Solutions for Precalculus Functions And Graphs 4th Us Edition by Dugopolski

Page 1


anddifferentsecondcoordinates.Wehavea function.

32. Sincetheorderedpairsinthegraphof y = x2 3x +7are(x,x2 3x +7),thereare notwoorderedpairswiththesamefirstcoordinateanddifferentsecondcoordinates.We haveafunction.

33. Since y =(x +9)/3,theorderedpairsare (x, (x +9)/3).Thus,therearenotwoordered pairswiththesamefirstcoordinateanddifferentsecondcoordinates.Wehaveafunction.

34. Since y = 3 √x,theorderedpairsare(x, 3 √x). Thus,therearenotwoorderedpairswiththe samefirstcoordinateanddifferentsecondcoordinates.Wehaveafunction.

35. Since y = ±x,theorderedpairsare(x, ±x). Thus,therearetwoorderedpairswiththe samefirstcoordinateanddifferentsecond coordinates.Wedonothaveafunction.

36. Since y = ±√9+ x2,theorderedpairsare (x, ±√9+ x2).Thus,therearetwoordered pairswiththesamefirstcoordinateand differentsecondcoordinates.Wedonot haveafunction.

37. Since y = x2,theorderedpairsare(x,x2). Thus,therearenotwoorderedpairswiththe samefirstcoordinateanddifferentsecond coordinates.Wehaveafunction.

38. Since y = x3,theorderedpairsare(x,x3). Thus,therearenotwoorderedpairswiththe samefirstcoordinateanddifferentsecond coordinates.Wehaveafunction.

39. Since y = |x|− 2,theorderedpairsare (x, |x|− 2).Thus,therearenotwoordered pairswiththesamefirstcoordinateanddifferentsecondcoordinates.Wehaveafunction.

40. Since y =1+ x2,theorderedpairsare (x, 1+ x2).Thus,therearenotwoordered pairswiththesamefirstcoordinateanddifferentsecondcoordinates.Wehaveafunction.

41. Since(2, 1)and(2, 1)aretwoorderedpairs withthesamefirstcoordinateanddifferent secondcoordinates,theequationdoesnot defineafunction.

42. Since(2, 1)and(2, 1)aretwoorderedpairs withthesamefirstcoordinateanddifferent secondcoordinates,theequationdoesnot defineafunction.

43. Domain {−3, 4, 5},range {1, 2, 6}

44. Domain {1, 2, 3, 4},range {2, 4, 8, 16}

45. Domain(−∞, ∞),range {4}

46. Domain {5},range(−∞, ∞)

47. Domain(−∞, ∞); since |x|≥ 0,therangeof y = |x| +5is[5, ∞)

48. Domain(−∞, ∞); since x2 ≥ 0,therangeof y = x2 +8is[8, ∞)

49. Since x = |y|− 3 ≥−3,thedomain of x = |y|− 3is[ 3, ∞);range(−∞, ∞)

50. Since √y 2 ≥−2,thedomainof x = √y 2 is[ 2, ∞);Since √y isarealnumberwhenever y ≥ 0,therangeis[0, ∞).

51. Since √x 4isarealnumberwhenever x ≥ 4, thedomainof y = √x 4is[4, ∞).

Since y = √x 4 ≥ 0for x ≥ 4,therangeis [0, ∞).

52. Since √5 x isarealnumberwhenever x ≤ 5, thedomainof y = √5 x is(−∞, 5].

Since y = √5 x ≥ 0for x ≤ 5,therangeis [0, ∞).

53. Since x = y2 ≤ 0,thedomainof x = y2 is (−∞, 0];rangeis(−∞, ∞);

54. Since x = −|y|≤ 0,thedomainof x = −|y| is(−∞, 0];rangeis(−∞, ∞);

55. 6 56. 5

57. g(2)=3(2)+5=11

58. g(4)=3(4)+5=17

59. Since(3, 8)istheorderedpair,oneobtains f (3)=8.Theansweris x =3.

60. Since(2, 6)istheorderedpair,oneobtains f (2)=6.Theansweris x =2.

61. Solving3x +5=26,wefind x =7.

62. Solving3x +5= 4,wefind x = 3.

63. f (4)+ g(4)=5+17=22

64. f (3) g(3)=8 14= 6

65. 3a2 a 66. 3w2 w

67. 4(a+2) 2=4a+6 68. 4(a 5) 2=4a 22

69. 3(x2 +2x +1) (x +1)=3x2 +5x +2

70. 3(x2 6x +9) (x 3)=3x2 19x +30

71. 4(x + h) 2=4x +4h 2

72. 3(x2 +2xh+h2) x h =3x2 +6xh+3h2 x h

73. 3(x2 +2x +1) (x +1) 3x2 + x =6x +2

74. 4(x +2) 2 4x +2=8

75. 3(x2 +2xh + h2) (x + h) 3x2 + x = 6xh +3h2 h

76. (4x +4h 2) 4x +2=4h

77. Theaveragerateofchangeis

8, 000 20, 000 5 = $2, 400peryear

78. Theaveragerateofchangeasthenumberof cubicyardschangesfrom12to30andfrom30 to60are 528 240 30 12 =$16peryd3 and 948 528 60 30 =$14peryd3,respectively.

