyareseatedcanmovethingsalong.Iemphasize thattheyshouldrecordtheseedthattheyselected.Havinggroupscarryouttheirsurveyscanbechaoticand inefficient,unlessyouprovidesomestructure.Eachgroupcouldselectonemembertobethesurveyor.The surveyorscouldcirculatetheclassroomwhiletheotherstudentsremainseated.Classtimecouldbepreserved byhavingthestudentsparticipateinthesurveysonline,butthiswouldrequiretimeandeffortonyourpartto coordinatepostingquestions,respondingtoquestions,andpostingresponses.
Althoughthisexplorationmaybetootime-consuming,thephysicalactofcarryingoutthethreetypesof samplingmethodswouldenhancestudents’understandingandretentionofthethreemethods.
OBJECTIVE5COMMENTS
Ihesitatedinconstructingdefinitionboxesfor conveniencesampling and voluntaryresponsesampling forfear thatstudentswouldthinkthatthesetechniquesarevalidsamplingmethods.Forthesamereason,Iwasalso hesitanttoincludeexercisesthatrequirestudentstoidentifysuchbadsamplingpractices.However,reviewers suggestedIincludedefinitionboxessotherewouldbeaclearwaytorefertosuchbadsamplingmethods.Ifelt thiswasagoodpoint,sointheend,Iincludedthedefinitionboxes.Hopefullytheboldfacewarningsonpage106 ofthetextbookandyourverbalwarningswillimpressuponstudentsthatthesemethodsshouldneverbeused.
Groupsofstudentsarequicktopointouttheproblemswithusingaspecificformofvoluntarysamplingorthe moregeneralconveniencesampling.
Copyright c 2016PearsonEducation,Inc.
SECTION2.3LECTURENOTES
Objectives
1. Identifythefollowingcomponentsofagoodstudy: treatmentgroup, controlgroup, placebo, singleblindanddouble-blind, randomassignment,andlarge-enoughsamplesize.
2. Identify experiments and observationalstudies.
3. Identify explanatoryvariables, responsevariables, association,and causation.
4. Identify lurkingvariables and confoundingvariables
5. Redesignanobservationalstudyintoanexperiment.
OBJECTIVE1
Definition Treatmentgroupandcontrolgroup
Each treatmentgroup inastudyisacollectionofindividualswhoreceiveacertaintreatment(orhavea certaincharacteristicofinterest).The controlgroup isacollectionofindividualswhodonotreceiveany treatment(ordonothavethecharacteristicsofanytreatmentgroup).
Whendesigningastudy,itisimportantthateachtreatmentgroupbeassimilartothecontrolgroupas possible,exceptforthecharacteristicofinterest.
1. Aresearcherwantstoinvestigatewhetheranewdruglowersthebloodpressureofpatientswhohavehigh bloodpressure.Describethedesignofapossiblestudy,whichincludesatreatmentgroupandacontrol group.
• The placeboeffect occurswhenthecharacteristicofinterestchangesinindividualsduetotheindividuals believingthecharacteristicshouldchange.
• A placebo isafakedrugorprocedureadministeredtothecontrolgroup.
• Ina single-blindstudy,individualsdonotknowwhethertheyareinthetreatmentgroup(s)orthecontrol group.
• Ina double-blindstudy,neithertheindividualsnortheresearcherintouchwiththeindividualsknowwho isinthetreatmentgroup(s)andthecontrolgroup.
2. ExplainhowthedesignofthestudyyoudescribedinProblem1couldbemodifiedsothatitwouldbe double-blindanduseaplacebo.
Definition Randomassignment
Randomassignment istheprocessofassigningindividualstothetreatmentgroup(s)andthecontrolgroup randomly.
3. Aresearcherwantstotestwhetherahigh-proteindietimprovescollegemalesprinters’performances.The researcherrandomlyselectsthe10collegemalesprintersshowninthefollowingtable.Usetheseed892to randomlyselect5ofthesprintersforthetreatmentgroup.Theother5studentswillbeinthecontrolgroup.
Copyright c 2016PearsonEducation,Inc.
Inawell-designedstudy,
BennyDavidNicoAustinDaniel RyanMattMarcosCameronRandell
ComponentsofaWell-DesignedStudy
• Thereshouldbeacontrolgroupandatleastonetreatmentgroup.
• Individualsshouldberandomlyassignedtothecontrolgroupandthetreatmentgroup(s).
• Thesamplesizeshouldbelargeenough.
• Aplaceboshouldbeusedwhenappropriate.
• Thestudyshouldbedouble-blindwhenpossible.Ifthisisimpossible,thestudyshouldbesingle-blind ifpossible.
OBJECTIVE2
Definition Experimentandobservationalstudy
Inan experiment,researchersdeterminewhichindividualsareinthetreatmentgroups(s)andthecontrol group,oftenbyusingrandomassignment.Inan observationalstudy,researchersdonotdeterminewhich individualsareinthetreatmentgroup(s)andthecontrolgroup.
Identifywhetherthestudyisanexperimentoranobservationalstudy.Discusswhetherthecomponentsofa well-designedstudywereused.
4. InastudytodeterminewhetherthedruglatrepirdineimprovesthementalimpairmentofpatientswithHuntingtondisease,researchersrandomlyassigned403patientswithmildtomoderateHuntingtondiseasetoa treatmentgroupandacontrolgroup.For3timesdailyfor26weeks,latrepirdinewasorallyadministered tothetreatmentgroupandaplacebowasorallyadministeredtothecontrolgroup.Thestudyconcluded thatlatrepirdinedoesnotimprovethementalimpairmentofpatientswithHuntingtondisease(Source:A randomized,Double-Blind,Placebo-ControlledStudyofLatrepirdineinPatientswithMildtoModerate HuntingtonDisease,Kieburtzetal.).
5. Inastudytodeterminewhethereliteathleteshaveunbalancedpostures,researchersmeasuredtheposture ofthefollowingeliteathletes:29rugbyplayers,29bikers(motorcyclists),10skiers,and10judokas.The posturesof71amateurathleteswerealsomeasured.Thestudyfoundthateliterugbyplayers,eliteskiers, andelitejudokashadunbalancedposturesbutelitebikershadbalancedpostures(Source:Assessmentof BodyPlantarPressureinEliteAthletes:anObservationalStudy,G.Gobbietal.).
Copyright c 2016PearsonEducation,Inc.
OBJECTIVE3
Definition Explanatoryandresponsevariables
Inastudyaboutwhetheravariable x explains(affects)avariable y,
• Wecall x the explanatoryvariable (or independentvariable).
• Wecall y the responsevariable (or dependentvariable).
Anexplanatoryvariablemayormaynotturnouttoaffect(explain)theresponsevariable.
6. Inadouble-blindstudy,40healthyforeignstudentswererandomlyassignedtotakepillsofthenatural substanceRhodiolaroseaextractSHR-5oraplacebofor20daysduringanexaminationperiod.The studyconcludedthatthesubstanceimprovespeople’smentalfatiguecausedbystress(Source:ADoubleBlind,Placebo-ControlledPilotStudyoftheStimulatingandAdaptogenicEffectofRhodiolaRoseaSHR-5 ExtractOntheFatigueofStudentsCausedbyStressDuringanExaminationPeriodwithaRepeatedLowDoseRegimen,Spasovetal).
a. Describethetreatmentandcontrolgroups.
b. Isthestudyanexperimentoranobservationalstudy?Explain.
c. Describethesampleandthepopulation.
d. Whataretheexplanatoryandresponsevariables?
e. Whatdoesitmeanthatthestudyisdouble-blind?Howcouldthatbeaccomplished?
• Thereisan association betweentheexplanatoryandresponsevariablesiftheresponsevariablechangesas theexplanatoryvariablechanges.
• Ifthechangeintheexplanatoryvariable causes achangeintheresponsevariable,wesaythereis causality.
DeterminingCausality
• Awell-designedexperimentcandeterminewhetherthereiscausalitybetweentheexplanatoryandthe responsevariables.
• Mostobservationalstudies cannot determinewhetherthereiscausalitybetweentheexplanatoryand responsevariables.Theycanonlydeterminewhetherthereisanassociationbetweenthetwovariables.
OBJECTIVE4
Definition Lurkingvariable
A lurkingvariable isavariablethatcausesboththeexplanatoryandtheresponsevariablestochangeduring thestudy.
Lurkingvariablesmustbeavoided.Wecanusuallydosobyusingrandomassignment.
Copyright c 2016PearsonEducation,Inc.
Definition Confoundingvariable
A confoundingvariable isavariableotherthantheexplanatoryvariablethatcausesorhelpscausethe responsevariabletochangeduringthestudy.
Awell-designedexperimentrequirescarefulplanningsothatthereareasfewconfoundingvariablesas possible.
OBJECTIVE5
7. Aresearcherwantstodeterminewhetherwatchingtelevisionandplayingvideogamescausesattention deficithyperactivitydisorder(ADHD)inchildren.Theresearcherrandomlyselects200childrenandasks theirparentshowmuchtelevisiontheirchildrenwatchdailyandwhethertheirchildrenhaveADHD.The researcheranalyzestheirresponsesandconcludesthatwatchingtelevisionandplayingvideogamescauses ADHDinchildren.
a. Describesomeproblemswiththeobservationalstudy.Includeinyourdescriptionatleastonepossible lurkingorconfoundingvariableandidentifywhichtypeitis.
b. Redesignthestudysothatitisawell-designedexperiment.
HW 1,3,5,7,11,13,15,17,19,23,29,33,41
SECTION2.3TEACHINGTIPS
ThisisthemostimportantsectionofChapter2becauseitaddressessomanyimportantfeaturesofawell-designed studyanditemphasizestheconceptofcausation,whichismisusedsooftenbythemediaandbusinesses.
Ifyouaretightontime,itisprobablynotworthdistinguishinglurkingvariablesfromconfoundingones.Itis probablyenoughforstudentsatthisleveltolearnthatawell-designedexperimentcanavoidtheimpactofsuch variables.
OBJECTIVE1COMMENTS
Afterdefining treatmentgroup and controlgroup,Idiscusstheimportanceofcontrolgroups.Ialsoexplainthat individualsinthecontrolgroupareconsideredpartofthesample.
Whenfirstdescribingthecomponentsofagoodstudy,Ikeepthingssimpleandsticktodescribingstudies thathavejustonetreatmentgroupandacontrolgroup.Later,Iexplainthebenefitsofusingmultipletreatment groups.
Studentsarequicktopickuponthemeaningandbenefitofaplacebo.Studentstendtoalreadyknowthat sugarpillsareusedasplacebos,butmoststudentsdon’tknowthatplacebosincludefakeprocedures.Infact, manystudentsareshockedtolearnthatfakekneesurgerieswereusedinthestudythatisdescribednearthetopof page112ofthetextbook.ImakesurethatIsharethisstudywithstudentsbecausewhentheyhavesuchastrong emotionalresponse,theyarethatmuchmorelikelytoretaintheconcept.
Randomassignmentisacrucialconceptbecauseitisoftenwhatdistinguishesexperimentsfromobservations. Unfortunately,studentsoftenconfuserandomassignmentwithrandomsampling,soImakesureIcompareand contrastthesetwotechniquesandremindstudentsofthedistinctionbetweenthemethodsseveraltimesduringthe course.Itisworthpointingoutthatinmanyexperiments,theindividualswerenotrandomlyselectedbutthatis okayprovidedtheresearchersperformedrandomassignment.
Havinggroupsofstudentsfirstrandomlyselectasamplefromapopulationandthenrandomlyassignmembers ofthesampletoatreatmentgroupandacontrolgroupwouldbeaworthwhilewayforstudentstolearnthe differencebetweenselectingarandomsampleandperformingrandomassignment.Ifyoucannotaffordthetime, considerdisplayingadiagramsimilartoFig.12onpage113ofthetextbook.
Copyright c 2016PearsonEducation,Inc.
Thetextbook’sdiscussionaboutsamplesizeispurposelyvague.Itisonlyoncestudentsstudyinferential statisticsthattheycanquantifyhowthesamplesizeisrelatedtotheerrorbound.Atthispointinthecourse,I saythatthelargerthesamplesize,themoreinformationwewillhavesothelowertheerrorwillbe;therefore,a relativelylargesamplesizeisdesirable.Becausewehavenotdiscussedthearithmeticmeanyet,Idonotbother tosaythat"relativelylarge"canmeanquitedifferentthingsforestimating,say,thepopulationmeanversus estimating,say,thepopulationproportion.
OnceIhavediscussedallthecomponentsofagoodstudy,Iliketodisplayanactualstudywhichconsistsof severalpagesonanoverhead.Idescribehowthestudyisstructuredandpointoutthecomponentsthatwehave discussedingeneral.Iemphasizethatstudentsmaysomedayhavetoreadsuchstudiesfortheircareers.This driveshomethepointthattheconceptswediscussinclassaretrulyrelevantandimportant.
Thegreatestchallengewiththisobjectiveisreadingcomprehension.Thehomeworkexercisesareatahigher readinglevelthanmostoftherestoftheexercisesinthebook.Thisisduetonumerousreasons,includingthe largenumberofaspectsofastudy,theintricaciesofcontrollingforconfounding,andcomplicatednamesofdrugs. Iurgestudentstoreaddescriptionsofstudiesmanytimes.Ialsosuggestthatafterreadingeachsentence,students shouldpauseandreflectonitsmeaninganddeterminewhythataspectofthestudyisimportant.Mostofmy studentsdonotknowhowtoperformengagedreading,andIhavetodevotemuchtimetocoachingthemonthis. Itcanbehelpfultomodelit.Forexample,Ireadasentenceoutloudandthensayoutloudallthethoughtsand questionsIhaveinresponsetothatinformation.ThenIdothesameforthenextsentenceandthenext,untilI reachtheendofthedescription.MoststudentsareamazedatthelevelofengagementIhavewithreading.
Learninghowtoreadinanengagedwaycanbenefitstudentsinalloftheircoursesandlaterintheircareer. Forsomestudents,itmightbethemostpowerfullearningexperienceofthesemester.
OBJECTIVE2COMMENTS
Initially,studentshaveaneasytimedistinguishingbetweenexperimentsandobservationalstudiesbecausethey canscanthedescriptionofastudytoseewhetherthephrase"randomassignment"isincluded.However,students tendtoforgetthatrandomassignmentisthekeydistinctionunlesstheyareremindedmanytimes.Ifanobservationalstudyinvolvesexplanatoryandresponsevariablesinwhichcausationseemslikely,studentstendtoassume there is causation.
Studentsstruggletolearnwhyrandomassignmentallowsresearcherstodeterminewhetherthereiscausation. Tohelpthemunderstand,Igivealotofexamplesofwhatcangowrong(i.e.lurkingvariables)ifrandom assignmentisnotused.Explainingthisconceptcanserveasagoodconceptualquestiononaquizorexam.
OBJECTIVE3COMMENTS
Oncestudentsunderstandthattheexplanatoryvariableinvolvesthetreatmentthatthetreatmentgroupreceivesand theresponsevariableinvolvessomeresponseduetothetreatment,studentshaveafairlyeasytimeidentifying thetwovariables.ThebiggeststumblingblockisthesameaswithObjective1:readingcomprehension.The suggestionsIgaveregardingthatobjectiveapplyhere,too.
Togetacrosstheideathatthepresenceofanassociationbetweentwovariablesdoesnotguaranteecausality, IdescribethefirefightersituationillustratedbyFig.13onpage116ofthetextbook.Thisbringstheclassroom discussionfullcircletothefactthatwecanuseexperimentstodeterminewhetherthereiscausalitybecause experimentsemployrandomassignment.
Thereasonthetextbookstatesthat most observationalstudiescannotdeterminewhetherthereiscausation isbecauseinsomecases,causalitycanbedeterminedfrom"BigData."However,toavoidconfusion,Idon’t explainthistostudents.Evenwithoutthiscomplication,itisanuphillbattletomakesurethatallstudentslearn thepitfallsofobservationalstudiescommonlyreferredtobythemedia.Onecouldarguethatthisisthemost importantstatisticalinsightstudentscangainfromthecourse.
OBJECTIVE4COMMENTS
Studentshavetroubledistinguishingbetweenlurkingandconfoundingvariables,whichisunderstandable.AlthoughIsketchdiagramssuchasthoseinFigs.14and15onpage117ofthetextbook,Idon’tspendmuchtime makingthedistinction.Whatreallymattersisthatstudentsunderstandthatbothtypesofvariablescanwreak havoc.Iemphasizethattocontendwiththesevariables,researchersmustuserandomassignmentandtakegreat
Copyright c 2016PearsonEducation,Inc.
careindesigninganexperiment.
OBJECTIVE5COMMENTS
Whendiscussinghowtoredesignanobservationalstudyintoawell-designedexperiment,Iemphasizethatakey stepistointroducerandomassignment.ThenIsuggeststudentsreadalistofcomponentsofawell-designed experimentandcheckwhethereachofthecomponentsispresentinthestudy.Ofcourse,itisimpossibleto employcomponentssuchasdouble-blindinallstudies,butdiscussingwhyacomponentcannotbeusedcanbea learningexperience,too.
GROUPEXPLORATION:DesigninganExperiment
Becausedesigninganexperimentismorechallengingthanplanningasurvey,thisexplorationismorechallenging thantheonesinSections2.1and2.2.Atthispointinthecourse,moststudentshaveonlylearnedabouta fewexperimentsanditwillbedifficultforthemtothinkofanexperimentontheirown.Plus,manyorallof theexperimentsyouhavediscussedlikelyinvolveequipmentormedicationthatstudentswon’thaveaccessto. Distributingahandoutwithexamplesofsimpleexperimentsmayhelpstudentsthinkofanexperiment.Ifyou can’taffordthetimeforstudentstobrainstormideas,youcouldallowstudentstochoosefromyourexamples,but thiswouldrobthemofagreatdealofcriticalthinking.
IfyoufacilitatedtheexplorationinSection2.2,studentsshouldhaveaneasytimecarryingoutthecluster sampling.
CHAPTER3OVERVIEW
Bynowyouhaveprobablysurveyedyourstudents,butifyouhaven’tyet,Iadvisedoingsoverysoon.Youcan usethedataasearlySection3.1whenconstructingbargraphs.Andhavingaccesstorawdatamayrevealresponse and/ornonresponsebiasthatyoucanrefertoasareminderofChapter2material.
Itiseasytobecomeboggeddownwiththischapterbecauseitincludessomanytypesoftablesanddiagrams, butitisnotnecessarytohavestudentslearnaboutallofthemforseveralreasons.
First,studentsonlyneedtoknowabouttwo-waytables(Section3.2)andhistograms(Section3.4)todothe vastmajorityofexercisesinsubsequentchapters.Two-waytablesareanexcellentwayforstudentstograpplewith probability(Sections5.1–5.3)anddensityhistogramsareagreatwaytopreparestudentsfornormaldistributions (Sections5.4and5.5).ForChapters6–10,studentswillworkextensivelywithscatterplots,butthosediagrams arenotincludedinChapter3.(TheyareintroducedinSection6.1.)
Second,asidefromaquickrun-throughofmanytypesoftablesanddiagrams,themaintablesanddiagrams usedinintroductorystatisticsareonceagaintwo-waytables,histograms,andscatterplots.
Third,Idonotbelievethepointof Pathway istoaddresseverysingledescriptivestatisticstopicthatishandled inintroductorystatistics.Rather, Pathway shouldfocusonkeyconceptsthatlayafoundationsostudentscanhave surefootinginintroductorystatisticscoursesastheylearncomplexconceptssuchasthesamplingdistribution andhypothesistesting.
Forexample,itisfarmoreimportantthatstudentshaveanin-depthunderstandingofthenormalcurvethan itisforthemtoknowhowtoconstructamyriadoftypesoftablesanddiagrams.Thatiswhythetextbook emphasizestheinterpretationofdensityhistograms(Section3.4).
Whatevertablesanddiagramsyouincludeinthecourse,makesuretheemphasisisoninterpretingthem.It istheinterpretationofconceptsandresults,nottheconstructionoftablesanddiagrams,thatchallengesmost introductorystatisticsstudents.That’swhythefourcharacteristics(Sections3.3and3.4)ofanumericalvariable areintroducedinthischapterratherthaninChapter4.
Othertopicsthatarekeytothischapterarethewaysdiagramscanbeusedtopersuadeormislead(Section3.5). Somestudentswillreadstatisticalreportsintheircareers.Fewmayperformstatistics.Butallstudentscanbenefit frombecomingmorecriticalofdiagramsdisplayedbybusinessesandthemedia.
SECTION3.1LECTURENOTES
Objectives
1. Identify categoricalvariables and numericalvariables
2. Constructandinterpret frequencytables and relativefrequencytables.
3. Constructandinterpret frequencybargraphs and relativefrequencybargraphs.
4. Describethemeaningsof AND and OR
5. Usearelativefrequencybargraphtofindproportions.
6. Interpret multiplebargraphs
OBJECTIVE1
Definition Categoricalvariable
A categoricalvariable (or qualitativevariable)consistsofnamesorlabelsofgroupsofindividuals.
Copyright c 2016PearsonEducation,Inc.
Definition Numericalvariable
A numericalvariable (or quantitativevariable)consistsofmeasurablequantitiesthatdescribeindividuals.
1. Identifywhetherthevariableiscategoricalornumerical.
a. Thesalary(indollars)ofaperson
b. Thestatewhereapersonlives
c. TheZIPcodeofahomeinIllinois
d. Avariableconsistingofzeroesandones,where0standsforafull-timestudentand1standsfora part-timestudent
OBJECTIVE2
Definition Frequencyofacategory
The frequencyofacategory isthenumberofobservationsinthatcategory.
A frequencytable foracategoricalvariableisatablethatlistsallthecategoriesandtheirfrequencies.
2. Themusicgenresofthe20top-sellingsinglesduringtheweekendingonSeptember5,2015,areshownin thefollowingtable.Constructafrequencytable.
R&BDanceElectronicPopPopDancePop PopPopPopAlternativeHip-Hop/RapDanceDance Hip-Hop/RapPopPopPopAlternativePop
Source: AT40
Definition Frequencydistributionofacategoricalvariable
The frequencydistributionofacategoricalvariable isthecategoriesofthevariabletogetherwiththeir frequencies.
ThefrequencytableweconstructedinProblem2describesthefrequencydistributionofthecategoricalvariablemusicgenre.
Definition Relativefrequency
The relativefrequencyofacategory isgiveby frequencyofthecategory totalnumberofobservations
• ForProblem2,therelativefrequencyofdancecategoryis 4 20 = 1 5
• Arelativefrequencyisaproportion.
Copyright c 2016PearsonEducation,Inc.
• A relativefrequencytable ofacategoricalvariableisalistofthecategoriesandtheirrelativefrequencies.
3. RefertothefrequencytableweconstructedinProblem2.
a. Whatistherelativefrequencyofthehip-hop/rapcategory?
b. Constructarelativefrequencytable.
c. Whichcategoryhasthelargestrelativefrequency?Whatisthatrelativefrequency?Whatdoesitmean inthissituation?
Weagreetoroundrelativefrequenciesandproportionstothethirddecimalplace.
Definition Relativefrequencydistributionofacategoricalvariable
The relativefrequencydistributionofacategoricalvariable isthecategoriesofthevariabletogetherwith theirrelativefrequencies.
4. UseStatCrunchtoconstructafrequencyandrelativefrequencytableofthemusicdistribution.
SumofRelativeFrequencies
Foracategoricalvariable,thesumoftherelativefrequenciesofallthecategoriesisequalto1.
OBJECTIVE3
A frequencybargraph isagraphthatusesheightsofbarstodescribethefrequenciesofcategories.
5. Constructabargraphofthemusicdistribution.
A relativefrequencybargraph isagraphthatusesheightsofbarstodescribetherelativefrequenciesof categories.
6. Constructarelativefrequencybargraphofthemusicdistribution.
OBJECTIVE4
• When"AND"isusedwithtwocategories,thismeanstoconsidertheobservationsthatthecategorieshave incommon.
• When"OR"isusedwithtwocategories,thismeanstoconsidertheobservationsinthecategoriesalltogether.
7. ThedatesofSeptember2016areshowninthefollowingtable.
SunMonTuesWedThursFriSat 123 45678910 11121314151617 18192021222324 25262728
a. Findthedatesthatareinthefourthweek.
Copyright c 2016PearsonEducation,Inc.
b. FindthedatesthatareWednesdays.
c. FindthedatesthatareinthefourthweekANDareWednesdays.
d. FindthedatesthatareinthefourthweekORareWednesdays.
OBJECTIVE5
8. Arelativefrequencybargraphofthemusicdistributionisshowninthefollowingfigure.

Source: AT40
Findtheproportionoftheobservationsthat
a. fallintheelectroniccategory.
b. doNOTfallinelectroniccategory.
c. fallinthealternativecategoryORfallinthepopcategory.
d. fallinthealternativecategoryANDfallinthepopcategory.
NotethatinProblem8(b),weusedtheproportionoftherestproperty(Section1.3).
ProportionoftheRest
Let a b betheproportionofthewholethathasacertaincharacteristic.Thentheproportionofthewholethat doesNOThavethatcharacteristicis
OBJECTIVE6
A multiplebargraph isagraphthathastwoormorebarsforeachcategoryofthevariabledescribedonthe horizontalaxis.
9. Inasurveyin2012,1960adultswereaskedthefollowingquestion:“Generallyspeaking,doyouusually thinkofyourselfasaRepublican,Democrat,Independent,orwhat?”Theresultsofthesurveyaredescribed bythemultiplebargraphinthefollowingfigure.
Copyright c 2016PearsonEducation,Inc.
Relativefrequency
PoliticalParty,byGender
Politicalparty
Source: GeneralSocialSurvey
a. WhatproportionofwomenthoughtofthemselvesasDemocrats?
b. Towhichpoliticalpartydidthegreatestproportionofmenchoose?
c. ComparetheproportionofwomenwhothoughtofthemselvesasIndependentstotheproportionof menwhothoughtofthemselvesasIndependents.
d. Atotalof1081womenand879menrespondedtothesurvey.Weretheremorewomenormenwho thoughtofthemselvesasIndependents?Howisthispossible,giventherewasasmallerproportionof womenwhothoughtofthemselvesasIndependentsthanmen?
e. Onthebasisofthemultiplebargraph,astudentconcludesthat24%of all AmericanmenareRepublicans.Whatwouldyoutellthestudent?
Foramultiplebargraph,itismoremeaningfulfortheverticalaxistodescriberelativefrequencies ratherthanfrequencies.
HW 1,3,9,11,13,21,23,27,29,31,33,35,39,43,51
SECTION3.1TEACHINGTIPS
Onecouldarguethatthekeyobjectiveofthissectionisforstudentstobeabletouserelativefrequencybar graphstofindproportions.Thisskillwilllaythefoundationforworkwithdensityhistograms(Section3.4)and probability(Chapter5).AclosesecondwouldbethemeaningsofANDandOR,whichwillbeaddressedinthe restofChapter3aswellasChapter5.
OBJECTIVE1COMMENTS
Studentsarequicktopickuponthedifferencebetweencategoricalandnumericalvariables,butImakesurethey understandthatnumbersaresometimesusedtorepresentthecategoriesofacategoricalvariable.Problems1(c) and1(d)areexamplesofthis.
Inthissection,thetextbookdoesnotexplainthatdiscreteandcontinuousvariablesaretwotypesofnumerical variablesbecausethissectionfocusesoncategoricalvariables.Discreteandcontinuousvariablesaredescribedin Section3.3,whichfocusesonnumericalvariables.
Distinguishingbetweendiscreteandcontinuousvariablesisimportantformanyreasons,includingthatitisa keystepindeterminingwhichtypesofstatisticaldiagramsareappropriatetouse.
OBJECTIVE2COMMENTS
Becausestudentshaveaneasytimeconstructingfrequencyandrelativefrequencytables,Imovequicklythrough
Copyright c 2016PearsonEducation,Inc.
thismaterial.Thisisagoodopportunitytousedatacollectedfromsurveyingstudentsbecausetheyareusually interestedinlearningabouttheirclassmates.Plus,hopefullytheywillmaketheconnectionthatiffrequencyand relativefrequencytablescandescribecategoricalvariablesaboutthemselves,thensuchtablescouldbeusedto describemostanycategoricalvariable.
Forstarters,Iwriteontheboardasubset(about20)ofmystudents’responsestoaquestionabouttheir favoritemusicgenres,usingthecategory"other"sothattherearenottoomanycategories.Next,Iconstructa frequencyandrelativefrequencytable.ThenIdemonstratehowtouseStatCrunchtoconstructsuchatablefor allthestudentsintheclass.Finally,IdemonstratehowtouseStatCrunchtoconstructsuchatableforadataset consistingofhundredsofobservations.Thisprogressiondisplaysthepoweroftechnology.
Eachtimeanewtableordiagramisintroducedinthischapter,Irequirestudentstoconstructacoupleofthem byhandandfromthenonallowstudentstousetechnology.Thisway,studentsgettheideaofhowtoconstruct thevariousdiagramsbuttheyarenotturnedofftostatisticsbythetediumofconstructinglotsofthem.
Idescribefrequencyandrelativefrequencydistributionsofacategoricalvariablecarefully,becausetheword distribution isusedsoofteninthecourse.It’sagoodideatoremindstudentsofitsmeaningeachtimeitisused inanewcontext(e.g.frequencydistributionofanumericalvariableinSection3.3)becausemanystudentswill otherwiseforget.
IfyoutaughtfromChapter1,thenyourstudentsshouldalreadyhaveaprettygoodunderstandingofproportions.Nowyoucanemphasizethatarelativefrequencyisaproportion.Inthefuture,youcanstresshowboth proportionsandrelativefrequenciesarerelatedtopercentiles(Section3.3),areasofbarsofdensityhistograms (Section3.4),andprobabilities(Chapter5).
Ialsoemphasizethatthesumoftherelativefrequenciesofallthecategoriesofacategoricalvariableisequal to1.Thisdovetailswiththeconceptthatthesumofallthepartsisequaltothewhole(Section1.3).These conceptssetthestageforthecomplementrule,whichwillbeinformallyusedinthissectionandsubsequentones andformallyintroducedinSection5.2.Iadvisethatstudentscheckthatthesumoftherelativefrequenciessum to1whenevertheyconstructarelativefrequencytable.
WhengoingoverProblem8(b),Ifirstfindtheprobabilitybyaddingtheprobabilitiesforallthecategories exceptelectronics.ThenIasktheclassifthere’saneasierway.Studentsarequicktosuggestusingtheproportionof-the-restproperty(Section1.3).Asmuchaspossible,Ipromptstudentstobeactivelearnersintheclassroom inhopesofminimizingmemorizationwithoutunderstanding.
Tellstudentsthattheywillneedtoroundrelativefrequencies(andproportions)tothethirddecimalplacefor theiranswerstomatchtheonesinthebackofthebook(andmostlikelyinMyMathLab).
OBJECTIVE3COMMENTS
Studentshaveaneasytimeconstructingfrequencyandrelativefrequencybargraphsforthemostpart,butthere aredetailsthattheyneedcoachingon.IfyoutaughtfromSection1.1,studentswillhopefullyrememberthat theyshoulduseuniformscalingonthe(vertical)axis.Inaddition,youshouldtellthemtowrite"frequency"or "relativefrequency"ontheverticalaxis,thecategoricalvariableanditscategoriesbelowthehorizontalaxis,and atitleabovethegraph.Ideally,abargraphshouldconveythecomplete"story"ofthedata.
Iadvisestudentstoreadinstructionscarefully,especiallyontests.Weakerstudentstendtoconstructfrequency bargraphswhenaskedtoconstructrelativefrequencygraphs,orvice-versa.Studentshavesometimeseven constructedafrequencybargraphwhenrequestedtoconstructafrequencytable.
Afterstudentspracticeconstructingoneortwobargraphsbyhand,IallowthemtouseStatCrunchtoconstruct them.
InChapters3and4,thehomeworkexercisesarestructuredsothatthereisfirstatleastapairofexercises withabout10observations,nextatleastapairofexerciseswithabout25observations,andthenatleastapair ofexerciseswithatleast50observations.Thisstructureismeanttoofferinstructorsflexibilityinhavingstudentsconstructdiagramsand/orcomputemeasurementswithorwithoutstatisticaltechnology.Forexample,I wouldhavestudentsconstructabargraphforthe15observationsinExercise35byhand,the24observationsin Exercise37byhand,andthe50observationsinExercise39usingtechnology.
Thepurpleicon"DATA"flagsexerciseswhosedatasetscanbedownloadedfromMyMathLabandfromthe PearsonDownloadableStudentResourcesforMath&Statisticswebsite: http://www.pearsonhighered.com/mathstatsresources.
Copyright c 2016PearsonEducation,Inc.
OBJECTIVE4COMMENTS
Althoughitisabitjarringtoreadthewords AND and OR inalluppercaseletters,thisisahelpfulsignaltostudents thatthewordsarebeingusedinamathematicalway.DrawingadiagramsimilartoFig.5onpage137ofthe textbookcanhelpclarifythemeaningsof AND and OR.SuchadiagramisagentleintroductiontoVenndiagrams withoutcallingthemassuchbecausestudentsdonotneedtokeeptrackofsamplespacesandeventsyet.Venn diagramswillbeformallyintroducedinSection5.2.
Ialsodemonstratethemeaningsof AND and OR byhavingoneormorestudentsraisetheirhandsiftheyare inthe,say,secondrowORinthe,say,thirdcolumn.ThenIhaveoneormorestudentsraisetheirhandsiftheysit inthesecondrowANDthethirdcolumn.BeforeIbeginthedemonstration,Imakeitclearthattheentireclass isresponsibleforthecorrectstudentstoraisetheirhandssothateveryoneisinvolvedandalsosothatthestudent whositsinthesecondrowANDthethirdcolumndoesnotfeelputonthespot.Itrytopickarowandcolumnin whichthestudentwhositsintheintersectionisgood-humoredandwon’tmindbeingsingledout.
UsingacalendarsuchastheoneusedinProblem7isyetanothernicewaytoworkwith AND and OR. StudentswillworkwithcalendarsinasimilarmannerwhenfindingprobabilitiesinSections5.2and5.3.
Studentswillcontinuetoworkwith AND and OR manytimesinChapters3–5,includingtheimportantuseof AND withthemultiplicativeruleforindependentevents(Section5.3).
OBJECTIVE5COMMENTS
Whenfindingproportionsusingarelativefrequencybargraph,Iemphasizeusingtheproportion-of-the-restproperty(Section1.3).Ofcourse,thepropertyisequivalenttothecomplementrule,whichwillbeformallyintroduced inSection5.2.NotethatProblem8(c)isreallyanapplicationoftheadditionrulefordisjointevents.Applying bothprobabilityrulesnow(withoutcallingthemassuch)isgoodpreparationforsolvingprobabilityproblemsin Chapter5,includingworkingwiththenormaldistribution.
GROUPEXPLORATION:RelativeFrequencies
Thisexplorationcouldbeuseddirectlyafterdescribinghowtoconstructrelativefrequencybargraphsanddiscussingthemeaningof OR
OBJECTIVE6COMMENTS
Whenworkingwithmultiplebargraphs,Ihavestudentsreflectonthedifferencebetweencomparingfrequencies versuscomparingrelativefrequencies(Problem9d).Studentstendtodrawconclusionsbycomparingfrequencies wheninmanyofthosecasesitismoremeaningfultocomparerelativefrequencies.Directlyfollowingsucha discussion,Ipointoutthatformultiplebargraphs,itismoremeaningfulfortheverticalaxistodescriberelative frequenciesthanfrequencies.
Becausetheissueofcomparingfrequenciesversuscomparingrelativefrequenciesissoimportant,itisaddressedinmanyexercisesthroughoutthetextbook.
IalsohavestudentsreflectonconceptsfromChapter2(Problem9e).ExercisesscatteredthroughoutChapters3–5continuetorequirestudenttoapplyconceptsfromChapter2sothatstudentsrememberthisfoundational material.
SECTION3.2LECTURENOTES
Objectives
1. Constructandinterpret piecharts.
2. Constructandinterpret two-waytables.
3. Useatwo-waytabletocomputeproportions.
Copyright c 2016PearsonEducation,Inc.
OBJECTIVE1
Thedistributionofacategoricalvariablecanbedescribedbya piechart,whichisadiskwhereslicesrepresent thecategories.Theproportionofthetotalareaforonesliceisequaltotherelativefrequencyforthecategory representedbytheslice.Therelativefrequenciesareusuallywrittenaspercentages.
1. SomeAmericansatleast12yearsofageweresurveyedaboutthemediumtheyfirstusetofindoutabout newmusic.Themediumsandthepercentagesofrespondentswhofirstusethemareshowninthefollowing table.
MediumPercent
Internet44
Radio32
Television9
Newspaper1
Other14
Source: EdisonResearch
a. UseStatCrunchtoconstructapiechart.
b. FindtheproportionoftheobservationsthatfallintheInternetcategory.
c. FindtheproportionoftheobservationsthatdoNOTfallintheInternetcategory.
d. FindtheproportionoftheobservationsthatfallintheradiocategoryORfallinthetelevisioncategory.
e. Onthebasisofthepiechart,astudentconcludesthat44%ofallAmericansatleast12yearsofage firstusetheInternettofindoutaboutnewmusic.Whatwoudyoutellthestudent?
OBJECTIVE2
A two-waytable isatableinwhichfrequenciescorrespondtotwocategoricalvariables.Thecategoriesofone variablearelistedverticallyontheleftsideofthetable,andthecategoriesoftheothervariablearelistedalong thetop.
2. Inasurveyofoneoftheauthor’sstatisticsclasses,27studentsrecordedwhethertheyhaveaSnapchat account.Afewoftheresponsesareshowninthefollowingtable.
GenderHaveaSnapchataccount?
FemaleNo
MaleNo
FemaleYes
MaleYes
MaleYes
MaleNo
FemaleYes
FemaleYes
Source: J.Lehmann
Constructatwo-waytablebyhandthatcomparestheresponsesandgradesoftheindividuals.
3. UseStatCrunchtoconstructatwo-waytablethatcomparestheresponsesandgradesoftheindividuals.
Copyright c 2016PearsonEducation,Inc.
OBJECTIVE3
4. Thefollowingtablesummarizestheresponsesfromall27studentswhoparticipatedinthesurveyabout whethertheyhaveaSnapchataccount.
Source: J.Lehmann
a. HowmanyofthestudentshaveaSnapchataccount?
b. WhatproportionofthestudentsdoNOThaveaSnapchataccount?
c. WhatproportionofthemenhaveaSnapchataccount?
d. WhatproportionofthestudentswhohaveaSnapchataccountaremale?
5. In2012,atotalof1824adultswereaskedthefollowingquestion:“Doyoufavororopposethedeath penaltyforpersonsconvictedofmurder?”Thefollowingtablecomparestheadults’responseswiththeir ethnicities.
FavororOpposethe African DeathPenalty AmericanCaucasianOther Total Favor 128953108 1189 Oppose 14041481 635 Total 2681367189 1824
Source: GeneralSocialSurvey
a. FindtheproportionofadultsinthesurveywhoopposethedeathpenaltyORareCaucasian.
b. FindtheproportionofadultsinthesurveywhoopposethedeathpenaltyANDareCaucasian.
c. FindtheproportionofCaucasianswhoopposethedeathpenalty.
d. FindtheproportionofAfricanAmericanswhoopposethedeathpenalty.
e. AstudentsaysthatCaucasiansinthestudyaremorelikelytoopposethedeathpenaltythanAfrican AmericansinthestudybecausemoreoftheCaucasians(414)opposethedeathpenaltythanthe AfricanAmericans(140).Whatwouldyoutellthestudent?
HW 1,3,5,9,13,15,17,19,21,23,25,30,34
SECTION3.2TEACHINGTIPS
Themostimportantobjectiveofthissectionistouseatwo-waytabletocomputeproportions.Thisskillwillbe extremelyimportantwhenfindingprobabilities(Sections5.2and5.3).
OBJECTIVE1COMMENTS
Instructorswhodonothavemanycontacthourswithstudentsshouldconsiderskippingpiechartsbecausecategoricalvariablesaremorelikelytobedescribedbyrelativefrequencybargraphs(Section3.2)inintroductory statistics.Onesmalladvantageofpiechartsisthattheyvisuallyconveyhowacategory’srelativefrequencycomparestothewholebetterthanrelativefrequencybargraphsdo.Anotherreasontodevoteatleastbriefcoverage topiechartsisthatstudentswillusepiechartstofindafewprobabilitiesinSections5.1and5.2.
Ingeneral,Ithinkitisagoodideaforstudentstoconstructacoupleofeachtypeofstatisticaldiagramby handsothattheyunderstandwhat’sinvolved,butpiechartsaretheexception.Idon’twanttotroublestudentsto obtainaprotractor,and,besides,themeaningofpiechartsisfairlyobvious.
Copyright c 2016PearsonEducation,Inc.
Whenworkingwithpiecharts,Icontinuetousethecomplementruleandtheadditionrulefordisjointevents withoutcallingthemassuch.
OBJECTIVE2COMMENTS
ItisimportantthatstudentsknowhowtoconvertdatadisplayedincolumnssuchasthedatadisplayedinProblem2 toatwo-waytablebecausedataareoftenstoredincolumnsandthenconvertedbytechnologytotwo-waytables. Thebestwaytoconveytheconnectionbetweenthetwoformatsistohavestudentsconvertaverysmalldataset onceortwicebyhand.
GROUPEXPLORATION:AssociationversusCausation
Thisactivitycouldbeuseddirectlyafterdiscussinghowtoconstructatwo-waytableoritcouldbeusedto introducetwo-waytables.Problem5isanicereminderthatastrongassociationdoesnotguaranteecausation, whichisacommonstudentmisunderstanding.
OBJECTIVE3COMMENTS
Workingwithtwo-waytablesnowisgoodpreparationforusingtwo-waytablestofindprobabilitiesinSections5.2 and5.3.Justaswithmultiplebargraphs,Iemphasizethatcomparingrelativefrequenciesismoremeaningful thancomparingfrequenciesinmostcases.Ialsopointoutthatbothmultiplebargraphsandtwo-waytablescan beusedtodescribetheassociationbetweentwocategoricalvariables.
Studentstendtohavetroubleknowingwhichrowsorcolumnstoworkwith.Toclarify,Imakesuretocompare andcontrasttheresultsforParts(c)and(d)ofProblem4.
Partofthereasonwhytwo-waytablesareaneffectiveformatforstudentstofindprobabilitiesisthatthe intersectionofeventsdescribedbyrowsandcolumnsisapparent.Forexample,Problem5(a)isgoodpreparation forlearningthegeneraladditionruleinSection5.2.WhengoingoverProblem5(a),Iletstudentstellmethatwe shouldnotcountthefrequency414twice.
SECTION3.3LECTURENOTES
Objectives
1. Identify discretevariables and continuousvariables.
2. Constructandinterpret dotplots
3. Identify outliers ofadistribution.
4. Findpercentilesofadistribution.
5. Estimatethecenterofadistribution.
6. Constructandinterpret stemplots.
7. Constructandinterpret time-seriesplots.
OBJECTIVE1
Definition Discretevariable
A discretevariable isavariablethathasgapsbetweensuccessive,possiblevalues.
Copyright c 2016PearsonEducation,Inc.
Definition Continuousvariable
A continuousvariable isavariablethatcantakeonanyvaluebetweentwopossiblevalues.
Identifywhetherthevariableisdiscreteorcontinuous.
1. thenumberofstudentsinaprestatisticscourse
2. thevolume(ingallons)ofwaterinalake
3. aperson’sheight(ininches)
4. theprice(indollars)ofacandybar
Whenidentifyingavariableasdiscreteorcontinuous,weconsiderthepossiblevaluesofthevariable before rounding.
OBJECTIVE2
Toconstructa dotplot,foreachobservation,weplotadotabovethenumberline,stackingdotsasnecessary.
5. Theendorsementsofthe15athleteswiththehighest2015endorsementsareshowninthefollowingtable.
AthleteSportEndorsement(millionsofdollars)
TigerWoodsGolf50 CristianoRonaldoSoccer27 UsainBoltTrackandField21 LebronJamesBasketball44 KobeBryantBasketball26 KevinDurantBasketball35 RoryMcllroyGolf32 RafaelNadalTennis28
MahendraSinghDhoniCricket27 RogerFedererTennis58 MariaSharapovaTennis23 NovakDjokovicTennis31 LionelMessiSoccer22 PhilMickelsonGolf44 NeymardaSilvaSantosJuniorSoccer17
Source: Opendorse
a. Constructadotplotoftheendorsements.
b. Whatobservation(s)occurredthemost?
c. Howmanyobservationsareatleast$40million?
d. Whatproportionoftheobservationsareatmost$30million?
Wetendtousedotplotstodescribedatavaluesofdiscretevariables,buttheycanbeusedtodescribe datavaluesofcontinuousvariables,too.
Definition Frequencyofanobservation
The frequencyofanobservation ofanumericalvariableisthenumberoftimestheobservationoccursin thegroupofdata.
Copyright c 2016PearsonEducation,Inc.
Definition Frequencydistributionofanumericalvariable
The frequencydistributionofanumericalvariable istheobservationstogetherwiththeirfrequencies.
OBJECTIVE3
An outlier isanobservationthatisquiteabitsmallerorlargerthantheotherobservations.
6. Themaximumrecordedlifetimesofanimalsthathavethe10largestmaximumrecordedlifetimesareshown inthefollowingtable.
MaximumRecordedLifetime Animal(years)
OceanQuahog400
BowheadWhale211
RougheyeRockfish205
RedSeaUrchin200
GalapagosTortoise177
ShortrackerRockfish157
LakeSturgeon152
AldabraGiantTortoise152
OrangeRoughy149
WartyOrea140
Source: DiscoveryNews
a. Constructadotplot.
b. Identifyanyoutliers.
OBJECTIVE4
Forthedatadescribedbythefollowingdotplot,27pointsisatthe98thpercentile.
Definition Percentile
The kthpercentile ofsomedataisavalue(notnecessarilyadatavalue)thatisgreaterthanorequalto approximately k%oftheobservationsandislessthanapproximately (100 k)%oftheobservations.
7. FortheendorsementdatainProblem5,findthepercentileofMariaSharapova.
Copyright c 2016PearsonEducation,Inc.
8. Fortheendorsementdata,findthe90thpercentile.
OBJECTIVE5
Forthischapter,wewillalwaysusethe50thpercentiletomeasurethecenterofadistribution.
9. FortheendorsementdatainProblem5,usethe50thpercentiletomeasurethecenter.
OBJECTIVE6
A stemplot (or stem-and-leafplot)breaksupeachdatavalueintotwoparts:the leaf,whichistherightmost digit,andthe stem,whichistheotherdigits.
10. Constructastemplotfortheendorsementdistribution.
A splitstem isastemplotwhichliststheleavesfrom0to4inonerowandliststheleavesfrom5to9inthe next.
11. Constructasplitstembyhandfortheendorsementdistribution.
12. UseStatCrunchtoconstructasplitstemfortheendorsementdistribution.
Stemplotsworkbestwithasmallnumberofobservationswhosevariableisdiscreteorcontinuouswith roundedvalues
OBJECTIVE7
Toconstructa time-seriesplot,weplotpointsinacoordinatesystemwherethehorizontalaxisrepresentstime andtheverticalaxisrepresentssomeotherquantity,andwedrawlinesegmentstoconnecteachpairofsuccessive dots.
13. ThenumberofnewappssubmittedtoApple’sAppStorepermonthareshowninthefollowingtablefor variousyears. NumberofApps
Source: pocketgamer.biz
a. Constructatime-seriesplotofthedata.
b. DescribehowthenumberofnewappssubmittedtoApple’sAppstorepermonthhaschangedover theyears.
c. FindthechangeinthenumberofnewappssubmittedtoApple’sAppstorepermonthfrom2009to 2015.IfthenumberofnewappssubmittedtoApple’sAppstorepermonthchangesbythatsame amountfrom2015to2021,whatwillitbein2021?Doyouhavemuchfaiththatthiswillturnoutto betrue?Explain.
Copyright c 2016PearsonEducation,Inc.
Ifavariablehasincreased(ordecreased)throughoutaperiod,wecannotassumeitwillcontinueto increase(ordecrease)beforeorafterthatperiod.
HW 1,3,5,7,13,15,17,21,23,25,29,31,35,37,39
SECTION3.3TEACHINGTIPS
Studentstendtohaveanyeasytimeconstructingthediagramsdiscussedinthissection,soIstrivetokeepthe emphasisoninterpretingthediagrams,includingmeasuringthecenterandidentifyingoutliers,whicharetwoof fourcharacteristics(center,spread,shape,andoutliers)ofnumericalvariablesthatareemphasizedinChapters3 and4.
Ispendagooddealoftimediscussingpercentilesbecausestudentstendtohavemoretroublewiththisconceptthantheotherconceptsinthissection.Thisworkwilllaygoodgroundworkfortheirstudyofthenormal distribution(Sections5.4and5.5).
OBJECTIVE1COMMENTS
Studentstendtohavetroublegettingtheideaofdiscreteandcontinuousvariables.AlthoughIpresenttheformal definitions,studentstendtolearnthedistinctionbetweenthetwovariablesbetterbyseeingseveralexamples. Forsomestudents,discussingwhethertherearegapsbetweensuccessivepossiblevaluesworksfine.Forother students,ithelpstodiscusswhetherapossiblevaluecanhaveanynumberofdecimalplaces.
Thedistinctionbetweenthesetwotypesofvariableswillnotmatterwhenconstructinghistogramsinthis coursebecausethetextbookpresentsaone-size-fits-allapproach(Section3.4).AsI’vementionedbefore,the textbook’sphilosophyistohavestudentsconstructacoupleofeachtypeofdiagramsotheyhavethegeneralidea andthenallowthemtousetechnologyfromthenon.However,thedistinction will matterwhenfindingpercentiles fromdensityhistograms(Section3.4).
OBJECTIVE2COMMENTS
Whenconstructingdotplots,Ipointoutthattheprocessissimilartoplottingpointsonnumberlines(Section1.1).I remindstudentsthattheyshoulduseuniformscalingonthehorizontalaxis,writethevariablebelowthehorizontal axis,andtitlethediagram.
Whenworkingwithdotplots,Itakeeveryopportunitytofindfrequenciesandrelativefrequenciesthatinvolve thephrases lessthan, greaterthan, atleast,and atmost becausestudentshavesuchdifficultywiththesephrases inintroductorystatisticscourses.Inparticular,studentsfindthephrases atleast and atmost tobethemost challenging.
Thisisagoodtimetoremindstudentsofthedifferenceinmeaningbetweenphrasessuchas between10and 20 and between10and20,inclusive (Section1.1).
Asusual,Ihavestudentsconstructoneortwodotplotsbyhandandfromthenonallowthemtousetechnology. RecallthatinChapters3and4,thehomeworkexercisesarestructuredsothatthereisfirstatleastapairof exerciseswithabout10observations,nextatleastapairofexerciseswithabout25observations,andthenatleast apairofexerciseswithatleast50observations.Thisstructureismeanttoofferinstructorsflexibilityinhaving studentsconstructdiagramsand/orcomputemeasurementswithorwithoutstatisticaltechnology.Forexample, Iwouldhavestudentsconstructadotplotforthe12observationsinExercise19byhand,the24observationsin Exercise21byhand,andthe50observationsinExercise23byusingtechnology.
Thepurpleicon"DATA"flagsexerciseswhosedatasetscanbedownloadedfromMyMathLabandfromthe PearsonDownloadableStudentResourcesforMath&Statisticswebsite: http://www.pearsonhighered.com/mathstatsresources.
Justaswithfrequencydistributionsofcategoricalvariables,Iemphasizethemeaningof frequencydistribution ofanumericalvariable becausetheterminology distribution isusedsomuchinstatistics.
OBJECTIVE3COMMENTS
Atthispointinthecourse,thetextbookinformallydefinesanoutliertobeanobservationthatisquiteabitsmaller
Copyright c 2016PearsonEducation,Inc.
76CHAPTER2LectureNotesandTeachingTips
orlargerthantheotherobservations.AprecisedefinitionisgiveninSection4.3,wheretheIQRandfencesare defined.Exercises21(a)and35ofHomework3.3aremeanttopreparestudentsfortheexplanationaboutwhat shouldbedonewithoutliersthatisincludedinthegreenboxonpage185ofthetextbook.
Adotplotisabetterdiagramtoillustrateanoutlierthanahistogramorastemplotbecausetheoutlierisboth singledout(byadot)anditsdistancefromtheotherobservationsisdisplayed.
ForProblem6,studentsaresurprisedthatananimalcanliveaslongas400years.Theoceanquahogisaclam thatisnativetotheNorthAtlanticOcean.
OBJECTIVE4COMMENTS
Tointroducepercentiles,Iskipthechallengingabstractdefinitionandgiveexamples.Dotplotsareaconvenient waytointroducepercentilesbecausecountingdotsissoconcrete.Displayingadotplotwith100observations suchastheoneincludedinthelecturenotesisagoodwaytogetacrosstheconceptofpercentiles.
Evenaftersuchanintroduction,studentsinitiallyhaveatoughtimewithProblem8.Somestudentsmistakenly thinktheyshouldfind90%ofthelargestendorsement($58million)ratherthanthenumberofobservations(15 endorsements).
Findingpercentilesisagreatprimerforfindingavalueofanormalvariableforagivenprobabilitywhen workingwithanormalcurve(Section5.5).
OBJECTIVE5COMMENTS
Computingthe50thpercentileisanexcellentwaytogetstudentsthinkingaboutthecenterofadistribution.I toyedwithpostponingadiscussionaboutcenteruntilthemean,median,andmodeareintroducedinSection4.1, butIreallywantedstudentstobeengagedwiththematerialinChapter3atahigherlevelthanjustconstructing diagrams.Thisisachievedinanumberofways,butakeyoneishavingstudentsidentifythefourcharacteristics ofanumericalvariable:outliers(thissection),shape(Section3.4),center(thissection),andspread(Section3.4). Thefourcharacteristicsaresummarizedinthegreenboxonpage185ofthetextbook.
Onetechnicaldifficultywiththe50thpercentileisthatitisnotwelldefinedforreallysmalldatasetswith anoddnumberofobservations.Forexample,considerthesetofnumbers2,3,5,8,and9.Accordingtothe textbook’sdefinitionforpercentile,whichisfairlystandard,thenumbersintheinterval [3, 5) areatthe40th percentileandthenumbersintheinterval [5, 8) areatthe60thpercentile.Themedianis5,soitisabitofastretch tosaythatthe50thpercentileandthemedianarethesamething.Therootoftheproblemisthatpercentilesare meantfordatasetsthatinvolvemuchmorethan5observations.
Ialludetothisissueonpage218ofthetextbook,wherethemedianisintroduced,butIdon’tgointodetails becauseI’mmoreinterestedingettingacrossthattherearevariouswaystomeasurethecenterandwemust determinethemostappropriatemeasureforaparticulardataset.Besides,themedianandthe50thpercentileare extremelycloseorequalforlargedatasets,whichiswhenmeasuringthecenterismosthelpful.
OBJECTIVE6COMMENTS
Instructorswhodonothavemanycontacthourswithstudentsshouldconsiderskippingstemplotsbecausehistogramsareusuallyusedtodescribenumericalvariablesinintroductorystatistics.
Forthemostpart,studentshaveaneasytimeconstructingandinterpretingstemplots.Theonetasktheyfind challengingisdeterminingtowhichdecimalplacethedatashouldberoundedbeforeconstructingthestemplot. Roundingsomedatavaluesto,say,theseconddecimalplaceandconstructingastemplot,andthenroundingthe samedatavaluesto,say,thefirstdecimalplaceandconstructingastemplotwillhelpstudentsunderstand.
Recallthattopreparestudentsforintroductorystatistics,Itakeeveryopportunitytosolveproblemswiththe phrases lessthan, greaterthan, atleast,and atmost
Tosavetime,Idonotbothershowingstudentshowtoconstructsplitstems,butIdodemonstratehowtouse StatCrunchtoconstructthemandweinterpretthediagrams.
OBJECTIVE7COMMENTS
Afterhavingconstructedsomanyotherdiagrams,studentshaveaneasytimeconstructingtime-seriesplots.This isgoodpreparationforalltheworkwithscatterplotstocomeinChapters6–10.Iemphasizethatfortimesseriesplots,timeisalwaysdescribedbythehorizontalaxis.Becauseofalltheworkstudentshavedoneonother
Copyright c 2016PearsonEducation,Inc.
diagrams,afterIdrawthetwoaxes,studentsarequicktotellmetouseuniformscaling,indicatetheunitsonthe axes,andtotitlethediagram.
Whenworkingwithtime-seriesplots,Iwarnstudentsthatwecannotextrapolate,althoughIwaittointroduce theterminology extrapolate untilSection6.3,wheretheconceptisdescribedingreatdetail.
GROUPEXPLORATION:DeterminingWhichTableorDiagramtoUse
Thisexplorationhasmeritbecauseitinvolvesaformofcriticalthinkingsimilartodeterminingwhichtypeof confidenceintervalorhypothesistesttouseforaparticulardataset.Avariationonthisexplorationwouldbe topresentgroupsofstudentswithactualdatasetsandhavethemdeterminewhichdiagramscouldbeusedto describethem.Oryoucouldaskthegroupstogoaheadandconstructoneormorediagramsforeachdataset.
SECTION3.4LECTURENOTES
Objectives
1. Constructandinterpret frequencyandrelativefrequencytables
2. Constructandinterpret frequencyhistograms and relativefrequencyhistograms
3. Interpret densityhistograms
4. Describethe shape ofadistribution.
5. Describethe spread ofadistribution.
6. Describethemeaningof model.
OBJECTIVE1
1. Theendorsementsofthe15athleteswiththehighest2015endorsementsareshowninthefollowingtable.
AthleteSportEndorsement(millionsofdollars) TigerWoodsGolf50 CristianoRonaldoSoccer27 UsainBoltTrackandField21 LebronJamesBasketball44 KobeBryantBasketball26 KevinDurantBasketball35 RoryMcllroyGolf32 RafaelNadalTennis28 MahendraSinghDhoniCricket27 RogerFedererTennis58 MariaSharapovaTennis23 NovakDjokovicTennis31 LionelMessiSoccer22 PhilMickelsonGolf44 NeymardaSilvaSantosJuniorSoccer17
Source: Opendorse
Constructafrequencyandrelativefrequencytablefortheendorsementdistribution.
Copyright c 2016PearsonEducation,Inc.
Foraclass [a,b],the lowerclasslimit is a andthe upperclasslimit is b.Tofindthe classwidth ofaclass, wesubtractthelowerclasslimitofaclassfromthelowerclasslimitofthenextclass.
Definition Frequencyofaclassandrelativefrequencyofaclass
The frequencyofaclass isthenumberofobservationsintheclass.The relativefrequencyofaclass is theproportionoftheobservationsintheclass.
Whenusingclasses,the frequencydistributionofanumericalvariable aretheclassestogetherwiththeir frequenciesandthe relativefrequencydistributionofanumericalvariable aretheclassestogetherwiththeir relativefrequencies.
SumofRelativeFrequencies
Foranumericalvariable,thesumoftherelativefrequenciesofalltheclassesisequalto1.
OBJECTIVE2
2. ConstructafrequencyhistogrambyhandfortheendorsementdistributioninProblem1.
3. Constructarelativefrequencyhistogrambyhandfortheendorsementdistribution.
4. Usetechnologytoconstructafrequencyhistogramandarelativefrequencyhistogramfortheendorsement distribution.
• Histogramscanbeusedwithanynumericalvariable(discreteorcontinuous)andanynumberofobservations.
• Histogrambarscantouch,butbar-graphbarsnevertouch.
5. Thebodytemperaturesof130adultsaredescribedbythefollowingrelativefrequencyhistogram.