79. Theaveragerateofchangeon[0, 2]is

h(2) h(0) 2 0 = 0 64 2 0 = 32ft/sec.

Theaveragerateofchangeon[1, 2]is

h(2) h(1) 2 1 = 0 48 2 1 = 48ft/sec.

Theaveragerateofchangeon[1.9, 2]is

h(2) h(1.9) 2 1 9 = 0 6.24 0 1 = 62 4ft/sec.

Theaveragerateofchangeon[1 99, 2]is

h(2) h(1 99) 2 1 99 = 0 0 6384 0 01 = 63.84ft/sec.

Theaveragerateofchangeon[1.999, 2]is

h(2) h(1 999) 2 1.999 = 0 0 063984 0.001 = 63 984 ft/sec.

80. 6 70 2 0 = 64 2 = 32ft/sec

81. Theaveragerateofchangeis 1768 1970 20 = 10 1millionhectaresperyear.

82. If10 1millionhectaresarelosteachyearand since 1970 10 1 ≈ 195years,thentheforestwill beeliminatedintheyear2183(=1988+195).

83.

86.

f (x + h) f (x) h = 2(x + h)+3+2x 3 h = 2h h = 2

87. Let g(x)= x2 + x.Thenweobtain

g(x + h) g(x) h = (x + h)2 +(x + h) x2 x h = 2xh + h2 + h h = 2x + h +1.

88. Let g(x)= x2 2x.Thenweget

g(x + h) g(x) h =

(x + h)2 2(x + h) x2 +2x h = 2xh + h2 2h h = 2x + h 2.

89. Differencequotientis

= (x + h)2 +(x + h) 2+ x2 x +2 h = 2xh h2 + h h = 2x h +1

90. Differencequotientis

= (x + h)2 (x + h)+3 x2 + x 3 h

= 2xh + h2 h h =2x + h 1

91. Differencequotientis

= 3√x + h 3√x h 3√x + h +3

92. Differencequotientis

= 2√x + h +2√x h 2√x + h 2√x 2√x + h 2√x

= 4(x + h) 4x h( 2√x + h 2√x) = 4h h( 2√x + h 2√x) = 2 √x + h + √x

93. Differencequotientis = √x + h +2 √x +2 h √x + h +2+ √x +2 √x + h +2+ √x +2 = (x + h +2) (x +2) h(√x + h +2+ √x +2)

= h h(√x + h +2+ √x +2) = 1 √x + h +2+ √x +2

94. Differencequotientis = x + h 2 x 2 h x + h 2 + x 2 x + h 2 + x 2 = x + h 2 x 2 h x + h 2 + x 2 = h 2 h x + h 2 + x 2

= 1 2 x + h 2 + x 2 = 1 √2 √x + h + √x

x = 9(x + h) 9x h(3√x + h +3√x) = 9h h(3√x + h +3√x) = 3 √x + h + √x

95. Differencequotientis

= 1 x + h 1 x h · x(x + h) x(x + h) = x (x + h) xh(x + h) = h xh(x + h) = 1 x(x + h)

96. Differencequotientis = 3 x + h 3 x h x(x + h) x(x + h) = 3x 3(x + h) xh(x + h) = 3h xh(x + h) = 3 x(x + h)

97. Differencequotientis = 3 x + h +2 3 x +2 h (x + h +2)(x +2) (x + h +2)(x +2) = 3(x +2) 3(x + h +2) h(x + h +2)(x +2) = 3h h(x + h +2)(x +2)

= 3 (x + h +2)(x +2)

98. Differencequotientis = 2 x + h 1 2 x 1 h · (x + h 1)(x 1) (x + h 1)(x 1) = 2(x 1) 2(x + h 1) h(x + h 1)(x 1) = 2h h(x + h 1)(x 1) = 2 (x + h 1)(x 1)

99.a) A = s2 b) s = √A c) s = d√2 2 d) d = s√2 e) P =4s f) s = P/4 g) A = P 2/16 h) d = √2A

100.a) A = πr2 b) r = A π c) C =2πr

d) d =2r e) d = C π f) A = πd2 4

g) d =2 A π

101. C =50+35n

102.a) When d =100ft,theatmosphericpressure is A(100)= 03(100)+1=4atm.

b) When A =4 9atm,thedepthisfoundby solving4 9=0 03d +1;thedepthis d = 3 9 0 03 =130ft.