Source: AmericanStatisticalAssociation
Estimatetheproportionofobservationsthatare
a. greaterthanorequalto98degreesFahrenheitANDlessthan99degreesFahrenheit.
b. lessthan97.5degreesFahrenheit.
c. atleast99degreesFahrenheit.
OBJECTIVE3
Fora densityhistogram,theverticalaxishasunitscalled density sothatthe area ofeachbaristherelative frequencyofthebar’sclass.
Copyright c 2016PearsonEducation,Inc.
6. Theaveragepricesof2014MajorLeagueBaseballR (MLB)ticketsatthestadiumsaredescribedbythe followingdensityhistogram.
Source: TeamMarketingReport
a. Findtheproportionofstadiumswhoseaveragepriceof2014MLBticketsare...
i. between$30and$39.99,inclusive.
ii. lessthan$20.
iii. atleast$20.
b. Estimatethepercentileofa$25averageticketprice.Roundtothenearestdollar.
c. TheaverageticketpriceatNationalsPark,homeoftheWashingtonNationals,isatthe83rdpercentile. Estimatetheaverageticketprice.Roundtothenearestdollar.
d. Identifytheclasswhichcontainsthe50thpercentile,whichisareasonablemeasureofthecenter.
OBJECTIVE4
Definition
Unimodal,bimodal, and multimodaldistributions
Adistributionis unimodal ifithasonemound, bimodal ifithastwomounds,and multimodal ifithas morethantwomounds.
Foraunimodaldistribution,the lefttail isthepartofthehistogramtotheleftofthe50thpercentileandthe righttail isthepartofthehistogramtotherightofthe50thpercentile
Definition
Skewed-left,skewed-right, and symmetricdistributions
• Ifthelefttailofaunimodaldistributionislongerthantherighttail,thenthedistributionis skewed left
• Iftherighttailofaunimodaldistributionislongerthanthelefttail,thenthedistributionis skewed right
• Ifthelefttailofadistributionisroughlythemirrorimageoftherighttail,thedistributionis symmetric.
Copyright c 2016PearsonEducation,Inc.
Anobservationatthe50thpercentile(theapproximatecenter)ofaunimodaldistributiontendstobea typicalobservation.
OBJECTIVE5
7. Thefollowingtwodensityhistogramsdescribecalculusstudents’testscores(Source: J.Lehmann).The lefthistogramdescribesthescoresof35studentsonTest1.Therighthistogramdescribesthescoresof30 remainingstudentsonTest3.
DensityHistogramofTest1Scores
DensityHistogramofTest3Scores
a. Forthetwodistributionsidentifyanyoutliers.
b. Comparetheshapesofthetwodistributions.
c. Comparethecentersofthetwodistributions.Whatdoesthatmeaninthissituation?
d. Comparethespreadsofthetwodistributions.Whatdoesthatmeaninthissituation?
e. Givethreepossiblereasonswhythedistributionsaredifferent.
OrderofDeterminingtheFourCharacteristicsofaDistributionwithaNumericalVariable
Weoftendeterminethefourcharacteristicsofadistributionwithanumericalvariableinthefollowingorder:
1. Identifyalloutliers.
a. Foroutliersthatstemfromerrorsinmeasurementorrecording,correcttheerrors,ifpossible.If theerrorscannotbecorrected,removetheoutliers.
b. Forotheroutliers,determinewhethertheyshouldbeanalyzedinaseparatestudy.
2. Determinetheshape.Ifthedistributionisbimodalormultimodal,determinewhethersubgroupsof thedatashouldbeanalyzedseparately.
3. Estimateandinterpretthecenter.
4. Describethespread.
Copyright c 2016PearsonEducation,Inc.
OBJECTIVE6
Definition Model
A model isamathematicaldescriptionofanauthenticsituation.Wesaythedescription models thesituation.
DiagramTypesofVariablesBenefits
FrequencyBarGraphOnecategoricalvariableComparefrequenciesofcategories. RelativeFrequencyBarGraphOnecategoricalvariableCompareaparttothewhole. MultipleBarGraphTwocategoricalvariablesCompareaparttothewhole.
PieChartOnecategoricalvariableCompareaparttothewhole.
Two-WayTableTwocategoricalvariablesCompareaparttothewhole.
DotplotOnenumericalvariableDescribeindividualvaluesforasmall ormediumnumberofobservations.
StemplotOnenumericalvariableDescribeindividualvaluesforasmall numberofobservations.
FrequencyHistogramOnenumericalvariableComparethefrequenciesofclasses.
RelativeFrequencyHistogramOnenumericalvariableCompareaparttothewhole.
DensityHistogramOnenumericalvariableCompareaparttothewhole.
Time-SeriesPlotTwonumericalvariablesFindtheassociationbetweentwovariables.
HW 1,3,5,9,10,11,13,17,19,23,25,27,33,43,45,49
SECTION3.4TEACHINGTIPS
AlthoughObjectives1–5areallveryimportant,Iemphasizeinterpretingdensityhistogramsthemostbecauseit issuchgoodpreparationforthenormalcurve(Sections5.4and5.5).
OBJECTIVE1COMMENTS
Whenconstructingafrequencyandrelativefrequencytableforanumericalvariable,Ipointoutthattheprocess issimilartoconstructingsuchatableforacategoricalvariable,wheretheclassesactascategories.
ForthedatainTable46onpage174ofthetextbook,itishelpfultocompareTable47(thefrequencyand relativefrequencytable)withthestemplotshowninFig.62.
Becauseofthesimilaritiesdescribedintheprevioustwoparagraphs,studentshaveafairlyeasytimeconstructinghistograms.
Sometextbooksgivecomplexinstructionsabouthowtodeterminetheclasses,butIbelievethereislittle benefitwithhavingstudentsgetsocaughtupinthedetails.Themainpointistohavestudentsconstructoneor twohistogramsbyhandsotheycanbetterinterpretthem.Technologycantakecareoftherest.
Eachtimestudentsarerequiredtoconstructatableand/orhistogramintheexercises,thelowerclasslimit andtheclasswidtharegiven.Thisway,theirtableand/orhistogramwillmatchtheoneintheanswersection. Supplyingthelowerclasslimitandtheclasswidthonatestmakesiteasiertogradestudents’work.
Wheneverstudentsconstructarelativefrequencytable,Iadvisethattheycheckthatthesumoftherelative frequenciessumto1.Iexplainthatthesumequals1forthesamereasonthattherelativefrequenciessumto1 whenworkingwithacategoricalvariable.
OBJECTIVE2COMMENTS
BecausehistogramswillbeusedmorethananyotherdiagraminChapters4and5(andinintroductorystatistics), Imakesurestudentshaveasolidunderstandingofhowtoconstructandinterprethistograms.Inadditionto drawingthecomparisonbetweenconstructingbargraphsandhistograms,Idemonstratethatastemplotrotated counterclockwise90degreesissimilartoahistogram(seeFigs.63and65onpage176ofthetextbook).
Copyright c 2016PearsonEducation,Inc.
Toimpressuponstudentstheimportanceofhistograms,Ishowthemhistogramsfromawidevarietyof mediums,includingnewspapers,blogs,andstatisticalreports.Itisvisceraltohavestudentsinterpretahistogram thathastodowithaneventthathasjustoccurredinthepastweekorso.
Becauseofthewayhistogramsareconstructedinthetextbook,Itendtosolveproblemswiththephrases lessthan and atleast (ratherthan greaterthan and atmost).Recallthatthisisgoodpreparationforintroductory statistics.
OBJECTIVE3COMMENTS
Considerastepfunctionthatisrelatedtothetopsofadensityhistogram.Thatstepfunctionisaprobability densityfunction.Thatiswhyinterpretingdensityhistogramsisexcellentpreparationforworkingwithnormal distributions(Sections5.4and5.5).Forthatreason,IemphasizethemmorethananyotherdiagraminChapter3. ButIdon’tmentionanyofthistostudents,excepttosaythatdensityhistogramswillbeveryhelpfulinChapters4 and5.
Introductorystatisticstextbookstendtogiveshortshrifttodensityhistograms,whichisunfortunate,butthis createstheopportunityfor Pathway toofferadifferentperspectivetostudents.Learningaconceptfromtwo perspectivesisbetterthanfromone.
Itiskeythatstudentsunderstandwhytheareaofabarisequaltotherelativefrequencyofthebar’sclass. Toconveythis,IcomputetheareaofabarsimilartotheoneinFig.73onpage179ofthetextbook.ThenI buildonthisfacttoarguethatthetotalareaofthebarsofadensityhistogramisequalto1andmakegreatuseof theadditionrulefordisjointeventsandthecomplementrule(withoutcallingthemassuch).Bothruleswillbe formallyintroducedinSection5.2.
Thehomeworkexercisesdonotrequirestudentstoconstructdensityhistogramsbuttheydohavestudents interpretthem(seeExercises13–20).SelectexercisesinChapters4and5willcontinuetorequirestudentsto workwithdensityhistograms.
OBJECTIVE4COMMENTS
Whendeterminingtheshapeofadistribution,Itellstudentstonoticethegeneralpatternratherthanfocuson smalldeviationsfromtheoverallpattern.Forexample,foralmostallauthenticunimodaldistributionswewould considersymmetric,thelefthalfofthehistogramisnottheexactmirrorimageoftherighthalf.
Iemphasizethatifadistributionisbimodalormultimodal,it’sagoodideatodeterminewhethersubgroups ofthedatashouldbeanalyzedseparately.
OBJECTIVE5COMMENTS
UntilmeasuresofvariationareintroducedinSection4.2,thebestwaytohavestudentsreflectonspreadistohave themcomparethespreadsoftwoormoredistributionssuchasthetest-scoredistributionsdescribedinProblem7. StudentsarequicktoseethatthedistributionofTest3scoresismorespreadoutthanthedistributionofTest1 scores.
Withtheintroductionofspread,studentsnowknowthefourcharacteristicsofanumericaldistribution(outliers,shape,center,andspread).ThefourcharacteristicswillbefurtherdevelopedandemphasizedinChapter4.
OBJECTIVE6COMMENTS
Toconveytheideaofamodel,Ishowstudentsseveralhistogramsthatrepresentasingledataset,whereeach histogramhasadifferentclasswidth(seethegroupexplorationonpage186ofthetextbook).Thissetsthestage fortheconceptthatanormaldistributionisamodel(it’sextremelyrareforanauthenticdistributiontobeexactly normal).TheconceptofamodelisthemostimportantthemethatrunsthroughallofChapters3–10.
Iadvisestudentstocarefullyexaminetheoverviewoftablesanddiagrams(models)includedinTable48on page186ofthetextbook.AsImentionedearlier,theskillofidentifyingwhichtablesanddiagramsdescribea distributionwell(Exercises43–48)issimilartothekeyskillofidentifyingwhichtypesofconfidenceintervals andhypothesistestsareappropriatetodrawinferencesaboutapopulation.
GROUPEXPLORATION:ComparingHistogramswithDifferentClassWidths Themainpointofthisexplorationisthattheperspectivewegainfromahistogramdependsinpartontheclass
Copyright c 2016PearsonEducation,Inc.
sizewechoose.Thisreinforcestheconceptthatahistogramisamodel.Theexplorationisalsoagoodprimerfor Example1ofSection3.5,whichshowsthatcertainclasswidthscanbemisleading.
SECTION3.5LECTURENOTES
Objectives
1. Explainwhyacertainclasswidthofahistogramcanemphasizeorde-emphasizeanaspectofa distribution.
2. Explainwhythestartingvalueoftheverticalaxisofabargraphoratime-seriesplotcanemphasize orde-emphasizeanaspectofadistribution.
3. Explainwhynonuniformscalingcanbemisleading.
4. Explainwhy three-dimensionalgraphs canbemisleading.
OBJECTIVE1
1. ThedailyapprovalratingsofPresidentObamaaredescribedbythefollowinghistograms.Thelefthistogramdescribesthedailyapprovalratingsin2009usingasmallerclasswidth(2percentagepoints),and therighthistogramdescribesthesameratingsusingalargerclasswidth(5percentagepoints).Whichof thesehistogramsismisleading?Explain.

Source: RasmussenReports

Whenviewingahistogram,keepinmindthatacertainchoiceofclasswidthcanemphasizeordeemphasizecertainaspectsofthedistribution.
OBJECTIVE2
2. ThepercentagesofveteranswhousedGIBillbenefitsfrom2002through2013tocompleteeducations rangingfromvocationaltrainingtopost-graduatearedescribedbythefollowingbargraphsforvarious servicebranches.
Copyright c 2016PearsonEducation,Inc.
a. IftheAirForcewantstoconvincepotentialrecruitshowmuchbettertheeducationcompletionrateis forAirForceveteransthanforveteransoftheotherfourservicebranches,whichbargraphwouldit display?Explain.
b. IftheNavywantstoconvincepotentialrecruitsthattheeducationcompletionrateforNavyveterans isveryclosetotherateforCoastGuardveterans,whichbargraphwoulditdisplay?Explain.
c. FromwhichbargraphcanyoubetterestimatetheeducationcompletionrateforCoastGuardveterans? Explain.Estimatetherate.
3. TheannualrevenuesofMicrosoftR aredescribedbythefollowingtime-seriesplotsforvariousyears.If Microsoftwantstoemphasizethegrowthofitsrevenue,whichtime-seriesplotwoulditwanttodisplay? Explain.
Iftheverticalaxisofatime-seriesplotdoesnotstartat0,thechangesinthevariabledescribedbythat axisarebeingemphasized.
4. NorthwesternUniversitytuitionsaredescribedbythefollowingtime-seriesplotsforvariousyears,where thestartingyearoftheacademicyearisshownonthehorizontalaxis.IfNorthwesternwantstodeemphasizehowmuchitstuitionhasincreased,whichtime-seriesplotwoulditwanttodisplay? Copyright c 2016PearsonEducation,Inc.
Iftheverticalaxisofatime-seriesplotstartsat0,beawarethatthechangesinthevariabledescribed bythataxisarebeingde-emphasized.
OBJECTIVE3
5. Therevenues(inbillionsofdollars)oftheWaltDisneyCompanyR aredescribedbythefollowingbar graphsforvariousyears.IfWaltDisneywantedtoemphasizeitsgrowthinrevenue,whichbargraphwould bemoreconvincing?Whyisthatbargraphmisleading?Whattypeofgraphwouldcontainthesame informationbutnotbemisleading?


Source: WaltDisneyCompany
Ifthecategoriesforabargrapharevariousyearsandthoseyearsdonotincreasebythesameamount, thebargraphcanbemisleading.Atime-seriesplotwouldbeabettergraphtouse.
OBJECTIVE4
6. Atotalof2059randomlyselectedadultswereaskedwhichschoolsubjecthasbeenthemostvaluableto themintheirlives.Theirresponsesaredescribedbythefollowingthree-dimensionalgraph.
Copyright c 2016PearsonEducation,Inc.
Source: TheGallupOrganization
a. Whatisconfusingaboutthisgraph?
b. Determineabettertypeofgraphanddrawit.
c. Whichsubjectreceivedthemostvotes?Whatpercentageofadultsvotedforit?
HW 1,3,5,7,9,11,13,15,17,20,22
SECTION3.5TEACHINGTIPS
Onecouldarguethatthisisthemostimportantsectionofthetextbecausethemediaandbusinessesoftenuse statisticaldiagramsinmisleadingways.
OBJECTIVE1COMMENTS
Togetacrosshowahistogramisimpactedbyitsclasswidth,youcoulduseStatCrunchtodisplayhistograms withvariousclasswidthsforthesamedataset.Oryoucouldhavegroupsofstudentscompletetheexplorationon page186ofthetextbookorProblem1inthelecturenotes.
Infact,youcouldhavegroupsofstudentsworkonallofProblems1–6becausetheyaresointuitive.
OBJECTIVE2COMMENTS
Theimpactofthestartingvalueontheverticalaxisofabargraphortime-seriesplotmightbethemostimportant conceptofthissectionbecausecorporationsandthemediausethistacticsooften.Ipointoutthateventhough thepracticemaybeusedtopersuadeorevenmislead,thereisnothingmathematicallywrongwithit.Iemphasize thatstudentsshouldcarefullyinspectbothaxestomakesuretheyinterpretadiagramcorrectly.
GROUPEXPLORATION:UsingtheVerticalAxistoPersuade
Studentstendtoreallyengageinthisexploration,probablybecausetheyseetheycandirectlybenefitfrombeing criticalconsumersofstatistics.Problems3–5areaniceintroductiontolinearmodelingissuesthatwillbefurther developedinChapters6–9.Problems3–5arealsogoodpreparationforExercises9(d),10(d),11(d),and12(d).
OBJECTIVE3COMMENTS
WhenIlectureonProblem5orfacilitategroupworkonit,Itellstudentsthatthemediaoftenusesbargraphs whentime-seriesplotswouldbemoreappropriate.SimilartomywarningregardingObjective2,Iemphasizethat studentsshouldcarefullyinspectthehorizontalaxisofabargraph.
OBJECTIVE4COMMENTS
Considerfindingthree-dimensionalgraphsinyourlocalnewspaperorothermediatoshowyourstudents.Have themdeterminewhetherthegraphsareconfusing,misleading,orboth.
Copyright c 2016PearsonEducation,Inc.
CHAPTER4OVERVIEW
ThemainpaththroughChapters2–5culminatesinthenormaldistribution(Sections5.4and5.5).Andtheintroductionofthemean(Section4.1),thestandarddeviation(Section4.2),andtheEmpiricalRule(Section4.2)are threesignificantstepstowardthatgoal.
Nomatterhowmuchtimeisdevotedtomeasuresofvariabilityinintroductorystatisticscourses,students tendtohaveasketchyunderstandingofthisconcept,soIadvisefacilitatingplentyofactivitiesthatenhancetheir understandingofit.
Thischapterofferscopiousamountsofcritical-thinkingopportunities,especiallyintheformofcomparisons:
• Studentscomparethemeanwiththemedianforskewed-left,symmetric,andskewed-rightdistributions.
• Studentsidentifywhichofthemeasuresmean,median,andmodeisthebestmeasureofthecenterfora givendataset.
• Studentsidentifywhichofthemeasuresstandarddeviation,IQR,andrangeisthebestmeasureofthe variabilityforagivendataset.
• Studentscompareandinterpretthecentersoftwogroupsofdata.
• Studentscompareandinterpretthevariabilityoftwogroupsofdata.
Manyoftheseconceptscanbediscoveredbyhavinggroupsofstudentscompletetheexplorationsorbyhaving themfindsolutionsfortextbookexamples.
It’sagoodideatocontinueusingdataaboutyourstudents.Iftheyseemedtoespeciallyenjoyacertaindata setthatyouworkedwithinChapter3,considerreturningtothatdatasettonowmeasurethecenter,measurethe variability,andconstructaboxplot(Section4.3).
ConstructingboxplotsisabitmoretechnicalthanthediagramsdiscussedinChapter3,somakesurethat studentsdonotgetsoinvolvedwiththecalculationsthattheylosesightofaboxplot’smanyadvantages:to visualizethecenter(median),thevariability(theIQRandrange),andoutliers.
SECTION4.1LECTURENOTES
Objectives
1. Computethe median ofsomedata.
2. Describethemeaningof sigmanotation
3. Computethe arithmeticmean ofsomedata.
4. Comparethemeansoftwogroupsofdata.
5. Comparethemeanandthemedianofsomedata.
6. Findthemeansandmediansofbimodalandmultimodaldistributions.
7. Findthe mode ofsomedata.
OBJECTIVE1
Definition median
The median ofsomedataisthe50thpercentile.
Copyright c 2016PearsonEducation,Inc.
FindingtheMedianofaDistribution
Tofindthemedianofsomedatavalues,firstlisttheobservationsfromsmallesttolargest.
• Ifthenumberofobservationsisodd,thenthemedianisthemiddleobservation.
• Ifthenumberofobservationsiseven,thenthemedianistheaverageofthetwomiddleobservations.
1. ThepercentagesofadultswhoexercisefrequentlyareshowninthefollowingtableforNortheasternstates andMountainstates.
NortheasternStatePercentMountainStatePercent Connecticut54Arizona53 Maine55Colorado60
Massachusetts53Idaho58
NewHampshire54Montana60
NewJersey48Nevada55 NewYork49NewMexico57 Pennsylvania50Utah54
RhodeIsland48Wyoming54 Vermont65
Source: TheGallupOrganization
a. FindthemedianpercentfortheNortheasternstates.Whatdoesitmeaninthissituation?
b. FindthemedianpercentfortheMountainstates.Whatdoesitmeaninthissituation?
c. ComparetheresultsyoufoundinParts(a)and(b).Whatdoesthismeaninthissituation?
d. AstudentsaysthattheresultyoufoundinPart(a)shouldbegreaterthantheresultyoufoundin Part(b)becausetherearemoreNortheasternstatesthanMountainstates.Whatwouldyoutellthe student?
OBJECTIVE2
Definition SummationNotation
Let x1, x2, x3,..., xn besomedatavalues.The summationnotation Σxi standsforthesumofthedata values:
2. TheTVserieswiththetopfivemost-watchedfinalesandthefinaleviewershipsareshowninthefollowing table.Let xi bethefinaleviewership(inmillions)listedinthe ithrowofthetable.
a. Findthevaluesof x1, x2, x3, x4,and x5
b. Find Σxi.Whatdoesitmeaninthissituation?
Copyright c 2016PearsonEducation,Inc.
FinaleViewership
TVSeries(inmillions)
M*A*S*H105.9
Cheers80.4
Seinfeld76.3
Friends52.5
Magnum,p.i.50.7
Source: USAToday,Reuters,TVGuide,ABC
OBJECTIVE3
Definition Mean
The arithmeticmean (or mean)of n
• Remembertoalwaysincludetheunitsofthemean.
• A formula isanequationthatcontainstwoormorevariables.
3. Thenumbersofteaspoonsofsugarin12fluidouncesofvariousbeveragesareshowninthefollowingtable. Findthemeannumberofteaspoonsofsugarinthebeverages.Thenconstructadotplotandverifythatthe meanisareasonablemeasureofthecenter.
Source: Thecompanies
MeanisaMeasureoftheCenter
Ifadistributionisunimodalandapproximatelysymmetric,themeanisareasonablemeasureofthecenter. Inthiscase,wesaythemeanisatypicalvalue.
4. Thestudentsinoneoftheauthor’sprestatisticsclassesestimatedhisage.Theirestimatesareshowninthe followingtable.
Copyright c 2016PearsonEducation,Inc.
4845454140444744
5035455438404650 3842474349454343 49
Source: J.Lehmann
a. Determinewhetherthemeanshouldbeareasonablemeasureofthecenterofthedistribution.
b. Computethemean.Whatdoesittellusinthissituation?
c. Astudentcalculatesthemeanestimatetobe44.4yearsandconcludesthatatypicalestimatebyall studentsatthecollegewherethesurveywasperformedis44.4years.Whatwouldyoutellthestudent?
Whencomputingthemeanorothermeasuresofdata,wewillroundtoonemoredecimalplacethanthe data.
OBJECTIVE4
5. ThepricesofhotdogsateachofthestadiumsforthebaseballteamsintheNationalLeagueCentral(NLC) andtheNationalLeagueWest(NLW)areshowninthefollowingtable.
NLCHotDogPriceNLWHotDogPrice Team(dollars)Team(dollars) ChicagoCubs5.50ArizonaDiamondbacks2.75 CincinnatiReds1.00ColoradoRockies4.75 MilwaukeeBrewers3.50LosAngelesDodgers5.50 PittsburghPirates3.25SanDiegoPadres4.00 St.LouisCardinals4.25SanFranciscoGiants5.25
Source: TeamMarketingReport
a. DeterminewhetherthemeanhotdogpriceoftheNLCdistributionshouldbeareasonablemeasureof thecenterofthedistribution.DothesamefortheNLWdistribution.
b. FindthemeanhotdogpricefortheNLC.
c. FindthemeanhotdogpricefortheNLW.
d. WhatdoyourresultsinParts(b)and(c)meaninthissituation?
6. a. Computethemeanforthenumbers3,4,and5.
b. Computethemeanforthenumbers3,4,5,and4.
c. AstudentssaysthattheresultyoufoundinPart(b)shouldbelargerthantheresultyoufoundin Part(a)becausetherearemoreobservationsinPart(b).Whatwouldtellthestudent?Includeinyour explanationadiscussionaboutdivisionaswellasacomparisonofdotplotsofthetwodatasets.
OBJECTIVE5
7. Thefollowingdataarethesavings(inthousandsofdollars)offiveadults:15,9,11,6,and3.
a. Findthemeansavings.
b. Findthemediansavings.
c. Supposethattheadultwhohad$15thousandinsavingswins$800thousand(aftertaxes)fromthe lottery.So,theadult’snewsavingsis$815thousand.Findthemeansavingsofthefiveadultsafter thelotterywin.
d. Findthemediansavingsofthefiveadultsafterthelotterywin.
Copyright c 2016PearsonEducation,Inc.
e. Describehowmuchtheoutlier$815thousandaffectedthemeanandthemedian.
TheEffectofOutliersontheMeanandtheMedian
• Themeanissensitivetooutliers.
• Themedianisresistanttooutliers.
8. Thetop-paidfemaleCEOsandtheircompensationsareshowninthefollowingtable.
Compensation CEOCompany(inbillionsofdollars) IreneRosenfeldMondelez21.0 VirginiaRomettyIBM19.3 SafraAdaCatzOracle37.7 PhebeNovakovicGeneralDynamics19.3 CarolMeyrowitzTJK28.7 IndraNooyiPepsiCo22.5 MegWhitmanHewlett-Packard19.6 DebraReedSempra16.9 MarissaMayerYahoo42.1 UrsulaBurnsXerox22.2 MarillynHewsonLockheedMartin33.7 MaryBarraGM16.2
Source: S&PCapitalIQ,USAToday,BespokeInvestmentGroup
a. Findthemeancompensation.
b. Findthemediancompensation.
c. Constructafrequencyhistogramandindicatethemeanandthemedianonit.Describetheshape.
d. Whichmeasuresthecenterbetter,themeanorthemedian?Explain.
e. Explainwhyitmakessensethatthemeanislargerthanthemedian.
HowtheShapeofaDistributionAffectstheMeanandtheMedian
• Ifadistributionisskewedleft,themeanisusuallylessthanthemedianandthemedianisusuallya bettermeasureofthecenter.
• Ifadistributionissymmetric,themeanisapproximatelyequaltothemedianandbotharereasonable measuresofthecenter.
• Ifadistributionisskewedright,themeanisusuallygreaterthanthemedianandthemedianisusually abettermeasureofthecenter.
OBJECTIVE6
9. a. ConsiderhowmanydayseachpresidentoftheUnitedStateshasservedinoffice.Whatshapewould thedistributionhave?
Copyright c 2016PearsonEducation,Inc.
b. ThenumbersofdaysservedbythepresidentsaredescribedbythedotplotinFig.2.1.Themeanand medianareshowninFig.2.2.Howdothemeanandthemedianrelatetothedistribution?Howwell dotheydescribeatypicalobservation?
DaysServedbyU.S.Presidents

Figure2.2: NumbersofdaysservedbyU.S.presidents
NumberofDays
Figure2.1: NumbersofdaysservedbyU.S. presidents(Source: WorldAlmanacandBookof Facts2014)
c. Whatwouldbeamoreusefulwaytoanalyzethissituation?
OBJECTIVE7
Definition Mode
The mode ofsomedataisanobservationwiththegreatestfrequency.Therecanbemorethanonemode, butifalltheobservationshavefrequency1,thenthereisnomode.
10. Foreachdataset,findthemode.
a. Theauthorsurveyedthestudentsinoneofhisprestatisticsclassesaboutthenumberofstatesthey havelivedin.Someoftheirresponsesareshowninthefollowingtable.
1101211
211141
Source: J.Lehmann
b. Theauthorsurveyedthestudentsinoneofhisprestatisticsclassesaboutwhatsuperpowertheywished theyhad.Someoftheirresponsesareshowninthefollowingtable.
flyteleportmindreadflyfly invisibleflyteleportinvisibleclonemyself
Source: J.Lehmann
c. Thetuitionsofthefivemostexpensivecollegesareshowninthefollowingtable.
Copyright c 2016PearsonEducation,Inc.
Tuition,Fees,Room,andBoard College(dollars)
SarahLawrenceCollege61,236 NewYorkUniversity59,837 HarveyMuddCollege58,913 ColumbiaUniversity58,742 WesleyanUniversity58,202
Source: CampusGrotto.com
11. Theauthorsurveyedstudentsinoneofhisstatisticsclassesaboutthehowmanytimesperweektheyeatat fast-foodrestaurants.Adotplotandthemean,median,andmodeareshowninthefollowingfigure.Explain whythemedianandthemean(roundedtotheonesplace)arebettermeasuresofthecenterthanthemode.


HW 1,3,5,7,15,17,19,23,27,29,35,37,43,49,53,59,63
SECTION4.1TEACHINGTIPS
Thisisanextremelyimportantsectionbecausecentraltendencyisattheheartandsoulofstatistics.Themean andthemedianarebothimportantmeasuresofthecenter,butthemodecanbede-emphasizedorskippedbecause itisrarelyusedinstatistics.
Althoughstudentshaveafairlyeasytimecomputingmeans,medians,andmodes,theyoftenconfuseonewith another.Iadvisewarningyourstudentsthattheyshoulddevotesomeoftheirstudytimetokeepingthethree measuresstraightintheirminds.
OBJECTIVE1COMMENTS
InChapter3,thetextbookusesthe50thpercentiletomeasurethecenter.InChapter4,thetextbookusesthe medianinsteadofthe50thpercentiletomeasurethecenter.
Onetechnicaldifficultywiththe50thpercentileisthatitisnotwelldefinedforreallysmalldatasetswith anoddnumberofobservations.Forexample,considerthesetofnumbers2,3,5,8,and9.Accordingtothe textbook’sdefinitionforpercentile,whichisfairlystandard,thenumbersintheinterval [3, 5) areatthe40th percentileandthenumbersintheinterval [5, 8) areatthe60thpercentile.Themedianis5,soitisabitofastretch tosaythatthe50thpercentileandthemedianarethesamething.Therootoftheproblemisthatpercentilesare meantfordatasetsthatinvolvemuchmorethan5observations.
Ialludetothisissueonpage218ofthetextbook,wherethemedianisintroduced,butIdon’tgointodetails becauseI’mmoreinterestedingettingacrossthattherearevariouswaystomeasurethecenterandwemust determinethemostappropriatemeasureforaparticulardataset.Besides,themedianandthe50thpercentileare extremelycloseorequalforlargedatasets,whichiswhenmeasuringthecenterismosthelpful.
Whenfindingamedian,Iemphasizethatthedatavaluesmustbelistedfromsmallesttolargestbeforeidentifyingthemiddleobservationortheaverageofthetwomiddleobservations.Ialsoemphasizethatthemedianisa
Copyright c 2016PearsonEducation,Inc.
measureofthecenterandthatstudentsmustindicateitsunits.
OBJECTIVE2COMMENTS
Oncestudentsrealizethat xi representsthesumoftheobservations xi,theycaneasilyfindcorrectresults,but Itrytomakesuretheyunderstandtheroleofthesubscriptsinhopesofbetterpreparingthemforthestandard deviationformula,whichisintroducedinSection4.2.Justlikewiththemedian,Iemphasizethatstudentsshould indicatetheunitsforthesumofsomedatavalues.
MuchmorecomplicatedsummationsareincludedinSection8.4,whichfocusesonstatisticsformulas.Ifyou donotplantouseChapter8,considerhavingstudentsworkabitwiththesummationsinSection8.4tobetter preparestudentsforintroductorystatistics.
OBJECTIVE3COMMENTS
Becausemanystudentshavecomputedaveragesinpreviousclasses,theyarerelievedtoknowthatthemeanis thesamemeasure.
AftercompletingProblem3,Isaythatifweimaginethatthehorizontalaxisofthedotplotisaseesawand thedotsarebowlingballsthatallhavethesameweight,themean(9.5teaspoons)wouldbethebalancepoint.I emphasizethatifadistributionisunimodalandsymmetric,themeanisareasonablemeasureofthecenterand wesayitisatypicalvalue.Ialsoemphasizethatstudentsshouldindicatethemean’sunits.
Itcanbeinstructivetousetechnologytoconstructahistogramthatdescribesauniform,symmetricdistribution thatinvolvesalargenumberofobservationsandhavestudentsestimatethecenterbyinspection.Thenyoucan usetechnologytocomputethemeanandcompareitwiththestudents’estimates.
Tellstudentsthattheywillneedtoroundthemeanandothermeasuresofdatatoonemoredecimalplacethan thedatasothattheiranswersmatchtheonesinthebackofthebook(andmostlikelyonMyMathLab).
OBJECTIVE4COMMENTS
Measuringthecenterofadatasetisinteresting,butcomparingthemeansof twodatasets providesextrapunch:
• Whichcarmodeltendstohavebettergasmileages?
• Studentsofwhichsectionofprestatisticstendtoperformbetterontests.
• Whichethnicgrouptendstospendmoremoneyonhip-hopmusic?
Iremindstudentsthatbeforewecomparethemeansoftwoormoredatasets,weshouldcheckthateachdistributionisunimodalandsymmetric.Ialsoremindthemthatwecannotdrawconclusionsaboutindividualsnotinthe datasets(Chapter2).
EvenafterIhavediscussedwithstudentsatgreatlengththatforunimodal,symmetricdistributionsthemean isagoodmeasureofthecenterandareasonabletypicalvalue,somestudentsthinkthatthemeanweightof 20,000randomlyselectedcatswouldbegreaterthanthemeanweightoffiverandomlyselectedhumanadults (Exercise63).Itseemsthatsuchstudentsthinkofthemeanasasumofobservations,perhapsbecausethe formulaforthemeanincludesasummation.Ormaybetheydon’treadtheexercisecarefully.Inanycase,this misconceptioncertainlydeservessomeattention!Problem6isanicewaytoaddressthisissue.Problem6could befollowedbythecomparisonofcatsandadulthumansorseeExercise64foracomparisonofhighschooland NBAbasketballplayers’heights.
OBJECTIVE5COMMENTS
Thefundamentalconceptsforthisobjectivearethatthemeanissensitivetooutliersandthemedianisresistantto outliers.Problem7suggeststhattheseconceptsaretrue,butaftergoingoversuchanexample,Idiscuss why the conceptsmakesense(seethetwoparagraphsdirectlyafterExample6).
Thetwoconceptsleadtotheconclusionsabouthowthemeanandthemediancompareforskewed-left, symmetric,andskewed-rightdistributions(seethesolutiontoProblem5ofExample7andtheparagraphsdirectlyfollowingExample7).Itakemytimemakingtheseconnectionsbecausetheyinvolvesomanyterminologies/concepts.StudentswillneedtoapplythismaterialmanytimesinSections4.1and4.2.
Copyright c 2016PearsonEducation,Inc.
GROUPEXPLORATION:ComparingtheMeanandtheMedian
Becausegroupsofstudentshaveaneasytimewiththisexplorationanditaddressesimportantconcepts,Iadvise usingthisexplorationtointroduceObjective5.
OBJECTIVE6COMMENTS
Problem9servesasanicereminderthatweoftenseparatebimodalandmultimodaldistributionsintotwoormore groupsandthenfindthemeanand/orothermeasuresofeachgroup.
OBJECTIVE7COMMENTS
Iwastemptedtoexcludethemodefromthetextbookbecauseitisusedsomuchlessoftenthanthemeanand themedianinstatistics,andforgoodreason.However,somereviewerswanteditsinclusion,soIdidsofor completeness.Nonetheless,ifyoudoincludethetopic,Iadviseyoutogiveitlighttreatment.Theonlyhomework sectionsinthetextbookthatincludethemodeareHomework4.1(Exercises15,16,27,28,and31),Chapter4 ReviewExercises(Exercises3and4),andChapter4Test(Exercise4).
TheparagraphsdirectlyfollowingExample9giveaniceexampleinwhichthemodeisnotareliablemeasure ofthecenter.
SECTION4.2LECTURENOTES
Objectives
1. Computethe range ofsomedata.
2. Computethe standarddeviation ofsomedata.
3. Comparethemeansandstandarddeviationsoftwogroupsofdata.
4. Applythe EmpiricalRule tosomedata.
5. Determinewhetheranobservationisunusual.
6. Comparetherangeandthestandarddeviation.
7. Computethe variance ofsomedata.
OBJECTIVE1
Definition Range
The range ofsomedatavaluesisgivenby
R = largestnumber smallestnumber
1. Thepricesof8randomlyselectedcalculatorsareshowninthefollowingtable.
Source: Amazon.com
Findtherangeinpricesandexplainwhatitmeansinthissituation.
Copyright c 2016PearsonEducation,Inc.
OBJECTIVE2
Definition Standarddeviation
The standarddeviation of n datavalues x1, x2, x3,..., xn isgivenby s = (xi x)2 n 1
Thestandarddeviationmeasuresthespread.Thegreaterthespread,thegreaterthestandarddeviation willbe.
2. ThehighwaygasmileagesofdifferentversionsoftheAudiR8Spyderare23,20,22,and19,allinmiles pergallon.Findthestandarddeviationofthegasmileages.
OBJECTIVE3
3. Ahouseholdsuffersfrom foodinsecurity ifatsomepointintheyearthehouseholdeatsless,goeshungry, oreatslessnutritionalmealsbecausethereisnotenoughmoneyforfood.Thepercentagesofhouseholds sufferingfromfoodinsecuritiesareshowninthefollowingtablefortheWestNorthCentralandPacific states.
WestNorthFoodInsecurityPacificFoodInsecurity CentralState(percentofhouseholds)State(percentofhouseholds) Iowa12.7Alaska14.0 Kansas14.8California16.2 Minnesota10.7Hawaii14.2 Missouri17.1Oregon16.7 Nebraska13.4Washington15.0 NorthDakota7.7 SouthDakota12.3
Source: FeedingAmerica;U.S.DepartmentofAgriculture
a. ComparethemeanfoodinsecuritiesfortheWestNorthCentralstatesandforthePacificstates.What doesyourcomparisonmeaninthissituation?
b. ComparethestandarddeviationsofthefoodinsecuritiesfortheWestNorthCentralstatesandforthe Pacificstates.Whatdoesyourcomparisonmeaninthissituation?
c. EventhoughthemeanfoodinsecurityfortheWestNorthCentralstatesislessthanthemeanfood insecurityforthePacificstates,oneoftheWestNorthCentralstates(Missouri)hasalargerpercentageofhouseholdswithfoodinsecuritythaneveryoneofthePacificstates.Explainwhythisisnot surprisingbyreferringtothestandarddeviationoffoodinsecuritiesfortheWestNorthCentralstates andthePacificstates.
OBJECTIVE4
4. Supposethat100statisticsstudents’scores(inpoints)onatestaredescribedbythefollowingdotplot.The meanis70pointsandthestandarddeviationisapproximately10points.
Copyright c 2016PearsonEducation,Inc.

a. Describethedistribution.
b. Findthepercentageofthescoresthatarewithinonestandarddeviationofthemean.
c. Findthepercentageofthescoresthatarewithintwostandarddeviationsofthemean.
d. Findthepercentageofthescoresthatarewithinthreestandarddeviationsofthemean.
EmpiricalRule
Ifadistributionisunimodalandsymmetric,thenthefollowingstatementsaretrue.
• Approximately68%oftheobservationsliewithinonestandarddeviationofthemean.So,approximately68%oftheobservationsliebetween x s and x + s.
• Approximately95%oftheobservationsliewithintwostandarddeviationsofthemean.So,approximately95%oftheobservationsliebetween x 2s and x +2s.
• Approximately99.7%oftheobservationsliewithinthreestandarddeviationsofthemean.So,approximately99.7%oftheobservationsliebetween x 3s and x +3s
BeforeapplyingtheEmpiricalRuletoaparticulardistribution,wemustmakesurethedistributionis unimodalandsymmetric.Otherdistributionscanhavequitedifferentpercentages.
5. Thebodytemperaturesof130adultsaredescribedbythefollowingrelativefrequencyhistogram.Themean is 98 25◦Fandthestandarddeviationis 0 73◦F(Source: AmericanStatisticalAssociation).

Source: AmericanStatisticalAssociation
a. ExplainwhytheEmpiricalRulecanbeapplied.
b. ApplytheEmpiricalRule.
c. UsetheEmpiricalRuletoestimatethe number oftheadultswhohavebodytemperaturesbetween 97 52◦Fand 98 98◦F.Verifyyourresultbyreferringtothehistogram.
Copyright c 2016PearsonEducation,Inc.
d. UsetheEmpiriicalRuletoestimatethepercentageoftheadultswhohavebodytemperatureslessthan 96 79◦FORgreaterthan 99 71◦F?
e. UsetheEmpiricalRuletoestimatethe number oftheadultswhohavebodytemperaturesgreaterthan 99.71◦F.
6. TheWechslerIQtestmeasuresaperson’sintelligence.TheIQs(inpoints)ofsomepeoplearedescribedby thefollowingdensityhistogram.Someofthebarshavebeenleftblankonpurpose.
a. Estimate M .
b. Estimate x
c. Estimate s.
OBJECTIVE5
Ifanobservationismorethantwostandarddeviationsawayfromthemean,werefertotheobservationas unusual.
7. InProblem5,the130adultshaveameanbodytemperatureof 98.25◦Fwithstandarddeviation 0.73◦F.Is abodytemperatureof 96.3◦Funusual?
OBJECTIVE6
SummaryofMeasuringCenterandSpread
• Ifadistributionisunimodalandsymmetric,thenweusuallyusethemeantomeasurethecenterand thestandarddeviationtomeasurethespread.
• Ifadistributionisskewed,thenweusuallyusethemediantomeasurethecenterandtherangeto measurethespread.
OBJECTIVE7
Definition Variance
The variance isthesquareofthestandarddeviation.
8. InProblem2,wefoundthatthestandarddeviationofthegasmileagesofdifferentversionsoftheAudiR8 Spyderis1.8257milespergallon.Findthevariance.
Copyright c 2016PearsonEducation,Inc.
ThemeaningsandsymbolsofthemeasureswehavediscussedinSections4.1and4.2areshowninthe followingtable.
MeasureWhatItMeasuresSymbol meancenter x mediancenter M modecenter(nostandardsymbol) rangespread R standarddeviationspread s variancespread s2
HW 1,3,7,9,13,19,21,23,27,29,31,33,35,37,43,45,47,55
SECTION4.2TEACHINGTIPS
Standarddeviationisanextremelyimportantfoundationalconcept.Inparticular,itwillbeusedagreatdealwhen workingwithnormaldistributions(Sections5.4and5.5).Althoughvarianceservesaroleinanintroductory statisticscourse,itwillnotbeusedinsubsequentchaptersofthistext.
OBJECTIVE1COMMENTS
Studentshaveaneasytimewithfindingtherange.Asusual,Iemphasizethatstudentsshouldstatetheunits.
OBJECTIVE2COMMENTS
Atthebottomofpage241ofthetextbook,thereisaniceexampleoftheshortcomingofusingtherangeto measurespread.Topreparestudentsfortheforthcomingstandarddeviationformula,Iemphasizethatwhenwe subtracttwonumbers,theresultisthedistancebetweenthenumbersortheoppositeofthedistance,depending onwhichofthetwonumbersislarger.
Studentshaveatoughtimefollowingthederivationforthestandarddeviationformula.Thefirsttwoparagraphsonpage242ofthetextbookareanicewaytogetacrosswhywesquarethedifferences.Ratherthango intodetailaboutwhywedivideby n 1 ratherthan n,whichwouldconfusestudentsmorethanhelp,Isimply saythatitturnsouttobemoreusefultodivideby n 1.
Tocomputeastandarddeviation,Ifirstdemonstratehowtouseatable(seeTable22onpage243ofthe textbook).ThenIshowhowtoavoidusingatablebypressingalltheappropriatebuttonsonacalculator.Some studentspreferthetableapproachandotherspreferthelatterapproach.Iwarnstudentsthatonthenexttest theywillhavetouseoneofthesetwomethodstofindthestandarddeviationforadatasetcontainingaboutfour observations.
Withallthenecessarycalculations,somestudentsforgetthatstandarddeviationmeasuresthespreadofsome observations,soIrepeatthismanytimes,remindingthemofthegeometricmeaningofdifferences.
Afterhavingstudentscalculateoneortwostandarddeviations,Ishowthemhowtocomputestandarddeviation usingStatCrunch.Asusual,Iemphasizethattheyshouldincludeunitsintheirresult.
OBJECTIVE3COMMENTS
Bycomparingthestandarddeviationoftwodatasets,studentsstarttoseehowstandarddeviationcanbehelpful. NotonlydoesProblem3demonstratemakingsuchacomparison,italsodemonstratesthesubtlepointthatwe mustconsiderthemeansandthestandarddeviationsoftwogroupsofdataifwewantsomehinttowardhowthe largest(orsmallest)observationscompare.
OBJECTIVE4COMMENTS
TheEmpiricalRuleisahighlightofthechapterandwillbeusedfrequentlyinSection4.2andwillobviouslybe animportantconceptwhendiscussingthenormaldistribution(Sections5.4and5.5).
Topreparestudentsforthegeometricsignificanceofexpressionssuchas x s and x + s intheEmpirical
Copyright c 2016PearsonEducation,Inc.
100CHAPTER2LectureNotesandTeachingTips
Rule,IsketchafiguresimilartoFig.51onpage245ofthetextbooktogetacrossthegeometricsignificanceof thenumbers 7 ± 3.Thisisasimpleidea,butmanystudentslackthenumbersensetosortthisoutontheirown.
GROUPEXPLORATION:EmpiricalRule
ThisactivityismeanttointroducetheEmpiricalRule.IadviseusingtheexplorationbecausetheEmpiricalRule issoimportant.Becausethecalculationsaresomewhatinvolved,Iliketolisttheresultsoftheexplorationin stagessothatgroupsofstudentscanmakesurethey’reontherighttrack.
IfyouchoosetolectureontheEmpiricalRule,Iadviseworkingwithadatasetconsistingof100observations socomputingpercentageswillbeconvenient.Ialsoadviseconstructingadatasetwithameanandastandard deviationthatareeasytoperformcalculationswith,suchastheonesinExample4: x =70 and s ≈ 10.Forafirst example,itishelpfultodisplaythedatawithadotplot(asopposedtoahistogram)sothatindividualobservations canbecounted.Subtractingthenumberofobservationsnotinanintervalfrom100canmovethingsalong.
OncestudentsunderstandhowtheEmpiricalRuleconnectswithadotplotofdata,itisimportanttomoveon todensityhistograms.Thisshouldgosmoothlyduetostudents’workwithdensityhistogramsinSections3.4and 4.1.TheconnectionbetweentheEmpiricalRuleanddensityhistogramswillsetasolidfoundationforthenormal distribution.
Problem5isaniceapplicationoftheEmpiricalRule.Itisharderthantheexercises,butitwillprimestudents fortacklingsuchharderproblemswhenworkingwiththenormalcurve(Sections5.4and5.5).
Problem6requiresstudentstogobackward:fromprobabilitiestofindingthemeanandthestandarddeviation. Whenaconceptisimportant,studentswillgainabetterunderstandingbyhavingtogoforwardandbackward. TheEmpiricalRuleiscertainlyworththatemphasis.
OBJECTIVE5COMMENTS
Fornow,thetextbookdefinesanobservationtobeunusualifitismorethan2standarddeviationsawayfromthe mean.Oncestudentscanfindprobabilitiesforthenormalcurvewithgreaterprecision,thetextbookwillusethe moreprecisecutoffof1.96standarddeviations(Section5.5).
OBJECTIVE6COMMENTS
Afterestablishingthatweshouldusetherangetomeasurethespreadforaskeweddistribution,Iremindstudents thattherangeisacrudewaytomeasurespreadandsaythatinSection4.3wewilllearnanothermeasureofspread (theIQR)thatwillhelpcompletethepicture.
OBJECTIVE7COMMENTS
Aftercalculatingastandarddeviation,itiseasyforstudentstofindthevariance. Becauseofthepreferredunitsofstandarddeviationandtheusefulnessinusingstandarddeviationtofind z-scores,variancewillnotbeusedinsubsequentsections.
SECTION4.3LECTURENOTES
Objectives
1. Find quartiles ofsomedata.
2. Findthe interquartilerange ofsomedata.
3. Constructa boxplot todescribeadistributionwithoutoutliers.
4. Identifyoutliers.
5. Constructa boxplot todescribeadistributionwithoneormoreoutliers.
6. Comparetheboxplotsoftwogroupsofdata.
Copyright c 2016PearsonEducation,Inc.
OBJECTIVE1
Definition Firstquartile,secondquartile, and thirdquartile
The firstquartile, secondquartile,and thirdquartile arethe25th,50th,and75thpercentiles,respectively.
Weusethesymbols Q1 , Q2 ,and Q3 tostandforthefirst,second,andthirdquartiles,respectively.
1. Studentsinoneoftheauthor’sstatisticsclassesweresurveyedaboutthenumberofhourstheyspending watchingvideos,movies,andtelevisionshowsonaweekday.Herearetheanonymousresponses(inhours) oftenofthestudents:4,10,3,2,0,2,1,2,4,7(Source: J.Lehmann).
a. Constructahistogramtodeterminewhetherthemeanorthemedianisthebettermeasureofthecenter. Explain.
b. Find Q2 (themedian).
c. Find Q1
d. Find Q3
e. UsetechnologytoverifytheresultsyoufoundinParts(b),(c),and(d).
f. DescribethemeaningoftheresultsyoufoundinParts(b),(c),and(d).
Ifsomedatahaveanoddnumberofdatavalues,donotincludethemedianinthelowerhalfofthedata whenfinding Q1 .Likewise,donotincludethemedianintheupperhalfofthedatawhenfinding Q3 .
OBJECTIVE2
Definition InterquartileRange
The interquartilerange (IQR)isgivenby IQR = Q3 Q1
TheIQRmeasuresthespreadofthemiddle50%oftheobservations(from Q1 to Q3 ).
2. InProblem1,wefound Q1 =2, Q2 =2 5,and Q3 =4 forthedataaboutthenumberofhoursstudents spendwatchingvideos,movies,andtelevisionshowsperweekday:4,10,3,2,0,2,1,2,4,7.
a. CalculatetheIQR.
b. Calculatetherange.
c. WhatdotheIQRandtherangemeaninthissituation?
d. DiscusswhethertheIQRandtherangearesensitivetotheoutlier10hours.
TheIQRisresistanttooutliersandtherangeissensitivetooutliers.
OBJECTIVE3
3. ThenumberofannualsharkattacksinHawaiiareshowninthefollowingtablefortheyears2001–2014. 3653437 134310137
Source: FloridaMuseumofNaturalHistory
Copyright c 2016PearsonEducation,Inc.
a. Constructaboxplot.
b. Whichislonger,theleftpartoftheboxortherightpart?Whichislonger,theleftwhiskerorthe rightwhisker?Assumingthedistributionisunimodal,isthedistributionskewedleft,skewedright,or symmetric?
c. Refertotheboxplottoestimatetherange.Whatdoesitmeaninthissituation?
d. RefertotheboxplottoestimatetheIQR.Whatdoesitmeaninthissituation?
Ifonewhiskerislongerthantheother,thatdoes not meanmoreobservationsarerepresentedbythe longerwhisker.Itmeansthattheobservationsrepresentedbythelongerwhiskeraremorespreadoutthan theapproximatelyequalnumberofobservationsrepresentedbytheshorterwhisker.
MeaningofBoxplotsThatDescribeDistributionswithoutOutliers
• Aboxplotthatdescribesadistributionwithoutoutliersconsistsoffourparts:theleftwhisker,the leftpartofthebox,therightpartofthebox,andtherightwhisker.Eachpartrepresents25%ofthe observations.
• ThefulllengthoftheboxisequaltotheIQR.
Thefollowingtwostatementsapplytounimodaldistributions:
• Iftheleftpartoftheboxisatleastaslongastherightpartandtheleftwhiskerisquiteabitlonger thantherightwhisker,thenthedistributionisskewedleft.
• Iftherightpartoftheboxisatleastaslongastheleftpart,andtherightwhiskerisquiteabitlonger thantheleftwhisker,thenthedistributionisskewedright.
4. Thepercentagesofresidentswhoarenonreligiousaredescribedbytheboxplotforthefiftystates.

Source: TheGallupOrganization
a. Itturnsoutthedistributionisunimodal.Onthebasisoftheboxplot,isthedistributionsymmetric, skewedleft,orskewedright?Explain.
b. Estimatetherange.Whatdoesitmeaninthissituation?
c. EstimatetheIQR.Whatdoesitmeaninthissituation? Copyright c 2016PearsonEducation,Inc.
OBJECTIVE4
Definition Fences
The leftfence andthe rightfence ofsomedatavaluesaregivenby
• leftfence = Q1 1 5 IQR
• rightfence = Q3 +1 5 IQR
Definition Outlier
An outlier isanobservationthatislessthantheleftfenceorgreaterthantherightfence.Wesaythatthe outlierlies outside thefences.
5. InProblems1and2,wefound Q1 =2, Q3 =4,andIQR =2 forthedataaboutthenumberofhours studentsspendwatchingvideos,movies,andtelevisionshowsperweekday:4,10,3,2,0,2,1,2,4,7. Identifyandinterpretanyoutliers.
OBJECTIVE5
6. Constructaboxplotthatdescribesthedataaboutthenumberofhoursstudentsspendwatchingvideos, movies,andtelevisionshowsperweekday:4,10,3,2,0,2,1,2,4,7.
7. Whichislonger,theleftpartoftheboxortherightpart?Whichislongertheleftwhiskerortheright whisker?Whatdoyourresponsestellyouabouttheshapeofthedistribution?
OBJECTIVE6
8. ThenumberofannualsharkattacksinCalifornia,Florida,andHawaiiaredescribedbythefollowing boxplotsfortheyears2001–2014.

Source: FloridaMuseumofNaturalHistory
a. Comparethecentersofthethreedistributions.Whatdoesthismeaninthissituation?
b. Comparethespreadsofthethreedistributions.Whatdoesthismeaninthissituation?
c. ComparetheIQRofFlorida’sdistributiontotherangeofCalifornia’sdistribution.Whatdoesthis meaninthissituation?
Copyright c 2016PearsonEducation,Inc.
HW 1,3,5,11,13,15,17,21,23,25,29,33,41,45,47
SECTION4.3TEACHINGTIPS
Thissectioncouldbeskippedbecauseboxplotswillnotbeusedinsubsequentchapters,butboxplotsareuseful inintroductorystatistics.Inparticular,theyareaconvenientwaytoidentifyoutliers.
OBJECTIVE1COMMENTS
Somestudentsthinkthatthedistancesbetweentheminimumobservationand Q1, Q1 and Q2, Q2 and Q3,andso on,areallequal.ThediagraminFig.79onpage260ofthetextbookmakesitclearthatthisisnottrue.
Ingeneral,studentsfinditeasytofindthequartiles,buttheydoneedtoberemindedthatforanoddnumber ofobservations,wedonotincludethemedianinthelowerorupperhalfwhenfinding Q1 or Q3,respectively. AlthoughtheTI-84followsthispracticeforanyoddnumberofobservations,StatCrunchfollowsthispractice onlywhenthenumberofobservationsisoneofthefollowingoddnumbers:3,7,11,15,19,....
OBJECTIVE2COMMENTS
OncestudentsunderstandhowtocomputetheIQR,Iemphasizethatifadistributionisunimodalandsymmetric, standarddeviationisabettermeasureofvariabilitythantheIQRbecausestandarddeviationtakesintoaccount alltheobservationsbuttheIQRtakesintoaccountonlytwoobservations.
Foradistributionthatisnotunimodalandsymmetric,IsuggestthatstudentscomputeboththeIQRandthe rangetomeasurethevariabilitybecauseeachmeasureinvolvesonlytwoobservations.Thismotivatesconstructing boxplots.
Asimplebutgoodcritical-thinkingquestionistoaskstudentswhytheIQRisresistanttooutliersbutthe rangeissensitivetooutliers.
OBJECTIVE3COMMENTS
Constructingboxplotsofdistributionsthatdonothaveoutliersisreallyjustasteppingstonetoconstructingboxplotsofdistributionsthatdohaveoutliers,whichisObjective5.
Itellstudentsthattheboxplotistheonlydiagramwehavediscussedwhosefeaturesallowustovisualizeall threeoffollowing:themedian,theIQR,andtherange.
Oncestudentsunderstandhowtofindthequartiles,itiseasyforthemtoconstructaboxplot.Itistheinterpretationofboxplotsthatchallengessomestudents.Inparticular,somestudentsthinkthatifonepartoftheboxplot, saytheleftwhisker,isshorterthananotherpart,saytherightwhisker,thenfewerobservationsarerepresented bytheleftwhisker.DrawingaboxplotaboveadotplotsuchasinFig.85onpage263ofthetextbookcandispel thismisconception,althoughitwillbeevenclearerifyouworkwiththefollowingcontriveddatabecausenoneof theobservationsareequaltothequartiles:0,4,6,19,21,49,51,and100.Oryoucanfacilitatetheexploration, whichaddressesthisissue.
Comparingaboxplotandahistogramofthesamedatacanalsobeinstructive(seeFigs.85and86onpage 263ofthetextbook).Thiscanbefollowedupbyhavingstudentsmatchhistogramswithboxplots(Exercises5–8).
Asusual,afterstudentshaveconstructedoneortwoboxplotsbyhand,Iallowthemtousetechnology.
OBJECTIVE4COMMENTS
Oncestudentsarecomfortablecalculatingthefencesandidentifyingtheoutliers,Itrytomakesuretheyunderstandwhytheprocessmakessense.Inparticular,Idiscussthattheleftfenceisadistanceof1.5IQRtotheleftof Q1 andtherightfenceisadistanceof1.5IQRtotherightof Q3.
Afterdisplayingseveralboxplotsfordistributionsthathavejustoneortwooutliers,it’sfuntodisplaya boxplotforthedistributionofinterestratesatthewebsiteLendingClub,whichhas186outliers(Exercise11). Anotheroptionistodisplayboxplotsforthedistributionsofhighwayandcitygasmileagesofcars(Exercise28).
OBJECTIVE5COMMENTS
Whenintroducinghowtoconstructaboxplotofadistributionwithoutliers,Ifirstconstructaboxplotasifthere werenooutliers.ThenIerasetheappropriatewhisker(s),drawthefences,drawtheshorterwhisker(s),andplot
Copyright c 2016PearsonEducation,Inc.
theoutlier(s).ThisprogressionhelpsstudentsbuildonwhattheyalreadylearnedaboutboxplotsinObjective3.
ItellstudentsthatevenifIalreadyhaveasenseofadistributionbyviewingadiagramotherthanaboxplot, Ioftenstillusetechnologytoconstructaboxplottocheckforoutliers.ThenIgeneralize,explainingthatwe cangainmuchinsightbyconstructingseveraltypesofdiagramsofonedistribution.Andthiscanbedonevery quicklywiththeuseoftechnology.
OBJECTIVE6COMMENTS
Problem5demonstratesameaningfulcomparisonofboxplots.
GROUPEXPLORATION:DeterminingtheMeaningofaBoxplot
Thisisanicewaytoconveytostudentsthatthelengthsofthepartsofaboxplotindicatethevariabilityofthe observationsandnotthenumberofobservations.
Usually,I’mafanofhavingstudentsusetechnologywhencompletingexplorationssotheycanfocusonthe conceptsandnotgetboggeddownwithconstructingdiagramsorcomputingvalues,butforthisexplorationit helpsstudentstoconstructtheboxplotsbyhandtoseewhat’sgoingon. Copyright c 2016PearsonEducation,Inc.
CHAPTER5OVERVIEW
ThischapterdrawsheavilyonconceptsaddressedinChapters1–4.Thefoundationofprobability(Chapter5) israndomness,whichwasdiscussedinChapter2.Thecomplementrule,additionrulefordisjointevents,and thegeneraladditionrule(allinSection5.2)haveallbeenaddressedwithoutcallingthemassuchwhenworking withproportionsinChapters1and3.Thenormalcurve(Section5.4and5.5)reliesoncentraltendencyconcepts (Section4.1),variationconcepts(Section4.2),anddensityhistograms(Section3.4).
Becausesomuchofthegroundworkhasbeenestablishedinpreviouschapters,youwillbepleasedhow quicklystudentspickuponmanyconceptsinthischapter.
Ifyouaretightontime,considerskippingSections5.3and5.5.Sections5.1and5.2provideimportant developmentforSection5.4,whichisthegrandfinaleofthefirstfivechapters.UponcompletionofSection5.4, studentsshouldhaveasolidfoundationforquiteabitofanintroductorystatisticscourse,includingthecrucial samplingdistribution.
SECTION5.1LECTURENOTES
Objectives
1. Computeandinterpret probabilities
2. Use simulation toestimateaprobability.
3. Usethe equallylikelyprobabilityformula tofindprobabilities.
4. Describepropertiesofprobability.
5. Useapiecharttofindprobabilities.
6. Useadensityhistogramtofindprobabilities.
7. Usethe EmpiricalRule tofindprobabilities.
OBJECTIVE1
• RecallfromSection2.1that ifwerandomlyselectoneitemfromagroupofitems,eachitemhasthe samechanceofbeingselected.
• Wecallaprocessthatselectsitemsrandomlya randomexperiment
Definition Probability
The probability ofanoutcomefromarandomexperimentistherelativefrequencyoftheoutcomeifthe experimentwererunaninfinitenumberoftimes.
1. Anexperimentconsistsofrollingasix-sideddieonce.Findandinterprettheprobabilityofrollinga5.
Aprobabilitydoesnottelluswhattoexpectifwerunanexperimentasmallnumberoftimes.
OBJECTIVE2
Usingtechnologytoimitatearandomexperimentiscalleda simulation
Copyright c 2016PearsonEducation,Inc.
2. Usetechnologytosimulateflippingacointhegivennumberoftimes.Discusshowwelltherelativefrequencyoftailsestimatestheprobabilityofgettingtails.
a. 5times b. 100times c. 1100times d. 10,100times
Byrunningarandomexperimentalargenumberoftimes,wecanuserelativefrequencytoestimate theprobability.
OBJECTIVE3
3. Anexperimentconsistsofrollingasix-sideddieonce.Findandinterprettheprobabilityofrollinganodd number.
Definition Samplespace
The samplespace ofarandomexperimentisthegroupofallpossibleoutcomes.
Definition Event
An event issomeoftheoutcomesinthesamplespace,allofthem,ornoneofthem.
EquallyLikelyProbabilityFormula
Ifthesamplespaceofarandomexperimentconsistsof n equallylikelyoutcomesandanevent E consists of m ofthoseoutcomes,then
Iftheoutcomesofarandomexperimentarenotequallylikely,thenwecannotusetheequallylikely probabilityformula.
4. Foragroupof10studentsinoneoftheauthor’sprestatisticsclasses,thereare4sociologymajors,2 graphicdesignmajors,3communicationsmajors,and1artmajor.Noneofthestudentsaredouble-majors. Assumeonestudentisrandomlyselectedfromthegroup.UseSforsociology,Gforgraphicdesign,Cfor communications,andAforart.
a. Constructafrequencyandrelativefrequencytableofthestudents’majors.
b. Find P (S), P (G), P (C),and P (A).HowdoyourresultstieintothetableyouconstructedinPart(a)?
c. Find P (math)
d. Findtheprobabilityofrandomlyselectingasociology,graphicdesign,communications,ORartmajor.
e. Find P (S)+ P (G)+ P (C)+ P (A).Whydoestheresultmakesense?
OBJECTIVE4
• An impossibleevent doesnotcontainanyoutcomesofthesamplespace.
• A sureevent (or certainevent)containsalltheoutcomesinthesamplespace.
• Aneventthatcontainsjustoneoutcomeisa single-outcomeevent
Copyright c 2016PearsonEducation,Inc.
ProbabilityProperties
• Theprobabilityofanimpossibleeventisequalto0.
• Theprobabilityofasureeventisequalto1.
• Theprobabilityofaneventisbetween0and1,inclusive.
• Thesumoftheprobabilitiesofallthesingle-outcomeeventsinthesamplespaceisequalto1.
Ifyouevercalculateaprobabilitytobenegativeorgreaterthan1,youshouldrealizethatyou’vemade anerror.
5. Astudentsurveysotherstudentsabouttheirfavoritesport.Foreachsport,thestudentcalculatestheprobabilityofrandomlyselectingthatsportfromtheresponses(seethefollowingtable).Whatwouldyoutell thestudent?
6. Astudentcalculatesthattheprobabilityofrandomlyselectingacarthathasgasmileageof25milesper gallonis 0 32.Whatwouldyoutellthestudent?
Ifasituationinvolvesaproportionorprobability,itcanbeinterpretedtoinvolvetheotheraswell.
OBJECTIVE5
7. Someadultemployeesweresurveyedabouthowoftentheyarelateforwork.Thepercentagesforvarious responsesaredescribedbythefollowingpiechart(Source: YouGov).