103.

(a) Thequantity C(4)=(0 95)(4)+5 8= $9 6billionrepresentstheamountspent oncomputersintheyear2004.

(b) Bysolving0 95n +5 8=15,weobtain n = 9 2 0.95 ≈ 10

Thus,spendingforcomputerswillbe$15 billionin2010.

104.

(a) Thequantity E(4)+ C(4)=[0 5(4)+1]+ 9 6=$12 6billionrepresentsthetotal amountspentonelectronicsandcomputersintheyear2004.

(b) Bysolving

(0.5n +1)+(0.95n +5.8)=20 1.45n =13.2 n ≈ 9

wefindthatthetotalspendingwillreach $20billionintheyear2009(=2000+9).

(c) Theamountspentoncomputersisgrowingfastersincetheslopeof C(n)[whichis 1]isgreaterthantheslopeof E(n)[which is0.95].

105. Let a betheradiusofeachcircle.Note,triangle ABC isanequilateraltrianglewithside 2a andheight √3a

Thus,theheightofthecirclecenteredat C fromthehorizontallineis √3a +2a.Hence, byusingasimilarreasoning,weobtainthat heightofthehighestcirclefromthelineis

2√3a +2a orequivalently(2√3+2)a

106. Inthetrianglebelow, PS bisectsthe90-angle at P and SQ bisectsthe60-angleat Q

107. When x =18and h =0 1,wehave R(18.1) R(18) 0.1 =1, 950

Therevenuefromtheconcertwillincreaseby approximately$1,950ifthepriceofaticketis raisedfrom$18to$19.

If x =22and h =0 1,then R(22.1) R(22) 0 1 = 2, 050.

Therevenuefromtheconcertwilldecreaseby approximately$2,050ifthepriceofaticketis raisedfrom$22to$23.

108. When r =1.4and h =0.1,weobtain A(1 5) A(1 4) 0 1 ≈−16.1

Theamountoftinneededdecreasesbyapproximately16 1in.2 iftheradiusincreasesfrom 1.4in.to2.4in.

If r =2and h =0.1,then A(2 1) A(2) 0.1 ≈ 8 6

Theamountoftinneededincreasesbyabout 8.6in.2 iftheradiusincreasesfrom2in.to3 in.

Inthe45-45-90triangle SPR,wefind

PR = SR = √2d/2

And,inthe30-60-90triangle SQR weget

Since PQ = PR + RQ,weobtain

112. If m isthenumberofmales,then m + 1 2 m =36 3 2 m =36 m =(36) 2 3 x =24males

113. ( 4+6)2 +( 3 3)2 = √4+36= √40=2√10

114. Theslopeis 3 2 5+1 = 1 6 .Thelineisgiven by y = 1 6 x + b forsome b.Substitutethe coordinatesof( 1, 2)asfollows: 2= 1 6 ( 1)+ b 13 6 = b

Thelineisgivenby y = 1 6 x + 13 6 .

115. x 2 x 6=36 x 2 x 42=0 (x 7)(x +6)=0

Thesolutionsetis {−6, 7}

116. Theinequalityisequivalentto 13 < 2x 9 < 13 4 < 2x< 22 2 < 2x< 11

Thesolutionsetis( 2, 11).

(30+25)2 =3025

2.1PopQuiz

1. Yes,since A = πr2 where A istheareaofa circlewithradius r

2. No,sincetheorderedpairs(2, 4)and( 2, 4) havethesamefirstcoordinates.

3. No,sincetheorderedpairs(1, 0)and( 1, 0) havethesamefirstcoordinates.

4. [1, ∞) 5. [2, ∞) 6. 9

7. If2a =1,then a =1/2.

8. 40 20 2008 1998 =$2peryear

9. Thedifferencequotientis

2.1LinkingConcepts

(a) ThefirstgraphshowsU.S.federaldebt D versusyear y

andthesecondgraphshowspopulation P (inmillions)versus y.

(b) Thefirsttableshowstheaverageratesof changefortheU.S.federaldebt

10 yearperiod ave.rateofchange

1940 50 257 51 10 =20.6 1950 60 291 257 10 =3 4

1960 70 381 291 10 =9 0 1970 80 909 381 10 =52.8 1980 90 3207 909 10 =229 8 1990 2000 5666 3207 10 =245.9

Thesecondtableshowstheaverageratesof changefortheU.S.population

10 yearperiod ave.rateofchange

1940 50 150 7 131 7 10 ≈ 1.9 1950 60 179 3 150 7 10 ≈ 2 9 1960 70 203.3 179.3 10 ≈ 2 4 1970 80 226 5 203 3 10 ≈ 2.3 1980 90 248 7 226 5 10 ≈ 2 2 1990 2000 274 8 248 7 10 ≈ 2.6

(c) Thefirsttableshowsthedifferencebetween consecutiveaverageratesofchangeforthe U.S.federaldebt.