Findtheprobabilitythatapersonrandomlyselectedfromthesurveyis
a. neverlatetowork.
b. latetoworkatleastonceamonth.
c. latetoworkatmostonceamonth.
Copyright c 2016PearsonEducation,Inc.
Definition Randomvariable
A randomvariable isanumericalmeasureofanoutcomefromarandomexperiment.Weoftenusea capitallettersuchas X tostandforarandomvariable.
8. Let X betheoutcomeofrollingasix-sideddieonce.Findthegivenprobability.
a. P (X =5)
b. P (X ≤ 3)
c. P (X> 3)
d. P (2 ≤ X ≤ 5)
e. P (2 <X< 5)
OBJECTIVE6
Thefollowingdensityhistogramdescribesthenumberofmammalspeciesthreatenedineachcountryintheworld. Somecountrieshaveatleast80threatenedmammalspecies,butthebarswouldnotbevisible.
ThreatenedMammalSpecies,byCountry Density
Numberofthreatenedmammalspecies
Let X bethenumberofthreatenedmammalspeciesinarandomlyselectedcountry.Findthegivenprobability.
1. P (10 ≤ X ≤ 40)
2. P (X< 30)
3. P (X ≥ 30)
InterpretingtheAreaofaBarofaDensityHistogram
Wecaninterprettheareaofabarofadensityhistogramas
• theproportionofobservationsthatlieinthebar’sclass.
• theprobabilityofrandomlyselectinganobservationthatliesinthebar’sclass.
Copyright c 2016PearsonEducation,Inc.
OBJECTIVE7
9. TheWechslerIQtestmeasuresaperson’sintelligence.ThedistributionofIQscoresisunimodaland symmetric.Thetestisdesignedsothatthemeanscoreis100pointsandthestandarddeviationis15 points(Source:EssentialsofWAIS-IVAssessment,ElizabethLichtenbergeretal.).Findtheprobabilityof randomlyselectingapersonwhohasIQbetween55and145points.
HW 1,3,5,7,15,19,23,29,31,35,41,45,49,53,55,57,59,65,73
SECTION5.1TEACHINGTIPS
Akeyconceptofthischapterisrandomness.IfyouskippedSection2.1,Iadviseaddressingtherandomness conceptsincludedinSection2.1now.
OBJECTIVE1COMMENTS
ForProblem1,studentsarequicktosaythattheprobabilityis 1 6 .Butonatest,somestudentstendtothinkthe probabilityis 5 6 (andotherwronganswers),soitisworthrevisitingthisbasictypeofproblemseveraltimesonce otherconceptsinthissectionhavebeenaddressed.
OBJECTIVE2COMMENTS
IbelievecompletingasimulationlikeinProblem2isareallyeffectivewaytogetacrosshowrelativefrequencies canestimateprobabilities.
GROUPEXPLORATION:PerformingaSimulation
InsteadofgoingoverProblem2,youcouldhavegroupscompletethisexploration.Problem4oftheexploration canclarifyatypicalstudentmisconception.
OBJECTIVE3COMMENTS
CompletingProblem3isagreatprimerfordefining samplespace and event.Itisalsoanicewaytointroducethe equallylikelyprobabilityformula.
ThediscussionaboutthespinnerinFig.6onpage288ofthetextbookisagreatwaytounderscorethe importancethatoutcomesmustbeequallylikelytoapplytheequallylikelyprobabilityformula.
SolvingProblem4willbegreatpreparationfordiscussingprobabilityproperties(thenextobjective).
OBJECTIVE4COMMENTS
Whendiscussingtheprobabilityproperties,IrefertotheresultswefoundforProblem4.Iemphasizethat becauseofwhatweknowaboutrelativefrequencies,itmakessensethatthesumoftheprobabilitiesofallthe single-outcomeeventsinthesamplespaceisequalto1.
Ialsoemphasizethataprobabilitymustbebetween0and1,inclusive.Otherwise,studentstendtomiss catchingthatthey’vemadesucherrorsontests.
OBJECTIVE5COMMENTS
Problem8isagoodreminderaboutinequalitynotation(Section1.1),whichsomestudentsstrugglewith.
OBJECTIVE6COMMENTS
Somestudentscontinuetostrugglewithinequalitynotation,buttheseissuesarelargelyresolveduponcompletion ofthisobjective.
OBJECTIVE7COMMENTS
Problem9isanicereminderabouttheEmpiricalRule(Section4.2),whichisgoodpreparationforthenormal
Copyright c 2016PearsonEducation,Inc.
curve(Section5.4).
SECTION5.2LECTURENOTES
Objectives
1. Usethe complementrule tofindprobabilities.
2. Usetheadditionrulefordisjointeventstofindprobabilities.
3. Usethegeneraladditionruletofindprobabilities.
OBJECTIVE1
1. Foragroupof10studentsinoneoftheauthor’sprestatisticsclasses,thereare4sociologymajors,2 graphicdesignmajors,3communicationsmajors,and1artmajor.Noneofthestudentsaredouble-majors. Assumeonestudentisrandomlyselectedfromthegroup.UseSforsociology,Gforgraphicdesign,Cfor communications,andAforart.
a. Findtheprobabilityofrandomlyselectingacommunicationsmajor.
b. FindtheprobabilityofNOTrandomlyselectingacommunicationsmajor.
Definition Complement
The complement ofanevent E istheeventthatconsistsofalltheoutcomesnotin E.Wewrite“NOT E” tostandforthecomplementof E
A Venndiagram consistsofoneormoreshadedcirclesthatareallborderedbyarectangle.Theregioninside therectanglerepresentsthesamplespaceandtheregioninsideeachcirclerepresentsanevent.
ComplementRule
Foranyevent E, P (NOT E)=1 P (E)
2. ConsidertheexperimentofrandomlyselectinganAmerican.TheprobabilitythatthepersonisAfrican Americanis0.13(Source: U.S.CensusBureau).FindtheprobabilityofselectingapersonwhoisNOT AfricanAmerican.
OBJECTIVE2
Definition Disjointevents
Twoeventsare disjoint (or mutuallyexclusive)iftheyhavenooutcomesincommon.
Copyright c 2016PearsonEducation,Inc.
3. Acommitteeconsistsof3Republicans,5Democrats,and2Independents.Onepersonisrandomlyselected fromthecommittee.Use R forRepublican, D forDemocrat,and I forIndependent.
a. Aretheevents R and I disjoint?Explain.
b. Find P (R).
c. Find P (I).
d. Find P (R OR I).
e. Find P (R)+ P (I)
f. ComparetheresultsofParts(d)and(e).
If E and F aredisjointevents,then
AdditionRuleforDisjointEvents
4. Aten-sideddieisrolledonce.Use F tostandforanoutcomelessthan4and E tostandforanoutcome greaterthan8.Findthegivenprobabilities.
a. P (F )
b. P (E)
c. P (F OR E)
5. Theweights(inpounds)oftype2diabetespatientsfrom2006to2007aredescribedbythefollowing densityhistogram.Theweightsareroundedtotheonesplace.
WeightsofType2DiabetesPatients Density Pounds
a. Findtheprobabilitythatapatientrandomlyselectedfromthestudywouldweighbetween150and 299pounds,inclusive.
b. Findtheprobabilitythatapatientrandomlyselectedfromthestudywouldweighlessthan150pounds ORatleast300pounds.
c. Findtheprobabilitythatapatientrandomlyselectedfromthestudywouldweighbetween150and 199pounds,inclusive,ORbetween250and299pounds,inclusive.
Copyright c 2016PearsonEducation,Inc.
OBJECTIVE3
6. Atotalof1287randomlyselectedadultswereaskedthefollowingquestion.“Doyouagreeordisagree? Gaycouplesshouldhavetherighttomarryoneanother.”Theirresponsesandtheirreligiouspreferences aresummarizedinthefollowingtable.
ProtestantCatholicJewishOtherNone Total Agree 2301711246167 626
NeitherAgreeNorDisagree 713612224 154 Disagree 3089426043 507 Total 60930115128234 1287
Source: GeneralSocialSurvey
Anadultisrandomlyselectedfromthosesurveyed.Use A tostandforanadultwhoagreesand N tostand foranadultwhohasnoreligiouspreference.Findthegivenprobability.Roundtothethirddecimalplace.
Foranyevents E and F ,
GeneralAdditionRule
7. Asix-sideddieisrolledonce.Findtheprobabilityofrollinganumberthatisatmost3ORisodd.
8. Wereturntothesurveyaboutgaycouples’righttomarryversusreligiouspreference(seethefollowing table).FindtheprobabilityofrandomlyselectingasurveyedadultwhodisagreesORisCatholic.Roundto thethirddecimalplace.
ProtestantCatholicJewishOtherNoneTotal yellowAgree2301711246167626
NeitherAgreeNorDisagree713612224154 Disagree3089426043507 Total609301151282341287
Source: GeneralSocialSurvey
Ifthegeneraladditionruleisusedwithtwodisjointevents,theresultwillbethesameasusingthe additionrulefordisjointevents.
HW 1,3,5,9,13,17,23,27,35,43,47,53,55,59,65
SECTION5.2TEACHINGTIPS
Thecomplementruleandtheadditionrulefordisjointeventsareextremelyimportantpreparationforthe normaldistribution(Section5.4),whichisahighlightofthecourse.
OBJECTIVE1COMMENTS
Afterhavingworkedsomuchwiththeproportion-of-the-restproperty,studentsarequicktofindthesolutionto
Copyright c 2016PearsonEducation,Inc.
Problem1(b).Fromtheirperspective,thecomplementruleissimplyanothernamefortheproportion-of-the-rest property.
Becausestudentsaresoquicktopickuponthecomplementrule,theydon’treallyneedtoseeitillustrated withaVenndiagram,butIshowthemoneanywaytogetthemusedtoviewingsuchdiagrams.
OBJECTIVE2COMMENTS
WhenworkingwithdensityhistogramsandpiechartsinChapter3,studentswerebasicallyapplyingtheaddition rulefordisjointeventswithoutrealizingit,sostudentscannoweasilylearnthisrule.
HavinggroupsofstudentsworkonProblem3isanexcellentwaytointroducetheadditionrulefordisjoint events.Studentsarequicktosaythat P (R OR I) and P (R)+ P (I) are"thesamething."
Becauseofstudents’pastworkwithdensityhistograms,theyhaveaneasytimewithProblem5.
OBJECTIVE3COMMENTS
Whenworkingwithtwo-waytablesinChapter3,studentswerebasicallyapplyingthegeneraladditionrule withoutrealizingit,sotheyeasilylearnthisrulenow.Eventhoughstudentsalreadyhavetheidea,Iemphasize thatwesubtractP(EANDF)toaccountforthedouble-countingandillustratewithaVennDiagram.
GROUPEXPLORATION:GeneralAdditionRule
Thisexplorationcanbeusedtointroducethegeneraladditionrule.Evenifsomegroupsofstudentsareunableto completetheexploration,whateverportiontheyareabletocompletewillserveasagoodprimerasyougoover therestoftheexplorationandthendiscussthegeneraladditionruleingeneral.
SECTION5.3LECTURENOTES
Objectives
1. Findandinterpret conditionalprobabilities
2. Determinewhethertwoeventsare independent or dependent
3. Usethemultiplicationruleforindependenteventstofindprobabilities.
OBJECTIVE1
Definition Conditionalprobability
If E and F areevents,thenthe conditionalprobability P (E | F ) istheprobabilitythatEoccurs,giventhat Foccurs.
Itisimportanttokeepstraightthedifferenceinmeaningsof P (E AND F ) and P (E | F )
1. Atotalof989randomlyselectedadultswereaskedwhethertheyareinterestedininternationalissues.The followingtablecomparestheirresponsesandtheirages.
Copyright c 2016PearsonEducation,Inc.
Table2.1: InterestinInternationalIssuesversusAge
AgeGroup(years)
18–3031–4041–5556–89 Total
Veryinterested 173667106 226
Moderatelyinterested 8169128184 462
Notatallinterested 77657980 301 Total 175170274370 989
Source: GeneralSocialSurvey
Supposeapersonisrandomlyselectedfromthesurvey.
a. Find P (notatallinterested).Whatdoesthismeaninthissituation?
b. Find P (notatallinterested | ages18–30years).Whatdoesthismeaninthissituation?
c. ComparetheresultsyoufoundinParts(a)and(b).Whatdoesyourcomparisonmeaninthissituation?
2. InProblem1,weworkedwiththedatashowninthefollowingtable.
AgeGroup(years)
18–3031–4041–5556–89 Total
Veryinterested 173667106 226
Moderatelyinterested 8169128184 462
Notatallinterested 77657980 301 Total 175170274370 989
Source: GeneralSocialSurvey
a. Findtheprobabilitythatanadultrandomlyselectedfromthesurveyisbetween56and89yearsof age,giventhepersonisnotatallinterestedininternationalissues.
b. Findtheprobabilitythatanadultrandomlyselectedfromthesurveyisbetween31and40yearsof age,giventhepersonisnotatallinterestedininternationalissues.
c. ComparetheresultsyoufoundinProblems1and2.Whatdoesyourcomparisonmeaninthissituation?
InProblem1,wecomparedtwoconditionalprobabilities,whichwasquiteinstructive.InProblem2,we comparedtwootherconditionalprobabilitiesaboutthesamesituation,butthecomparisonwasnotinstructive.The mainpointisthatcareshouldbetakentounderstandthemeaningofprobabilitiesbeforejumpingtoconclusions bycomparingthem.
3. Apersonrollsasix-sideddieonce.Findtheprobabilitythattheoutcomeis
a. a5,giventhenumberisodd.
b. anoddnumber,giventhenumberisatmost3.
OBJECTIVE2
Definition Independentevents and dependentevents
Twoevents E and F are independent if P (E | F )= P (E).Theeventsare dependent if P (E | F ) and P (E) are not equal.
Determinewhetherthegivenevents E and F areindependent.
Copyright c 2016PearsonEducation,Inc.
1. Experiment:Acollegestudentwhoistakingprestatisticsisrandomlychosen. Event E:Thestudentattemptseveryexerciseinthetextbook. Event F :Thestudentpassesthecourse.
2. Experiment:Apersonflipsacoinandrollsasix-sideddie. Event E:Thecoinlandsonheads. Event F :Thepersonrollsa2.
Iftwoeventsaredependent,thisdoesnotnecessarilymeanthatoneeventcausestheother.
4. Atotalof1310adultsweresurveyedaboutwhethertheyhadagreatdealofconfidence,onlysomeconfidence,orhardlyanyconfidenceinthepress(newspapersandmagazines).Thefollowingtablecompares theirresponsesandtheirages.
Confidence CaucasianAfricanAmericanHispanicOther Total AGreatDeal 56271716 116 OnlySome 370908333 576 HardlyAny 439837521 618 Total 86520017570 1310
Source: GeneralSocialSurvey
a. Findtheprobabilitythatapersonrandomlyselectedfromthesurvey i. hadagreatdealofconfidenceinthepress. ii. hadagreatdealofconfidenceinthepress,giventhepersonisHispanic.
b. DeterminewhetherhavingagreatdealofconfidenceinthepressisindependentofbeingHispanic. Whatdoesthatmeaninthissituation?
OBJECTIVE3
MultiplicationRuleforIndependentEvents
If E and F areindependentevents,then
5. a. Apersonflipsacoinandrollsasix-sideddie.Whatistheprobabilitythatthepersonrollsa5AND thecoinlandsontails?
b. Threecoinsareflipped.Whatistheprobabilitythatalltheoutcomesareheads?
6. Apersonflipsacoin8times.
a. Findtheprobabilityofalternatingbetweengettingheadsandtails,beginningwithtails:THTHTHTH.
b. Findtheprobabilityofgettingalltails.
c. ComparetheresultsyoufoundinParts(a)and(b).
• Supposeapersonflipsacoin7timesandgetsalltails.Whatistheprobabilityofgettinganothertails? Therearetwowaystointerpretthequestion:
1. Whatistheprobabilityofgetting8tailsinarow?
2. Whatistheprobabilityofgettingatail,giventhatthefirst7outcomeswerealltails?
Copyright c 2016PearsonEducation,Inc.
Manystudentsconfuseinterpretations(1)and(2).Itisimportanttounderstandthemeaningofeach.
• Beforeusingthemultiplicationruleforindependentevents,wemustcheckthattheeventsaretruly independent.
7. Forthespringsemester2014,43%ofstudentsatBellevueCollegeweremale(Source: BellevueCollege). If4studentswererandomlyselectedfromthecollegeduringthatsemester,whatistheprobabilitythatat least1ofthestudentswouldhavebeenmale?
SummaryofProbabilityRules
Let E and F beevents.
• P (NOT E)=1 P (E) Complementrule
• If E and F aredisjoint,then P (E OR F )= P (E)+ P (F ) Additionrulefordisjointevents
• P (E OR F )= P (E)+ P (F ) P (E AND F ) Generaladditionrule
• If E and F areindependent,then P (E AND F )= P (E) · P (F ) Multiplicationrulefor independentevents
HW 1,3,5,7,11,15,19,23,25,27,29,33,35,39,45,51,55,57
SECTION5.3TEACHINGTIPS
Ifyouaretightontime,youcouldskipthissectionbecauseitisnotneededforsubsequentsections.Onecould arguethattheconceptsinthissectionareatahigherlevelthantherestoftheconceptsinthetextandshouldbe firsttaughtinanintroductorystatisticscourse.
OBJECTIVE1COMMENTS
ForProblem1,somestudentsthinkthat P (notatallinterested | ages18–30years) mustbesmallerthan P (notatallinterested) becausethesamplespaceof P (notatallinterested | ages18–30years) isjustadultsages 18–30yearsinthestudywhereasthesamplespaceof P (notatallinterested) issomuchlarger(alladultsinthe study).
ForProblem2,IemphasizethatitisnotmeaningfultocomparetheresultsofParts(a)and(b)andexplain why.
EvenifallgroupsofstudentsgetcorrectanswersforProblem3(a),Iemphasizethedifferencebetween P (5 | odd), P (odd | 5), P (5),and P (odd) becausestudentsoftenconfusethesewhentakingatest.
GROUPEXPLORATION:ConditionalProbability
Becausethisactivityishands-on,studentswouldlikelygainabetterunderstandingofconditionalprobability thanbyotheractivities.InProblem5,makesurestudentsgivecarefulthoughttowhytheirresultisaconditional probability.Otherwise,theymightmissthewholepoint.
OBJECTIVE2COMMENTS
Moststudentsbelievethatiftwoeventsaredependent,thenoneeventcausestheother.Todismantlethisbelief, Ipointoutthatevenifitturnsoutthatpeoplewhodrinkorangejuiceeverydaygetsicklessoften,thatdoesnot meanthatorangejuicecausesgoodhealth.Itmightbethatpeoplewhodrinkorangejuicetendtotakebettercare ofthemselvesinallsortsofways(exercise,eathealthy,getenoughsleep,etc)andit’sreallybecauseofthese otherbehaviorsthattheygetsicklessoften.
Copyright c 2016PearsonEducation,Inc.
OBJECTIVE3COMMENTS
Aperson’scell-phonebatterygoesdeadrightatthemomenttheygetstuckinanelevator.Atypicalresponse wouldbe,"Whatarethechancesofthat!"Takingthequestionliterally,itallcomesdowntohowwedefinethe probability.ThebulletpointjustafterProblem6addressesthisissue.Idiscussthiscarefullywithmystudents. Oncestudentslearnthemultiplicationrule,theytendtowanttouseitregardlessofwhethertwoeventsare independent.Icautionthemtoalwayscheckwhethereventsareindependentbeforeusingthisrule.
SECTION5.4LECTURENOTES
Objectives
1. Describethemeaningofa normalcurve anda normaldistribution.
2. Computeandinterpret z-scores.
3. Use z-scoresandtablestofindprobabilitiesforanormaldistribution.
4. Usetechnologytofindprobabilitiesforanormaldistribution.
OBJECTIVE1
• Whenanormalcurvedescribesadistributionperfectly,wesaytherelationshipis normal or normally distributed
• Whenanormalcurvedescribesadistributionfairlywell(butnotexactly),wesaythedistributionis approximatelynormal or approximatelynormallydistributed
PropertiesofaNormalCurve
• Anormalcurveisunimodalandsymmetric.
• Themeanisequaltothemedian.Botharethecenterofthecurve.
Area-ProbabilityEqualityProperty
Theareaunderanormalcurveforanintervalisequaltotheprobabilityofrandomlyselectinganobservation thatliesintheinterval.
TotalAreaundertheNormalCurve
Thetotalareaunderanormalcurveisequalto1.
Theprobabilityofasinglevalueofanormallydistributedvariableis0.
1. Supposethataprestatisticsclasstakesafirsttestandtheirscoresaredescribedwellbythefollowingnormal curve.
Copyright c 2016PearsonEducation,Inc.
a. Whatistheprobabilitythatarandomlyselectedstudentscoredmorethan80points?
b. OnTest2,themeanscoreis20pointslessthanthemeanscoreonTest1,butthestandarddeviation isthesame.Assumingthescoresarestillnormallydistributed,sketchthecurvethatdescribesthe scores.
c. OnTest3,themeanscoreisthesameasonTest2,butthestandarddeviationislarger.Assumingthe scoresarestillnormallydistributed,sketchacurvethatdescribesthescores.
ComparingNormalCurveswithDifferentStandardDeviations
Anormalcurveforadistributionwithlargerstandarddeviationwillbewiderandflatterthananormalcurve foradistributionwithsmallerstandarddeviation.[Drawafigure.]
EmpiricalRule
Ifadistributionisnormal,thentheprobabilitythatarandomlyselectedobservationlieswithin
• onestandarddeviationofthemeanisapproximately0.68.So,about68%ofthedataliebetween x s and x + s.[Drawafigure.]
• twostandarddeviationsofthemeanisapproximately0.95.So,about95%ofthedataliebetween x 2s and x +2s.[Drawafigure.]
• threestandarddeviationsofthemeanisapproximately0.997.So,about99.7%ofthedataliebetween x 3s and x +3s.[Drawafigure.]
OBJECTIVE2
Definition z-Score
The z-score ofanobservationisthenumberofstandarddeviationsthattheobservationisfromthemean.If theobservationliestotheleftofthemean,thenits z-scoreisnegative.Iftheobservationliestotherightof themean,thenits z-scoreispositive.
Copyright c 2016PearsonEducation,Inc.
z-ScoreFormula
The z-scoreofanobservation x isgivenby z = x x s
2. The2014draftpicksforNBAbasketballteamshaveheightsthatareapproximatelynormallydistributed withmean79.1inchesandstandarddeviation3.0inches(Source: nbadraft.net).ShabazzNapierwasthe shortest2014draftpickwithaheightof72inches.Findthe z-scorefor72inches.Whatdoesitmean?
StandardNormalDistribution
Ifadistributionisnormallydistributed,thenthedistributionoftheobservations’ z-scoresisalsonormally distributedwithmean0andstandarddeviation1.Wecallthedistributionof z-scoresthe standardnormal distribution
OBJECTIVES3and4
3. Findtheprobabilitythata z-scorerandomlyselectedfromthestandardnormaldistributionis
a. lessthan 2 3.
b. greaterthan1.6.
c. between0.5and2.8
Theentriesinthestandardnormaldistributiontableareareastothe left ofavalue.Wehavetosubtract anentryfrom1tofindtheareatotheright.
4. RecallthatscoresontheWechslerIQtestarenormallydistributedwithmean100pointsandstandard deviation15points.Let X betheIQ(inpoints)ofarandomlyselectedperson.Findtheprobabilitythata randomlyselectedpersonhasanIQ
a. lessthan90points.
b. greaterthan125points.
c. between90and125points.
5. Recallthatthe2014draftpicksforNBAbasketballteamshaveheightsthatareapproximatelynormally distributedwithmean79.1inchesandstandarddeviation3.0inches.Findtheprobabilitythatarandomly selecteddraftpickhasheight
a. lessthan72inches.
b. greaterthan81inches.
c. between77inchesand87inches.
InterpretingtheAreaUnderaNormalCurveforanInterval
Wecaninterpretthearea A underthenormalcurveforanintervalas
• theprobabilitythatarandomlyselectedobservationwilllieintheinterval.
• theproportionofobservationsthatlieintheinterval.
Copyright c 2016PearsonEducation,Inc.
HW 1,3,7,9,13,23,25,29,35,43,47,49,53,55,61,65
SECTION5.4TEACHINGTIPS
Thisisacrucialsectionbecauseitlaysafoundationforthesamplingdistribution,whichisakeyfoundational conceptinanintroductorystatisticscourse.
OBJECTIVE1COMMENTS
Becauseofpastworkwiththeshapeofdistributions,studentsarequicktoobservethatthenormalcurveis unimodal,symmetric,andthemeanisequaltothemedian.Becauseofpastworkwithdensityhistogramsand probability,studentsarealsoquicktosaythattheareaunderthenormalcurveforanintervalisequaltoa probability.Theycanalsoobservethattheareaundertheentirenormalcurvemustbeequalto1becausethesum oftheareasofallthebarsofadensityhistogramisequalto1.
Becauseofpastworkwithdensityhistograms,studentshaveaneasytimewithParts(a)and(b)ofProblem1, buttheyoftenstillneedcoachingwithPart(c).
BecauseofpastworkwiththeEmpiricalRule,aquickdiscussionofthisruleinthecontextofprobabilitywill suffice.
OBJECTIVE2COMMENTS
Tocircumventstudentsfromusingthe z-scoreformulawithoutunderstanding,Icarefullyconnecttheformula withourpastworkwiththeEmpiricalRule.Theuseof z-scorestocompareobservationsfromtwodifferent distributionswillbeintroducedinSection5.5.
OBJECTIVES3and4COMMENTS
Iemphasizethattheentriesgiveninthestandardnormaldistributiontablefor z-scoresareareastothe left ofa value.
Becauseofpastworkwithdensityhistograms,studentsarequicktopickuponhowtoapplythecomplement ruleforPart(b)ofProblems4and5.However,theystillhaveatoughtimewithPart(c)withbothproblems, partlybecausethesubtractiondoesnotinvolvethenumber1andpartlybecauseofthecomplexityofhavingto computetwo z-scores.
Evenaftersomepractice,somestudentstendtoskipcertaincrucialsteps.Forexample,somestudentswill skipusingthestandardnormaldistributiontable,thinkinga z-scoreisaprobability.
Toreinforcethatstudentsshouldthinkgeometricallywhenworkingwithanormalcurve,foreachexercise, Irequirethatstudentssketchanormalcurve,recordrelevantvaluesonthe X-axisandthe z-axis,andwrite appropriateareasunderthecurve.
GROUPEXPLORATION:SymmetryofaNormalCurve
Thisexplorationreinforcestheimportanceofsketchinganormalcurveandconsideringitssymmetrytofind probabilities.
Copyright c 2016PearsonEducation,Inc.
SECTION5.5LECTURENOTES
Objectives
1. Findanobservationfromits z-score.
2. Use z-scorestothefindvalueofanormallydistributedvariablefromaprobability.
3. Usetechnologytofindthevalueofanormallydistributedvariablefromaprobability.
4. Use z-scorestocomparetherelativesizeoftwoobservationsfromdifferentgroupsofdata.
5. Identifyunusualobservations.
6. Investigatewhetheraclaimistrue.
OBJECTIVE1
FindingtheValueofanObservationfromIts z-Score
Anobservation x with z-score z isgivenby x =¯ x + zs
1. RecallthatthescoresontheWechslerIQtestarenormallydistributedwithmean100pointsandstandard deviation15points.JamesWoodsisreportedtohaveanapproximate z-scoreof z =5 33 (Source:The ChicagoTribune).WhatishisapproximateIQscore?
OBJECTIVES2and3
2. Aprofessorgivesatesttoherprestatisticsstudents.Thescoresareapproximatelynormallydistributedwith mean74pointsandstandarddeviation8points.TheprofessordecidestogiveAstoapproximately10% ofthestudentsbutnotlessthan10%.Usethestandardnormaldistributiontableortechnologytofindthe cutoffscoreforanA.
• Rememberthatwheneveryouusethestandardnormaldistributiontable,youmustlookforthearea tothe left ofavalue.
• RememberthatwheneveryouuseinvNorm,youmustentertheareatothe left ofavalue.
3. AresearchermeasuredthelifetimesofsomeActivairR 13HPXbatterieswhenusedforhearingaids.The meanlifetimewas252.4hoursandthestandarddeviationwas18.4hours(Source:Measurementwith VariousLoadsonThreeSizesofZinc-AirBatteriesforHearingAids,BjörnHagerman).Assumeall Activair13HPXbatteriesarenormallydistributedwiththesamemeanandsamestandarddeviationas thosetested.
a. Explainwhyitwouldbeunwiseforthecompanytoadvertisethattheirbatterieslast252.4hours.
b. Whatshouldthecompanyadvertisethelifetimeoftheirbatteriestobesothat99%ofthebatteries wouldlastatleastthatlong?
Copyright c 2016PearsonEducation,Inc.
OBJECTIVE4
JennyandErictooktestsonprobabilityintwodifferentsectionsofprestatistics.Jennyscored92pointsonatest withmean78pointsandstandarddeviation7points.Ericscored79pointsonatestwithmean67pointsand standarddeviation3points.Thetestscoresoneachtestareapproximatelynormallydistributed.
1. Findthe z-scoreforJenny’stestscore.Whatdoesitmeaninthissituation?
2. Findthe z-scoreforEric’stestscore.Whatdoesitmeaninthissituation?
3. Assumingatypicalstudentinoneclassknowsthematerialaswellasatypicalstudentintheotherclass, determinewhetherJennydidrelativelybetterthanEric.
OBJECTIVE5
Definition
Unusualobservation
Assumethatsomedataarenormallyorapproximatelynormallydistributed.Anobservationis unusual ifit ismorethan1.96standarddeviationsawayfromthemean.
4. Inastudyof1541randomlyselectedyoungmen(ages20–29years),theyoungmen’sHDLcholesterollevelsareapproximatelynormallydistributedwithmean47mg/dlandstandarddeviation12.5mg/dl(Source: NHANES).
a. SupposethatayoungmaninthestudyhasanHDLcholesterollevelof19mg/dl.Isthatanunusual observation?
b. FindtheprobabilityofrandomlyselectingayoungmanfromthestudywithanHDLcholesterolless thanorequalto19mg/dl.
c. ExplainwhyitmakessensethatyourresultinPart(b)islessthan0.025.
DeterminingWhetheranObservationisUnusual
Anobservationofanormaloranapproximatelynormaldistributionisunusualifeitherofthefollowing equivalentstatementsistrue:
• Theobservation’s z-scoreislessthan 1 96 ORgreaterthan1.96.
• TheprobabilityofrandomlyselectingtheobservationORoneonthesamesideofthemeanbuteven moreextremeislessthan0.025.
OBJECTIVE6
5. Acompanyclaimsthatitslow-saltpotatochipscontainonly83mgofsodiumperserving,onaverage. Anindependentcompanyrandomlyselectsandtestsabagofthelow-saltpotatochips,whichturnsoutto contain102mgofsodiumperserving.
a. Assumingthesodiumlevelsperservingofthelow-saltchipsareapproximatelynormallydistributed withmean83mgandstandarddeviation6mg,findtheprobabilitythatarandomlyselectedbagwould haveatleast102mgofsodiumperserving.
b. IftheassumptionsyoumadeinPart(a)aretrue,isthebagcontaining102mgofsodiumperserving anunusualevent?
Copyright c 2016PearsonEducation,Inc.
c. Describeascenarioinwhichthebagcontaining102mgofsodiumperservingisnotanunusualevent.
d. Onthebasisofthebagcontaining102mgofsodiumperserving,dotheassumptionsyoumadein Part(a)seemreasonable?Shouldamorethoroughinvestigationoccur?
HW 1,3,7,9,13,15,17,19,21,23,25,29,31,37,43
SECTION5.5TEACHINGTIPS
Ifyouaretightontime,youmightconsiderskippingthissection,whichcontainsconceptsthatwillnotbeneeded insubsequentsections.Ifyourushthroughthismaterial,itmaymuddythewatersanddomoreharmthangood. However,athoroughtreatmentofthissectioncouldlayanevenstrongerfoundationforthenormalcurve,which issoimportantinanintroductorystatisticscourse.
OBJECTIVE1COMMENTS
Tointroducetheformula, x =¯ x + zs,Ifirstaskstudentswhattestscorecorrespondstoa z-scoreof2ifthe meanscoreis70pointsandthestandarddeviationis10points.ThenIusethecomputation 90=70+2(10) to introducetheformula.
OBJECTIVES2and3COMMENTS
WhenusingthestandarddeviationnormaltabletosolveProblem2,studentstendtolookupthearea0.1inthe middleofthetableratherthanthecorrectarea0.9eventhoughtheylearnedinSection5.4thateachentryinthe tableisanareatothe left ofavalue.StudentstendtomakeasimilarerrorwhenusinginvNormwithaTI-84. AftercompletingProblem3,Ipointoutthatitwouldbebeneficialtothecompany(andconsumers)ifthe standarddeviationwerelower.
GROUPEXPLORATION:GradingonaCurve
Studentstendtoaskinstructorswhethertheygradeonacurve,butmostofthemhavenoideawhatthistruly means.Perhapsthebiggestbenefitofthisexplorationisthatstudentscanfinallylearnwhat’sinvolved.They tendtobesurprisedtolearnthatgradingonacurvecanresultinstudentsearninglowergradesthanbythegrade cutoffsusedbymostinstructors.Themostchallengingpartofthisexplorationisthatstudentsmustrealizethey needtoaddthegivenpercentagesinProblem2tofindthegradecutoffs.
OBJECTIVE4COMMENTS
Iemphasizethisconceptbecauseitisimportantthatstudentsmakemeaningfulcomparisonsbetweentwoquantitiesnotonlyinstatisticsbutintheirlives.
OBJECTIVE5COMMENTS
Section4.2statesthatanobservationisunusualifitismorethan2standarddeviationsawayfromthemean.But thisobjectiverefinesthecutoffto1.96standarddeviationsbecausewecannowdeterminethismoreprecisecutoff byusingthestandardnormaldistributiontableand/ortechnology.
OBJECTIVE6COMMENTS
ThisisaniceobjectivetofinishupChapter5becauseitinchesupquiteclosetohypothesistesting,whichisakey techniqueusedinintroductorystatistics.
AkeyconceptrelatedtoProblem5isthatwecannotconcludethecompany’sclaimisfalsesimplybecause therandomlyselectedbagcontains102mgofsodiumperserving;thestandarddeviation(andprobability)must beconsidered.
Copyright c 2016PearsonEducation,Inc.
CHAPTER6OVERVIEW
Thischapterprovidesthebigpictureforlinearmodeling,whichwillbeaddressedinChapters6–9.Chapters7 and8introducethenecessaryalgebrasothatlinearmodelingcanbeexploredatadeeperlevelinChapter9.
Thekeythemeofthefourcharacteristicsofanassociationisintroducedinthischapterandwillbedeveloped furtherinChapters7–10.
ManyconceptsinthischaptercanbetiedtoconceptsincludedinChapter2:explanatoryandresponsevariables,associations,warningsaboutcausation,lurkingvariables,andtime-seriesplots.Concernsaboutextrapolationaresimilartotheconcernsaboutmakinginferences.Andthefourcharacteristicsofanassociationaresimilar tothecenter,spread,shape,andoutliersofadistributionofonenumericalvariable.Becauseofthesesimilarities andtherelativeeasinessofthematerial,youwillbeabletotraversethischapteratafasterpacethanpreceding ones.
SECTION6.1LECTURENOTES
Objectives
1. Identifyexplanatoryandresponsevariables.
2. Constructascatterplot.
3. Determinethedirectionofanassociation.
OBJECTIVE1
Herewereviewthemeaningsof explanatoryvariable and responsevariable (Section2.3):
Definition Explanatoryandresponsevariables
Inastudyaboutwhetheravariable x explains(affects)avariable y,
• Wecall x the explanatoryvariable (or independentvariable).
• Wecall y the responsevariable (or dependentvariable).
Recallthatcallingavariabletheexplanatoryvariabledoesnotmeanforsurethatthevariableaffects (explains)theresponsevariable.Afterall,we’dhavetocarryoutthestudytofindout.
1. Foreachsituation,identifytheexplanatoryvariableandtheresponsevariable.
a. Let d bethenumberofmilesapersonrunsperday,andlet T (inseconds)betheperson’sbestmile runtime.
b. Let n bethenumberofadultswhowanttobuyaniPhonethatcosts d dollars.
c. Let s beanemployee’ssalary(inthousandsofdollars)atacompany,andlet n bethenumberofyears theemployeehasworkedforthecompany.
Foranorderedpair (a, b),wewritethevalueoftheexplanatoryvariableinthefirst(left)positionand thevalueoftheresponsevariableinthesecond(right)position.
2. Let s bethesales(inthousands)ofavideogame,andlet b bethegame’sadvertisingbudget(inthousands ofdollars).Avideogamewitha$50-thousand-dollaradvertisingbudgethassalesof742thousandgames. Expressthisasanorderedpair.
Copyright c 2016PearsonEducation,Inc.
3. Let n bethemeannumberofhoursthatastudentstudiesprestatisticsperweek,andlet p bepercentageof pointsthestudentearnsonthefirsttest.Astudentwhostudies15hoursperweekearns93%ofthepoints onthefirsttest.Expressthisasanorderedpair.
4. Let s bethemeannumberofgramsofsugarthatanadultconsumesdaily,andlet n bethemeannumberof cavitiesthepersongetsperdecade.Whatdoestheorderedpair (76, 1.5) meaninthissituation?
5. Let p bethepercentageofAmericansatage A yearswholistentotalkradio.Whatdoestheorderedpair (59, 23) meaninthissituation?
ColumnsofTablesandAxesofCoordinateSystems
Assumethatanauthenticsituationcanbedescribedbyusingtwonumericalvariables.Then
• Fortables,thevaluesoftheexplanatoryvariablearelistedinthefirstcolumnandthevaluesofthe responsevariablearelistedinthesecondcolumn.[Giveanexample.]
• Forcoordinatesystems,thevaluesoftheexplanatoryvariablearedescribedbythehorizontalaxisand thevaluesoftheresponsevariablearedescribedbytheverticalaxis.[Drawafigure.]
OBJECTIVE2
Acoordinatesystemwithplottedorderedpairsiscalleda scatterplot.
6. Thefatalityratesfromautomobilecrashesareshowninthefollowingtableforvariousspeeds.Let r bethe fatalityrate(deathsper1000crashes)foraspeedof s mph.
SpeedUsedtoFatality SpeedRepresentRate GroupSpeedGroup(deathsper (mph)(mph)1000crashes)
0–30152.5
30–40353.5
40–50456.1
50–605515.3 over607016.9
Source: NationalHighwayTransportationSafetyAdministration
a. Constructascatterplot.
b. Whichofthepointsinyourscatterplotislowest?Whatdoesthatmeaninthissituation?
c. Whichofthepointsinyourscatterplotishighest?Whatdoesthatmeaninthissituation?
• Recallthatthereisan association betweentheexplanatoryandresponsevariablesiftheresponsevariable changesastheexplanatoryvariablechanges.
• Anassociationof numerical explanatoryandresponsevariablesisoftencalleda correlation
• Ifthereisanassociationbetweentwovariablesthatdoes not necessarilymeanthereiscausation.
Copyright c 2016PearsonEducation,Inc.
OBJECTIVE3
Definition Positiveandnegativeassociation
Assumetwonumericalvariablesaretheexplanatoryandresponsevariablesofastudy.
• Iftheresponsevariabletendstoincreaseastheexplanatoryvariableincreases,wesaythevariablesare positivelyassociated (or positivelycorrelated)andthatthereisa positiveassociation (or positive correlation).[Drawafigure.]
• Iftheresponsevariabletendstodecreaseastheexplanatoryvariableincreases,wesaythevariablesare negativelyassociated (or negativecorrelated)andthatthereisa negativeassociation (or negative correlation).[Drawafigure.]
Wedescribethe direction ofanassociationbydeterminingwhethertheassociationispositive,negative,or neither.
7. PercentagesofadultssurveyedwhoplantoattendaHalloweenpartythisyearareshowninthefollowing tableforvariousagesgroups.
AgeGroupAgeUsedtoRepresent (years)AgeGroup(years)Percent 18–2421.044 25–3429.534
35–4439.525
45–5449.514
55–6459.510
65orover70.06
Source: InternationalMassRetailAssociation
Let p bethepercentageofadultsatage a yearswhoplantoattendaHalloweenpartythisyear.
a. Constructascatterplot.
b. Determinewhethertheassociationispositive,negative,orneither.
8. Let t bethenumberofyearssince2000.Findthevaluesof t thatrepresenttheyears2000,2005,2010,and 2015.
9. Let n bethenumber(inthousands)ofnewappssubmittedtoApple’sAppStorepermonthat t yearssince 2010.In2015,40thousandnewappsweresubmittedtoApple’sAppStore(Source: pocketgamer.biz). Expressthisasanorderedpair.
10. Let p bethepercentageofadultsages18–24wholivewiththeirparentsat t yearssince2005.Whatdoes theorderedpair (7, 56) meaninthissituation?
11. ThenumbersofInternetsearchesusingGoogleareshowninthefollowingtableforvariousyears.
NumberofSearches
Source: Google
Copyright c 2016PearsonEducation,Inc.
Let r betheannualnumber(inbillions)ofsearchesat t yearssince2005.
a. Constructascatterplot.
b. Determinewhethertheassociationispositive,negative,orneither.
HW 1,3,9,17,23,31,35,39,41,43,47,51,55,59,69
SECTION6.1TEACHINGTIPS
Studentstendtohaveaneasytimewiththissectionbecausemanyoftheconceptshavebeenaddressedin previouschaptersbutindifferentcontexts.Constructingscatterplotsisafoundationalskillthatstudentswilluse frequentlythroughouttherestofthecourse.
OBJECTIVE1COMMENTS
AlthoughstudentslearnedaboutexplanatoryandresponsevariablesinChapter2,theytendtoneedarefresher atthispointinthecourse.Iemphasizethenewinformationthatvaluesoftheexplanatoryvariablearedescribed bythefirstcoordinateinanorderedpair,thefirstcolumnofatable,andthehorizontalaxisofacoordinate system.Evenaftercompletingtheentirechapter,theretendtobeafewstudentswhocontinuetostrugglewith thisconcept,soyoucan’temphasizeitenough.
OBJECTIVE2COMMENTS
Ipointouttomystudentsthatscatterplotsaresimilartotime-seriesplots,exceptwedonot"connectthedots" withscatterplots.
Studentstendtoconstructexcellentscatterplots,probablyduetoallthepracticetheyhavehadconstructing othertypesofdiagramsinpreviouschapters.Iremindstudentsthatunitsandvariablesshouldbedisplayedon eachaxisandatitleshouldalsobedisplayed.
Ratherthanintroducetheterminology correlation,tokeeptheamountofterminologytoaminimum,Istick withusing association becausewehavealreadyintroducedthisterminologyinChapter2.
EventhoughthedistinctionbetweenassociationandcausationwasalreadyaddressedinChapter2,Iemphasizethisdistinctionnowbecauseitissuchanimportantconcept.ThiscanbeillustratedbytheInternetassociation describedinProblem11.InSection6.2,thistopicwillberevisitedbycomparingtheU.S.per-personconsumption ofmargarineandthedivorcerateinMaine(Figure50onpage389ofthetextbook).
OBJECTIVE3COMMENTS
Studentshaveaneasytimeidentifyingthedirectionofanassociation.
Workingwithdefinitionssuchas t isthenumberofyearssince2000isnewcontentandit’sworthtakingtime tocarefullydescribehowtointerpretsuchdefinitionsbecausesomestudentsstrugglewiththisinitially.
GROUPEXPLORATION:AnalyzingPointsbelow,above,andonaLineContaining
PointswithEqualCoordinates
Althoughnotcrucialforthecourse,thisexplorationrequiressomegoodcriticalthinking.Problem6providesa hintofwhat’stocomewithlinearregression(Section9.3).
Copyright c 2016PearsonEducation,Inc.
SECTION6.2LECTURENOTES
Objectives
1. Determinetheshapeofadistribution.
2. Determinethestrengthofadistribution.
3. Computeandinterpretthecorrelationcoefficient.
4. Determinewhetherthereareanyoutliersandwhattodowiththem.
5. Determinethefourcharacteristicsofanassociationinthecorrectorder.
6. Explainwhystrong(orweak)associationdoesnotguaranteecausation.
OBJECTIVE1
• Ifthepointsofascatterplotliecloseto(oron)aline,wesaythevariablesare linearlyassociated andthat thereisa linearassociation.[Drawafigure.]
• Ifthepointsofascatterplotliecloseto(oron)acurvethatisnotaline,wesaythereisa nonlinear association.[Drawafigure.]
• Ifnocurvecomesclosetoallthepointsofascatterplot,wesaythereis noassociation.[Drawafigure.]
Foranypairofnumericalvariables,thereiseitheralinearassociation,anonlinearassociation,ornoassociation.Wewillrefertothe shape ofanassociationasbeingoneofthesethreetypes.
1. Foreachofthefollowingscatterplots,determinewhetherthereisalinearassociation,nonlinearassociation, ornoassociation.
OBJECTIVE2
• Ifacurvepassesthroughallthepointsofascatterplot,wesaythereisan exact associationwithrespectto thecurve.[Drawafigure.]
• Ifacurvecomesclosetoallthepoints,wesaythereisa strongassociation withrespecttothecurve. [Drawafigure.]
• Ifacurvecomessomewhatclosetoallthepoints,wesaythereisa weakassociation withrespecttothe curve.[Drawafigure.]
Copyright c 2016PearsonEducation,Inc.
2. Thecarbohydrates,calories,andfatfor29pizzasmadebysixoftheleadingpizzacompaniesareshownin thefollowingtable.
Carbohydrates(g)CaloriesFat(g)Carbohydrates(g)CaloriesFat(g) 39368173534216 36308133735917 20259152629716 39348153230513 36311135349921 20249146454921 40357164241019 27279136357924 2824694339517 3027611292609 3733815372779 41367163026911 35320142928614 36329153330914 2626613
Source: Domino’s,LittleCeasar’s,PapaJohn’s,PizzaHut,DiGiornoFrozen,KashiFrozen
a. Constructascatterplotthatcomparescarbohydratesandcalories.
b. Constructascatterplotthatcomparescarbohydratesandfat.
c. Foreachofthescatterplotsyouconstructed,describetheshapeoftheassociation.
d. Comparethestrengthsofthetwoassociations.
e. Foreachofthescatterplotsyouconstructed,identifywhethertheassociationispositive,negative,or neither.
f. Useanappropriatescatterplottoestimatethecaloriccontentsofthepizzaswith20gofcarbohydrates.
g. Useanappropriatescatterplottoestimatethefatcontentofthepizzaswith20gofcarbohydrates.
OBJECTIVE3
PropertiesoftheLinearCorrelationCoefficient
Assume r isthelinearcorrelationcoefficientfortheassociationbetweentwonumericalvariables.Then
• Thevaluesof r arebetween 1 and1,inclusive.
• If r ispositive,thenthevariablesarepositivelyassociated.
• If r isnegative,thenthevariablesarenegativelyassociated.
• If r =0,thereisno linear association.
• Thelargerthevalueof |r|,thestrongerthelinearassociationwillbe.
• If r =1,thenthepointslieexactlyonalineandtheassociationispositive.
• If r = 1,thenthepointslieexactlyonalineandtheassociationisnegative. [Drawfigurestoillustratealloftheaboveconcepts.]
Copyright c 2016PearsonEducation,Inc.
• If r =0,thenthereisnolinearassociationbuttheremaybea nonlinear association.
• Todeterminetheshapeandstrengthofanassociation,weshouldinspectascatterplotofthedataaswell ascompute r.Forexample,eventhough r ≈ 0 96 forthedatadescribedbythefollowingscatterplot,the pointsliemuchclosertoacurvethantheydotoaline.

OBJECTIVE4
• Foranassociationbetweentwonumericalvariables,apointisanoutlierifitdoesnotfittheoverallpattern ofthepointsinthescatterplot.[Drawafigure.]
• Thecorrelationcoefficientisverysensitivetooutliers.[Drawscatterplotstoshowhow r canchangefrom 0toapproximately0.95byaddinganoutlier.SeeFigs.43and44onpage387ofthetextbook.]
3. Ascatterplotcomparingthehighwaymileagesandcitymileagesof1195typesofcarsisdisplayedinthe followingfigure.

a. Identifytheoutliers.Shouldtheyberemoved?Ifyes,forwhatpurpose?
b. Assumetheoutliershavebeenremoved.Forthedatathatremain, i. determinetheshapeoftheassociation. ii. determinethestrengthoftheassociation. iii. determinewhethertheassociationispositive,negative,orneither.
Copyright c 2016PearsonEducation,Inc.
OBJECTIVE5
OrderofDeterminingtheFourCharacteristicsofanAssociation
Wedeterminethefourcharacteristicsofanassociationinthefollowingorder:
1. Identifyalloutliers.
a. Foroutliersthatstemfromerrorsinmeasurementorrecording,correcttheerrorsifpossible.If theerrorscannotbecorrected,removetheoutliers.
b. Forotheroutliers,determinewhethertheyshouldbeanalyzedinaseparatestudy.
2. Determinetheshapeoftheassociation.
3. Iftheshapeislinear,thenonthebasisof r andthescatterplot,determinethestrength.Iftheshapeis nonlinear,thenonthebasisofthescatterplot,determinethestrength.
4. Determinethedirection.Inotherwords,determinewhethertheassociationispositive,negative,or neither.
OBJECTIVE6
Definition Lurkingvariable
A lurkingvariable isavariablethatcausesboththeexplanatoryandresponsevariablestochangeduring thestudy.
Astrongassociationbetweentwovariablesdoesnotguaranteethatachangeintheexplanatoryvariable willcauseachangeintheresponsevariable.
4. ThescatterplotinthefollowingfigurecomparesthescoresofTest4andTest5foracalculuscoursetaught bytheauthor.

a. Describethefourcharacteristicsoftheassociation.
b. DoesahigherscoreonTest4causeahigherscoreonTest5?Ifno,describeatleastonepossible lurkingvariable.
c. Onthebasisofthefairlystrong,positiveassociationbetweenTest4andTest5scores,astudent concludesthattheremusthavebeenafairlystrong,positiveassociationbetweenanypairoftestsfor thecourse.Whatwouldyoutellthestudent?
Copyright c 2016PearsonEducation,Inc.
HW 1,3,7,9,11,15,17,19,21,23,29,33,35,37,44,47
SECTION6.2TEACHINGTIPS
Althoughthissectioncontainsalotofmaterial,youcanmovefairlyquicklybecausestudentsdonottendto havemuchtroublewiththeconcepts.
OBJECTIVE1COMMENTS
Studentshaveaneasytimedeterminingtheshapeofanassociation.
OBJECTIVE2COMMENTS
Studentsarequicktopickupondescribingthestrengthofanassociation,althoughtheytendtobemorepicky atwhatqualifiesasastrongassociation.Anassociationthatastatisticianwouldcallstrong,astudentwouldcall weak.Thisisnotsurprisingbecauseasidefromthiscourse,studentshavelittleornoexperienceworkingwith (data)pointsthatarenotcolinear.
Ifyoudon’twanttodealwithallthedatainProblem2,youcouldworkwithasubset.Andifyouaretighton timeyoucouldjusthavestudentscompleteParts(a),(b),and(d);Part(d)isthemainpoint.
OBJECTIVE3COMMENTS
RatherthanlistallthebulletedstatementsintheboxshownforObjective3,Idrawabunchofscatterplotsalong withtheappropriatevaluesof r andverballypointoutthepropertiesastheyemerge.
Students’intuitionaboutthevalueof r becomesstrongquitequickly.Throughouttherestofthechapter,each timeIdisplayascatterplot,Iaskstudentstoguessthevalueof r andtheirguessesarequitegood.Atleastonce, wecalculatethemean(ormedian)ofseveralguessesandcompareittotheactualvalue,whichisanicereminder ofthebenefitofthemeasuresofcentraltendency.
DisplayingthePricelineGroupIncscatterplot(inthelecturenotesforObjective3)andobservingthatthe associationisnonlineareventhough r ≈ 0.96 isanicewaytoemphasizethatweneedtoobserveascatterplotas wellcompute r tomakeareliabledeterminationoftheshapeandstrengthofanassociation.
GROUPEXPLORATION:ImpactofTransformingDataontheCorrelationCoefficient
Thisexplorationwouldhavemorepedagogicalvalueifstudentsunderstoodhow r iscalculated,buttheystill enjoythisactivity,whichincreasestheirsenseof r
OBJECTIVE4COMMENTS
Similartotheissueofdeterminingthestrengthofanassociation,studentstendtoidentifytoomanydatapoints asoutliers.
OBJECTIVE5COMMENTS
AlthoughIdiscusstheorderofdeterminingthefourcharacteristicsasshownintheboxedpropertystatement forthisobjective,I’mquicktoaddthatsomeofthesedeterminationscanbemadesimultaneouslyandtheorder isnotsetinstone.Forexample,wemightfindourselvesdeterminingtheshapeanddirectionofanassociation simultaneously.
OBJECTIVE6COMMENTS
Studentstendtorememberthemeaningoflurkingvariables,whichwasdiscussedinChapter2.Studentscan drawontheirownpersonalexperienceswhenrespondingtoProblem4(b).
Copyright c 2016PearsonEducation,Inc.
SECTION6.3LECTURENOTES
Objectives
1. Usealinetomodelanassociationbetweentwonumericalvariables.
2. Usealinearmodeltomakeestimatesandpredictions.
3. Describethemeaningof input and output.
4. Finderrorsinestimations.
5. Describethemeaningof interpolate, extrapolate,and modelbreakdown
6. Findinterceptsofaline.
7. Findinterceptsofalinearmodel.
8. Modifyamodel.
OBJECTIVE1
1. Let n bethenumberofbankrobberiesper100branchesat t yearssince1995.
RobberiesperRobberiesper Year100BranchesYear100Branches 199710.620076.0 19998.820096.0 200110.320115.3 20038.720124.5 20057.7
Source: FBI
a. Constructascatterplot.
b. Istherealinearassociation,anonlinearassociation,ornoassociation?
c. Compute r.Onthebasisof r andthescatterplot,determinethestrengthoftheassociation.
d. Drawalinethatcomesclosetothepointsofthescatterplot.
Definition Model
A model isamathematicaldescriptionofanauthenticsituation.Wesaythatthedescription models the situation.
Definition Linearmodel
A linearmodel isanonverticallinethatdescribestheassociationbetweentwoquantitiesinanauthentic situation.
Copyright c 2016PearsonEducation,Inc.
OBJECTIVE2
2. Usetherobberymodeltoestimatethenumberofbankrobberiesper100branchesin2004.
3. Usethemodeltoestimatewhentherewere5.6bankrobberiesper100branches.
• Weconstructascatterplotofdatatodeterminewhetherthereisalinearassociation.Ifso,wedrawaline thatcomesclosetothedatapointsandusethelinetomakeestimatesandpredictions.
• Itisacommonerrortotrytofindalinethatcontainsthegreatestnumberofpoints.However,ourgoalisto findalinethatcomescloseto all ofthedatapoints.
OBJECTIVE3
Definition Input,output
An input isapermittedvalueofthe explanatory variablethatleadstoatleastone output,whichisa permittedvalueofthe response variable.
4. InProblem2,identifytheinputandtheoutput.
OBJECTIVE4
The error inanestimateistheamountbywhichtheestimatediffersfromtheactualvalue.
• Foranoverestimate,theerrorispositive.
• Foranunderestimate,theerrorisnegative.
5. Usetherobberymodeltoestimatethenumberofbankrobberiesper100branchesin2001.Findtheerror intheestimate.
6. Usetherobberymodeltoestimatethenumberofbankrobberiesper100branchesin2007.Findtheerror intheestimate.
OBJECTIVE5
RefertotheestimatesandpredictionsthatyoumadeinProblems2,3,5,and6asinterpolationsorextrapolations.
Definition Interpolation,extrapolation
Forasituationthatcanbedescribedbyamodelwhoseexplanatoryvariableis x,
• Weperform interpolation whenweuseapartofthemodelwhose x-coordinatesarebetweenthe x-coordinatesoftwodatapoints.
• Weperform extrapolation whenweuseapartofthemodelwhose x-coordinatesarenotbetweenthe x-coordinatesofanytwodatapoints.
7. Usetherobberymodeltoestimatethenumberofbankrobberiesper100branchesin2002.Didyouperform interpolationorextrapolation?Explain.
8. Usetherobberymodeltoestimatethenumberofbankrobberiesper100branchesin2014.Didyouperform interpolationorextrapolation?Explain.
Copyright c 2016PearsonEducation,Inc.
9. Usetherobberymodeltoestimatethenumberofbankrobberiesper100branchesin2030.Didyouperform interpolationorextrapolation?Explain.
Definition Modelbreakdown
Whenamodelgivesapredictionthatdoesnotmakesenseoranestimatethatisnotagoodapproximation, wesaythat modelbreakdown hasoccurred.
OBJECTIVE6
Definition Interceptsofaline
An intercept ofalineisanypointwherethelineandanaxis(oraxes)ofacoordinatesystemintersect. Therearetwotypesofinterceptsofalinesketchedonacoordinatesystemwithan x-axisanda y-axis:
• An x-intercept ofalineisapointwherethelineandthe x-axisintersect.[Drawafigure.]
• A y-intercept ofalineisapointwherethelineandthe y-axisintersect.[Drawafigure.]
10. Refertothefollowingfigure.
a. Findthe x-interceptoftheline.
b. Findthe y-interceptoftheline.
c. Find y when x = 6
d. Find x when y = 3.
OBJECTIVE7
11. Findthegiveninterceptoftherobberymodel.Whatdoesitmeaninthissituation?Didyouperform interpolationorextrapolation?Explain.
a. n-intercept
Copyright c 2016PearsonEducation,Inc.
b. t-intercept
12. Thepercentagesofcellphoneuserswhosendorreceivetextmessagesmultipletimesperdayareshownin thefollowingtableforvariousagegroups.
AgeUsedto
Source: EdisonResearchandArbitron
Let p bethepercentageofcellphoneusersatage a yearswhosendorreceivetextmessagesmultipletimes perday.
a. Drawalinearmodelthatdescribestheassociationbetweenand a and p
b. Predictthepercentageof25-year-oldcellphoneuserswhosendorreceivetextmessagesmultiple timesperday.Didyouperforminterpolationorextrapolation?Explain.
c. Findthe p-intercept.Whatdoesitmeaninthissituation?Didyouperforminterpolationorextrapolation?Explain.
d. Findthe a-intercept.Whatdoesitmeaninthissituation?Didyouperforminterpolationorextrapolation?Explain.
OBJECTIVE8
13. Additionalresearchaboutcellphoneuserswhosendorreceivetextmessagesmultipletimesperdayyields thedatashowninthefirstandlastrowsofthefollowingtable.Usethisdataandthefollowingassumptions tomodifythemodelyoufoundinProblem12:
• Children3yearsoldandyoungerdonotsendorreceivetextmessagesmultipletimesperday.
• Thepercentageofcellphoneuserswhosendorreceivetextmessagesmultipletimesperdaylevels offat5%forusersover80yearsinage.
• Theageoftheoldestcellphoneusersis116years.
AgeUsedto AgeGroupRepresentAgeGroup (years)(years)Percent
12–1714.575
18–2421.076
25–3429.563
35–4439.542
45–5449.537
55–6459.517 over6470.07
Source: EdisonResearchandArbitron
HW 1,3,5,7,17,21,25,29,31,35,37,39,43,47,51
Copyright c 2016PearsonEducation,Inc.
SECTION6.3TEACHINGTIPS
Thissectioncompletesthebigpictureoflinearmodeling.Inparticular,studentswillsketchlinearmodelsanduse themodelstomakepredictions.
InChapters7and8,studentswilllearnthenecessaryalgebrasotheycanrevisitlinearmodelinginamore meaningfulwayinChapter9.
OBJECTIVE1COMMENTS
ForProblem1ofthelecturenotes,somestudentsmayneedareminderofthemeaningofthephrase“at t years since1995.”Itisimportantthatthescalingoneachaxisbeginat0becausestudentswillfindtheinterceptsin Problems11and12.
Whendescribingthemeaningofamodel,Igiveintuitiveexamplessuchasthetextbook’sexampleabout airplanemodels(middleofpage403ofthetextbook).
InProblem1(d)ofthelecturenotes,Idemonstratethattherearemanyacceptablelinearmodels.Many studentstrytofindalinethatcontainsthegreatestnumberofdatapointsratherthanalinethatcomescloseto allofthedatapoints.Toclarifythisconfusion,Icompareareasonablelinearmodelthatcomesclosetothedata pointsbutdoesnotcontainanydatapointswiththeterriblyinaccuratelinearmodelthatcontainsthedatapoints (4, 8 8) and (6, 10 3)
GROUPEXPLORATION:ModelingaLinearAssociation
Thisexplorationisagreatcollaborativeactivityforstudentstodiscoverthefundamentalideasofthissection. SomestudentswilllikelydisregardtheinstructioninProblem2anddrawa“zigzag”curveratherthanaline, unlessyouwarnthemnotto.Waitingforstudentstomakethiserrorandthenclarifyingthemeaningof“line” mightmakeamorelastingimpression.
OBJECTIVE2COMMENTS
WhencompletingProblems2and3,Idrawinput-outputarrowssimilartothoseinFig.80onpage404ofthe textbook.IrequiremystudentstousesucharrowssothatIcanbetterevaluatetheirworkonquizzesandexams. Itisdifficulttoawardanypartialcreditifnoarrowsaredisplayed.
Iwarnmystudentsthateventhoughtheiranswersmaydifferfromthoseintheanswerssectionofthetextbook, theiranswersmaybecorrect.Iexplainthatit’spossibletodrawreasonablelinearmodelsthataredifferentthan thereasonablemodelsthatthetextbookused.AlthoughIwantmystudentstocarefullydrawscatterplotsand linearmodels,Idon’twantthemtobeanxiousaboutgettingtheexactresults.
OBJECTIVE3COMMENTS
Thisobjectiveissettingthestagefortheconceptfunction,whichisdiscussedinSection7.4.Chapters8–10use functionnotationtoalimitedextentsoastoaccommodatebothinstructorswhouseSection7.4andthosethat don’t.
OBJECTIVE4COMMENTS
Accordingtothetextbook’sdefinitionoferror,theerrorofanestimateistheoppositeofaresidual.Istruggled withwhattodowiththisdiscrepancy.Intheend,IdecidedtoletthediscrepancyexistbecauseIbelieveitmakes moresensefortheerrortobepositivewhenthemodelleadstoanoverestimateandfortheerrortobenegative whenthemodelleadstoanunderestimate.
Formanystudents,thedistinctionbetweenamodelandrealityisfoggy.Forexample,manystudentstend tothinkthattheanswerstoProblems5and6aretheactual10.3robberiesper100branchesand6.0robberies per100branches,respectively,evenifthelinearmodeldoesnotcontainthedatapoints (6, 10 3) and (12, 6 0) MakingsuchadistinctionwhilecompletingProblems5and6paysbigdividendsbothintheshortandlongrun. Foranintuitiveexplanation,Itellmystudentsthatamodelisfiction,whichwehopeisveryclosetothetruth.
OBJECTIVE5COMMENTS
Iemphasizethatwehavelittleornofaithwhenweextrapolate.Onecouldarguethatthisisthemostimportant conceptofthesectionbecauseextrapolationissooftenmisusedbythemedia.
Copyright c 2016PearsonEducation,Inc.
Problem9isanicewaytodrivehomethepointofthedangersofextrapolation.
Theconceptofmodelbreakdownisimportant,becausemostmodelsdo“breakdown.”Itellmystudentsthat whenmodelbreakdownoccurs,theymustsaysoonquizzesandexams.Evenifastudentbelievesthatnobank robberieswilloccurintheyearrepresentedbythe t-interceptinProblem11(b),thestudentshouldexplainwhy thatisreasonable.Regardlessifstudentsthinktheresultisreasonable,theyshouldalsosaytheyhavelittleorno faithinitbecausetheyperformedextrapolation.
WhenIdiscussthemodelbreakdowninProblem9,Iaskmystudentsforsuggestionsofgraphsof(nonlinear) curvesthatmightturnouttobebettermodels,whichisnicepreparationforObjective8.Ingeneral,suchquestions cangeneratesomefunandinterestingdiscussions.
GROUPEXPLORATION:IdentifyingTypesofModelingErrors
Ifyoudonotplantoassignmost(orall)oftheexplorationsinthetextbook,itwouldprobablybegoodtoomit assigningthisexplorationortoassignitforhomework.Manyoftheseideascanbetouchedonasyouproceed throughthissection.
OBJECTIVE6COMMENTS
Whenstudentsfindintercepts,Irequirethemtoincludebothcoordinatesasanorderedpairtoreinforcethat interceptsarepoints.
OBJECTIVE7COMMENTS
Manystudentshavetroublefindinginterceptsofmodelsforavarietyofreasons.Somestudentsgetoffonthe wrongfootbywritingthevariablesonthewrongaxeswhenconstructingascatterplot.Somestudentswritethe coordinatesofaninterceptinthewrongorder,andotherswritethecoordinatesofaninterceptinthecorrectorder butinterpretthemasiftheywerewrittenintheotherorder.
OBJECTIVE8COMMENTS
Inmanycasesinwhichwecandeterminemodelbreakdownhasoccurred,itisunclearhowtomodifythemodel. Problem13isnicebecauseitincludesadditionalfactsthatsuggesthowtomodifythelinearmodelsketchedin Problem12(a).
Discussingthisobjectiveisimportantbecausestudentsshouldbeawarethateventhoughscientistsmaycurrentlybeusingacertainmodel,discoveriesmadeatalaterpointmaywarrantusingamodified(orevenacompletelydifferent)model. Copyright c 2016PearsonEducation,Inc.
CHAPTER7OVERVIEW
InSections7.1–7.3,studentswilllearnhowtographlinearequationsandhowtocomputeratesofchange. Theywillalsodiscoverthatthesetwotasksareverymuchconnected.Allofthisworkwilllayacrucialfoundation forworkwithregressionlinesinSection9.3.
ThechaptercloseswithinvestigatingfunctionsinSection7.4.Becausenotalldepartmentswillhavetimefor thisconcept,Ihaveincludedexercisesthatinvolvefunctionsinsubsequentchaptersbutnotsomuchthatitbogs downhomeworksectionsforcoursesthatdonotaddressfunctions.
Despitemoststudents’poorexperiencesinpreviousalgebracourses,youmightbesurprisedhowwellthey dointhischapter.Chapters1–6tendtobuildquiteabitofmathematicalmaturityinstudents.Plus,graphing equationsoftheform y = mx + b isfairlyeasy.Themorechallengingtaskofgraphinglinearequationsintwo variablesinwhich y isnotisolatedwillbeaddressedinSection8.4.Andstudentswillbereadyforthatchallenge bythen.
SECTION7.1LECTURENOTES
Objectives
1. Foranequationintwovariables,determinethemeaningof solution, satisfy,and solutionset
2. Describethemeaningofthe graph ofanequation.
3. Graphequationsoftheform y = mx + b
4. Describethemeaningof b inequationsoftheform y = mx + b.
5. Graphequationsoftheform y = b and x = a.
6. DescribetheRuleofFourforequations.
7. Graphanequationofalinearmodel.
OBJECTIVE1
1. Showthattheequation y = x +3 becomesatruestatementwhen2issubstitutedfor x and5issubstituted for y.
Wesay (2, 5) satisfies y = x +3 andthat (2, 5) isa solution of y = x +3.
Definition Solution,satisfy, and solutionset ofaequationintwovariables
Anorderedpair (a,b) isa solution ofanequationintermsof x and y iftheequationbecomesatrue statementwhen a issubstitutedfor x and b issubstitutedfor y.Wesay (a,b) satisfies theequation.The solutionset ofanequationisthesetofallsolutionsoftheequation.
2. Is (2, 7) asolutionof y =4x 1?
3. Is (3, 5) asolutionof y =4x 1?
Copyright c 2016PearsonEducation,Inc.
OBJECTIVE2
4. a. Findfivesolutionsof y =2x 3 andplottheminthesamecoordinatesystem.
b. Dothefivepointslieonaline?Ifso,sketchtheline.
c. Selectanotherpointonthelineandshowthatthecorrespondingorderedpairsatisfies y =2x 3.
d. Selectapointthatdoesn’tlieonthelineandshowthatthecorrespondingorderedpairdoesnotsatisfy y =2x 3.
WecallthelinethatwesketchedinProblem4the graph of y =2x 3
Definition Graph
The graph ofanequationintwovariablesisthesetofpointsthatcorrespondtoallsolutionsoftheequation.
• Everypointonthegraphofanequationrepresentsasolutionoftheequation.
• Everypoint not onthegraphrepresentsanorderedpairthatis not asolution.
OBJECTIVE3
Theequation y =2x 3 isoftheform y = mx + b.
Graphof y = mx + b
Thegraphofanequationoftheform y = mx + b,where m and b areconstants,isaline.
Herearesomeequationswhosegraphsarelines: y =3x +7 y = 6x +2 y =2xy = x 4 y =1
Graphtheequationbyhand.Also,findthe y-intercept.
5. y =3x 5 6. y = 2x +4 7. y = 3x 8. y = 2 3 x +1
OBJECTIVE4
Substitute0for x intotheequation y = mx + b: y = m(0)+ b =0+ b = b
The y-interceptofthegraphof y = mx + b is (0,b)
y-InterceptoftheGraphof y = mx + b
Thegraphofanequationoftheform y = mx + b has y-intercept (0,b).
For y =3x 5,the y-interceptis (0, 5) andfor y = 2x +4,the y-interceptis (0, 4).SeeProblems5and 6.
OBJECTIVE5
Findfivesolutionsofthegivenequation.Thengraphtheequationbyhand.
9. x =2
10. y =3
Copyright c 2016PearsonEducation,Inc.
If a and b areconstants,then
EquationsforHorizontalandVerticalLines
• Thegraphof y = b isahorizontalline.[Showthegraph.]
• Thegraphof x = a isaverticalline.[Showthegraph.]
Graphtheequationbyhand.
EquationsWhoseGraphsAreLines
Ifanequationcanbeputintotheform y = mx + b or x = a,where m, a,and b areconstants,thenthe graphoftheequationisaline.Wecallsuchanequationa linearequationintwovariables
Herearesomeexamplesoflinearequationsintwovariables:
y = 5x +9 y =3x 8 y =4 x = 2
OBJECTIVE6
RuleofFourforSolutionsofanEquation
Wecandescribesomeorallofthesolutionsofanequationintwovariableswith:
1. anequation, 2. atable, 3. agraph,or 4. words.
Thesefourwaystodescribesolutionsareknownasthe RuleofFour
15. a. Listsomesolutionsof y =4x 3 byusingatable.
b. Describethesolutionsof y =4x 3 byusingagraph.
c. Describethesolutionsof y =4x 3 byusingwords.
16. Considertheequation y = x +2.
a. Substitute3for x andshowthattheinput x =3 leadstotheoutput x =5.
b. Graph y = x +2.Thenusearrowstoshowthattheinput x =3 leadstotheoutput x =5.
Copyright c 2016PearsonEducation,Inc.
OBJECTIVE7
17. IntheUnitedKingdom,nervousdentalpatientsaresometimesgivenasedativetocalmthem.Toadminister thesedative,thedentistperformsa cannulation,whichinvolvesinsertingathintubeintoaveininapatient’shand.Inanexperimentinvolving20individuals,researcherstestedwhethertheamountofpainthe individualsexperiencedduringcannulationexplainsthelevelofanxietythattheindividualspredictedthey wouldexperiencebyundergoingcannulationagain.Afterundergoingcannulations,theindividualsrated theirexperiencesofpainfrom0to100andtheirpredictedanxietiesaboutundergoingcannulationsagain from0to100.Thepatients’ratingsareshowninthefollowingtable.
3750 2313 2935 6968 6370 3835 3430 143 82 6020 4148 1210 1010 3830 7570 4943 7081 4242 832 4843
Source: Pain-anxietyscatterplot(Source: Anaesthetics:ARandomised,Double-Blind,Placebo-Controlled, ComparativeStudyofTopicalSkinAnalgesicsandtheAnxietyandDiscomfortAssociatedwithVenous Cannulation,A.F.Speirsetal.)
Let a betheanxietyratingapatientpredictsforundergoinganothercannulationafterhavingundergone onewithapainratingof p.
a. Identifytheexplanatoryandresponsevariables.
b. Constructascatterplot.
c. Describeandinterpretthedirectionoftheassociation.
d. Graphthemodel a =0.91p +1.71 onthescatterplot.
e. Doesthemodelcomeclosetothedatapoints?
f. Usethemodeltopredicttheanxietyratingapatientwouldpredictaboutundergoinganothercannulationafterhavingundergoneonewithapainratingof30.
HW 1,3,7,9,19,25,27,35,39,43,47,49,51,77,81
SECTION7.1TEACHINGTIPS
Inthissection,studentswillgraphlinearequations,whichwilllaythefoundationfortherestofthechapter andultimatelypreparethemtographregressionlinesinSection9.3.Thelastobjectiveinthissection–graphing equationsoflinearmodels–willconnectnicelywithwhatstudentslearnedinSection6.3.
OBJECTIVE1COMMENTS
Iemphasizetheseterminologies,becauseIusethesewordssomuchthroughoutthecourse.
OBJECTIVE2COMMENTS
Problem4isimportant,becauseithelpsstudentsunderstandthateverypointonthegraphrepresentsasolutionof theequationandthateverypointnotonthegraphrepresentsanorderedpairthatisnotasolution.Thisimportant conceptisusedwhenfindingequationsoflinearequations(Sections9.1and9.2).
OBJECTIVE3COMMENTS
ForProblem5,Isuggestthatstudentsusethreepoints,becausethethirdpointcanserveasacheck.Moststudents
Copyright c 2016PearsonEducation,Inc.
144CHAPTER2LectureNotesandTeachingTips
arechallengedbyProblem8.Studentswillhaveaneasiertimegraphingsuchanequationoncetheyhavelearned aboutslope.
GROUPEXPLORATION:SolutionsofanEquation
Althoughthisexplorationaddressesthemeaningofagraph(Objective2),itisbettertousethisactivityonce studentsarecomfortablegraphinglinearequations(Objective3).Thatway,studentswillbeabletoefficientlydo Problem1oftheexplorationandgettothemainpointoftheexploration.
OBJECTIVE4COMMENTS
Studentswillneedtobeabletodeterminethe y-interceptofthegraphofanequationoftheform y = mx + b whentheyperformgraphinginSection7.3.
OBJECTIVE5COMMENTS
ForProblems9and10,manystudentsarethrownforaloop,becauseonlyonevariableappearsintheseequations. Onewaytoaddressthisissueistobeginwithanapplication.Let n bethenumberofstatesintheUnitedStatesat t yearssince1960.Next,createatableofnonnegativevaluesof t and n.Thendeterminethatthemodelis n =50 andgraphthemodel.Finally,discussforwhichyearsmodelbreakdownoccurs.(Hawaiibecamethe50thstate onAugust21,1959.)
Anotherwaytoaddresstheissue,whenfindingsolutionsoftheequation x =2 (Problem9),istousethe followingscenario:
Supposethatafamilyalwayshasexactly2carsandanotherfamilyhasvariousnumbersofcarsat varioustimes.
Thisscenariohelpsstudentsseethattheequation x =2 isrestrictingthevalueof x tobe2,butthevalueof y canbeanyrealnumber.
Forstudentswhoconfusethegraphsofequationsoftheform x = a and y = b,Isuggestthattheybuilda tableof(atleasttwo)solutionstotipthemoffwhethertheyshouldgraphahorizontalorverticalline.
OBJECTIVE6COMMENTS
TheRuleofFourwillberevisitedwhenworkingwithfunctionsinSection7.4. Problem16isimportant,becauseithelpsstudentsseetheconnectionbetweenfindinginputsandoutputs symbolicallyandgraphically.
OBJECTIVE7COMMENTS
InProblem17,somestudentstendtowonderhowtheequation a =0 91p +1 71 wasfound.EvenafterIsay thatwewilllearnhowtofindsuchanequationinSection9.3afterwehavediscussedthenecessaryalgebra, somestudentsarenotsatisfied;theywanttoknownow,whichItaketobeagoodsignthattheysomuchwantto understandthereasoningbehindthings.Despitetheirdiscomfort,itisagoodideatographmodelsnowtokeep studentsthinkingaboutlinearmodeling.
WhencompletingProblem17(f),Iemphasizethattheequation a =0 91p+1 71 allowsustomakepredictions withouthavingtodrawarrows,whichistimeconsumingandimprecise.
Copyright c 2016PearsonEducation,Inc.
SECTION7.2LECTURENOTES
Objectives
1. Calculatetherateofchangeofaquantitywithrespecttoanotherquantity.
2. Explaintheconnectionbetweenconstantrateofchangeandanexactlinearassociation.
3. Usearunandthecorrespondingriseofalinearmodeltofindarateofchange.
4. Describetheconnectionbetweenthedirectionofanassociationandrateofchange.
5. Calculatetheslopeofaline.
6. Explainwhytheslopeofanincreasinglineispositiveandtheslopeofadecreasinglineisnegative.
7. Explainwhytheabsolutevalueoftheslopeofalinemeasuresthesteepnessoftheline.
8. Explainwhytheslopeofahorizontallineiszeroandtheslopeofaverticallineisundefined.
OBJECTIVE1
1. Ifthetemperatureincreasedby 12◦Fover3hours,estimatehowmuchthetemperatureincreasedperhour.
2. Ifthetemperatureincreasedfrom 60◦Fat7A.M.to 68◦Fat11A.M.,estimatehowmuchthetemperature increasedperhour.
FormulaforRateofChange
Supposethataquantity y changessteadilyfrom y1 to y2 asaquantity x changessteadilyfrom x1 to x2 Thenthe rateofchange of y withrespectto x istheratioofthechangein y tothechangein x: changein y changein x = y2 y1 x2 x1
3. ThesalesofcigarettesintheUnitedStatesdeceasedapproximatelylinearlyfrom400billioncigarettesin 2003to280billioncigarettesin2013(Source: EuromonitorInternational).Findtheapproximaterateof changeofcigarettessales.
4. Apersonofheight132.5centimetersshoulduseaskipoleoflength90centimeters.Apersonofheight 153.0centimetersshoulduseaskipoleoflength110centimeters.Findtheapproximaterateofchangeof skipolelengthwithrespecttoaperson’sheight.
OBJECTIVE2
5. Supposethatastudenttravelsat60milesperhouronaroadtrip.Let d bethedistance(inmiles)thatthe studentcandrivein t hours.
a. Identifytheexplanatoryandresponsevariables.
b. Constructatabletodescribetheassociationbetween t and d fordrivingtimesof0,1,2,3,4,and5 hours.
Copyright c 2016PearsonEducation,Inc.
c. Constructascatterplotfordrivingtimesof0,1,2,3,4,and5hours.
d. Findtheslopeofthelinearmodel.
e. Describethefourcharacteristicsoftheassociation.Computeandinterpret r aspartofyouranalysis. Ifthereisanassociation,drawanappropriatemodelonthescatterplot.
ConstantRateofChangeImpliesanExactLinearAssociation
Iftherateofchangeofonevariablewithrespecttoanothervariableisconstant,thenthereisanexactlinear associationbetweenthevariables.
6. Theamountsofmoneyastudentispaidareshowninthefollowingtableforvariousnumbersofhours worked.Let p bethestudent’spay(indollars)forworking t hours.
a. Identifytheexplanatoryandresponsevariables.
b. Describethefourcharacteristicsoftheassociation.Computeandinterpret r aspartofyouranalysis.
c. Findtherateofchangeofpayfrom2to3hours.
d. Findtherateofchangeofpayfrom0to5hours.Comparetheresultwiththeresultyoufoundin Part(c).
AnExactLinearAssociationImpliesConstantRateofChange
Ifthereisanexactlinearassociationbetweentwovariables,thentherateofchangeofonevariablewith respecttotheotherisconstant.
OBJECTIVE3
Foranylinearmodel,the run isthehorizontalchangeandthe rise istheverticalchangeingoingfromonepoint onthelinetoanotherpointontheline.
UsingRunandRisetoFindRateofChange
Assumethereisanexactlinearassociationbetweenanexplanatoryvariable x andaresponsevariable y and (x1,y1) and (x2,y2) aretwodistinctpointsofthelinearmodel.Thentherateofchangeof y withrespect to x istheratiooftherisetotheruningoingfrompoint (x1,y1) topoint (x2,y2):
rateofchangeof y withrespectto x = y2 y1 x2 x1 = rise run
Copyright c 2016PearsonEducation,Inc.
7. A carat isaunitofweightforpreciousstonesandpearls.Thescatterplotandthemodelinthefollowing figuredescribetheassociationbetweentheweights(incarats)ofsomediamondsandtheirvalue(inSingaporedollars).Istheassociationpositive,negative,orneither?Estimatetherateofchangeofvaluewith respecttonumberofcarats.

InProblem7,youlikelyfoundthatifonediamondweighs1caratmorethananotherdiamond,itwillcost approximately$3720morethantheotherdiamond.Thisdoes not meanthatthediamondscost$3720percarat.
8. Thescatterplotandthemodelinthefollowingfiguredescribetheassociationbetweenyearsandthenumber oflargeshipslostatseaduetofire,collision,storm,andmachinebreakdown.Istheassociationpositive, negative,orneither?Estimatetherateofchangeofnumberoflargeshiplosses.

OBJECTIVE4
ConnectionbetweentheDirectionofanAssociationandRateofChange
• Ifanassociationbetweentwovariablesispositive,thentheapproximaterateofchangeofonevariable withrespecttotheotherispositive(seeProblem7).
• Ifanassociationbetweentwovariablesisnegative,thentheapproximaterateofchangeofonevariable withrespecttotheotherisnegative(seeProblem8).
Copyright c 2016PearsonEducation,Inc.
OBJECTIVE5
Definition Slopeofanonverticalline
Assume (x1,y1) and (x2,y2) aretwodistinctpointsofanonverticalline.The slope ofthelineistherateof changeof y withrespectto x.Insymbols:
9. Findtheslopeofthelinethatcontainsthepoints (1, 5) and (4, 3) Itisacommonerrortomakeincorrectsubstitutionsintotheslopeformula.Carefullyconsiderwhythemiddle andright-handformulasareincorrect: CorrectIncorrectIncorrect
Findtheslopeofthelinethatcontainsthegivenpoints.
10. (1, 3) and (4, 9) 11. ( 4, 1) and (2, 3)
12. ( 5, 1) and (4, 2) 13. ( 6, 3) and ( 2, 5)
Whenworkingwithnegativecoordinates,itcanhelptofirstwrite () () () () andtheninsertthecoordinatesintotheappropriateparentheses.
OBJECTIVE6
• Alinethatgoesupwardfromlefttorightis increasing.[Drawafigure.]
• Alinethatgoesdownwardfromlefttorightis decreasing.[Drawafigure.]
SlopesofIncreasingorDecreasingLines
• Anincreasinglinehaspositiveslope.[Drawafigure.AlsorefertoProblems10and12.]
• Adecreasinglinehasnegativeslope.[Drawafigure.AlsorefertoProblems11and13.]
14. Findtheapproximateslopeofthelinethatcontainsthepoints ( 2.8, 5.9) and ( 1.1, 3.7).Roundthe resulttotheseconddecimalplace.Statewhetherthelineisincreasingordecreasing.
OBJECTIVE7
15. Comparethesteepnessoftwolineswithslopes2and3.
Copyright c 2016PearsonEducation,Inc.
MeasuringtheSteepnessofaLine
Theabsolutevalueoftheslopeofalinemeasuresthesteepnessoftheline.Thesteepertheline,thelarger theabsolutevalueofitsslopewillbe.
OBJECTIVE8
• Drawahorizontallineandfinditsslope 0 run =0
• Drawaverticallineandexplainwhyitsslope, rise 0 ,isundefined.
SlopesofHorizontalandVerticalLines
• Ahorizontallinehasslopeequaltozero.[Drawafigure.]
• Averticallinehasundefinedslope.[Drawafigure.]
ForProblems16–19,findtheslopeofthelinethatcontainsthegivenpoints.Determinewhetherthelineis increasing,decreasing,horizontal,orvertical.
16. (2, 3) and (2, 1)
17. ( 3, 2) and (2, 8)
18. ( 1, 4) and (3, 4)
19. ( 5, 2) and ( 1, 4)
20. Sketchanincreasingline,adecreasingline,ahorizontalline,andaverticalline.Foreachline,determine whethertheslopeispositive,negative,zero,orundefined.
HW 1,3,7,9,13,17,21,23,25,31,39,43,53,59,63,65,67,77,83,97
SECTION7.2TEACHINGTIPS
Thissectionbeginswithrateofchange,whichisintuitiveandeasytomotivate–therearesomanyapplications! Andthetransitiontoslopeissmoothbecausefindingratesofchangeoflinearmodelsleadsnicelyintodiscussing ratesofchangeoflines.
Rateofchangeandslopeofalinearecrucialtopicsforlinearregression,whichwillbefullyaddressedin Section9.3.
OBJECTIVE1COMMENTS
IfyoudiscussedthechangeofaquantityinSection1.5andunitratiosinSection1.6,yourstudentsshouldbe wellpreparedforthisobjective.Ifyoudidn’tdiscusstheseconceptsthen,spendsometimediscussingthemnow. Itellstudentsthat50milesperhourisanexampleofarateofchange.Isayarateofchangeisadescription ofhowquicklyaquantitychangesinrelationtoanotherquantitychanging.Iexplainthatweoftenusetheword “per”todescribearateofchange.Igivesomemoreexamplesofratesofchangesuchas
• Astudentearns$8perhour.
• Thealtitudeofanairplanedecreasesby2200feetperminute.
• Acollegecharges$80perunit.(Youcouldusethechargeperunit(hoursorcredits)atyourcollege.)
Copyright c 2016PearsonEducation,Inc.
ThenIdiscussthematerialinthelecturenotes.WhengoingoverProblems1–4,Iemphasizethatweshould includeunitswhencomputingchangesintheexplanatoryvariableandchangesintheresponsevariable.Including unitsthroughoutthecalculationswillhelpstudentswritethecorrectunitsfortheirresult.Iemphasizethatwe dividethechangeintheresponsevariablebythechangeintheexplanatoryvariable.Studentstendtoaskme whetherthisistruebeforeImentionit,whichshowshowadepttheyhavebecomeinthinkingintermsofthe explanatoryandresponsevariables.
GROUPEXPLORATION:FindingtheMeanofRatesofChange
Althoughthisactivitydoesnotaddressacrucialtopicofthecourse,itdoesrequiresomegoodcriticalthinking. StudentstendtobeintimidatedbyProblem6;tellingthemitisn’tasdifficultasitfirstlookscanhelp.Astronger hintwouldbetodirecttheirattentiontoeachofthedenominatorsthatequal1.Studentstendtodowellonthe otherproblems,butthechallengeisforthemtotakeinthemainpointoftheexploration(Problem7).
OBJECTIVE2COMMENTS
Thisobjectivetiesrateofchangetolinearmodels,whichisanimportanttransition,butI’musuallytightontime soinsteadofhavingstudentsworkonallpartsofProblems5and6,IjustcompletePart5(c)andpointoutthat thedatapointslieonastraightline.
OBJECTIVE3COMMENTS
ForProblems7and8,IperformthesametypesofcalculationsasinProblems2–4,butnowIemphasizethe graphicalinterpretation.Inparticular,theconceptsriseandrunareintroduced.
OBJECTIVE4COMMENTS
Toaddressthisobjective,IaskstudentswhytherateofchangeinProblem7ispositiveandwhytherateofchange inProblem8isnegative.Studentsarequicktoexplain.
Ingeneral,itisimportanttolookforsuchopportunitiestohavestudentscomeupwithanexplanationforthe nextconcepttobediscussed.Thisincreasesthechancestheywillunderstandthematerialbecausetheycameup withtheexplanationratherthanhavingpassivelyreceivedit.
OBJECTIVE5COMMENTS
ForProblem9,Ifindtheslopebyusingtheslopeformulabutalsoplotthepointsandlabeltheriseandtherunto keepstudentsthinkingabouttheconnectionbetweenthecomputationsandtheriseandrun.
ForProblem9,Ialsodemonstratethatwhenweusetheslopeformulawithtwopointsonaline,itdoesn’t matterwhichpointwechoosetobe (x1,y1) andwhichpointwechoosetobe (x2,y2).
Whensomeorallcoordinatesarenegative(Problems11–14),acommonstudenterroristoomitatleastone subtractionsymbolfromtheslopeformulaornegativesignfromthecoordinates.Thesuggestioninthelecture notestofirstwritetheparenthesesaddressesthistypeoferror.
GROUPEXPLORATION:ForaLine,RiseoverRunisConstant
Thisexplorationhasstudentsdiscoverthattheslopeofalineisindependentofwhichpairofpointsontheline arechosentocalculatetheslope.Moststudentswon’tunderstandthisconceptunlesstheytakepartinsuchan activity.
GROUPEXPLORATION:GraphicalSignificanceof m for y = mx
Thisactivityassistsstudentsindiscoveringthegraphicalsignificanceof m foranequationoftheform y = mx, whichisakeyconceptofthecourse.Afterstudentscompletetheexploration,Ifacilitateaclassroomdiscussion inwhichstudentssharetheirresponsesforProblem4oftheexploration.Thereisalotofinformationinthis exploration,andstudentshavetroubleseeinghowitallfitstogether.
ThisexplorationcouldbeusedbeforediscussingObjectives6–8sostudentsdiscovertheconcepts.However, onecouldarguethatourearlierworkwithrateofchangehasalreadylaidthegroundworkforthoseobjectivesso thisexplorationshouldbeusedtosumthingsupattheendofthesection.Onedifficultywitheitherplacement isthattheconnectionbetweenslopeandthecoefficientof x foranequationoftheform y = mx willnotbe
Copyright c 2016PearsonEducation,Inc.
establisheduntilSection7.3.So,youmayprefertousethisexplorationinthatsection.
OBJECTIVE6COMMENTS
ThisobjectivefollowsdirectlyfromthesignanalysisofrateofchangeforObjective4.Toreinforcetheconcepts, IperformasignanalysisofriseandrunasshownineachofFigs.44and45onpages451and452ofthetextbook. Or,ifyouprefer,youcouldshowasimilarsignanalysisearlierwhendiscussingrateofchange.
Acommonerrorwhencomputingtheslopeisforthesigntobeincorrect.Tocheckthesign,astudentcan quicklyplotthepointsanddeterminewhetherthelineisincreasingordecreasing.
OBJECTIVE7COMMENTS
Eventhoughthisobjectivefollowslogicallyfromtheearliertaughtfactthatslopeisarateofchange,Ipreferto sketchtwolineslikeinFig.46onpage452ofthetextbookandcomparetheirslopesandsteepnessbecausethis conceptissoimportant.
OBJECTIVE8COMMENTS
Afterdemonstratingthatahorizontallinehasaslopeequaltozero,Ipointoutthatthismatcheswithwhatwe knowaboutrateofchange.Oncestudentshaveseenhowtoshowthatahorizontallinehasslopeequaltozero, theycandiscoverthataverticallinehasundefinedslope.
SECTION7.3LECTURENOTES
Objectives
1. Usetheslopeandthe y-interceptofalinetosketchtheline.
2. Describethemeaningof m foranequationoftheform y = mx + b.
3. Graphanequationoftheform y = mx + b byusingtheline’sslopeand y-intercept.
4. Findanequationofalinefromitsgraph.
5. Graphanequationofalinearmodelbyusingthemodel’sslopeandverticalintercept.
6. Usealinearmodel’sslopeandverticalintercepttofinditsequation.
OBJECTIVE1
Sketchthelinethathasthegivenslopeand y-intercept.
OBJECTIVE2
4. a. UsethemethoddiscussedinSection3.1tograph y =2x +1.
b. Whatistheslopeoftheline y =2x +1?
c. Comparetheslopewiththenumbermultipliedtimes x intheequation y =2x +1 Copyright c 2016PearsonEducation,Inc.
FindingtheSlopeand y-InterceptfromaLinearEquation
Foralinearequationoftheform y = mx + b,
• theslopeofthelineis m and
• the y-interceptofthelineis (0,b).
Wesaythisequationisin slope-interceptform.
Thegraphoftheequation y = 3x +8 isalinewithslope 3 and y-intercept (0, 8)
OBJECTIVE3
Sketchthegraphoftheequationbyhand.
GraphinganEquationinSlope-InterceptForm
Tographanequationoftheform y = mx + b,
1. Plotthe y-intercept (0,b).
2. Use m = rise run toplotasecondpoint.Forexample,if m = 2 3 ,thencount3unitstotheright(fromthe y-intercept)and2unitsuptoplotanotherpoint.
3. Sketchthelinethatpassesthroughthetwoplottedpoints.
9. Graphanequationoftheform y = mx + b where m ispostiveand b isnegative.
OBJECTIVE4
10. Findanequationofalinethathasslope 5 7 and y-intercept (0, 2). 11. Findanequationofthelinesketchedbelow.
FindinganEquationofaLinefromaGraph
Tofindanequationofalinefromagraph.
1. Determinetheslope m andthe y-intercept (0,b) fromthegraph.
2. Substituteyourvaluesfor m and b intotheequation y = mx + b.
OBJECTIVE5
12. Let p bethepercentageofAmericanswhowatchagreaternumberofTVprogramsonchannels’websites (ratherthanonTV)at t yearssince2005(seethefollowingtable).Areasonablemodelofthesituationis p =3 7t 0 8
Source: GfK
a. Graphthemodelbyhand.
b. Predictinwhichyear36%ofAmericanswillwatchagreaternumberofTVprogramsonchannels’ websites.Didyouperforminterpolationorextrapolation?Doyouhavemuchfaithintheprediction? Explain.
OBJECTIVE6
13. Apersonearnsastartingsalaryof$30thousandatacompany.Eachyear,shereceivesa$2thousandraise. Let s betheperson’ssalary(inthousandsofdollars)aftershehasworkedatthecompanyfor t years.
a. Isthereanexactlinearassociationbetween t and s?Explain.
b. Findthe s-interceptofalinearmodel.Whatdoesitmeaninthissituation?
c. Findtheslopeofthelinearmodel.Whatdoesitmeaninthissituation?
d. Findanequationofalinearmodel.
14. Let T bethetotalone-semestercost(indollars)oftuitionplusparkingfeefor u units(creditsorhours) ofclassesatyourcollege.[Youcouldreplacetheparkingfeewithanyone-timechargesuchasastudentservicesfeeatyourcollege.]
a. Isthereanexactlinearassociationbetween u and T ?Ifso,findtheslope.
b. Findanequationofthemodel.
c. Graphthemodel.
d. Selectatotalone-semestercostandpredictthecorrespondingnumberofunits.
Copyright c 2016PearsonEducation,Inc.
15. Let s beU.S.retailsales(inbillionsofdollars)ofvitaminsanddietarysupplementsat t yearssince2000 (seethefollowingtable).Areasonablemodelis s =1 23t +8 33
U.S.RetailSalesofVitamins andDietarySupplements Year(billionsofdollars) 200717.1
Source: EuromonitorInternational
a. Usetechnologytodrawascatterplotandthemodelinthesameviewingwindow.Checkwhetherthe linecomesclosetothedatapoints.
b. Whatistheslopeofthemodel?Whatdoesitmeaninthissituation?
c. Findtheratesofchangeinthenumberofretailssalesfromoneyearinthetabletothenextonelisted. ComparetheratesofchangewiththeresultyoufoundinPart(b).
d. Whatisthe s-intercept?Whatdoesitmeaninthissituation?
e. Usethemodeltoestimatetheretailsalesin2012.Didyouperforminterpolationorextrapolation? Computetheerror.
HW 1,3,7,11,19,29,41,43,51,55,63,65,69,73,77,81,85,97
SECTION7.3TEACHINGTIPS
Inthissection,studentsusetheslopeandthe y-intercepttographequationsinslope-interceptform.Afterstudents learnhowtosolveequationsinSections8.2and8.3,theywillgraphlinearequationsnotinslope-interceptform inSection8.4.Studentstendtodobetterwiththisorganization,ratherthanhavingtocontendwithgraphinglinear equationsofallformsinjustonesection.
OBJECTIVE1COMMENTS
Problems1–3providethe“bigpicture”ofthesection.
Somestudentstendtousetherunandtherisestartingfromtheoriginratherthanfromthe y-intercept.I remindthemthattherunandtherisehavetodowithgoingfromonepoint on alinetoanotherpointontheline.
ForProblem2,somestudentsareunsurewhattodowiththenegativesignoftheslope.Theywanttoknow whethertheyshouldworkwiththeslope 3 2 or 3 2 .Idemonstratethatbothwaysgivethesameresult;I emphasizethatourmaingoalistographtheline,notfindtwopointsontheline.
Acommonerroristowrite 3 2 = 3 2 .Ipointoutthatthisisincorrectbecause 3 2 isnegativebut 3 2 is positive.
ForProblem3,somestudentsneedareminderthat a = a 1
OBJECTIVE2COMMENTS
YoucanaddressthisobjectivebycompletingProblem4orhavinggroupsofstudentsworkonthefollowing exploration.
GROUPEXPLORATION:TheMeaningof m intheEquation y = mx + b
Thisactivityisagreatwayforstudentstodiscoverthatforanequationoftheform y = mx + b,theslopeofthe
Copyright c 2016PearsonEducation,Inc.
equationis m.ManystudentswillneedhelpwithProblem4(e)oftheexploration.
OBJECTIVE3COMMENTS
Thisobjectivefollowsnicelyfromobjective1.
GROUPEXPLORATION:DrawingLineswithVariousSlopes
Thisactivityisafunwaytodrivehomethepointofthemeaningofslope.Moststudentswilluseonlyinteger valuesfortheslope.Itellthemtoalsotryvaluesbetween 1 and1(inadditionto0).
OBJECTIVE4COMMENTS
Studentshaveaneasytimewiththisobjective.Ipointoutthatthistaskisthereverseofgraphing.Iremind mystudentsabouttheRuleofFourforequations.Isaywecangofromanyoneofthesefourwaystoanother. (StudentswilllearnhowtogofromtablestoequationsinSection9.2.)
GROUPEXPLORATION:FindinganEquationofaLinefromItsGraph
Studentstendtohavefunwiththisactivity.
OBJECTIVE5COMMENTS
ForProblem12,Itellmystudentsthattheywilllearntofindlinearmodelssuchas p =3 7t 0 8 inSection9.2. Idemonstratehowtousethemethodinthissectiontosketchthemodel p =3 7t 0 8,butIalsopointoutthat itisoftenusefultofindapointfarofftotherightsuchas (10, 36.2) bysubstituting10for t.Findingsuchathird pointcanhelpstudentssketchanaccurateline,especiallywhentherunoftheirfirsttwochosenpointsissmall comparedtothelargestvalueofthescalingonthehorizontalaxis.
OBJECTIVE6COMMENTS
Althoughstudentshavefoundequationsoflinearmodelsbyrecognizingpatternsofarithmetic(Section1.7),they willinitiallyhavetroublewithfindingsuchanequationusingtheconceptsinthissection.
ForProblem13,thefirstthingIdoisusethestartingsalaryof$30thousandtoplotthe s-interceptona coordinatesystem.ThenIusethe$2thousandraiseperyeartodrawthelinearmodel.Thegraphhelpsclarify howtoapplytheconceptsofObjective4tocompleteParts(b),(c),and(d).
SECTION7.4DETAILEDCOMMENTS
Objectives
1. Describethemeaningsof relation, domain, range,and function
2. Identifyfunctionsbyusingthe verticallinetest
3. Describethemeaningof linearfunction
4. DescribetheRuleofFourforfunctions.
5. Usethegraphofafunctiontofindthefunction’sdomainandrange.
6. Usefunctionnotation.
7. Usefunctionnotationtomakepredictions.
8. Determinethedomainandrangeofamodel. Copyright c 2016PearsonEducation,Inc.
OBJECTIVE1
Refertotheorderedpairs (1, 4), (2, 3), (2, 5),and (3, 1) tointroducetheconcepts relation, domain, range, input, and output
Definition Relation,domain,andrange
A relation isasetoforderedpairs.The domain ofarelationisthesetofallvaluesoftheexplanatory variable,andthe range oftherelationisthesetofallvaluesoftheresponsevariable.
• Eachmemberofthedomainisan input.
• Eachmemberoftherangeisan output.
Definition Function
A function isarelationinwhicheachinputleadstoexactlyoneoutput.
Determinewhetherthegivenrelationisafunction.
1. y = x +5 2. y =2x 3. y = ±x
4. Someorderedpairsoffourrelationsarelistedinthefollowingtable.Whichoftheserelationscouldbe functions?Explain.
Relation1Relation2Relation3Relation4 xyxyxyxy 0132205371 1183186372 2233167373 3284148374 4335129375
OBJECTIVE2
Usearrowstoshowthatthereisaninputthathastwooutputsfortherelationgraphedbelow.Concludethatthe relationisnotafunction.
VerticalLineTest
Arelationisafunctionifandonlyifeachverticallineintersectsthegraphoftherelationatnomorethan onepoint.Wecallthisrequirementthe verticallinetest
Determinewhetherthefollowinggraphrepresentsafunction.Explain.
Copyright c 2016PearsonEducation,Inc.
OBJECTIVE3
Definition LinearFunction
A linearfunction isarelationwhoseequationcanbeputintotheform
y = mx + b where m and b areconstants.
Determinewhetherthegivenrelationisalinearfunction.
OBJECTIVE4
RuleofFourforFunctions
Wecandescribesomeoralloftheinput-outputpairsofafunctionbymeansof 1. anequation, 2. agraph, 3. atable,or 4. words.
9. a. Istherelation y =3x 2 afunction?
b. Listsomeinput-outputpairsof y =3x 2 byusingatable.
c. Describetheinput-outputpairsof y =3x 2 byusingagraph.
d. Describetheinput-outputpairsof y =3x 2 byusingwords.
OBJECTIVE5
10. Usethegraphofthefunctiontodeterminethefunction’sdomainandrange.
OBJECTIVE6
• Touse“f ”asthenameofthefunction y =4x +2,weuse“f (x)”torepresent y: y = f (x)
Copyright c 2016PearsonEducation,Inc.
, 3)
• Wecansubstitute f (x) for y intheequation y =4x +2: f (x)=4x +2
• Tofind f (3),wesaywe evaluate thefunction f at3.
• Warning:“f (x)”doesnotmean f times x
Evaluate f (x)=3x 5 atthegivenvaluesof x
11. f (4)
For f (x)= 2x +6, g(x)=3x2 4x, h(x)=
14. f (4) 15. g(2)
h(6)
f
(x)=5,findthefollowing:
k(3)
18. Let f (x)= 8.73x 256.Find x when f (x)=96.15.Roundyourresulttotheseconddecimalplace.
Someinput-outputpairsofafunction f areshowninthefollowingtable.
19. Find f (3)
20. Find x when f (x)=3
21. Afunction f isgraphedinthefigurebelow.
a. Find f ( 1)
b. Find x when f (x)= 1
c. Findthedomainof f
d. Findtherangeof f
22. Recallthatwecandescribesomeoralloftheinput-outputpairsofafunctionbymeansofanequation,a graph,atable,orwords.Let f (x)= 4x +7
Copyright c 2016PearsonEducation,Inc.
a. Describefiveinput-outputpairsof f byusingatable.
b. Describetheinput-outputpairsof f byusingagraph.
c. Describetheinput-outputpairsof f byusingwords.
OBJECTIVE7
Definition Functionnotation
Theresponsevariableofafunction f canberepresentedbytheexpressionformedbywritingtheexplanatory variablenamewithintheparenthesesof f ():
responsevariable = f (explanatoryvariable)
23. Let T bethetotalfallsemestercost(indollars)oftuitionandfeesforpart-timestudentswhotook C credits (unitsorhours)ofcoursesatCentenaryCollege(Source: CentenaryCollege).Thesituationcanbemodeled bytheequation T =575C +15
a. Rewritetheequation T =575C +15 withthefunctionname f .
b. Find f (6).Whatdoesitmeaninthissituation?
24. ThepercentagesofAmericanadultswhosmokeareshowninthefollowingtableforvariousyears.
200023.1
201019.4
201218.0
Source: NationalCenterforHealthStatistics
Amodelis p = 0 45t +36 83,where p isthepercentageofAmericanswhosmokeat t yearssince1970.
a. Verifythatthegraphof p = 0.45t +36.83 comesclosetothedatapoints.
b. Rewritetheequation p = 0 45t +36 83 withthefunctionname g
c. EstimatethepercentageofAmericanadultswhosmokedin2005.
d. Findthe p-interceptofthemodel.Whatdoesitmeaninthissituation?
25. Let p bethepercentageofgamblingrevenueinNevadathatisfrompennyslotmachinesat t yearssince 2008.Thepercentagein2008was14%andincreasedby2.8percentagepointsperyearuntil2013(Source: NevadaStateGamingControlBoard).
a. Findanequationofamodelthatdescribesthissituation.
b. Rewriteyourequationusingthefunctionname f
c. Find f (5).Whatdoesitmeaninthissituation?
26. ThenumberofhouseholdswithcableTVsubscriptionswas61.8millionin2009anddecreasedbyabout 1.5millionperyearuntil2014(Source: IHS).Let n = g(t) bethenumber(inmillions)ofhouseholdswith cableTVsubscriptionsat t yearssince2009.
Copyright c 2016PearsonEducation,Inc.
a. Findanequationof g
b. Find g(4).Whatdoesitmeaninthissituation?
OBJECTIVE8
Forthe domain and range ofamodel,weconsiderinput-outputpairsonlywhenboththeinputandoutputmake senseinthesituation.
27. Astoreisopenfrom9A.M.to5P.M.,MondaysthroughSaturdays.Let I = f (t) beanemployee’s weeklyincome(indollars)fromworking t hourseachweekat$10perhour.
a. Findanequationofthemodel f
b. Findthedomainandrangeofthemodel f
HW 1,3,5,13,19,29,33,39,47,55,57,61,65,79,81,85,89,93,95,101
SECTION7.4TEACHINGTIPS
Studentslearnabouttheconceptsofrelationandfunctioninthissection.Conceptsrelatedtofunctionswillbe neededthroughouttherestofthetextbook.Studentstendtohaveaneasytimewithfunctionconcepts,although theystruggleinitiallywithfindingthedomainandrangeofafunction.Theyalsohavegrowingpainslearning aboutfunctionnotation,especiallywithconfusingtheinstructionssuchas"Find f (5)"and"Find x when f (x)= 5
OBJECTIVE1COMMENTS
Togetacrosstheconceptsofrelationandfunction,Iliketodrawlotsof“relationmachines”suchastheonesin Figs.102and103onpage477ofthetextbookaswellastablessuchasTables39and40onpages476and478of thetextbook.Imakesurethatstudentsunderstandthatafunctionmayhavetwoinputsthatsharethesameoutput.
OBJECTIVE2COMMENTS
Beforediscussingtheverticallinetest,IusearrowssimilartothoseinFig.105onpage478ofthetextbooktoget studentsaccustomedtothinkingvisuallyofinputsbeingsenttooutputs.Ifindthatevencalculusstudentslack thisessentialperspective.Ialsousearrowswithtablesandtheircorrespondinggraphstohelpstudentsseethe connectionbetweentablesandgraphsintermsofinputsbeingsenttooutputs.
Oncestudentsseehowtodrawsucharrowswithgraphs,studentsarequicktoidentifygraphsoffunctions. Theycandothiswithouthavingbeentoldabouttheverticallinetest.Ipreferhavingstudentsdrawarrows, becausetheverticallineteststripsawaythekeyideaofafunction.Oncestudentshavemasteredusingarrowsto identifygraphsoffunctions,I’llsometimesbrieflydiscusstheverticallinetest.Moststudentspersistindrawing arrowsonquizzesandexams,whichItaketobeagoodsign.
GROUPEXPLORATION:UseBeforeVerticalLineTest
Thisactivitynicelymotivatestheverticallinetest.Bycompletingtheexploration,studentswillseenotonlyhow tousetheverticallinetest,butalso why itworks.
OBJECTIVE3COMMENTS
Studentshaveaneasytimewiththisobjective.
OBJECTIVE4COMMENTS
ThereareexercisesscatteredthroughoutthetextbookthatrequireconceptsrelatedtotheRuleofFourforfunctions.Forexample,seeExercises25and26ofthissectionandseeExercises59and60ofHomework9.1.
OBJECTIVE5COMMENTS
Tofindthedomainandrangeofafunctionfromitsgraph,Idrawarrowsindicatingabout10inputsbeingsentto
Copyright c 2016PearsonEducation,Inc.
LectureNotesandTeachingTips161 correspondingoutputs(seeFigures112and113onpage481ofthetextbook).Moststudentswillthenbequick topickuponthedomainandrangeofthefunction.Ifindthatstudentstendtohavemuchmoresuccesswiththis approachthanwithotherstandardapproaches.
ForProblem10(c),studentswillwonderwhetherthedomainisreallythesetofallrealnumbers.Itwillhelp toexplainthemeaningofthetwodisplayedarrowsatthe"ends"ofthecurve.
Intheanswerssection,inequalitynotation(Section1.1)isusedtodescribedomainsandrangesoffunctions. Inthesecondedition,Iwilllikelyaddintervalnotation(Section1.1)totheseanswers.
OBJECTIVE6COMMENTS
Manystudentswonderwhywewouldwanttorepresent“y”bythemorecomplicatednotation“f (x).”Iemphasize thatfunctionalnotationallowsustoconvenientlynameafunction.Iexplainthatbeingabletonameafunctionis especiallyhelpfulwhenworkingwithtwomodels,suchasthemodeldescribedinProblem25andthemodelthat describesthepercentageofgamblingrevenueinNevadathatisfromblackjackat t yearssince2008.
StudentstendtobereassuredwhenItellthemthat f (x) simplystandsfor y.Later(whendiscussingObjective7)Iexplainthat,ingeneral,responsevariable = f (explanatoryvariable).
Ispendagoodchunkoftimediscussinghowtofindvaluesof x or f (x),whereafunction f isdescribed byatable,agraph,oranequation.Ialsotieinfunctionnotationwithfunction-machinefiguressuchastheone inFig.114onpage482ofthetextbook.Studentsneedtoviewfunctionsfrommultipleperspectivestoreally understandthem.
Manystudentsthinkthatthenotation f (4) meansthat y is4orthattheequation f (x)=4 meansthat x is 4.ComparingtheworkforProblem19withtheworkforProblem20andcomparingtheworkforProblem21(a) withtheworkforProblem21(b)shouldhelpaddresstheseissues.
GROUPEXPLORATION:FormulaforSlope
Thisactivitydoesnotaddressacrucialconceptofthecourse,butitdoesshedadifferentlightontheslopeformula.
OBJECTIVE7COMMENTS
StudentsdealwithfunctionnotationwellinProblems23–26,althoughsomestudentstendtocontinuetostruggle tofindequationsofmodelsinProblems25(a)and26(a).Theywillbechallengedbyfunctionnotationtoamuch largerdegreewhentheymustdistinguishbetweenevaluatingafunctionandsolvingforanexplanatoryvariable inSections8.3,9.2,and9.3.
OBJECTIVE8COMMENTS
Duetotimelimitations,Iusuallyskiporgivelighttreatmenttothisobjective.Inmostsituations,it’sverydifficult todetermineaprecisedomainand,hence,rangeofamodel.It’sfarmoreimportanttogetacrossthemeaningsof interpolationandextrapolationandwhywehavelittleornofaithwhenweextrapolate. Copyright c 2016PearsonEducation,Inc.
CHAPTER8OVERVIEW
Inthischapter,studentswillsimplifylinearexpressionsandsolvelinearequationsinonevariable,formulas,and linearinequalities.Theskillofsolvingequationswillpreparestudentstofindequationsoflinesandlinearmodels inSections9.1and9.2.Thisskillwillalsopreparestudentstolearnthederivationsofsample-sizeformulasin introductorystatistics.Theskillofsolvinginequalitieswillpreparestudentstolearnaboutthederivationof confidenceintervalsinintroductorystatistics.
OnecouldarguethatSection8.4(solvingformulas)isthemostimportantsectionbecausestudentswillwork withsomanyformulasinintroductorystatistics.
StudentstendtobegreatlychallengedbySections8.3(solvingmorecomplicatedlinearequationsandlinear modeling)and8.4(solvingformulas),sobesuretoallocateenoughtimeforthesesections.
SECTION8.1LECTURENOTES
Objectives
1. Describethe commutativelaw
2. Describethe associativelaw.
3. Describethe distributivelaw.
4. Describethemeaningof equivalentexpressions.
5. Combineliketerms.
6. Simplifyexpressions.
OBJECTIVE1
Theequations 3+7=7+3 and 3 7=7 3 suggestthefollowinglaws.
CommutativeLawsforAdditionandMultiplication
Commutativelawforaddition: a + b = b + a
Commutativelawformultiplication: ab = ba
Usethecommutativelawforadditiontowritetheexpressioninanotherform. 1. 5+ x 2. 2+7k
Usethecommutativelawformultiplicationtowritetheexpressioninanotherform.
• Thereisnocommutativelawforsubtraction.
• A term isaconstant,variable,oraproductofaconstantandoneormorevariablesraisedtopowers.
• Herearesometerms: 6x, 5, w, 3pt, 4y5 w2
• Variableterms aretermsthatcontainvariables.
Copyright c 2016PearsonEducation,Inc.
• Constantterms aretermsthatdonotcontainvariables.
• Weusuallywriteasumofbothvariableandconstanttermswiththevariabletermstotheleftoftheconstant terms.
6. Write 7 3x sothatthevariabletermistotheleftoftheconstantterm.
OBJECTIVE2
Theequations (3+2)+5=3+(2+5) and (3 · 2) · 5=3 · (2 · 5) suggestthefollowinglaws.
AssociativeLawsforAdditionandMultiplication
Associativelawforaddition: a +(b + c)=(a + b)+ c
Associativelawformultiplication: a(bc)=(ab)c
Useanassociativelawtowritetheexpressioninanotherform.
7. (x +4)+ y 8. b +(5+ c) 9. 8(xy) 10. (kp)w
11. Rearrangethetermsof 7 5x +3 9 sothatthenumberscanbeadded.
12. Usethecommutativeandassociativelawstoremovetheparentheses.Also,multiplyandaddnumberswhen possible. a. 2(4p) b. (3+5x)+7
OBJECTIVE3
Theequation 3(2+4)=3 2+3 4 suggeststhefollowinglaw.
DistributiveLaw
a(b + c)= ab + ac
Findtheproduct.
13. 2(x +3) 14. 4(2x +8) 15. 7(w 5) 16. 3(4x 7y)
(x 9)(2)
4(7 x)
3(2p 4t +6)
• Inapplyingthedistributivelawtoanexpressionsuchas 2(x +3),remembertodistributethe2to every termintheparentheses.
• Avoidconfusingtheassociativelawwiththedistributivelaw.We cannot applythedistributivelawtothe expression a(bc) toget (ab)(ac).
MultiplyingaNumberby 1
Removetheparentheses.
20. (x +5) 21. (8x 3y +6)
OBJECTIVE4
22. Evaluatebothoftheexpressions 2(x +3) and 2x +6 forthevalues x =0, x =1, x =2, x =3, x =4, and x =5.(Afterperformingacoupleofevaluationsbyhand,usetechnology.)
Definition Equivalentexpressions
Twoormoreexpressionsare equivalentexpressions if,wheneachvariableisevaluatedfor any realnumber (forwhichalltheexpressionsaredefined),theexpressionsallgiveequalresults.
OBJECTIVE5
• The coefficient ofatermistheconstantfactoroftheterm.
• Liketerms areeitherconstanttermsorvariabletermsthatcontainthesamevariable(s)raisedtoexactly thesamepower(s).
• Iftermsarenotliketerms,wesaythattheyare unliketerms
• Whenwewriteasumordifferenceofliketermsasoneterm,wesaywehave combinedliketerms. Combineliketerms.
23. 3x +5x 24. 9w 6w 25. 4b + b
CombiningLikeTerms
Tocombineliketerms,addthecoefficientsofthetermsandkeepthesamevariablefactors.
OBJECTIVE6
• We simplifyanexpression byremovingparenthesesandcombiningliketerms.
• Theresultofsimplifyinganexpressionisa simplifiedexpression,whichisequivalenttotheoriginal expression.
Simplify.
26. 5x 2y +3x +4 6y 1
27. 7 5(b +4)
28. 4(2w 5y) 2(w + y)
29. 3(k 5) (k +2)
30. Let x beanumber.Translatethephrase“3,minus2timesthedifferenceoftwicethenumberand5”toan expression.Thensimplifytheexpression.
31. Let x beanumber.Translatetheexpression 3x 2(x 5) intoanEnglishphrase.Thensimplifythe expression.
Copyright c 2016PearsonEducation,Inc.
HW 1,3,7,11,17,27,37,47,55,63,67,69,75,83,91,97,107
SECTION8.1TEACHINGTIPS
Inthissection,studentsusethecommutative,associative,anddistributivelawstosimplifyexpressions.These conceptswillbeusedthroughouttherestofthecourse.Moststudentswillhaveaneasytimewiththissection.
OBJECTIVES1–3COMMENTS
WhenIamtightontime,Igivelighttreatmenttothecommutativeandassociativelawsandemphasizethe distributivelaw.Eitherfrompastexperienceswithalgebraorbywayofintuition,studentsseemtoknowhowto applythecommutativeandassociativelawstosimplifyexpressions.Themainthingthatstudentsneedtoknow inrelationtothecommutativeandassociativelawsisthattheycanrearrangeterms.
Studentstendtohavedifficultyapplyingthedistributivelawwhentheexpressionincludesnegativecoefficients and/orconstantterms.
ForexpressionssuchastheonesinProblems20and21,mosttextbookssuggesttochangethesignsofthe termsintheparentheses,butstudentsdon’tseemtounderstandthistechnique.Plus,itisnotcleartostudents howthattechniqueistiedtothelawsofoperations,whereasstudentscanseethatthetechniquethatusesthefact 1a = a istiedtothedistributivelaw.Whenusingthistechnique,Ipointoutthatthedistributivelawsaysthat wecandistributeanumbersuchas 1,notanoppositesymbol.
GROUPEXPLORATION:LawsofOperations
Thisactivityhasstudentsdiscoverthethreelawsofoperationsdiscussedinthissection.Studentshaveaneasy timewiththisexploration.
OBJECTIVE4COMMENTS
ForProblem22,Iemphasizethatwhenwesimplify 2(x +3) andwrite 2(x +3)=2x +6 wemeanthatthe expressions 2(x +3) and 2x +6 areequivalent.Moststudentsthinkofsimplifyinganexpressionasataskto complete;theydonotknowthattheresultandtheoriginalexpressionareequivalent.
OBJECTIVE5COMMENTS
Tointroducehowtocombineliketermsfor 2x +3x,Iusethedistributivelawtowrite 2x +3x =(2+3)x =5x, butIalsodemonstratethat 2x +3x =(x + x)+(x + x + x)= x + x + x + x + x =5x.Thelattertechnique mightbetheclearerwayforstudentstoseethat 4b + b =5b (Problem25).
OBJECTIVE6COMMENTS
InProblem27,forthefirststepintryingtosimplify 7 5(b +4),somestudentsmistakenlywrite 2(b +4).To pointouttheirerror,Iremindthemoftheorderofoperations.
ItiswithmorecomplicatedexpressionslikethoseinProblems27–29,thatstudentsaremorelikelytoforget todistributeafactortoalltermsinsideparentheses.
GROUPEXPLORATION:SimplifyingExpressions
Thisactivityessentiallywarnsgroupsofstudentsofthreetypesofcommonstudenterrors.
Copyright c 2016PearsonEducation,Inc.
SECTION8.2LECTURENOTES
Objectives
1. Describethemeaningof linearequationinonevariable
2. Foranequationinonevariable,describe satisfy, solution, solutionset,and solve
3. Describe equivalentequations
4. Describethe additionpropertyofequality
5. Describethe multiplicationpropertyofequality.
6. Solvealinearequationinonevariable.
7. Solveapercentageproblem.
8. Usegraphingtosolvealinearequationinonevariable.
9. Useatabletosolvealinearequationinonevariable.
OBJECTIVE1
Definition Linearequationinonevariable
A linearequationinonevariable isanequationthatcanbeputintotheform
mx + b =0
where m and b areconstantsand m =0
OBJECTIVE2
1. Showthattheequation x +3=7 becomesatruestatementif4issubstitutedfor x
Definition Solution,satisfy,solutionset, and solve foranequationinonevariable
Anumberisa solution ofanequationinonevariableiftheequationbecomesatruestatementwhenthe numberissubstitutedforthevariable.Wesaythenumber satisfies theequation.Thesetofallsolutionsof theequationiscalledthe solutionset oftheequation.We solve theequationbyfindingitssolutionset.
2. Is2asolutionoftheequation 2 4x =3(x 4)?
3. Is5asolutionoftheequation 2 4x =3(x 4)?
OBJECTIVE3
4. Showthatthefollowingequationsallhavethesamesolutionset: x =6, x +2=6+2,and x +2=8
Copyright c 2016PearsonEducation,Inc.
Equivalentequations areequationsthathavethesamesolutionset.
OBJECTIVE4
AdditionPropertyofEquality
If A and B areexpressionsand c isanumber,thentheequations A = B and A + c = B + c areequivalent.
5. Solve x 4=2
• Aftersolvinganequation,checkthatallofyourresultssatisfytheequation.
• Ourstrategyinsolvinglinearequationsinonevariablewillbetousepropertiestogetthevariablealoneon onesideoftheequation.
Solve.
OBJECTIVE5
9. Showthatthefollowingequationsallhavethesamesolutionset: x =4, 3 x =3 4,and 3x =12
MultiplicationPropertyofEquality
If A and B areexpressionsand c isanonzeronumber,thentheequations A = B and Ac = Bc are equivalent.
OBJECTIVE6
Solve.
OBJECTIVE7
17. Inasurvey,70%ofadultsansweredyestothefollowingquestion(Source: TheGallupOrganization): "Whenapersonhasanincurabledisease,shoulddoctorsbeallowedtohelpendapatient’slifebysome painlessmeansifthepatientrequestsit?"Ifthenumberofpeopleinthesurveywhosaidthisis717,what isthetotalnumberofadultssurveyed?
Copyright c 2016PearsonEducation,Inc.
OBJECTIVE8
UsingGraphingtoSolveanEquationinOneVariable
Tousegraphingtosolveanequation A = B inonevariable, x,where A and B areexpressions,
1. Graphtheequations y = A and y = B onthesamecoordinatesystem.(Forexample,iftheoriginal equationis 2x +5=4x 9,thenwewouldgraphtheequations y =2x +5 and y =4x 9.)
2. Findallintersectionpoints.
3. The x-coordinatesofthoseintersectionpointsarethesolutionsoftheequation A = B
ForProblems18and19,graph y = 3 5 x +1 byhand.Usethegraphtosolvethegivenequation. 18. 3 5 x +1=4
20. Use“intersect”onaTI-84tosolve
OBJECTIVE9
21. Useatableofvaluesof y =4x 3 tosolve 4x 3=5
HW 1,3,7,11,27,39,41,55,59,65,69,71,75,79,93,95,111
SECTION8.2TEACHINGTIPS
Inthissection,studentsusesymbolicmethods,graphing,andtablestosolvelinearequationsinonevariable. TheywillusethismaterialthroughouttherestofChapter8aswellasChapter9.
OBJECTIVE1COMMENTS
IremindmystudentsthatinChapter3wegraphedequationsintwovariables.Isaywewillnowworkwithlinear equationsin one variable.Iprovideafewexamplesandthendefine linearequationinonevariable. Anotheroptionistointroducethedefinitionafteryouhavesolvedafewequationssothatstudentsknowwhat “putintotheform”means.
OBJECTIVE2COMMENTS
ForProblem1,Iwrite x +3=7 ontheboardandaskstudentswhat x canbe.Studentsarequicktosay x isequal to4.Isay4iscalleda solution andthatit satisfies theequation.ThenIdefinethewordsintheboxedstatement andsaythesewordsmeanaboutthesamethingwhenappliedtoequationsintwovariables.
OBJECTIVE3COMMENTS
ThisobjectiveissettingthestageforObjective5.
OBJECTIVE4COMMENTS
Fortheadditionpropertyofequality,moststudentsthinkthattheentirepointisthat“wecanaddanumberto bothsidesofanequation.”Moststudentsdonotunderstandthatasolutionofanequationwillsatisfy all ofthe equationsthatleadtofindingthesolution.Atvarioustimesinthecourse,Ireturntothistopictodeepenstudents’ understanding.
ForProblem5,Isayourobjectiveinsolvinganequationistoisolate x ononesideoftheequation.
Copyright c 2016PearsonEducation,Inc.
ForProblem7,Ipointoutthatwecanstillusetheadditionpropertyofequality,becausesubtracting3from bothsidesoftheequationisthesameasadding 3 tobothsides.
GROUPEXPLORATION:LocatinganErrorinSolvinganEquation
Thisactivityisagoodreminderofthemeaningofequivalentequations.
OBJECTIVE5COMMENTS
Studentsarequicktopickuponthisconceptbecauseitissosimilartotheadditionpropertyofequality.
OBJECTIVE6COMMENTS
ForProblem10,Ifirstshowthattheproductofafractionanditsreciprocalisequalto1.ThenIusethemultiplicationpropertyofequalitytosolvetheequation 5 2 x =3
ForProblem11,Ipointoutthatwecanstillusethemultiplicationpropertyofequality,becausedividingboth sidesby 5 isthesameasmultiplyingbothsidesby 1 5
Whensolving t =7 (Problem12),Ishowstudentshowtosolvetheequationbydividingbothsidesofthe equationby 1 aswellasbymultiplyingbothsidesby 1.Almostallstudentspreferdividingby 1 ratherthan multiplyingby 1
ForProblem16,IaskstudentswhytheequationisdifferentthantheonesinProblems10–15.Whentheysay theequationhasvariabletermsonbothsidesoftheequation,Isaythatagoodfirststepistogetthevariables termsonjustonesideoftheequation.
OBJECTIVE7COMMENTS
PerhapsthehardestpartofProblem17isrealizingthatithelpstodefineavariable(forthenumberofadultsin thesurvey).SuchpercentageproblemsaregoodpreparationformorechallengingonesinSection8.3.
OBJECTIVE8COMMENTS
Adiscussionaboutinputsandoutputscanbeusedtoexplainhowtousegraphingtosolveanequationinone variable.Nonetheless,moststudentswillbechallengedbysuchanexplanation.
ForProblem20,Ipointouttheadvantagesofusingtechnologytosolvesuchanequation.Itisimportant thatstudentslearnsymbolicmethodsofthecourse,butitisalsoimportantthatstudentslearnappropriateusesof technology.
OBJECTIVE9COMMENTS
AlthoughstudentsarequicktopickuponhowtosolveproblemssuchasProblem21,theymightnotreally understandwhatisgoingon.Adiscussionaboutinputsandoutputscanhelp.
SECTION8.3LECTURENOTES
Objectives
1. Usecombinationsofpropertiesofequalitytosolvealinearequationinonevariable.
2. Comparethemeaningsof simplifyanexpression and solveanequation
3. Usegraphingtosolvealinearequationinonevariable.
4. Usetwotablestosolvealinearequationinonevariable.
5. Findtheinputofalinearfunctionforagivenoutput.
6. Makeestimatesandpredictionsbysolvinglinearequations.
Copyright c 2016PearsonEducation,Inc.
OBJECTIVE1
Solve.
1. 5 4(2x 3)=3(4 x)
2. 2(3x +4) (4x 1)=3(x +2) 3. 5 6 k 3 2 = 7 3 4. 4w
• Itiswisetocheckthataresult(ortheresults)ofsolvinganequationdoesindeedsatisfytheequation.
• Akeystepinsolvinganequationthatcontainsfractionsistomultiplybothsidesoftheequationbythe LCDsothattherearenofractionsoneithersideoftheequation.
5. Solve 1 96= x 21.9 3.5 .Roundanysolutionstotwodecimalplaces.
OBJECTIVE2
6. Simplify 3 8 x + 7 6 7 4 x.
7. Solve 3 8 x + 7 6 = 7 4 x
8. ComparethefirststepsofyourworkinProblems6and7.
Itisincorrecttosay"solveanexpression."Itisincorrecttosay"simplifyanequation."
ResultsofSimplifyinganExpressionandSolvinganEquation
Theresultofsimplifyinganexpressionisanexpression.Theresultofsolvingalinearequationinone variableisanumber.
MultiplyingExpressionsandBothSidesofEquationsbyNumbers
Whensimplifyinganexpression,theonlynumberthatwecanmultiplytheexpressionbyorpartofitbyis 1.Whensolvinganequation,wecanmultiplybothsidesoftheequationby any numberexcept0.
OBJECTIVE3
ForProblems9and10,solvethegivenequationbyreferringtothegraphsof y = 1 3 x + 5 3 and y = 3x 5 shownbelow.
Copyright c 2016PearsonEducation,Inc.
OBJECTIVE4
11. Usetablestosolvetheequation 3x 2=6 x.[Thesolutionis2.]
OBJECTIVE5
Let f (x)= 3 4 x 2.
12. Find f (8)
13. Find x when f (x)=8. NotethatinProblem12,wearetofindavalueof y,butinProblem13,wearetofindavalueof x.
OBJECTIVE6
14. TheTotalU.S.debitcardpurchaseswas$1.6trillionin2010andhasincreasedby$0.13trillionperyearin 2014(Source: TheNilsonReport).
a. Findamodelofthesituation.Explainwhatyourvariablesrepresent.
b. EstimatetotalU.S.debitcardpurchasesin2014.
c. EstimatewhenthetotalannualU.S.debitcardpurchaseswas$2.0trillion.
UsinganEquationofaModeltoMakePredictions
• Whenmakingapredictionabouttheresponsevariableofalinearmodel,substituteachosenvaluefor theexplanatoryvariableinthemodel.Thensolvefortheresponsevariable.
• Whenmakingapredictionabouttheexplanatoryvariableofalinearmodel,substituteachosenvalue fortheresponsevariableinthemodel.Thensolvefortheexplanatoryvariable.
15. Thenumberoftobaccofarmswas16,228farmsin2007,anditdecreasedbyabout1495farmsperyear until2015(Source: U.S.DepartmentofAgricultureNationalAgriculturalStatistics).Estimatewhenthere were6000tobaccofarms.
16. In2013,thestudent-teacherratioinU.S.publicschoolswas15.1,down5.6%from2000(Source: National CenterforEducationStatistics).Whatwastheratioin2000?
17. ManyappliancessuchastelevisionsandelectronicgadgetssuchascellphonescontainrareEarthmetals. AnnualU.S.electronicsandappliancestoressalesandannualworldwideproductionofrareEarthmetals areshowninthefollowingtablefortheperiod1992–2012.
Copyright c 2016PearsonEducation,Inc.
Let p = f (s) betheannualworldwideproduction(inthousandofmetrictons)ofrareEarthmetals,andlet s betheannualU.S.electronicsandappliancestoressales(inbillionsofdollars)inthesameyear.
a. Constructascatterplot.
b. Describethefourcharacteristicsoftheassociation.
c. Graphthemodel f (s)=1.34s 16.31 inthescatterplot.Doesitcomeclosetothedatapoints?
d. Find f (100).Whatdoesitmeaninthissituation?
e. Find s when f (s)=100.Whatdoesitmeaninthissituation?
HW 1,3,5,9,15,21,31,35,41,43,51,71,77,81,85,91,95,101,107
SECTION8.3TEACHINGTIPS
Thekeyideaofthissectionissolvinglinearequationsandusingthisskillwithlinearmodelstomakepredictions. Moststudentsaregreatlychallengedbythissectionduetosolvingequationswithfractions,findingequationof linearmodels,andworkingwithfunctionnotation.
OBJECTIVE1COMMENTS
MoststudentsarechallengedbyProblems3and4.Somestudentstrytowriteallofthefractionswithacommon denominator,whichisnotincorrectbutisinefficient,andusuallysuchstudentsmakeothererrorsalongtheway. SomestudentshavetroublefindingtheLCD.Otherstudentshavetroublesimplifyingbothsidesoftheequation aftermultiplyingbothsidesoftheequationbytheLCD.
GROUPEXPLORATION:AnyLinearEquationinOneVariableHasExactlyOneSolution
Thisactivitynotonlyhasstudentsdeterminethenumberofsolutionsofalinearequationbutalsohasthemwork withaformula,whichisgoodwarm-upforSection8.4(solvingformulas).
OBJECTIVE2COMMENTS
Studentsusuallyhavenotroubledistinguishingwhentoapplysimplifyingtechniquesandwhentoapplysolvingtechniquesforlinearexpressionsandequations,respectively,exceptwhenitcomestothosewithfractional coefficientsandconstantterms.
Copyright c 2016PearsonEducation,Inc.
OBJECTIVES3and4COMMENTS
Studentsusuallyhavenotroublewiththesetwoobjectivesbecausetheybuildonsimilarobjectivesaddressedin Section8.2.
OBJECTIVE5COMMENTS
ForProblem13,studentstendtosubstitutefor8for x ratherthanfor f (x).Drawingadistinctionbetween problemssimilartoProblems12and13severaltimesinthenextfewdaysisagoodideabecausestudentstendto forget.
OBJECTIVE6COMMENTS
ForProblem14(a),studentstendtoneedareminderabouthowtofindsuchalinearmodel(Section7.3).This partposesanextrachallengebecausestudentsmustdefinetherelevantvariables.
ForProblem16,studentstendtothinkthatwhat’srequiredistocalculate5.6%oftheratioin2013(15.1).Encourageyourstudentstotakethenecessarytimetounderstandthesituationbeforetryingtoperformcalculations orsolveequations.
Problem17servesasagoodreminderofthefourcharacteristicsofanassociation.Italsohelpsstudentssee howthecurrentmaterialfitsintothebigpictureoflinearmodeling.
SECTION8.4LECTURENOTES
Objectives
1. Findaquantitybysubstitutingvaluesforallbutonevariableinaformulaandthensolvingforthe remainingvariable.
2. Findaquantitybyusingaformulawithsummationnotation.
3. Solveaformulaforoneofitsvariables.
4. Solveaformulawithasquareroot.
5. Graphalinearequationintwovariablesbysolvingfor y.
OBJECTIVE1
Recallthata formula isanequationthatcontainstwoormorevariables(Section4.1).
1. AtApple,7%ofemployeesareAfricanAmericanand18%ofemployeesareAfricanAmericanORHispanic(Source: Apple).FindtheprobabilityofrandomlyselectinganAppleemployeewhoisHispanic.
Tofindasinglevalueofavariableinaformula,weoftensubstitutenumbersforalloftheothervariables andthensolvefortheremainingvariable.
2. RecallthatthescoresontheWechslerIQtestarenormallydistributedwithmean100pointsandstandarddeviation15points.ActressSharonStoneisreportedtohaveanIQof154points(Source: Chicago Tribune).Usetheformula x =¯ x + zs tofindthe z-scoreforanIQof154points.
OBJECTIVE2
3. Substitutethefollowingvaluesintheformula µ = xiP (xi) andsolvefortheremainingvariable:
Copyright c 2016PearsonEducation,Inc.
4. Substitutethefollowingvaluesintheformula MSE= [(ni 1)s2 i ] n k andsolvefortheremainingvariable:
Roundtheresulttothefirstdecimalplace.
OBJECTIVE3
5. a. Solvetheformula P (A OR H)= P (A)+ P (H) for P (H)
b. Substitute0.18for P (A OR H) and0.07for P (A) intheformulafoundinProblem1.
Solvingforavariableinaformulawillnotchangetheassociationbetweenthevariablesintheformula.
6. a. Solvetheformula x =¯ x + zs for z.
b. Forstudentswhograduatedfromhighschoolin2013,theirSATmathscoreswereapproximately normallydistributedwithameanof514pointsandastandarddeviationof118points(Source: College Board).Usetheformula x =¯ x + zs ortheformulayoufoundinPart(a)tofindthe z-scoresforthe followingstudents’SATscores(allinpoints):621,457,555,748,242,and562.
c. Whichofthestudents’scoresgiveninPart(b)ismostunusual?Explain.
Tofindseveralvaluesofavariableinaformula,weusuallysolvetheformulaforthatvariablebefore wemakeanysubstitutions.
7. Let F betheFahrenheitreadingcorrespondingtoaCelsiusreadingof C degrees.Aformulathatdescribes theassociationbetween F and C is C = 5 9 (F 32).
a. SolvetheFahrenheit-Celsiusformulafor F
b. Convert 10◦CtotheequivalentFahrenheittemperature.
c. Usetechnologytoconvert 10◦C, 15◦C, 20◦C, 25◦C,and 30◦CtotheequivalentFahrenheittemperatures.
8. Solve ur = 2n1n2 n +1 for n1
OBJECTIVE4
SquaringaPrincipalSquareRoot
If x isnonnegative,then √x 2 = x
9. Inintroductorystatistics,youwilllearnabouta marginoferrorformula E = z s √n ,where E hasto dowiththeerrorinmakingacertaintypeofestimate.Solvetheformulafor n,whichisthenumberof individualsinarandomsample.
Copyright c 2016PearsonEducation,Inc.
OBJECTIVE5
Determinetheslopeandthe y-intercept.Usetheslopeandthe y-intercepttographtheequationbyhand.
HW 1,3,5,13,23,29,41,43,47,61,63,65,75,87,95,101
SECTION8.4TEACHINGTIPS
Inthissection,studentswillsolveformulasandusethisskilltographlinearequationsinwhich y isnotisolated ononesideoftheequation.TheskillofsolvingformulascanbeusedinSections9.1and10.4,butitisnot essential.Theskillisimportantinintroductorystatisticsforderivingsample-sizeand z-scoreformulas.
Thissectionservesasanicereminderofpastformulasused.Itwillalsoenhancestudents’familiaritywith summationnotation(Objective2).
OBJECTIVE1COMMENTS
Sometextbooksseemtosuggestthatwealwayswanttofirstsolveaformulaforavariablebeforemakingsubstitutions;thishardlymakessenseifwewanttofindonlyonevalueofaquantity.
OBJECTIVE2COMMENTS
Althoughstudentshavebeenexposedtosummationnotationwhentheformulasforthemeanandthestandard deviationwereintroduced,theytendtomemorizetheprocedureswithoutreallyunderstandingthemeaningof summationnotation.Thisobjectivewillforcestudentstosortoutitsmeaning.
OBJECTIVE3COMMENTS
MoststudentshaveatoughtimewithProblems5–8.Itcanhelptosolveeachformulaalongsideasimilarequation inonevariable.Forexample,seethesolutionsofExamples5and6onpages547and548,respectively,ofthe textbook.
NotethatProblem7(a)isessentiallyhavingstudentsfindtheinversefunctionofthemodel C = 5 9 (F 32). WhencompletingPart(c),Ipointoutthatitisadvantageoustofirstsolvefor F beforesubstitutingthefivevalues for C;ifwesubstitutedbeforesolving,we’dhavefiveequationstosolve.Isaythatfirstsolvingfor F would becomeahugeadvantageifwewantedtomakehundredsofsubstitutionsfor C
GROUPEXPLORATION:DeterminingwhenIt’sBettertoSolveaFormulaforaVariable
Thisisalengthyactivity,butitmightbethebestwaytodrivehomethevalueofsolvingaformulabeforesubstitutingvaluesforthevariablesbecauseit’sonethingtotellstudentshowthispracticesavestimebutit’smore convincingforthemto experience it.
OBJECTIVE4COMMENTS
Thetextbookgiveslighttreatmenttothisobjective(Example10andExercises53and54),buttheobjective hasbeenincludedtogivestudentsabitofexposuresothey’llhaveabetterchanceoffollowingderivationsof sample-sizeformulasinintroductorystatistics.
OBJECTIVE5COMMENTS
Thisobjectiveisnotneededinintroductorystatisticsbecauselinearregressionequationsarealreadyintheform ˆ y = mx + b.ButsomereviewerswantedthisobjectiveincludedinthetextbooksoIhavedoneso.Perhapsthe bestreasonforteachingthismaterialisthatitprovidesareviewofgraphing(Section7.3).
Copyright c 2016PearsonEducation,Inc.
SECTION8.5LECTURENOTES
Objectives
1. Describethe additionpropertyofinequalities.
2. Describethe multiplicationpropertyofinequalities
3. Describethemeaningof satisfy, solution,and solutionset fora linearinequalityinonevariable
4. Solvealinearinequalityinonevariable,andgraphthesolutionset.
5. Substitutevaluesforvariablesinacompoundinequality.
6. Solvea compoundinequalityinonevariable,andgraphthesolutionset.
7. Uselinearinequalitiestomakepredictionsaboutauthenticsituations.
OBJECTIVE1
Showwhathappenswhenweaddanumbertobothsidesof 5 < 7
AdditionPropertyofInequalities
If a<b,then a + c<b + c.
Similarpropertiesholdfor ≤, >,and ≥
Illustratetheadditionpropertyofinequalitiesbyusinganumberline.
OBJECTIVE2
Showwhathappenswhenwemultiplybothsidesoftheinequality 5 < 7 byanumber.
MultiplicationPropertyofInequalities
• Fora positive number c,if a<b,then ac<bc
• Fora negative number c,if a<b,then ac>bc
Similarpropertiesholdfor ≤, >,and ≥.
Illustratethatif a<b,then a> b byusinganumberline.
OBJECTIVE3
Definition Linearinequalityinonevariable
A linearinequalityinonevariable isaninequalitythatcanbeputintooneoftheforms mx + b< 0,mx + b ≤ 0,mx + b> 0,mx + b ≥ 0 where m and b areconstantsand m =0
Copyright c 2016PearsonEducation,Inc.
Wesayanumber satisfies aninequalityinonevariableiftheinequalitybecomesatruestatementafterwe havesubstitutedthenumberforthevariable.
1. Doesthenumber2satisfytheinequality 4x 3 < 8?
2. Doesthenumber5satisfytheinequality 4x 3 < 8?
Definition Solution,solutionset, and solve foraninequalityinonevariable
Wesayanumberisa solution ofaninequalityinonevariableifitsatisfiestheinequality.The solutionset ofaninequalityisthesetofallsolutionsoftheinequality.We solve aninequalitybyfindingitssolutionset.
OBJECTIVE4
Solvetheinequality.Describethesolutionsetasaninequality,inintervalnotation,andasagraph.
3. 3x 5 ≤ 7
4. 4x< 12
5. 4x< 12 6. 3x
OBJECTIVE5
12. Substitute35.2for x,1.761for t,4.7for s,and14for n inthecompoundinequality x t s √n <µ< x + t s √n tofindacompoundinequalitythatdescribesthevariable µ.Alsodescribethesolutionsetininterval notationandasagraph.Roundtothefirstdecimalplace.
OBJECTIVE6
Solvetheinequality.Describethesolutionsetasaninequality,inintervalnotation,andinagraph.
OBJECTIVE7
16. Let B bethetotalannualboxofficegrosses(inbillionsofdollars)intheUnitedStatesandCanadaat t yearssince1980(seethefollowingtable).
Sources: ACNielsenEDI,RentrakCorporation
Copyright c 2016PearsonEducation,Inc.
Areasonablemodelis B =0 28t +1 98.Inwhichyearswastheannualboxofficegrossgreaterthan$9.5 billion?
HW 1,3,7,17,37,47,55,59,61,65,73,77,81,85,89
SECTION8.5TEACHINGTIPS
Thissectionisgoodpreparationforintroductorystatisticsiftheinstructorplanstoderiveconfidenceinterval formulas.Studentswillnotneedtosolveinequalitiesintherestofthiscourse.
OBJECTIVES1and2COMMENTS
Whengoingovertheseobjectives,IemphasizethegraphicalinterpretationbecauseIbelieveitisanidealway toconveythataddinganumbertobothsidesofaninequalityormultiplyingbothsidesbyapositivenumber preservesorder.
Ialsoemphasizethatwhenwemultiplyordividebothsidesofaninequalitybyanegativenumber,wereverse theinequalitysymbol.Studentsneedseveralremindersaboutthis.
GROUPEXPLORATION:PropertiesofInequalities
Thisactivityisveryaccessibletostudents.
OBJECTIVE3COMMENTS
Ipointouttostudentsthatthemeaningsofthewords satisfy, solution,and solutionset aresimilarforequations andinequalities.
OBJECTIVE4COMMENTS
Itellstudentsthatsolvingalinearinequalityissimilartosolvingalinearequation,exceptthatcaremustbetaken toreversetheinequalitysymbolwhenappropriate.Whensayingsomethinglike,“Herewe divide bothsidesby negative 5,”I’llraisemyvoicedramaticallywhenIsay“divide”and“negative.”Althoughthisischeesy,my studentsgetthepointthattheyneedtobevigilantaboutreversingtheinequalitysymbolwhenappropriate.
Manystudentsdonotunderstandthesignificanceofthesolutionsetofaninequalityinonevariable.For example,considertheinequality 3x +1 < 11 (Problem6),whosesolutionis x> 4.Itisinstructivefor studentstoseethatnumbersgreaterthan4suchas4.1,5,and6satisfytheinequalityandnumberslessthanor equalto4suchas2,3,and4donotsatisfytheinequality.Exercises87and88addressthisissue.
GROUPEXPLORATION:MeaningoftheSolutionSetofanInequality
Althoughstudentshaveaneasytimewiththisactivity,itemphasizesaconceptthatstudentstendtolosesightof.
OBJECTIVE5COMMENTS
Thisobjectiveismeanttopreparestudentsforthecomplexityofconfidenceintervalformulas.
OBJECTIVE6COMMENTS
Studentswillhaveaneasytimesolvingcompoundinequalities.However,studentswillneedsomecoachingto seethataninequalitysuchas a>x>b isequivalentto b<x<a.ThisissuenaturallyarisesinProblem14, wheretheinequality 2 < 8 2x< 10 hassolution 3 >x> 1,whichisequivalentto 1 <x< 3
OBJECTIVE7COMMENTS
TosolveProblem16,Ifirsttranslatethephrase"annualboxofficegrossgreaterthan$9.5billion:"
9 5
Somestudentshavetroubleinterpretingthemeaningofaninequalityintermsofthesituation.ForProblem16, somestudentswouldsaytheinequality t> 26 9 meansthattheannualboxofficegrosswillbemorethan$9.5 billion in 2007,ratherthan after 2007.Withrepeatedwarningsaboutthisissue,farfewerstudentstendtomake thiserroronexams.Italsohelpstosketchagraphofthemodelanddiscussthesituationindetail. Copyright c 2016PearsonEducation,Inc.
CHAPTER9OVERVIEW
InSection9.1,studentsfindtheequationofalinethatcontainstwopoints.TheninSection9.2,theyuse thisskilltofindanequationofalinearmodel.Finally,inSection9.3,studentsusetechnologytofindalinear regressionmodel.
Ifyouarepressedfortime,youcouldskipSections9.1and9.2becausethemethodofusingtwopoints doesnotgeneralizetofindinglinearregressionmodels.However,Sections9.1and9.2canhelpbuildstudents’ understandingoftheconnectionbetweenscatterplotsandtheequationsoflinearmodels.AndSection9.2can enhancestudents’abilitytodrawconclusionsaboutlinearmodelsandhowtousethemtomakepredictions.
Section9.3containsalargeamountofmaterialandservesasagreatreviewandextensionofChapters6–8. Mostreviewerssaidthatthissectionwouldbethelastonetheywouldincludeinthecourse.
SECTION9.1LECTURENOTES
Objectives
1. Findanequationofalinebyusingtheslope-interceptformofalinearequation.
2. Findanequationofalinebyusingthepoint-slopeformofalinearequation.
OBJECTIVE1
Recallthatanequationofalinecanbeputinslope-interceptform y = mx + b (Section7.1).
Usetheslope-interceptformtofindanequationofthelinethathasthegivenslopeandcontainsthegiven point.
1. m =3, ( 4, 5)
2. m = 2, ( 3, 6)
3. m = 2 5 , ( 3, 4)
m = 4 3 , (5, 2) 5. m =0, ( 3, 2) 6. m isundefined, ( 5, 1)
FindinganEquationofaLinebyUsingtheSlope,aPoint,andtheSlope-InterceptForm
Tofindanequationofalinebyusingtheslopeandapoint,
1. Substitutethegivenvalueoftheslope m intotheequation y = mx + b
2. Substitutethecoordinatesofthegivenpointintotheequationyoufoundinstep1andsolvefor b
3. Substitutethevalueof b youfoundinstep2intotheequationyoufoundinstep1.
4. Checkthatthegraphofyourequationcontainsthegivenpoint.
Usetheslope-interceptformtofindanequationofthelinethatcontainsthetwogivenpoints.
7. (2, 3) and (4, 7) [slopeisaninteger]
8. ( 3, 4) and (2, 6) [slopeisaninteger]
9. ( 5, 3) and (2, 1) [slopeisafraction]
10. ( 6, 2) and ( 3, 7) [slopeisafraction]
Copyright c 2016PearsonEducation,Inc.
FindinganEquationofaLinebyUsingTwoPointsandtheSlope-InterceptForm
Tofindanequationofthelinethatpassesthroughtwogivenpointswhose x-coordinatesaredifferent,
1. Usetheformula m = y2 y1 x2 x1 tofindtheslopeofthelinecontainingthetwopoints.
2. Substitutethe m valueyoufoundinstep1intotheequation y = mx + b.
3. Substitutethecoordinatesofoneofthegivenpointsintotheequationyoufoundinstep2andsolve for b
4. Substitutethe b valueyoufoundinstep3intoyourequationyoufoundinstep2.
5. Checkthatthegraphofyourequationcontainsthetwogivenpoints.
11. Findanapproximateequationofthelinethatcontainsthepoints ( 3.25, 8.11) and (2.67, 1.39).Round theslopeandtheconstanttermtotwodecimalplaces.
12. Findanequationofthelinethatcontainsthegivenpoints.
a. (4, 3) and (4, 2) [slopeisundefined]
b. ( 5, 2) and (3, 2) [slopeis0]
OBJECTIVE2(optional)
Let (x1,y1) and (x,y) betwodistinctpointsonalinewithslope m.Usethetruestatement y y1 x x1 = m toderive thepoint-slopeform.
Point-SlopeForm
Ifanonverticallinehasslope m andcontainsthepoint (x1,y1),thenanequationofthelineis
y y1 = m(x x1)
RepeatanyofProblems1–5,7–11,and12(b).Compareyourresultswithyourearlierresults.
HW 1,3,7,15,19,25,29,43,47,51,55,57,63,69,73
SECTION9.1TEACHINGTIPS
Thissectiondiscusseshowtofindequationsoflines,bothbyusingtheslope-interceptformandthepoint-slope form.Insubsequentsections,onlytheslope-interceptformwillbeusedtofindsuchequations.So,thepoint-slope formisoptional.
Ihavechosentoemphasizefindinglinearequationsusingtheslope-interceptformforseveralreasons:
• Mystudentshavebettersuccesswiththismethodthanwithusingthepoint-slopeform,especiallywhenthe slopeisafraction.
• Thenotionofsubstitutingapointtofindtheparameter b of y = mx + b generalizestofindingparameters forexponentialfunctions(Section10.4).
• Studentshaveabettersenseofwhythismethod“works”thanwithusingthepoint-slopeform.
Copyright c 2016PearsonEducation,Inc.
• Usingtwoformsforlinearequationsconfusestheissueformanystudents.
TheskilloffindinganequationofalinethatcontainstwogivenpointswillalsobenecessaryforSection9.2, wherestudentswillfindequationsoflinearmodels.
OBJECTIVE1COMMENTS
ForProblem1,whenIsubstitutetheorderedpair ( 4, 5) intotheequation y =3x + b tofind b,Iremindstudents thatanorderedpairthatcorrespondstoapointonagraphsatisfiesanequationofthegraph.So,makingsucha substitutionwillgiveatruestatement,onethatwillallowustofindthevalueof b.
ForProblems3,4,9,and10,Ipreferthatstudentsusefractions,notdecimals,whenfindinglinearequations toremindthemofhowtoperformoperationsoffractions.Whensolvinganequationwithfractions(tofind b of y = mx + b),studentstendtopreferthatwemultiplybothsidesoftheequationbytheLCDtocleartheequation offractions.
However,onecouldarguethatitsufficestoallowstudentstousedecimalsratherthanfractionsbecausethat’s alltheywillneedtodowhenfindingequationsoflinearmodelsinSection9.2.Forthatreason,Problem11isa goodprimerforSection9.2.
GROUPEXPLORATION:DecidingwhichPointstoUsetoFindanEquationofaLine
Thisactivityrespondstothefrequentstudentquery,“Doesitmatterwhichorderedpairisusedtofind b?”and “DoesitmatterwhichtwopointsIchoosefromthegraphofalinetofinditsequation?”Imakesurethatstudents understandtheinstructionsofProblem2oftheexploration,andthattheyimaginealinethatis not parallelto eitheraxis.Thisisaneasyexplorationformoststudents,anditcouldbeassignedashomework.
GROUPEXPLORATION:FindingEquationsofLines
Thisexplorationisafuncritical-thinkingactivity.Groupsofstudentscancompletethisexplorationinatimely fashioniftheydivideupthework.
OBJECTIVE2COMMENTS
Thisconceptisoptional.Seemyopeningcommentsfortheteachingtipsforthissection.
SECTION9.2LECTURENOTES
Objectives
1. Usetwopointstofindanequationofalinearmodel.
OBJECTIVE1
1. Let A betheannualU.S.consumption(inbillionsofpounds)ofavocadosat t yearssince2000.Findan equationofalinearmodeltodescribethedatainthefollowingtable.
Source: CaliforniaAvocadoCommission
Copyright c 2016PearsonEducation,Inc.
Itisacommonerrortoskipconstructingascatterplotwhenwefindanequationofamodel.
FindinganEquationofaLinearModel
Tofindanequationofalinearmodel,givensomedata,
1. Constructascatterplotofthedata.
2. Determinewhetherthereisalinethatcomesclosetothedatapoints.Ifso,choosetwopoints(not necessarilydatapoints)thatyoucanusetofindanequationofalinearmodel.
3. Findanequationoftheline.
4. Usetechnologytoverifythatthegraphofyourequationcontainsthetwochosenpointsandcomes closetoallofthedatapointsofthescatterplot.
2. Thenumberofnew-cardealershipsareshowninthefollowingtableforvariousyears.Let n bethenumber (inthousands)ofnew-cardealershipsat t yearssince1900.
NumberofNew-CarDealerships
Source: NADAIndustryAnalysisDivision
a. Constructascatterplot.
b. Describethefourcharacteristicsoftheassociation.Computeandinterpret r aspartofyouranalysis.
c. Findanequationofalinearmodeltodescribethedata.
d. Rewritetheequationwiththefunctionname f
e. Find f (108).Whatdoesitmeaninthissituation?
3. Researcherscomparedthemeansulfurdioxideconcentrations(airpollution)andthemeandeterioration ratesofmarbletombstonesin21U.S.citiesfortheperiod1893–1993(seethefollowingtable).Amicrogram(µg)isequalto0.000001gram.
Copyright c 2016PearsonEducation,Inc.
Source: MarbleTombstoneWeatheringandAirPollutioninNorthAmerica,T.C.Meierding
Let s bethemeansulfurdioxideconcentration(in µg/m3)and d bethemeandeteriorationrate(inmmper century)ofmarbletombstones,bothforthesamecity.
a. Describethefourcharacteristicsoftheassociation.Computeandinterpret r aspartofyouranalysis.
b. Findanequationofamodeltodescribethesituation.
c. Estimatethemeandeteriorationrateofmarbletombstonesduringtheperiod1893–1993inacity wherethemeansulfurdioxideconcentrationwas150 µg/m3)forthatperiod.
d. Acity’smeandeteriorationofmarbletombstonesfortheperiod1893–1993is2mm.Estimatethe city’smeansulfurdioxideconcentrationforthatperiod.
e. Becausetheassociationisstrong,astudentconcludesthatairpollutioncausestombstonedeterioration.Whatwouldyoutellthestudent?
HW 1,3,7,9,11,17,21,25,27,29,31,33
SECTION9.2DETAILEDCOMMENTS
Inthissection,studentsusetwopointstofindanequationofalinearmodel.Thissectionisoptionalbecausethe algorithmdoesnotgeneralizetothemethodofminimizingthesumofsquaredresiduals(Section9.3).Butthis sectionhelpsstudentsseetheconnectionbetweendatapointsandtheequationofalinearmodel,whichisloosely relevanttoSection9.3.
OBJECTIVE1COMMENTS
Tofindanequationofalinearmodel,Ifirstconstructascatterplot.ThenInumberthedatapointsandaskmy studentswhichpairsofdatapointslieonalinethatcomesclosetotheotherdatapointsandwhichpairsdonot. Ireallyliketheavocadodataset(Problem1)becauseitillustratesthatusingthe"firstandlastpoints," (3, 0.7) and (12, 1.6),doesnotgenerateanidealmodel.Manystudentstendtoblindlyusethefirstandlastdatapoints withoutbotheringtoconstructascatterplot,sohopefullythisexamplewillserveasacautionarytale.
Studentscouldusetwonondatapointstofindalinearmodel,butIdon’tbringupthisoptionforfourreasons. First,becauseusingdatapointsworksjustfine.Second,itiseasiertousecoordinatesofdatapointsthanto estimatecoordinatesofnondatapoints.Third,skippingthisoptionsavesmeabitofclasstime.Fourth,bynot discussinghowtousenondatapoints,IreducetheamountoftimeIspendgradingexamsbecausethereisless variationinstudents’derivedequationsofmodels.
Oncetheclasshasdeterminedtwo“goodpoints,”Ideriveanequationofthelinethatcontainsthetwopoints. AsI’vedoneinprevioussections,Istartbywritingtheequation y = mx + b andthenreplacethevariables x and
Copyright c 2016PearsonEducation,Inc.
y withtheappropriatevariables.Whenfinding m and b,Iemphasizethatit’sokaytousedecimals;manystudents thinktheyneedtousefractionsbecausetheywererequiredtodosowhenfindingequationsof(non-model)lines inSection9.1.Iexplainthatit’sokaytoroundwhenfindingamodelbecausetherearealreadyvarioustypesof errorsbuiltintotheprocess,anyway(seetheexploration"Identifyingtypesofmodelingerrors"onpage412of thetextbook).Isaythatwhenmodeling,weroundthevaluesof m and b totheseconddecimalplace,unless valuesarecloseto0suchas m =0.003.
Whenverifyingamodel’sequation,explainthatthelineshouldcontainthetwochosenpoints(andcomeclose totheotherdatapoints).Encouragestudentstotakethetimetodistinguishbetweentheirchosentwopointsand theotherdatapoints.(Bytheway,moststudentsdonotrealizethatapointthatliescloseto,butnotonaline, mayappeartolie on theline.)
Forquizzesandexams,ifyourstudentsareusingtechnologytoverifytheirmodels,youcanhavethemcopy theirtechnology’sdisplayontotheirtestpapers;ifyoudon’trequirethis(bymakingitworthpoints),some studentswillresisteverlearninghowtousetechnologytoverifytheirmodels.
Thetextbook’sanswersforthissectionconsistofregressionequationsbecauseit’simpossibletoanticipate whichtwo“good”pointsstudentswillchoose.So,whenassigningthissection’shomework,warnstudentsthat theiranswerswillvaryfromtheonesinthetextbook.Remindthemthattheycanverifytheirworkusingtechnology,ifthetechnologyyouareusinghasthiscapability.
GROUPEXPLORATION:AdjustingtheFitofaModel
Thisactivityisafunreminderofthegraphicalsignificanceofslopeandtheverticalintercept.Moregenerally,the connectionbetweenafunction’sequationandgraphisreinforced.
SECTION9.3LECTURENOTES
Objectives
1. Computeandinterpretresiduals.
2. Computeandinterpretthesumofsquaredresiduals.
3. Findanequationofalinearregressionmodelanduseittomakepredictions.
4. Interpretresidualplots.
5. Usearesidualplottohelpdeterminewhetheraregressionlineisanappropriatemodel.
6. Identifyinfluentialpoints.
7. Computeandinterpretthecoefficientofdetermination.
OBJECTIVE1
1. Theagesandaskingpricesfor8HondaAccordsatdealershipsintheBostonareaareshowninthefollowing table.
Copyright c 2016PearsonEducation,Inc.
Source: Edmunds.com
Let x betheage(inyears)and y betheprice(inthousandsofdollars),bothforaHondaAccord.
a. Describethefourcharacteristicsoftheassociation.Computeandinterpret r aspartofyouranalysis.
b. Byviewingascatterplot,wecandeterminethatthelinethatcontainsthedatapoints (9, 9.9) and (5, 13.0) comesfairlyclosetothedatapoints.ByusingthetechniquediscussedinSection9.2,we canfindthatanequationofthelineis y = 0.78x +16.88 (tryit).Verifythatthelinecomesfairly closetothedatapoints.
c. Usethemodeltopredictthepriceofan8-year-oldHondaAccord.
d. Findthedifferenceoftheactualpriceandthepredictedpriceforan8-year-oldHondaAccord.
e. Findthedifferenceoftheactualpriceandthepredictedpricefora7-year-oldHondaAccord.
Foradatapoint (x,y),the observedvalueof y is y andthe predictedvalueof y (written ˆ y or ˆ f (x))isthe valueobtainedbyusingamodeltopredict y.
Definition Residual
Foragivendatapoint (x,y),the residual isthedifferenceoftheobservedvalueof y andthepredictedvalue of y:
Residual = Observedvalueof y Predictedvalueof y = y ˆ y
ResidualsforDataPointsAbove,Below,oronaLine Supposesomedatapointsaremodeledbyaline.
• Adatapointonthelinehasresidualequalto0.
• Adatapointabovethelinehaspositiveresidual.[Drawafigure.]
• Adatapointbelowthelinehasnegativeresidual.[Drawafigure.]
Copyright c 2016PearsonEducation,Inc.
OBJECTIVE2
SumofSquaredResiduals
Wemeasurehowwellalinefitssomedatapointsbycalculatingthesumofthesquaredresiduals:
yi
yi)2
Thesmallerthesumofsquaredresiduals,thebetterthelinewillfitthedata.Ifthesumofsquaredresiduals is0,thenthereisanexactlinearassociation.
2. HerewecontinuetoworkwiththeHondaAccorddata(seethefollowingtable).Let x betheage(inyears) and y betheprice(inthousandsofdollars),bothforaHondaAccord.Findthesumofsquaredresiduals forthelinearmodelweworkedwithinExample1,whichis
88.
Source: Edmunds.com
OBJECTIVE3
Definition Linearregressionfunction,line,equation,andmodel
Foragroupofpoints,the linearregressionfunction isthelinearfunctionwiththeleastsumofsquared residuals.Itsgraphiscalledthe regressionline anditsequationiscalledthe linearregressionequation, written
+
0 where b1 istheslopeand (0,b0) isthe y-intercept.The linearregressionmodel isthelinearregression functionforagroupof data points.
3. a. UsetechnologytofindthelinearregressionequationfortheHondaAccordassociation.
b. Predictthepriceofa10-year-oldHondaAccord.
c. Whatistheslope?Whatdoesitmeaninthissituation?
d. Whatisthe y-intercept?Whatdoesitmeaninthissituation?
OBJECTIVE4
A residualplot isagraphthatcomparesdatavaluesoftheexplanatoryvariablewiththedatapoints’residuals.
4. a. ConstructaresidualplotfortheHondaAccordlinearregressionmodel.
Copyright c 2016PearsonEducation,Inc.
b. Howmanydotsareabovethezeroresiduallineoftheresidualplot?Whatdotheymeaninthis situation?
c. Howmanypointsarebelowthezeroresiduallineoftheresidualplot?Whatdotheymeaninthis situation?
d. Whichpointisfarthestfromthezeroresidualline?Whatdoesthatmeaninthissituation?
e. Doestheresidualplotsupportthattheregressionlineisareasonablemodel?Explain.
OBJECTIVE5
UsingaResidualPlottoHelpDetermineWhetheraRegressionLineIsanAppropriateModel
Thefollowingstatementsapplytoaresidualplotforaregressionline.
• Iftheresidualplothasapatternwherethedotsdonotlieclosetothezeroresidualline,thenthereis eitheranonlinearassociationbetweentheexplanatoryandresponsevariablesorthereisnoassociation.
• Ifadotliesmuchfartherawayfromthezeroresiduallinethanmostoralloftheotherdots,thenthe dotcorrespondstoanoutlier.Iftheoutlierisneitheradjustednorremoved,theregressionlinemay not beanappropriatemodel.
• The vertical spreadoftheresidualplotshouldbeaboutthesameforeachvalueoftheexplanatory variable.
OBJECTIVE6
Iftheslopeofaregressionlineisgreatlyaffectedbytheremovalofadatapoint,wesaythedatapointisan influentialpoint
5. a. ThescatterplotandtheregressionlineinFig.2.3comparethehandlengthsandheightsof75women. TheresidualplotoftheobservationsisshowninFig.2.4.Identifyalloutliersforthegivensituation.

Figure2.3: Scatterplotforhand-heightdata
(Source: S.G.Sani,E.D.Kizilkanat,N.Boyan, etal.(2005)."StatureEstimationBasedonHand LengthandFootLength,"ClinicalAnatomy,Vol. 18,pp.589-596.)

Figure2.4: Residualplotforhand-heightdata
b. TheoutlieryoulikelyfoundinPart(a)hasbeenremovedandtheremainingdatapointsaredescribed bythescatterplotinFig.2.5.Istheremovedoutlieraninfluentialpoint?Explain.
Copyright c 2016PearsonEducation,Inc.

Figure2.5: Scatterplotwithoutlierremoved
6. a. Thelengthsofcruiseshipsandthesizesofthecrewsarecomparedbythescatterplotandtheregression lineshowninFig.2.6.TheresidualplotoftheobservationsisshowninFig.2.7.Identifyalloutliers forthegivensituation.

Figure2.6: Scatterplotforcruisedata(Source: TrueCruise)

Figure2.7: Residualplotforcruisedata
b. TheoutliersyoulikelyfoundinPart(a)havebeenremovedandtheremainingdatapointsaredescribed bythescatterplotinFig.2.8.Aretheremovedoutliersinfluentialpoints?Explain.

Figure2.8: Scatterplotwithoutliersremoved
Outlierstendtobeinfluentialpointswhentheyarehorizontallyfarfromtheotherdatapoints.
OBJECTIVE7
CoefficientofDetermination
Thecoefficientofdetermination, r2,istheproportionofthevariationintheresponsevariablethatisexplainedbytheregressionline.
Copyright c 2016PearsonEducation,Inc.
7. ThetemperaturesandrelativehumiditiesinPhoenix,Arizona,areshowninthefollowingtableforvarious timesonJune1,2014.
(Fahrenheitdegrees)(percent)(Fahrenheitdegrees)(percent)
a. Constructascatterplot.
Source: Weatherbase
b. Findthelinearregressionmodel.Graphitonthescatterplot.
c. Computethecoefficientofdetermination.Whatdoesitmeaninthissituation?
HW 1,3,5,9,13,17,21,23,25,29,33,35,43,45,47,49,51,61
SECTION9.3TEACHINGTIPS
ThissectionisthegrandfinaleofChapters6–9,whichaddresseslinearregression.Thefoundationalconcept istheresidual,whichleadstowardthesumofsquaredresiduals,theregressionline,andresidualplots.
OBJECTIVE1COMMENTS
Whenintroducingtheconceptofresidual,Ipointoutthataresidualistheoppositeofhowerrorwasdefinedin Section6.3.(Seethelecturetipsofthatsectionformyreasoningindefiningerrortobetheoppositeofaresidual.) Becauseofstudents’pastworkwithcomputingerrorsinpredictions,theyquicklypickuponcomputingand interpretingresiduals.
OBJECTIVE2COMMENTS
ForProblem2,asIbuildatablesimilartoTable32onpage602ofthetextbook,Irefertothescatterplotthat weconstructedinProblem1tomakesurestudentscanpicturethegraphicalsignificanceofthecalculationsin eachcolumnofthetable.Ipointoutthatwearefindingsquaresofdifferencesforreasonssimilartowhywefind squaresofdifferencestocomputethevariance.
OBJECTIVE3COMMENTS
Afterfindingthatthesumofsquaredresidualsisequalto21.20forthemodelweworkedwithinProblem2,I remindstudentsthatourresult21.20measureshowwellthemodelfitsthedatapoints.ThenIsketchthemodel inFig.28onpage602ofthetextbookandsharewithstudentsthatthesumofsquaredresidualsis82.36.Ipoint outthatitmakessensethattheresult82.36islargerthan21.20becausethelineinFig.28doesnotfitthedata aswellasthemodelinProblem2.Ithensketchthelinearregressionmodel,explainingthatithastheleastsum ofsquaredresiduals,17.01,andconcludethatitmustfitthedatapointsthebest(seeFig.30onpage603ofthe textbook).
Copyright c 2016PearsonEducation,Inc.
Parts(b),(c),and(d)ofProblem3serveasanicereviewofconceptsalreadyaddressedinSections7.1–7.3.
OBJECTIVE4COMMENTS
WhenconstructingtheresidualplotforProblem4(a),IreferbacktothescatterplotweconstructedinProblem1(a) andmakesurestudentsseetheconnectionbetweentheresidualsinthescatterplotandintheresidualplot.
GROUPEXPLORATION:MeaningofResidualPlots
Thisactivityhelpsstudentsdiscoverhowaresidualplotrelatestoascatterplotandtherelevantregressionline. StudentstendtobesurprisedthattheresidualplotsforthedatasetsdescribedbythescatterplotsinFigs.54and 55arethesame.
OBJECTIVE5COMMENTS
Foreachofthethreebulletedstatementsforthisobjective,Idisplaybothascatterplotwithamodelandthe correspondingresidualplottomakesurestudentsseetheconnectionbetweenthetwodiagrams.
OBJECTIVE6COMMENTS
Studentshaveaneasytimelearningaboutoutliersandinfluentialpointsbecausetheyaresuchintuitive,visual concepts.
OBJECTIVE7COMMENTS
Themostchallengingconceptinthissectionisthecoefficientofdetermination.Manyintroductorystatistics textbookstrytoconveytheideabylabelingtheexplainedandunexplaineddeviationsofjustonedatapoint inascatterplot,butIdon’tbelievethisapproachiseffectivebecauseitdoesn’tgetacrossasenseofvariation. Thedetaileddescriptiononpages611and612ofthetextbooktriestoconveytheessenceofthecoefficientof determinationbyillustratingrelevantvariations.
Copyright c 2016PearsonEducation,Inc.
CHAPTER10OVERVIEW
Inthischapter,studentssimplifyexpressionswithexponents,graphexponentialfunctions,andperformmodeling withexponentialfunctions.
Althoughthematerialinthischapterisverychallengingformoststudents,itcreatestheopportunitytorevisit manytopicsaddressedinChapters6–9:constructingscatterplotsandresidualplots;findingequationsofmodels; graphingmodels;computingresiduals,correlationcoefficients,andcoefficientsofdetermination;identifying outliersandinfluentialpoints;andmakingpredictions.
Italsocreatestheopportunitytocomparelinearandexponentialmodels,whichshedslightonmanymodeling concepts,includingdeterminingwhichmodelbestfitssomedatapoints.
Althoughexponentialregressionisprobablynotpartofyourdepartment’sintroductorystatisticscourse,one couldarguethereisanotherreasontoincludethischapterinaprestatisticscourse.Assumingthatstudentswho takethiscoursearebypassingalgebra,wemustaskourselvesifthereisanyalgebracontentthattheyabsolutely mustseetohaveawell-roundededucation.Ibelievetherearetwosuchconcepts:linearandexponentialmodels. Thesearethetwomodelsmostapplicabletoourworld.
SECTION10.1LECTURENOTES
Objectives
1. Describethe productproperty forexponents.
2. Simplifyexpressionsinvolvingnonnegative-integerexponents.
3. Describethefollowingpropertiesforexponents:quotient,raisingaproducttoapower,raisinga quotienttoapower,andraisingapowertoapower.
4. Usecombinationsofpropertiesofexponentstosimplifyexpressionsinvolvingnonnegative-integer exponents.
5. Simplifyexpressionsinvolvingnegative-integerexponents.
6. Describethemeaningof exponentialfunction
7. Workwithmodelswhoseequationsinvolveintegerexponents.
OBJECTIVE1
If m and n arecountingnumbers,then
Findtheproduct.
OBJECTIVE2
SimplifyinganExpressionInvolvingNonnegative-IntegerExponents
Anexpressioninvolvingnonnegative-integerexponentsissimplifiedif
1. Itincludesnoparentheses.
2. Eachvariableorconstantappearsasabaseasfewtimesaspossible.Forexample,fornonzero b,we write b2b3 as b5
3. Eachnumericalexpression(suchas 32)hasbeencalculated,andeachnumericalfractionhasbeen simplified.
OBJECTIVE3
QuotientPropertyforExponents
Herewesimplify
Writequotientwithoutexponents.
Simplify:
Simplify.
Thissuggestswecansubtracttheexponents:
QuotientPropertyforExponents
If m and n arecountingnumbersand b isnonzero,then
Simplify.
Wecanwrite (bc)4 asaproductofpowers: (bc)4 =(bc)(bc)(bc)(bc) Writepowerwithoutexponents. =(
) Rearrangefactors. = b4 c 4 Simplify.
Copyright c 2016PearsonEducation,Inc.
Wecangetthesameresultbyraisingeachfactorofthebase bc tothe4thpower: (bc)4 = b4 c 4
RaisingaProducttoaPower
If n isacountingnumber,then (bc)n = bncn
Performtheindicatedoperation.
Warning:Theexpression (3b)2 isequivalentto 9b2,not 3b2
RaisingaQuotienttoaPower
Herewewrite b c 3 inanotherform: b c 3 = b c · b c · b c Writepowerexpressionwithoutexponents. = b b b c · c · c Multiplynumerators;multiplydenominators. = b3 c3 Simplify.
Thissuggeststhatboththenumeratorandthedenominatorshouldberaisedtothe3rdpower:
RaisingaQuotienttoaPower
If n isacountingnumberand c isnonzero,then
Simplify.
RaisingaPowertoaPower
Herewewrite (b2)4 inanotherform: (b2)4 = b2 · b2 · b2 · b2
Writeexpressionwithoutexponent4. = b2+2+2+2 Addexponents: bmbn = bm+n = b8
Simplify.
Thissuggestswecanmultiplytheexponents: (b2)4 = b2 4 = b8
Copyright c 2016PearsonEducation,Inc.
RaisingaPowertoaPower
If m and n arecountingnumbers,then (bm)n = bmn Simplify.
12. (b3)5 13. (b4)7
OBJECTIVE4
RecallfromSection1.7thatif b isnonzero,then b0 =1.Forexample, 70 =1. Simplify.
OBJECTIVE5
InSection1.7,wedefinedanegative-integerexponent.
Definition Negative-integerexponent
If n isacountingnumberand b =0,then
Forexample, 2 3 = 1 23 = 1 8
Simplifyinganexpressioninvolvingnegative-integerexponentsincludeswritingitsothateachexponent ispositive. Simplify.
Herewewrite 1 b n inanotherform:
Simplify.
If n isacountingnumberand b =0,then 1
Simplify.
PropertiesofExponents
If m and n areintegers, b =0,and c =0,then
• bmbn = bm+n
• bm bn = bm n
• (bc)n = bncn
•
• (bm)n = bmn
Productpropertyforexponents
Quotientpropertyforexponents
Raisingaproducttoapower
Raisingaquotienttoapower
Raisingapowertoapower
SimplifyingExpressionsInvolvingExponents
Anexpressioninvolvingintegerexponentsissimplifiedif
1. Itincludesnoparentheses.
2. Eachvariableorconstantappearsasabaseasfewtimesaspossible.
3. Eachnumericalexpression(suchas 32)hasbeencalculated,andeachnumericalfractionhasbeen simplified.
4. Eachexponentispositive.
Simplify.
26. 310073 1005
27. (b5) 2
28. (6b 9c4)( 2b5c 3)
OBJECTIVE6
b3
) 3
Definition Exponentialfunction
An exponentialfunction isafunctionwhoseequationcanbeputintotheform
f (x)= abx
where a =0, b> 0,and b =1.Theconstant b iscalledthe base
Copyright c 2016PearsonEducation,Inc.
For f (x)=2x and g(x)=2(3)x,findthefollowing.
36. f (5) 37. f ( 4) 38. g(3) 39. g( 2) 40. g(0)
41. For E(x)=2x and L(x)=2x,compare E(5) with L(5).
OBJECTIVE7
42. Theweight(inpounds) f (d) ofanastronautwhen d thousandmilesfromthecenterofEarthisdescribed bytheequation f (d)=3060d 2
a. Simplifytheright-handsideoftheequation.
b. Whenatsealevel,theastronautisabout4thousandmilesfromEarth’scenter.Howmuchdoesthe astronautweighatsealevel?
c. Find f (6).Whatdoestheresultmeaninthissituation?
HW 1,3,7,13,25,33,35,55,61,67,75,87,91,97,103,105,111
SECTION10.1DETAILEDCOMMENTS
StudentslearnmanydefinitionsandpropertiesofexponentsinthissectionandSection10.2,whichwillhelpthem usetwopointstofindexponentialmodelsinSection10.4.
Althoughstudentsmayknowthepropertiesofexponentsfromapreviousclass,theyprobablydonotknow whytheyaretrue,whichcanhelpwithknowingwhenandhowtoapplyaproperty.
Studentsarechallengedbythissectionbecausesomuchsymbolmanipulationisrequired.
OBJECTIVE1COMMENTS
Studentshaveaneasytimewiththeproductpropertyinisolation,butoncetheraisingapowertoapowerproperty hasbeenintroduced,somestudentsconfusethetwoproperties.So,whenworkingwithanexpressionsuchas b4b3 , Iencouragestudentstoimaginestringsof b factorstohelpgroundthemwiththeconceptthattheexponentsneed tobeadded.
ForProblems2and3,Iemphasizethattheexpressionsareproducts,notdifferences.
OBJECTIVE2COMMENTS
Igooverthisobjectivequicklybecauseitwillbecomeclearaswesimplifyexpressionsthroughoutthesection.
OBJECTIVE3COMMENTS
Ialsogooverthisobjectivequicklybecausestudentstendtohaveaneasytimesimplifyingexpressionswhen onlyonepropertyisrequired.Itiswhenacombinationofpropertiesisrequired(Objective4)thatstudentstend tohavetrouble,especiallyiftheymustworkwithnegativeexponents(Objective5).
ForProblem4,Iclarifyhowthequotientpropertyforexponentscanbeusedbybreakingupthefraction 6b7 9b4 intotheproduct 6 9 b7 b4 .
ForProblem8,studentstendtoincorrectlysimplifytheexpression (2b)4 to 2b4.Iemphasizethatthecorrect resultis 16b4.Itisinterestingthatstudentstendtosimplify (bc)5 (Problem7)correctlybuthavetroublesimplifying (2b)4 correctly.Ipointoutthat2isafactorofthebase 2b of (2b)4 justlike b isafactorofthebase bc of (bc)5
Afterintroducingtheraisingapowertoapowerproperty,Icomparesimplifying (b3)2 withsimplifying b3b2 AsImentionedearlier,studentstendtoconfusetheraisingapowertoapowerpropertywiththeproductproperty.
Copyright c 2016PearsonEducation,Inc.
OBJECTIVE4COMMENTS
ForProblems14–18,studentstendtoskipsteps,whichleadstoerrorsorfuzzythinkingthatgetsthemintotrouble whentheproblemsaremoredifficult.Iencouragestudentstowriteallthestepsuntiltheycanpicturestepsthat theyskip.
GROUPEXPLORATION:PropertiesofPositive-IntegerExponents
Thisactivityaddressescommonstudenterrorswhensimplifyingexpressionswithpositive-integerexponents.
OBJECTIVE5COMMENTS
EventhoughnegativeintegerswerealreadyintroducedinSection1.7andtheylikelycameupagaininSections5.4 and5.5,studentsneedarefresherbythispointinthecourse.
ForProblem26,itisgoodforstudentstofindoutthatmostcalculatorsgiveincorrectresults.Inparticular,it isinstructiveforthemtoreasonwhymanycalculatorsgivetheincorrectresult0for 3 1005
ForProblem30,somestudentswillmistakenlywrite
Therearemanywaystosimplifyquotientsofpowersoftheform
,ratherthancorrectlywrite
.Onewayistousetheproperty
bm n andthensimplifysothattherearenonegativeexponents.Anotherwayisto“move”thepowerwiththe smallerexponentacrossthefractionbar(andchangethesignoftheexponent).Showingmorethanonemethod usuallyconfusesstudents.Itisbesttoselectonemethodanduseitwheneverappropriate. StudentstendtobeintimidatedbyproblemsascomplicatedasProblem35,butwithpractice,theycanmaster them.
Youmayprefertointroducetheproperty a b
= b a
anduseittosimplifycertainexpressions,butI havenotincludedthispropertyinthetextbookinanattempttoavoidoverloadingstudentswithtoomanyoptions.
GROUPEXPLORATION:PropertiesofNegative-IntegerExponents
Thisactivityaddressescommonstudenterrorswhensimplifyingexpressionswithnegative-integerexponents.
OBJECTIVE6COMMENTS
AftercompletingProblem41,considercomparinginput-outputtablesof E and L tohelpstudentsbegintodistinguishexponentialfunctionsfromlinearfunctions.Or,youcouldassignExercise89ofHomework10.1andhave suchadiscussionatthenextclassmeeting.
OBJECTIVE7COMMENTS
Moststudentsknowthatanastronautisweightlessinouterspace,butfewstudentsknowthatanastronaut’s weightdeclines continuously astheastronaut’sdistancefromthecenterofEarthincreases.
SECTION10.2LECTURENOTES
Objectives
1. Describethemeaningof rationalexponents
2. Simplifyexpressionsinvolvingrationalexponents.
3. Describepropertiesofrationalexponents. Copyright c 2016PearsonEducation,Inc.
OBJECTIVE1
Arguethat
suggeststhat 161/2 =4.(Notethat 161/2 is not equalto8,whichishalfof16.)
Arguethat
suggeststhat 81/3 =2.
Definition b1/n
Forthecounting n,where n =1,
• If n isodd,then b1/n isthenumberwhose nthpoweris b,andwecall b1/n the nthrootof b
• If n isevenand b ≥ 0,then b1/n isthenonnegativenumberwhose nthpoweris b,andwecall b1/n the principal nthrootof b
• If n isevenand b< 0,then b1/n isnotarealnumber.
b1/n mayberepresentedby n √b.
OBJECTIVE2
Simplify.
Showthat 163/4 =16 1 4 3 = 161/4 3 =23 =8
Definition Rationalexponent
Forthecountingnumbers m and n,where n =1,and b isanyrealnumberforwhich b1/n isarealnumber,
• bm/n = b1/n m =(bm)1/n
• b m/n = 1 bm/n , b =0
Apoweroftheform bm/n or b m/n issaidtohavea rationalexponent.
Simplify.
For f (x)=2(27)x,findthefollowing.
OBJECTIVE3
ThepropertiesofexponentsthatwediscussedinSection10.1arevalidfor rationalexponents
PropertiesofRationalExponents
If m and n arerationalnumbersand b and c areanyrealnumbersforwhich bm , bn,and cn arerealnumbers, then
• bmbn = bm+n
• bm bn = bm n , b =0
• (bc)n = bncn
• b c n = bn cn , c =0
• (bm)n = bmn
Productpropertyforexponents
Quotientpropertyforexponents
Raisingaproducttoapower
Raisingaquotienttoapower
Raisingapowertoapower
Simplify.Assumethat b and c arepositive.
17. 8b6 4/3
18. b 5/9 b 2/9
19. b3/5b7/8
20.
HW 1,3,11,17,27,33,41,43,53,59,67,69,75,77,79,81
SECTION10.2DETAILEDCOMMENTS
Inthissection,studentslearnthemeaningofrationalexponents.Theywillusethisconceptthroughoutthechapter. Studentsalsosimplifyexpressionsinvolvingrationalexponentsinthissection.
OBJECTIVE1COMMENTS
Whenintroducingrationalexponents,Iwrite 161/2 ontheboardandsaythatwewillfinditsvalue,whichIwill call“hand.”Next,Iwrite 161/2 2 ontheboardandpointoutthatthisexpressionis“handsquared,”andIplace myhandoverjustthebasetoillustrate.ThenIremovemyhandandperformthefollowingcalculation:
ThenIcover 161/2 (onthefarthestleftsideoftheequation)andobservethat“handsquaredisequalto16.”Iask mystudents,“So,whatis‘hand’equalto?”Someonealwaysseesthat“hand”isequalto4(nooneevermentions 4,whichwewon’tincludeinourdefinition,anyway).Finally,wediscussthat 161/2 meanstofindthesquare rootof16.
ThenIuse“hand”againtofindthevalueof 81/3.Afterthat,studentsarereadyformetodiscussthemeaning of b1/n ingeneral.
Forpowerswithpositiverationalexponents,Iencouragemystudentstopracticecomputingthemmentally, withoutwritingallofthesteps.Thiswillkeeptheamountofwritingtoamorereasonablelevelwhentheyare
Copyright c 2016PearsonEducation,Inc.
simplifyingcomplicatedexpressions.
Moststudentshavedifficultycomputingpowerswithnegativerationalexponents,especiallyaftersometime haspassed(seeProblems7,8,13,14,and16).
IdelaydiscussinghowtouseacalculatortocomputepowerswithrationalexponentsuntilI’mconfidentthat studentscancomputesuchpowerswithoutacalculator.Whenusingacalculatortofindapowersuchas
Iemphasizethattwosetsofparenthesesmustbeused.
GROUPEXPLORATION:Definitionof b1/n
Anotherwaytointroducerationalexponentsistoassignthisactivity.Studentsmaygetmoreoutofthisexplorationthanfromalecturebecausetheyaremoreinvolvedwitheachstepofinvestigatingthemeaningofrational exponents.
OBJECTIVE3COMMENTS
Moststudentshaveatoughtimesimplifyingexpressionswithrationalexponents.Theywillcontinuetobe challengedbydeterminingwhichordertoapplythepropertiesanddefinitionsofexponents.Further,studentstend toneedremindersonhowtoperformoperationswithfractions(e.g.addfractionswithdifferentdenominators). Sometimesstudentsgetpsychedoutwhentryingtosimplifysuchexpressions.Itrytoeasetheiroverwhelm bypointingoutthatwearestillperformingthesametypesofstepsasinSection10.1;itismostlyperforming operationsoffractionsthatextendsthetimetosimplifyexpressionsinvolvingrationalexponents.
Problems22–24arequitedifficultandcertainlynotneededforintroductorystatistics.Ifyouaretightontime, youcouldomitdiscussingtheseproblemsandassigningthesetypesofexercises.
SECTION10.3LECTURENOTES
Objectives
1. Graphanexponentialfunction.
2. Describethe basemultiplierproperty andthe increasingordecreasingproperty
3. Findthe y-interceptofthegraphofanexponentialfunction.
4. Describethe reflectionpropertyforexponentialfunctions.
5. Graphanequationofanexponentialmodel.
6. Interpretthecoefficientandthebaseofanexponentialmodel.
OBJECTIVE1
1. Createatableofsolutionsof f (x)=2x andgraph f byhand.
2. Createatableofsolutionsof g(x)=8 1 2 x andgraph g byhand.
OBJECTIVE2
Refertoyourtablesofsolutionsof f (x)=2x and g(x)=8 1 2 x tomotivatethebasemultiplierproperty.
Copyright c 2016PearsonEducation,Inc.
BaseMultiplierProperty
Foranexponentialfunctionoftheform y = abx,ifthevalueof x increasesby1,thenthevalueof y is multipliedby b
Describethebasemultiplierpropertyasappliedtothegivenfunction.
3. f (x)=5(4)x 4. g(x)=7 2 3 x
Usethebasemultiplierpropertytoexplainthefollowingconnections:
• f (x)=2x isanincreasingfunctionand b =2 > 1 (seeProblem1).
• g(x)=8 1 2 x isadecreasingfunctionand b = 1 2 < 1 (seeProblem2).
IncreasingorDecreasingProperty
Let f (x)= abx,where a> 0.Then
• If b> 1,thenthefunction f isincreasing.Wesaythefunction growsexponentially.[Drawafigure.]
• If 0 <b< 1,thenthefunction f isdecreasing.Wesaythefunction decaysexponentially.[Drawa figure.]
OBJECTIVE3
Substitute0for x inthegeneralequation y = abx toshowthefollowingproperty.
y-InterceptofanExponentialFunction
Forthegraphofanexponentialfunctionoftheform y = abx , the y-interceptis (0,a).
Findthe y-interceptofthegraphofthefunction.
5. y =8(5)x 6. y = 4 2 7 x
Warning:The y-interceptofthegraphofafunctionoftheform y = bx is (0, 1), not (0,b)
Findthe y-interceptofthegraphofthegivenfunction.Thenusethebasemultiplierpropertytographthe functionbyhand.
7. f (x)=2(3)x 8. g(x)=12 1 3 x
Copyright c 2016PearsonEducation,Inc.
OBJECTIVE4
9. Sketchandcomparethegraphsof f (x)= 4(2)x and g(x)=4(2)x .
ReflectionProperty
Thegraphsof f (x)= abx and g(x)= abx arereflectionsofeachotheracrossthe x-axis.
Graphthefunctionbyhand.
10. f (x)= 3(4)x 11. g(x)= 16 1 4 x
• Thegraphofanexponentialfunctiondoesnothaveany x-interceptsandthe x-axisisahorizontalasymptote.
• Thedomainofanyexponentialfunction f (x)= abx isthesetofallrealnumbers.
• Therangeofanexponentialfunction f (x)= abx isthesetofallpositiverealnumbersif a> 0,andthe rangeisthesetofallnegativerealnumbersif a< 0.
Findthedomainandrangeofthefunction.
(x)=3(2)
OBJECTIVE5
Definition Exponentialmodel
An exponentialmodel isanexponentialfunction,oritsgraph,thatdescribesanauthenticassociation.
14. ThepricesofoneounceofgoldontheNewYorkStockExchange(NYSE)atclosingonJanuary2are showninthefollowingtableforvariousyears.IftheNYSEwasclosedonJanuary2,thentheclosingprice onthefirstdateitwasopenwasused.
Source: KitcoMetals,Inc.
Let y betheprice(indollarsperounce)ofgoldonJanuary2at x yearssince2000.
a. Constructascatterplot.
Copyright c 2016PearsonEducation,Inc.
b. Describetheshapeandthedirectionoftheassociation.
c. Graphthemodel ˆ y =289(1.15)x onthescatterplot.Doesthemodelcomeclosetothedatapoints?
d. Whatisthecoefficientofthemodel ˆ y =289(1 15)x?Whatdoesitmeaninthissituation?
e. Whatisthebaseofthemodel ˆ y =289(1.15)x?Whatdoesitmeaninthissituation?
Ifthepointsofascatterplotliecloseto(oron)anexponentialcurve,wesaythevariablesare exponentially associated andthatthereisan exponentialassociation
OBJECTIVE6
MeaningoftheCoefficientofanExponentialModel
Assumethatanassociationbetweenthevariables x and y canbedescribedexactlybytheexponentialmodel y = abx.Thenthecoefficient a equalsthequantity y whenthequantity x is0.
MeaningoftheBaseofanExponentialModel
Assumethatanassociationbetweenthevariables x and y canbedescribedexactlybytheexponentialmodel ˆ y = abx,where a> 0.Thenthefollowingstatementsaretrue.
• If b> 1,thenthequantity y growsexponentiallyatarate b 1 percent(indecimalform)perunit increaseofthequantity x
• If 0 <b< 1,thenthequantity y decaysexponentiallyatarateof 1 b percent(indecimalform)per unitincreaseofthequantity x
15. Malathionisaninsecticidethathasbeensprayedfromhelicoptersonsuburbanareastocontrolmosquitoes andMediterraneanfruitflies.TheCaliforniaDepartmentofHealthServicesconcludedthatsomepeople maybesensitivetomalathion(seethesourceshowninthefollowingtable).Inanexperimentconducted in1993,researcherssprayedsometomatoeswithmalathionandrecordedhowmuchoftheinsecticide persisted.Themeanmalathionconcentrationsonthesurfacesoffourgroupsoftomatoesareshowninthe followingtableforvariousamountsoftime.
TimeMeanConcentration
Source: AssessmentofMalathionandMalaoxonConcentrationandPersistenceinWater,Sand,SoilandPlant MatricesUnderControlledExposureConditions,Nealetal.
Let y bethemeanmalathionconcentration(inmicrogramspercentimetersquared)onthetomatoesat x hours.
a. Constructascatterplot.
Copyright c 2016PearsonEducation,Inc.
b. Describetheshapeandthedirectionoftheassociation.
c. Graphthemodel ˆ y =0 18(0 994)x onthescatterplot.Thendescribethestrengthoftheassociation.
d. Whatisthecoefficientofthemodel ˆ y =0.18(0.994)x?Whatdoesitmeaninthissituation?
e. Whatisthebaseofthemodel ˆ y =0 18(0 994)x?Whatdoesitmeaninthissituation?
f. Predictthepercentageofthemalathionthatremainedonthetomatoes3daysafterspraying.
HW 1,3,5,9,15,19,25,31,33,39,51,53,59,79,87
SECTION10.3DETAILEDCOMMENTS
Studentslearntosketchgraphsofexponentialfunctionsinthissection.Conceptsrelatedtographingexponential functionswillbeveryhelpfulthroughouttherestofthischapter.Studentswillalsolearnhowtointerpretthe coefficientandthebaseofanexponentialmodel.
OBJECTIVE1COMMENTS
ForProblem1,Ievaluate f at 2, 1,0,1,2,3,and4tofindpointstoplot.Studentscanobservethatthegraph of f isnotaline.ThenIpointoutthebasemultiplierpropertywithoutyetcallingitassuchtofindotherpoints (withoutevaluating f )andsketchtheexponentialcurve.Forexample,toplotapointwith x-coordinate 3,Iplot apointabove ( 3, 0) thatishalfashighabovethe x-axisasthepoint ( 2, 1 4 ).Bythinkingintermsofhalving distancesvisuallyeachtimewemovetotheleftoneunit,studentscanseethatthecurveisgettingcloserand closertothe x-axis,butneverreachingit.Ithenintroducetheterminologyofahorizontalasymptote.
ForProblem2,Ievaluate g at0,1,2,3,and4tofindpointstoplot.Studentscanseethatthegraphof g isnotaline.Wecanagainusethebasemultiplierproperty(withoutnamingityet)tofindotherpoints(without evaluating g)andsketchtheexponentialcurve.
OBJECTIVE2COMMENTS
IrefertoProblems1and2tointroducethebasemultiplierproperty.ForProblems3and4,Idonotgraphthe functions;IwaittodomoregraphinguntilI’vediscussedfindingthe y-interceptofanexponentialfunction.
Ishowstudentshowtheincreasingordecreasingpropertyfollowsdirectlyfromthebasemultiplierproperty. Theconceptsofexponentialgrowthandexponentialdecaywillcomeinhandywhenperformingmodelingin Sections10.4and10.5.
OBJECTIVE3COMMENTS
Foranexponentialfunctionoftheform f (x)= bx,moststudentsthinkthatthe y-interceptofthegraphof f is (0,b).Bywriting f (x)=1(bx),studentsseethatthe y-interceptis (0, 1).Itisusuallynecessarytoremind studentsofthisatleastacoupleoftimes.
Afterdiscussingthe y-intercept,Ishowstudentshowtoefficientlygraphanexponentialfunction.First,Iplot the y-intercept.ThenIusethebasemultiplierpropertytodetermineotherpointstoplot.Bythismethod,Inever havetoevaluatethefunction.Studentstendtoresistthismethod—theyinitiallypreferevaluatingthefunction. However,withsomeencouragement,moststudentswillswitchtousingthebasemultipliermethod.Ipreferthis methodnotonlybecauseitismoreefficient,butalsobecauseitreinforcesthebasemultiplierpropertyandhas studentsthinkmoregeometricallythantheothermethod.
GROUPEXPLORATION:NumericalSignificanceof a and b for f (x)= abx Studentshaveaneasytimewiththisactivity.
OBJECTIVE4COMMENTS
ThebasemultipliermethodcanalsobeusedtographthefunctionsinProblem9,whichleadstodiscussingthe reflectionproperty.Togetacrosstheideaofreflection,Isaythatifamirrorwereplacedalongthe x-axis,the graphof g(x)=4(2)x would"see"thegraphof f (x)= 4(2)x asitsreflectioninthemirror.Ialsosaythatif
Copyright c 2016PearsonEducation,Inc.
wepaintedthegraphof g ongraphpaperandfoldedthepaperalongthe x-axis,theblottedimagewouldbethe graphof f
Duetostudents’workwithdomainandrangeinSection7.4,moststudentshaveafairlyeasytimefindingthe domainandrangeofanexponentialfunction.Areminderthatthegraphofanexponentialfunction f (x)= abx doesnotintersectthe x-axishelpsstudentsfindtherangeofsuchfunctions.
GROUPEXPLORATION:GraphicalSignificanceof a and b for y = abx
Thisactivityisagreatwaytoaddressthekeyconceptsofthissection.Oncegroupsofstudentsaredone,you canhaveaclassroomdiscussionaboutProblems4and5togetclosure.Functionsoftheform y = abx + c will notbeneededformodelinginthetextbook,sothisexplorationomitsinvestigationofverticaltranslation.Ifyou wantyourstudentstoexplorethegraphicalsignificanceof c,youcouldaskthemtoexploreitssignificanceatthe endoftheexploration.Agoodfollow-upquestionistoaskstudentstodescribethe y-interceptofthegraphofa functionoftheform y = abx + c.
GROUPEXPLORATION:DrawingFamiliesofExponentialCurves
Thisactivityisafunwayforstudentstoreflectonthegraphicalsignificanceofparameters a and b foranexponentialfunctionoftheform y = abx.Evenifstudentshaveexploredthegraphicalsignificanceofthebase b, studentsmaystillneedahinttousevaluesof b between0and1forProblem2.
OBJECTIVE5COMMENTS
StudentshaveaneasytimewithParts(a)and(b)ofProblem14becauseofearlierworkwithlinearmodeling.
Eventhoughthemeaningsofthecoefficientandthebaseofanexponentialmodelareformallydiscussedin boxedstatementsforObjective6,theyareincludedinParts(d)and(e)ofProblem14topreparethemforthe formal,generalstatementsinthepropertyboxes.
InProblem14(d),studentshaveabitmoretroublethanexpectedtointerpretthecoefficientofanexponential model,perhapsbecausetheyaresousedtoworkingwithlinearmodels.
StudentshaveevenmoretroublewithProblem14(e).Itischallengingforthemtofollowtheworkincluded onpage664ofthetextbookforthesolutiontoProblem5ofExample6.Nonetheless,theyfollowthatworkbetter thansimplysayingthatmultiplyingby1.15isequivalenttofinding115%ofthepricefromthepreviousyear,so thepriceincreasesby15%peryear.
OBJECTIVE6COMMENTS
Althoughstudentsstrugglewithfindingbothexponentialgrowthanddecayrates,theyhaveanespeciallyhard timedeterminingdecayrates.Thisispartlybecausestudentslosesightthatthe“1”intheexpression 1 b isthe decimalformof100%.
Becauseofthepreviousworkinthissection,studentshaveaneasytimewithallpartsofProblem15except Part(e).
SECTION10.4LECTURENOTES
Objectives
1. Solveanequationoftheform abn = k forthebase b
2. Usetwopointstofindanequationofanexponentialcurve.
3. Usetwopointstofindanequationofanexponentialmodel.
OBJECTIVE1
Findallreal-numbersolutions.
Copyright c 2016PearsonEducation,Inc.
1. b2 =9 2. b3 =27 3. 3b4 =48 4. 5b5 =95 5. b4 = 67
DiscusshowProblems1–5suggesthowtosolveequationsoftheform bn = k for b
SolvingEquationsoftheForm bn = k for b
Tosolveanequationoftheform bn = k for b,
1. If n isodd,thereal-numbersolutionis k1/n
2. If n isevenand k ≥ 0,thereal-numbersolutionsare ±k1/n
3. If n isevenand k< 0,thereisnoreal-numbersolution.
Findallreal-numbersolutions.Roundallresultstotheseconddecimalplace.
6. 2 7b4 5 3=351 9
7. 5 6 b4 3 8 = 7 12 8. b7 b2 = 83 4
OBJECTIVE2
Findanapproximateequation y = abx oftheexponentialcurvethatcontainsthegivenpairofpoints.Roundthe valueof b totwodecimalplaces.
9. (0, 7) and (6, 273)
10. (0, 95) and (3, 17)
Showthatifwedividetheleftsidesanddividetherightsidesoftheequations 5=5 and 7=7,weobtainthe truestatement 5 7 = 5 7
DividingLeftSidesandRightSidesofTwoEquations
If a = b, c = d, c =0,and d =0,then
Findanapproximateequation y = abx oftheexponentialcurvethatcontainsthegivenpairofpoints.Round thevaluesof a and b totwodecimalplaces.
11. (3, 6) and (7, 85)
OBJECTIVE3
12. (4, 47) and (9, 6)
13. ThetuitionratesatPrincetonUniversityareshowninthefollowingtablefortheacademicyearsendingin thedisplayedyear.
Copyright c 2016PearsonEducation,Inc.
TuitionRate Year(thousandsofdollars) 19500.6 19601.5 19702.4 19805.6 199014.4 200024.6 201035.3 201541.8
Source: PrincetonUniversity
Let y bethetuitionrate(inthousandsofdollars)at x yearssince1950.
a. Constructascatterplot.
b. Findanequationofamodel.
c. Whatisthebase b ofthemodel ˆ y = abx?Whatdoesitmeaninthissituation?
d. Estimatethetuitionin2013.
14. ThenumbersofviewersoftheMajorLeagueBaseball(MLB)All-StarGameareshowninthefollowing tableforvariousyears.
NumbersofViewers Year(millions) 198234 198528 199024 199520 200015 200512 201012 201411
Source: NielsenMediaResearch,Inc
Let y bethenumber(inmillions)ofviewersat x yearssince1980.
a. Constructascatterplot.
b. Istheassociationpositive,negative,orneither?Whatdoesthismeaninthissituation?
c. Findanequationofamodel.
d. Whatisthecoefficient a ofthemodel ˆ y = abx?Whatdoesitmeaninthissituation?
e. Whatisthebase b ofthemodel ˆ y = abx?Whatdoesitmeaninthissituation?
HW 1,3,11,15,21,33,35,45,53,55,59,61,63,73
SECTION10.4DETAILEDCOMMENTS
Inthissection,studentswillfindanequationofanexponentialmodelthatcontainstwogivenpoints.Although thismethoddoesnotgeneralizetofindingtheexponentialregressionequation(Section10.5),interpretingthe meaningofamodelandusingittomakepredictionsisgoodpreparationforSection10.5.
Copyright c 2016PearsonEducation,Inc.
OBJECTIVE1COMMENTS
Problems1–5relatenicelytopreviousworkdoneinSection10.2onrationalexponents.Studentstendtoforget thattherecansometimesbetwosolutions,soIremindthemaboutthisseveraltimes.ForProblems3,4,6,and7, Iemphasizethatweneedtoisolatethepower bn toonesideoftheequation.Problem8isexcellentpreparation fortheworkrequiredtofindanexponentialequationthatcontainstwogivenpointsinwhichneitherpointisthe y-intercept.
OBJECTIVE2COMMENTS
Studentshaveaneasytimefindinganexponentialequationifoneofthetwogivenpointsisthe y-intercept. Althoughitwilltakesomepractice,studentscanbecomeverysuccessfulatfindingequationsinwhichneither ofthegivenpointsisthe y-intercept.Ilikethismethod,becausestudentshavetherareopportunitytowitnessa meaningfulapplicationofthequotientpropertyforexponents.
ForProblem11,Itellstudentstowritethesystem
85= ab7
6= ab3
Equation1
Equation2
sothattheequationwiththelargerexponent, 85= ab7,isontop.Thatway,whenstudentslatersubtract theexponents,thedifferenceoftheexponentswillbepositive.Whenmanystudentssimplifythesidesofthe equation 85 6 = ab7 ab3 ,theywanttoperformthesameoperationwiththe85and6aswiththeexponents7and3. So,theyeitherdivide85by6anddivide7by3,ortheysubtract6from85andsubtract3from7.
Thereisawaytoavoidthesepitfalls.Insteadofdividingtheleftsidesanddividingtherightsidesofequations(1)and(2),youcansolveequation(2)for a: a = 6 b3 .Next,substitute 6 b3 for a inequation(1): 85= 6 b3 · b7 andsolvefor b.Notethatsolvingequation(2)for a ispreferable,becauseifwehadsolvedequation(1)for a,the substitutionwould’veledtotheequation 6=85b 4,whichcontainsanegativeexponent.
Studentsusuallyneedareminderonhowtousetechnologytoverifytheirwork.
Itisagoodideatocompareandcontrastequationsoftheform abn = c (e.g. 5b7 =95)withexponential functions(e.g. y =5(7)x).
GROUPEXPLORATION:UsingTrialandErrortoFindanEquationofaModel
Thisactivityservesasanicereviewofhowtointerpretthecoefficientandbaseofanexponentialmodel.Italso providesthebigpictureofthissectionandhelpsstudentsdiscoverhowtheycanmakeadjustmentstomodels foundthroughoutthissection.
OBJECTIVE3COMMENTS
Whenfindingequationsofexponentialmodels,itcanbechallengingtoselecttwo"goodpoints"becauseitishard toimagineanexponentialcurvefromjusttwopointsthatitcontains.Usingthetrialanderrormethoddescribed inthissection’sexplorationcanhelpfine-tuneafoundequation.
Whenpreparingalecture,Ioften“cheat”bydetermininga“good”pairofpointsbygraphingtheregression exponentialmodelandselectingtwodatapointsthatlieclosest(oron)thecurve.However,asI’vementioned before,Irequiremystudentstoderive(nonregression)equationsofmodelsbyhand,becauseIwantstudentsto knowthosefundamentalskillsofthecourse.
Justaswithlinearmodeling,somestudentswillwanttoskipconstructingascatterplotandsimplyusethefirst andlastdatapoints.Iremindstudentsthattherearetwoproblemswiththisstrategy:
• Theassociationmightnotbeexponential.
• Iftheassociationisexponential,thefirstandlastdatapointsmaynotbethebestpairofpointstousetofind anequationofamodel.
InProblem13,studentstendtobesurprisedhowmuchPrinceton’stuitionhasincreasedsince1950. Studentstendtoknowhowtointerpretthebaseofanincreasingexponentialmodel[Problem13(c)]bythis sectionbutcontinuetostrugglewithdoingsoforadecreasingexponentialmodel[Problem14(e)].
Copyright c 2016PearsonEducation,Inc.
SECTION10.5LECTURENOTES
Objectives
1. Computeandinterpretthe exponentialcorrelationcoefficient
2. Computeandinterpretresidualswhenworkingwithanexponentialmodel.
3. Findthesumofsquaredresidualsforanexponentialmodel.
4. Findanequationofan exponentialregressionmodel.
5. Usearesidualplottohelpdeterminewhetheranexponentialregressioncurveisanappropriatemodel.
6. Identifyinfluentialpointsforanexponentialregressionmodel.
7. Computeandinterpretthe exponentialcoefficientofdetermination
OBJECTIVE1
1. ThefollowingscatterplotdescribestheassociationofdailymaximumtemperaturesinNewYorkCityversus dailymaximumozonelevels,whicharemeasuredinpartsperbillion(ppb).Let y bethemaximumozone (inppb)foradayinNewYorkCitywithmaximumtemperature x degreesFahrenheit.Describethefour characteristicsoftheassociation(Source: NAST).

Warning:Becausethestudyisobservational,thepositiveozoneassociationdoes not meanthatanincreasein temperature causes anincreaseinozonelevel.
Copyright c 2016PearsonEducation,Inc.
PropertiesoftheExponentialCorrelationCoefficient
Assume r istheexponentialcorrelationcoefficientfortheassociationbetweentwonumericalvariables. Then
• Thevaluesof r arebetween 1 and1,inclusive.
• If r ispositive,thenthevariablesarepositivelyassociated.
• If r isnegative,thenthevariablesarenegativelyassociated.
• If r =0,thereisnoexponentialassociation.
• Thelargerthevalueof |r|,thestrongertheexponentialassociationwillbe.
• If r =1,thenthedatapointslieexactlyonanexponentialcurveandtheassociationispositive.
• If r = 1,thenthedatapointslieexactlyonanexponentialcurveandtheassociationisnegative.
• Iftheexponentialcorrelationcoefficientis0,thenthereisnoexponentialassociation,buttheremaybe someothertypeofassociation.
• Evenifanassociationisstronglylinear,theexponentialcoefficientmightbequitecloseto1.So,to determinethestrengthandtypeofanassociation,weshouldinspectthescatterplotforthedataaswellas computeoneormorecorrelationcoefficients.
OBJECTIVE2
2. Thenumbersofteacherswithvariousyearsofexperienceareshowninthefollowingtable.
YearsofNumberofTeachers Experience(thousands) 5185 10145 1590 2063 2554 3050 3538
Source: R.IngersollandE.Merrill,UniversityofPennsylvania,originalanalysesforNCTAFoftheSchoolsand StaffingSurvey
Let y bethenumber(inthousands)ofteacherswith x yearsofexperience.
a. Describethefourcharacteristicsoftheassociation.Computeandinterpretanappropriatecorrelation coefficient r aspartofyouranalysis.
b. Wecanusethedatapoints (10, 145) and (25, 54) tofindtheexponentialmodel ˆ y =280(0.936)x . Howwelldoesthemodelfitthedata?
c. Usethemodeltopredictthenumberofteacherswhohave5yearsexperience.
d. FindtheresidualforthepredictionyoumadeinPart(c).Whatdoesitmeaninthissituation?What doesitmeanaboutthepositionsofthedatapointandtheexponentialcurve?
Copyright c 2016PearsonEducation,Inc.
ResidualsforDataPointsAbove,Below,orOnaLine
Supposethatsomedatapointsaremodeledbyanexponentialcurve.
• Adatapointonthecurvehasresidualequalto0.
• Adatapointabovethecurvehaspositiveresidual.[Drawafigure.]
• Adatapointbelowthecurvehasnegativeresidual[Drawafigure.]
OBJECTIVE3
3. InProblem2,wemodeledtheteacherassociationwiththefunction ˆ y =280(0 936)x.Findthesumof squaredresidualsforthemodel.
OBJECTIVE4
Definition ExponentialRegressionModel
Foragroupofpoints,the exponentialregressionfunction istheexponentialfunctionwiththeleastsumof squaredresidualsofallexponentialfunctions.Itsgraphiscalledthe exponentialregressioncurve andits equationiscalledthe exponentialregressionequation,written
where a =0, b> 0,and b =1.The exponentialregressionmodel istheexponentialregressionfunction foragroupof data points.
4. Pointingalaserataircraft,whichcantemporarilyblindpilots,isaseriousoffensewithamaximumpunishmentof20yearsinprisonanda$250,000fine.Thenumbersoflaserincidentsinvolvingaircraftareshown inthefollowingtableforvariousyears.
YearNumber 2005283 2006446 2007675 2008988 20091527 20102836
Source: FederalAviationAdministration
Let y bethenumberoflaserincidentsinvolvingaircraftintheyearthatis x yearssince2000.
a. Constructascatterplot.
b. Findaregressionequationtodescribethedata.Howwelldoesthemodelfitthedatapoints?
c. Whatisthe y-intercept?Whatdoesitmeaninthissituation?
d. Estimatethepercentageincreaseinlaserincidentsperyear.
Copyright c 2016PearsonEducation,Inc.
OBJECTIVE5
UsingaResidualPlottoHelpDetermineWhetheranExponential RegressionFunctionisanAppropriateModel
Thefollowingstatementsapplytoaresidualplotforanexponentialregressionfunction.
• Iftheresidualplothasapatternwherethedotsdonotlieclosetothezeroresidualline,thenthere iseitheranon-exponentialassociationbetweentheexplanatoryandresponsevariablesorthereisno association.[Drawafigure.]
• Ifadotliesmuchfartherawayfromthezeroresiduallinethanmostoralloftheotherdots,thenthe dotcorrespondstoanoutlier.Iftheoutlierisneitheradjustednorremoved,theexponentialregression functionmay not beanappropriatemodel.[Drawafigure.]
• Theverticalspreadoftheresidualplotshouldbeaboutthesameforeachvalueoftheexplanatory variable.[Drawafigure.]
OBJECTIVE6
5. Thefatalityratesfromautomobileaccidentsareshowninthefollowingtableforvariousyears.
Table2.2: YearsversusFatalityRatesFromAutomobileAccidents
FatalityRate
Year(deathsper100millionmiles) 192124.1 193015.1 194010.9 19507.2 19605.1 19704.7 19803.3 19902.1 20001.5 20101.1
Source: NationalHighwayTrafficSafetyAdministration
Let y bethefatalityrate(numberofdeathsper100millionmilesdriven)at x yearssince1900.
a. Constructascatterplot.
b. Findtheequationofamodel.Doesthemodelfitthedatapointswell?
c. Determinewhetherthereareanyoutliersorinfluentialpoints.
d. Findtheexponentialdecayrateinfatalityrates.
Copyright c 2016PearsonEducation,Inc.
OBJECTIVE7
ExponentialCoefficientofDetermination
Let r betheexponentialcorrelationcoefficientforagroupofdatapoints.Theexponentialcoefficient ofdetermination, r2,istheproportionofthevariationintheresponsevariablethatisexplainedbythe exponentialregressioncurve.
Whenwereportacoefficientofdetermination,itisimportantthatwestatewhetheritisforalinear regressionlineoranexponentialregressioncurve.
6. TheUniversityofMichiganoffersa$500,00lifeinsurancepolicy.Monthlyratesfornonsmokingfaculty areshowninthefollowingtableforvariousages.
AgeAgeUsedtoMonthly GroupRepresentAgeGroupRate (years)(years)(dollars)
30–343215.00
35–393718.50
40–444226.00
45–494746.00
50–545275.50
55–5957118.00
60–6462195.50
65–6967326.60
Source: UniversityofMichigan
Let y bethemonthlyrate(indollars)foranonsmokingfacultymemberat x yearsofage.
a. Constructascatterplot.
b. Findaregressionequation.Doesthegraphcomeclosetothedatapoints?
c. Describethefourcharacteristicsoftheassociation.Computeandinterpretanappropriatecorrelation coefficientaspartofyouranalysis.
d. Computeandinterpretanappropriatecoefficientofdetermination.
e. Predictthemonthlyratefora40-year-oldnonsmokingfacultymember.
HW 1,3,5,11,13,17,21,23,25,29,31,33,35,39,45,49,51,61
SECTION10.5TEACHINGTIPS
Inthissection,studentsuseexponentialregressionfunctionstomodeldata.Althoughthismaterialisprobably notincludedinyourintroductorystatisticscourse,therearesomanyconceptsthataresimilartothoseaddressed inSection9.3(linearregression)thatthissectionservesasagreatreinforcerofmodeling.
OBJECTIVE1COMMENTS
Problem1servesasanicereviewofthefourcharacteristicsofanassociationandmoreimportantlyintroduces theconceptofanexponentialmodel.Becausetherearesomanydatapoints,thevaluesarenotprovided.Butyou couldquicklyplotabunchofpointsthatroughlyfitthepatternandhavestudentsdothesame.Thenyoucould sketchacurvethatresemblestheexponentialregressioncurveshowninFig.45onpage683ofthetextbook.
Copyright c 2016PearsonEducation,Inc.
Oryoucouldusedatafromanexerciseinthehomeworksection.Ifyouwouldliketoworkwithalargedata set,youcoulddownloadthedataforExercise49or50,andanalyzeitusingtechnology.
Whendiscussingtheexponentialcorrelationcoefficient,Iemphasizetheimportanceofdistinguishingitfrom thelinearcorrelationcoefficient,butIalsopointoutthesimilaritiesofthepropertiesofthetwocoefficients.
Upuntilnow,studentstendtothinkthatifthelinearcorrelationcoefficientisequalto0,thenthereisno associationdespiteallwarningsIhavegiventhatallwereallyknowisthatthereisno linear association.Now thattwotypesofmodelsareontheplayingfield,thisisagoodopportunitytorevisitthisissue.
Anotherissueisthatanassociationmightbeapproximatelylinearandyetthevaluesofthelinearandexponentialcorrelationcoefficientsarebothcloseto1.Thesameistrueforsomeassociationsthatareapproximately exponential.
Theprevioustwoparagraphsunderscoretheimportanceofconsideringthescatterplotaswellasthecorrelation coefficients.
OBJECTIVES2–4COMMENTS
Studentshaveafairlyeasytimewiththeseobjectivesbecauseoftheirpreviousworkwithlinearregressionmodels (Section9.3).
GROUPEXPLORATION:ComparingaLinearModelwithanExponentialModel
Thisexplorationisaniceactivityforstudentstocomparethegrowthpredictedbylinearandexponentialmodels. Theexplorationalsosendsasubtlemessage(whichyoucouldemphasize)thatitisfoolishtoextrapolatefrom justafewdatapoints,especiallyjusttwodatapoints!
OBJECTIVE5COMMENTS
Whendiscussingthebulletedstatementsintheboxforthisobjective,IsketchfiguressuchasthoseinFigs.66–68 onpage691ofthetextbook.ToaddsomecontexttothediscussionyoucouldgooverExample5onpages692 and693ofthetextbook.
OBJECTIVE6COMMENTS
Studentsquicklypickupontheconceptofinfluentialpointsforexponentialmodelsbecauseoftheirprevious workwithinfluentialpointsforlinearmodels(Section9.3).
OBJECTIVE7COMMENTS
Moststudentsstrugglewithinterpretingthelinearcoefficientofdetermination(Section9.3)andresorttomemorizinganinterpretation.Asaresult,moststudentsalsostrugglewiththemeaningoftheexponentialcoefficient ofdetermination.Butbecauseoftherepetition,studentstendtogainatleastabitmorecomprehensionofthis challengingconcept. Copyright c 2016PearsonEducation,Inc.
Chapter 2
Designing Observational Studies and Experiments
Homework 2.1
2. A sample is the part of a population from which data are collected.
4. A sampling method that consistently underemphasizes or overemphasizes some characteristic(s) of the population is said to be biased.
6. a. Andrew Brannan, Roger Collins, Jerry Heidler, Warren Hill, and Darryl Scott.
b. County of conviction, race, age (in years), and time served (in years).
c. County of conviction: Laurens, Houston, Toombs, Lee, and Chatham. Race: Caucasian, African American, Caucasian, African American, and Caucasian. Age, all in years: 66, 55, 37, 54, and 31. Time served, all in years: 14, 37, 15, 23, and 7.
d. Andrew Brannan: 661452 −= years. Roger Collins: 553718 −= years. Jerry Heidler: 371522 −= years. Warren Hill: 542331 −= years. Darryl Scott: 31724 −= years.
e. The youngest when convicted was Roger Collins, at age 18 years.
8. a. Mars Polar Lander, Opportunity, Mars Reconnaissance Orbiter, Yinghuo-1, and Mars Orbiter Mission.
b. Mission, outcome, cost (in millions of dollars), and launch mass (in pounds).
c. Mission: lander, rover, orbiter, orbiter, and orbiter. Outcome: failure, success, success, failure, and success. Cost, all in millions of dollars: 110, 400, 720, 163, and 74. Mass, all in pounds: 640, 408, 4810, 29,100, and 2948.
d. Mars Polar Lander, 110/6400.172 = ; Opportunity, 400/4080.980 = ; Mars Reconnaissance Orbiter, 720/48100.150 = ; Yinghuo-1, 163/29,1000.006 = ; Mars Orbiter
Mission, 74/29480.025 = ; all in millions of dollars per pound.
e. Yinghuo-1, 0.006 million dollars per pound.
10. a. The variable is whether people think the Affordable Care Act goes too far.
b. The sample is the 1000 likely voters who were polled.
c. The population is all likely voters.
12. a. The variable is whether people think the United States does too much in solving the world’s problems.
b. The sample is the 1501 adults who were surveyed.
c. The population is all American adults.
14. a. The variable is whether people believe that police can protect them from violent crime.
b. The sample is the 776 Caucasians who were surveyed.
c. The population is all Caucasians.
16. a. The variable is whether parents will limit their children’s choices of college based on cost.
b. The sample is the 1000 parents who were surveyed.
c. The population is all parents with collegebound teenagers ages 16 to 18 years.
18. a. The researchers were trying to answer whether simvastatin heals ulcers.
b. The sample is the 66 ulcer patients who were tested.
c. The population is all patients with ulcers.
d. The researchers concluded that the drug heals ulcers. The study is part of inferential statistics because it uses sample data to draw a conclusion about a population.
20. a. The researchers were trying to answer whether autistic adults are less able to process social rewards than monetary rewards.
b. The sample is the 20 adults who were in the study.
c. The population is all adults.
d. The conclusion is that adults with autism are less able to process social rewards than adults without autism. It is part of inferential statistics because it uses data from a sample to make a statement about the population.
22. a. The researchers were trying to answer whether women who are more sexually confident are also more likely to achieve sexual satisfaction.
b. The sample is the 45 women who took the online survey.
c. The population is all women.
d. The conclusion is that women who are more sexually confident are also more likely to achieve sexual satisfaction. It is part of inferential statistics because it draws a conclusion about a population, based on data taken from a sample.
24. Using a TI-84: Mariah, Rani, May, and Brenton. Using StatCrunch: Rani, Brenton, Kali, and Shea.
26. a. Using a TI-84: Samuel, Paola, Joshua, Win, and Phoebe. Using StatCrunch: Win, Taja, Nathan, Samuel, and Jeffrey.
b. Using a TI-84: 3 35. 5 ÷= Using StatCrunch: 2 25. 5 ÷=
Using this result to describe the sample is part of descriptive statistics because it does not draw conclusions about a larger group.
c. Using a TI-84: Samuel, Jeffrey, Phoebe, Win, and Arnold. Using StatCrunch: Karen, Win, Monique, Arnold, and Jeffrey.
d. Using a TI-84: 3 35. 5 ÷= Using
StatCrunch: 2 25. 5 ÷=
e. Using a TI-84: Yes. Using StatCrunch: Yes. However, not all randomly selected samples of size 5 will give the same results. Because of the randomness of choosing the sample, different samples could be collected.
28. a. Using a TI-84: Dimitrios, Aksana, Jessica, Luis, Fan, Chris, and Gauri. Using StatCrunch: Gauri, Chris, Aksana, Fadi, Devin, Jose, and Julia.
b. Using a TI-84: 4 47. 7 ÷= Using
StatCrunch: 5 57. 7 ÷=
c. 9 914 14 ÷=
d. (Either technology) No. The difference between the answers in b. and c. is due to sampling error.
e. For many random samples of size 7, the proportion of students who think it is more important to improve student success would not be the same on each sample and would not all be the same as the proportion for all 14 students. This is due to sampling error.
30. a. 10571203290.520 ÷=
b. 52310000.523 ÷=
c. No, the result from part (b) does not equal the result from part (a). This is due to sampling error.
d. It would be inferential statistics because it draws a conclusion about a population based on data from a sample.
32. Do you access Facebook every day or not access Facebook every day?
34. Do you have a regular exercise program or not have one?
36. The method favors students who take evening classes, so it has sampling bias.
38. The wording of the question is not clear (since it asks whether they post daily and also if they like Facebook), so it has response bias.
40. Because 9 out of 12 subjects did not respond, the method has nonresponse bias. It also has response bias because an adult who neglects their children is unlikely to say “yes.”
42. Because 93% of those who were contacted did not give a response, the method has nonresponse bias.
44. The method has response bias because the scale of numbers for the response is not consistent.
46. This method has sampling bias because it favors cars that pass by during the morning rush hour.
48. The method has response bias because the question addresses more than one issue. It also has sampling bias, because it excludes people who do not watch this TV show.
50. a. The survey is likely to have nonresponse bias because participation is voluntary. It probably also has sampling bias, since it favors diners who want to complain about their experience.
b. The survey likely has less nonresponse bias because of the incentive. It likely has less sampling bias because of the incentive. It may have more response bias, since the future discount likely improves the customer’s satisfaction with the restaurant.
52. Using samples involves less time, less money, and less labor than taking a census.
54. Answers may vary.
56. Answers may vary.
58. Sampling error refers to the random nature of the sample; nonsampling error refers to the design of the sampling process.
Homework 2.2
2. We should always round down when calculating k for systematic sampling.
4. False. Convenience sampling should never be used because such samples usually do not represent the population well.
6. Cluster sampling is the method because the 40 blocks are randomly selected, but every adult resident of each block is surveyed.
8. Systematic sampling is the method because every 100th car fuel tank after the first selected tank is tested.
10. Convenience sampling is the method because the employee only surveys the Americans whom she can contact easily.
12. Stratified sampling is the method because registered voters are randomly sampled within each of three strata: Republicans, Democrats, and Independents.
14. Simple random sampling is the method because sample members are selected at random from the whole population.
16. The method is systematic sampling because the pollster surveys every 10th person after the first to be selected.
18. The method is simple random sampling because members are randomly selected from all the paying guests in the past month.
20. a. 420508.4; ÷= round down to 8.
b. Using a TI-84: 4. Using StatCrunch: 5.
c. Using a TI-84: 4,4812,12820,20828, 28836 +=+=+= += Using StatCrunch: 5,5813,13821,21829, 29837. +=+=+= +=
22. a. 47,756150318.4; ÷≈ round down to 318.
b. Using a TI-84: 130. Using StatCrunch: 168.
c. Using a TI-84: 130,130318448,448318766, 7663181084,10843181402 +=+= +=+=
Using StatCrunch: 168,168318486,486318804, 8043181122,11223181440. +=+= +=+=
24. From the police department, survey () 0.627043 = employees. From the fire department, survey () 0.297020 = employees. From the judicial department, survey () 0.09706 = employees. Since 4320669, ++= one more person should be selected at random from one of the three departments, also selected at random, to meet the goal of a sample size of 70.
26. The total number of students in the four schools is 1936 + 1466 + 899 + 83 = 4384. The proportions are: Franklin High School, 193643840.442; ÷= Centennial High School, 146643840.334; ÷= Fred J. Page High School, 89943840.205; ÷= Middle College High School, 8343840.019. ÷=
The numbers of students in the sample from each high school, respectively, are: () 0.4425022; ≈ () 0.3345017; ≈ () 0.2055010; ≈ () 0.019501. ≈
28. The total number of applicants to the five graduate business majors is 85 + 368 + 109 + 90 + 83 = 735. The proportions are: Accounting, 857350.116; ÷= Finance, 3687350.501; ÷= Information Risk and Operations Management, 1097350.148; ÷= Management, 907350.122; ÷= Marketing, 837350.113. ÷=
The numbers of applicants in the sample from each major, respectively, are: () 0.11610012; ≈ () 0.50110050; ≈ () 0.14810015; ≈ () 0.12210012; ≈ () 0.11310011. ≈
30. The proportions of each of the strata: Female undergraduate, 10,58829,1350.363; ÷= female graduate, 447529,1350.154; ÷= female professional, 142129,1350.049; ÷= male undergraduate, 776229,1350.266; ÷= male graduate, 373629,1350.128; ÷= male professional, 115329,1350.040. ÷=
The numbers of students in the sample from each of the strata, respectively: () 0.3631200436; ≈ () 0.1541200185; ≈ () 0.049120059; ≈ () 0.2661200319; ≈ () 0.1281200154; ≈ () 0.040120048. = Because of rounding, the sample would actually have 1201 students.
32. Using a TI-84: Republicans Reagan, Farnsworth, Biggs, Yarbrough, Yee; Democrats Tovar, Bedford, Bradley, McGuire.
Using StatCrunch: Republicans Farnsworth, Crandell, Melvin, Yee, Worsley; Democrats Bradley, Hobbs, McGuire, Gallardo.
34. The number of clusters is 75253. ÷= Using a TI-84: Red Sox, Royals, Athletics. Using StatCrunch: Royals, Tigers, Indians.
36. Stratified sampling is being used, where the strata are farmers and city or suburban residents because each of the two strata is sampled separately.
38. Cluster sampling would require the least money and effort because surveying each resident on a selected block involves less travel time than a simple random sample. The city would decide on a sample size, identify a frame of all the blocks in Los Angeles, then divide the desired sample size by the smallest number of residents per block. The required number of blocks would be randomly selected, and then every resident on the selected blocks would be surveyed.
40. Simple random sampling is the best method, since Barnes & Noble® has a frame and the surveying can be done using e-mail. The company would choose a desired sample size, then randomly select that many online customers from the frame.
42. a. If each city block is treated as a cluster, the city would decide on a sample size, identify a frame of all the city blocks in Kansas City, and then divide the desired sample size by the smallest number of residents per block. That many blocks would be randomly selected, and every resident on the selected blocks would be interviewed in person.
Copyright © 2016 Pearson Education, Inc.
b. To conduct stratified sampling, the data collectors would first choose a total sample size, then identify what proportions of registered voters are Democrats, Republicans, Independents, and so on, and compute the sample size for each of the strata by multiplying the total sample size by the respective proportions. The required number for each of the strata would then be randomly selected.
c. Cluster sampling would be easier than stratified because the data collectors would only need to visit the selected blocks in person.
d. Stratified sampling would probably give better results if the sample size is small because it is more likely to get a sample that represents the whole city.
44. a. The police used systematic sampling when the traffic was heavier because they stopped every fourth car.
b. Sampling every third and fourth car is not systematic sampling because it violates the pattern of selecting every k th person, animal, or thing.
c. In lighter traffic, the police could have pulled over every other car. They would still be stopping two cars out of every four, but they would be using systematic sampling.
46. Answers may vary.
48. Answers may vary.
50. Answers may vary.
Homework 2.3
2. In a double-blind study, neither the individuals nor the researcher in touch with the individuals know who is in the treatment group(s) and who is in the control group.
4. A lurking variable is a variable that causes both the explanatory and response variables to change during the study.
6. a. The treatment groups are the second and third groups because they receive training in addition to that which the first group receives.
b. The study is an experiment because each participant is assigned to one of the treatment and control groups.
c. Random assignment means that the researchers use random sampling to decide which participants are in which groups. For example, the researchers could create a frame of all 50 older adults, randomly choose 17 of them to be in the second group, randomly choose another 17 for the third group, and assign the other 16 to the first group.
d. The sample is the 50 older adults in the study. The population is all older adults.
8. a. The explanatory variable is the type of training that participants did. The response variable is walking speed when an older person is performing a mental task at the same time.
b. The researchers concluded that the training methods for improving walking speed that include both physical and mental tasks are more effective than those used in the first group when an older adult is performing a mental task at the same time. Causality can be concluded because the participants were randomly assigned to the treatment and control groups.
c. The first group’s confidence may have increased because the group’s training was easier than that of the second and third groups.
10. a. It makes sense that the study is observational because the researchers cannot randomly assign anyone to have a major bone fracture.
b. It would be unethical to randomly assign an older adult to “treatment” when that treatment requires a major bone fracture.
c. The sample is the people whose records were studied. The population is all adults over 60.
d. The explanatory variable is whether or not the person had a major bone fracture. The response variable is the death rate.
e. The conclusion is that the death rate for older adults who have had a major fracture is higher than the death rate for older adults who have never had a major fracture. Only an association can be concluded because there was no random assignment to treatment or control groups.
12. a. The study is observational because there is no random assignment.
b. Since a placebo has no proven medical effect, it would be unethical for the doctors to administer it instead of prescribing an effective remedy for an acute cough.
c. The sample is the 241 children in the study. The population is all children with an acute cough.
d. The researchers concluded that children who took levodroprophizine recovered better from coughs than children who took other cough syrups. Only an association can be concluded because there was no random assignment to treatment and control groups.
e. Researchers could be influenced, consciously or unconsciously, by earning a salary from the company that manufactures levodroprophizine. The two researchers’ disclosing that they work for the company encourages other researchers who do not work for the company to repeat the experiment and see if they get similar results.
14. a. The treatment group is the one that received a gift card plus monetary rewards based on their class work. The control group is the one that received only a gift card.
b. The study is an experiment because the researchers randomly assigned students to the treatment and control groups.
c. Random assignment means that the researchers chose some students at random to receive the treatment and others to be the control group.
d. The sample is the 1019 students in the study. The population is all low-income community college students who are parents.
16.
a. It would be impossible to use a placebo for a monetary reward. A participant would quickly discover whether they have real or fake money.
b. In order to be double-blind, the participants would have to not know whether they will receive monetary rewards, which would remove the incentive to earn more credits.
c. The explanatory variable is whether or not students would receive an additional monetary reward based on the credits they earn. The response variable is the number of credits the students earned.
d. The researchers concluded that monetary rewards increase the number of credits earned by low-income community college students who are parents. Causality can be concluded because students were randomly assigned to the treatment and control groups.
e. Mistakenly giving monetary rewards to some of the control group introduces a possible lurking variable; believing that they will be rewarded no matter how many classes they pass could decrease students’ motivation to do well.
18. a. This is an observational study because there is no differentiation into treatment and control groups and no random assignment.
b. The sample is the 210 motorists whose behavior was observed. The population is all motorists in Chicago.
c. The explanatory variable is whether the crosswalk was marked or unmarked. The response variable is whether or not the motorist stopped.
d. The researchers concluded that motorists are more likely to follow the Must Stop law at marked than at unmarked crosswalks. Only association can be concluded because there was no random assignment into treatment and control groups.
Copyright © 2016 Pearson Education, Inc.
e. We cannot assume the conclusion is also true in Prairie City because the habits of motorists could be very different in a small farm town than in a large city. Motorists are also more likely to be acquainted with the pedestrians in a small town, which could influence their behavior.
20. Using a TI-84: Lenovo ThinkPad X240, Dell Latitude 7440, Dell XPS 13, Acer Aspire S7. Using StatCrunch: Lenovo ThinkPad X240, Acer Aspire S7, Samsung ATIV Book 9, HP Spectre 13 Ultrabook.
This is an example of random assignment because the ultrabooks were randomly assigned to the treatment and control groups.
22. Using a TI-84: Palm Beach State College, Virginia Military Institute, Kean University, SUNY College at Oneonta, Angelo State University, Langston University. Using StatCrunch: Eastern Illinois University, Lander University, Boise State College, Langston University, Kean University, Oakland University.
This is an example of random assignment because the colleges were randomly assigned to the treatment and control groups.
24. a. Because this is an observational study, the student cannot conclude causality. There is likely to be response bias; people may overstate the amount of exercise they get. Also, motivation to stay healthy could be a lurking variable affecting whether or not people smoke (or quit smoking) and whether or not they exercise.
b. The student could find people who currently smoke and randomly assign the smokers to one of two groups, treatment or control. The treatment group would exercise on a regular basis, while the control group would not. It would be impossible for the study to be double-blind since the participants know what treatment they have; however, it could be a blind study if the researcher(s) in contact with the participants do not know which is in each group.
26. a. Although there is an explanatory variable, there is no control group (or random assignment). This is an observational study, and causality cannot be concluded.
There is also a confounding variable since the reward is not just monetary. Students could also be motivated to write a better project for the public honor of appearing in the newspaper.
b. The students could be randomly assigned to one of two groups, treatment or control. The control group would have the same assignment but no prize for the best project. The treatment group will be told that the best project will win a $25 prize. It could be a blind study if the projects are graded by another teacher who does not know which group the students were in.
28. a. Although there is an explanatory variable, there is no control group (or random assignment). This is an observational study and causality cannot be concluded. There could be sampling bias and response bias because the survey is online; it could favor people with greater incomes who could afford newer cars, and voluntary response could favor people whose mileage improved after using the additive. The financial state of the respondents could also be a lurking variable, since it could influence both the ability of car owners to respond online and their ability to keep the car in good running condition.
b. The magazine could select a random sample of drivers and randomly assign them to either a treatment group or a control group. The treatment group would be given the additive and asked to use it, while the control group would not. The gas mileage of each car would be recorded at the beginning of the study, and again a month afterwards.
30. Researchers could recruit a sample of volunteers who suffer from insomnia and randomly assign them to either a treatment or a control group. Volunteers in the treatment group would receive the drug, and volunteers in the control group would receive a sugar pill. The study could be double-blind, with one researcher labeling pill vials but not giving the code to the researchers in contact with the patients. The extent of insomnia would be measured at the beginning of the study and again a month later.
Copyright © 2016 Pearson Education, Inc.
32. A sample of students who have the same class with the same professor could be randomly assigned to a treatment or control group. Each student could be given a recording of the professor’s lectures, but only the treatment group would be instructed to listen to the lectures while they sleep. The professor (or someone else who grades the tests) could be blind to which students are in which group.
34. With random assignment, the frame is a sample, and sampling divides the individuals into treatment group(s) and a control group. Stratified sampling does not involve treatment and control groups; it defines groups with similar characteristics (strata) that already exist in the population and creates frames for each of the strata.
36. The key difference in the designs of an experiment and an observational study is the presence of both treatment group(s) and a control group to which individuals are randomly assigned. Random assignment to one of the groups makes it possible to isolate the effects of the treatment from other factors.
38. Answers may vary.
40. The student is correct. The objects do not know whether they are in a treatment or control group.
Chapter 2 Review Exercises
1. a. The individuals are the countries: Bahrain, Iraq, Israel, Kuwait, and Saudi Arabia.
b. The variables are government, population (in millions), 2012 military expenditure (in billions of dollars), and oil production (in billions of barrels per day).
c. For the variable government: monarchy, republic, republic, monarchy, and monarchy. For the variable population, all in millions: 1.3, 31.9, 7.7, 2.7, and 26.9. For 2012 military expenditure, all in billions of dollars: 0.92, 5.69, 15.54, 5.95, and 54.22. For oil production, all in billions of barrels per day: 0.05, 2.99, 0.20, 2.69, and 9.90.
d. Bahrain, 0.920.0518.4; ÷= Iraq, 5.692.991.903; ÷= Israel, 15.540.2077.7; ÷= Kuwait, 5.952.692.212; ÷= Saudi Arabia,
54.229.905.477; ÷= all in dollars per barrel per day.
e. Israel has the greatest ratio of 2012 military expenditure to oil production, 77.7 dollars per barrel per day.
2. a. The variable is whether American adults experience a lot of happiness and enjoyment.
b. The sample is the 500 American adults who were telephoned.
c. The population is all American adults.
3. a. Using a TI-84: Antoine, Jacob, Ruben, Sandra, Dante, Jose. Using StatCrunch: Mario, Sandra, Antoine, Jacob, Alyssa, John.
b. Using a TI-84: 1 36. 2 ÷= Using StatCrunch: 1 36. 2 ÷= Using this result to describe the sample is part of descriptive statistics because it does not generalize the results of the sample to describe the population.
c. The proportion who prefer comedies is 5 0.417. 12 =
d. Using a TI-84 or Using StatCrunch: No, the sample proportion who prefer comedies does not equal the population proportion who prefer comedies. The difference is due to sampling error.
e. No, the proportion in each sample would not equal the proportion of all 12 students who prefer comedies. The difference is due to sampling error.
f. If two researchers perform the same study with different simple random samples of the same size, their inferences will not necessarily be the same because the sample data are not the same.
4. Choose the number of questions you usually ask during one hour of your prestatistics class: 0, 1, 2, 3, or more than 3.
Copyright © 2016 Pearson Education,
5. The method has sampling bias; the sampling favors people who visit the militia group site.
6. The method has sampling bias, response bias, and nonresponse bias. The sampling favors people who are often in the financial district; some people may exaggerate their salary; 55 of those who were approached declined to answer.
7. Answers may vary.
8. The method is cluster sampling because the researcher selects 50 blocks at random and then surveys each adult resident of those blocks.
9. The method is simple random sampling because Human Resources creates a frame of all U.S. employees and selects at random from that frame.
10. The method is convenience sampling because the pollster only surveys people who are easy to find, without attention to any random selection.
11. The method is stratified sampling because the researchers identify two strata (people with landlines and people with cell phones), and randomly select numbers in each of the strata.
12. The method is systematic sampling because the manager surveys every eighth person leaving the store after the first person is randomly selected.
13. a. 105,000800131.25; ÷= round down to 131.
b. Using a TI-84: 57. Using StatCrunch: 47.
c. Using a TI-84: 57, 57131188; += 188131319; += 319131450; += 450131581. += Using StatCrunch: 47, 47131178; += 178131309; += 309131440; += 440131571. +=
14. The total number of employees (in thousands) is 82 + 57 + 30 + 19 + 8 + 3 = 199. The proportions are: commercial airplanes, 821990.412; ÷≈ defense, space, and security, 571990.286; ÷≈ corporate, 301990.151; ÷≈ engineering, operations, and technology, 191990.095; ÷≈ shared services group, 81990.040; ÷≈ other, 31990.015. ÷≈
The numbers of employees in the sample from each group, respectively, are: () 0.4128033; ≈ () 0.2868023; ≈ () 0.1518012; ≈ () 0.095808; ≈ () 0.040803; ≈ () 0.015801. ≈
15. Using a TI-84: Democrats Gerratana, Ayala, and Duff; Republicans Frantz and Linares. Using StatCrunch: Democrats Looney, Stillman, and Bartolomeo; Republicans Guglielmo and Welch.
16. If the clusters are city blocks, cluster sampling would require the least time and effort. The city would create a frame of all the blocks in the city, select some at random, and then survey each resident of the selected blocks.
17. a. The treatment groups are the three groups who receive the drug; the control group is the group who receives a placebo.
b. The study is an experiment because the researchers randomly assigned participants to one of the three treatment groups or to the control group.
c. Random assignment means that the researchers randomly assigned patients to one of the four groups. To accomplish the random assignment, create a frame of the 560 MDD adults. For each treatment group, randomly select 140 different MDD adults to be in the group. The remaining 140 MDD adults are the control group.
d. The sample is the 560 MDD adults in the study. The population is all adults with MDD.
18. a. The placebo could be a sugar pill.
b. Neither the study participants nor the researchers in contact with them know which treatment (or placebo) the participants receive. One researcher could have labeled the pill vials with numbers to identify the pills, but not told the code to another researcher who was in contact with the participants.
c. The explanatory variable is the dosage of the drug the person receives. The response variable is the person’s HRSD score.
d. The conclusion of the study is that Lu AA21004 successfully lowers MDD adults’ HRSD scores. The researchers can conclude causality because adults were randomly assigned to the treatment and control groups.
e. The researchers concluded that the drug tends to lower MDD adults’ HRSD scores, but that might not mean that the drug tends to reduce depression in MDD adults.
19. a. The study is observational because mothers were not randomly assigned to the group with eating disorders or the group without eating disorders.
b. It would be impossible to use random assignment in this study because mothers could not start having an eating disorder, or stop having an eating disorder, due to a researcher telling them to.
c. The sample is the mothers who were observed. The population is all mothers with first-born infants.
d. The explanatory variable is whether or not the mother has an eating disorder. The response variable is the level of negative emotions expressed toward the infants during mealtimes.
e. The conclusion of the study is that mothers with eating disorders express more negative emotions toward their first-born infants during mealtimes than mothers without eating disorders. It only describes an association; an observational study cannot conclude causality.
20. Using a TI-84: Elon University, Campbell University, Wellesley College, Columbia College, University of Mount Union. Using StatCrunch: Nichols College, Columbia College, Mills College, Rider University, Villanova University. Yes, it is an example of random assignment because the colleges were randomly assigned to the two groups.
21. a. The coordinator did not use random assignment, so she cannot conclude causality. Also, the attendance should include a time requirement because a student who attended the math center for only five minutes once in the entire semester should not be considered a
student who used the center. Motivation could be a lurking variable: students who attend the math center might be more motivated, and study harder, than other students.
b. The coordinator could randomly assign some students to a treatment group and others to a control group. The students in the treatment group would, for example, attend the math center for one hour per weekday during the entire semester, while the students in the control group would not attend the math center. After the semester is over, the coordinator could compare the proportion of the treatment group who passed their math classes that semester with the proportion of the control group who passed their math classes that semester.
22. The company could randomly assign some bald people to a treatment group and some to a control group. The treatment group would take the drug and the control group would take a sugar pill. The study could be double-blind. The company would then measure the extent of the individuals’ hair growth after 8 months.
Chapter 2 Test
1. a. The individuals are Delaware, Hawaii, Mississippi, Texas, and Wisconsin.
b. The variables are region, number of workers (in thousands), and number of workers in unions (in thousands).
c. Region: East, West, South, South, and Midwest. Number of workers: 370, 549, 1040, 10,877, and 2569, all in thousands. Number of workers in unions: 38, 121, 38, 518, and 317, all in thousands.
d. Delaware, 383700.102710.3%; ÷≈= Hawaii, 1215490.220422.0%; ÷≈= Mississippi, 3810400.03653.7%; ÷≈= Texas, 51810,8770.047624.8%; ÷≈= Wisconsin, 31725690.123412.3%. ÷≈=
e. Hawaii has the largest percentage of workers in unions, 22.0%.
Copyright © 2016 Pearson Education, Inc.
2. a. The variable is whether an adult intends to buy wearable technology in the next 12 months.
b. The sample is the 2011 American adults who were surveyed.
c. The population is all American adults.
3. The study has response bias and nonresponse bias. The complex wording of the question may lead customers to give an answer that is not consistent with their opinion (response bias), and the nonresponse rate of 92% indicates nonresponse bias.
4. Using a TI-84: Jamie, Jared, Isabel, Lisa. Using StatCrunch: Jamie, Brianna, Dan, Michael.
5. The method is cluster sampling. The farmer randomly selects 8 subsections, then measures the total yield from each of those subsections.
6. a. 500806.25; k =÷= round down to 6.
b. Using a TI-84: 1. Using StatCrunch: 2.
c. Using a TI-84: 1; 1+ 6 = 7; 7 + 6 = 13; 13 + 6 = 19; 19 + 6 = 25. Using StatCrunch: 2, 2 + 6 = 8, 8 + 6 = 14, 14 + 6 = 20, 20 + 6 = 26.
7. The total number of students is given: 21,471. The proportions are: female undergraduates, 483321,4710.225; ÷≈ female graduate students, 179221,4710.083; ÷≈ male undergraduates, 972521,4710.453; ÷≈ male graduate students, 512121,4710.239. ÷≈
The numbers of students in the sample from each of the strata, respectively, are: () 0.225500113; ≈ () 0.08350042; ≈ () 0.453500226; ≈ () 0.239500119. ≈
8. a. The treatment groups are the 4 groups taking different drug dosages; the control group is the group receiving a placebo.
b. The study is an experiment because patients were randomly assigned to the treatment and control groups.
c. Random assignment means that the researchers randomly assigned the patients to the groups. To accomplish this, create a frame of the 361 patients. Then for each of the 4 treatment groups, randomly select 72 patients to be in the group. The remaining 73 adults should be in the control group.
d. The sample is the 361 patients in the study. The population is all Japanese adults with type 2 diabetes.
9. a. The placebo could be a sugar pill.
b. Neither the patients nor the researcher(s) in contact with the patients knew which patients were in each group; one researcher could have labeled the pill vials with numbers to identify the pills, but not tell the code to another researcher who was in contact with the individuals.
c. The explanatory variable is the dosage of the drug. The response variable is the glycated hemoglobin level.
d. The conclusion of the study is that the drug successfully lowers glycated hemoglobin levels in Japanese patients with type 2 diabetes. Because treatments and control were randomly assigned, the researchers can claim causality.
e. Researchers could be influenced, consciously or unconsciously, by earning a salary from the company that manufactures ipragliflozin. Reporting that they work for the company encourages other researchers who do not work for the company to repeat the experiment and see if they get similar results.
10. a. The researcher did not use random assignment. The players who run every day may also practice basketball longer and harder than players who do not run every day; motivation may be a lurking variable.
b. The researcher could randomly assign players to a treatment group and a control group. Players in the treatment group would run for one hour every day, and players in the control group would not run. The researcher could have an assistant oversee the training, so the researcher would be blind to which players are in which group. After the players have run daily for one month, the researcher would compare the scoring of the two groups in the next month, while the players in the treatment group continued to run daily.
11. The owner could randomly assign the sales force to a treatment group and a control group. The treatment group would attend a workshop about emotions for a weekend. The control group would not attend the workshop. The owner could be blind to which employees attended the workshop. One month later, the owner would compare the monthly sales by the treatment and control groups.
Copyright © 2016 Pearson Education, Inc.