10-yearperiods difference

1940-50&1950-60 3 4 20 6= 17 2

1950-60&1960-70 9.0 3.4=5.6

Thesecondtableshowsthedifferencebetween consecutiveaverageratesofchangeforthe U.S.population.

10-yearperiods difference

1940-50&1950-60 2 9 1 9=1 0

1950-60&1960-70 2 4 2 9= 0 5

1960-70&1970-80 2.3 2.4=

(d) ForboththeU.S.federaldebtandpopulation, theaverageratesofchangeareallpositive.

(e) Inpart(c),forthefederaldebtmostofthe differencesarepositiveandforthepopulation mostofthedifferencesarenegative.

(f) TheU.S.federaldebtisgrowingoutofcontrol whencomparedtotheU.S.population.See part(g)foranexplanation.

(g) Sincemostofthedifferencesforthefederal debtinpart(e)arepositive,thefederaldebts areincreasingatanincreasingrate.Whilethe U.S.populationisincreasingatadecreasing ratesincemostofthedifferencesforpopulationinpart(e)arenegative.

ForThought

1. True,sincethegraphisaparabolaopening downwithvertexattheorigin.

2. False,thegraphisdecreasing.

3. True

4. True,since f ( 4.5)=[ 1.5]= 2.

5. False,sincetherangeis {±1}.

6. True 7. True 8. True

9. False,sincetherangeistheinterval[0, 4].

10. True

2.2Exercises

1. parabola

2. piecewise

3. Function y =2x includesthepoints(0, 0), (1, 2), domainandrangeareboth(−∞, ∞) 1 2 x 2 4 y

4. Function x =2y includesthepoints(0, 0), (2, 1), ( 2, 1),domainandrangeareboth (−∞, ∞) 2 -2 x 1 -1 y

5. Function x y =0includesthepoints( 1, 1), (0, 0), (1, 1), domainandrangeareboth (−∞, ∞)

9. Function y =2x2 includesthepoints(0, 0), (±1, 2),domainis(−∞, ∞),rangeis[0, ∞) 1 -1 x 2 8 y

10. Function y = x2 1goesthrough(0, 1), (±1, 0),domainis(−∞, ∞),rangeis[ 1, ∞) 1 -1 x 1 4 y

6. Function x y =2includesthepoints(2, 0), (0, 2), ( 2, 4),domainandrangeareboth (−∞, ∞) 2 -2 x -2 -4 y

7. Function y =5includesthepoints(0, 5), (±2, 5),domainis(−∞, ∞),rangeis {5} 5 -5 x 4 6 y

11. Function y =1 x2 includesthepoints(0, 1), (±1, 0),domainis(−∞, ∞),rangeis(−∞, 1] 1 -1 x 2 -4 y

12. Function y = 1 x2 includesthepoints (0, 1),(±1, 2),domainis(−∞, ∞),range is(−∞, 1] 1 -1 x -4 y

8. x =3isnotafunctionandincludesthepoints (3, 0), (3, 2),domainis {3},rangeis(−∞, ∞)

13. Function y =1+ √x includesthepoints(0, 1), (1, 2), (4, 3),domainis[0, ∞),rangeis[1, ∞) 4 1 x 1 4 y

14. Function y =2 √x includesthepoints(0, 2), (4, 0),domainis[0, ∞),rangeis(−∞, 2]

17. Function x = √y goesthrough (0, 0), (2, 4), (3, 9),domainandrangeis[0, ∞)

15. x = y2 +1isnotafunctionandincludesthe points(1, 0), (2, ±1),domainis[1, ∞),range is(−∞, ∞) 2 1 x 1 -1 y

16. x =1 y2 isnotfunctionandincludesthe points(1, 0), (0, ±1),domainis(−∞, 1],range is(−∞, ∞)

18. Function x 1= √y goesthrough(1, 0), (3, 4), (4, 9),domain[1, ∞),andrange[0, ∞), 1 4 x 2 -2 y

19. Function y = 3 √x +1goesthrough ( 1, 0), (1, 2), (8, 3),domain(−∞, ∞), andrange(−∞, ∞)

20. Function y = 3 √x 2goesthrough ( 1, 3), (1, 1), (8, 0),domain(−∞, ∞), andrange(−∞, ∞) -4 x 1 -2 y

21. Function, x = 3 √y goesthrough (0, 0), (1, 1), (2, 8),domain(−∞, ∞), andrange(−∞, ∞) -8 8 x 2 y

24. Notafunction, x2 + y2 =4goesthrough (2, 0), (0, 2), ( 2, 0),domain[ 2, 2], andrange[ 2, 2] 1 3 x 1 3 y

22. Function, x = 3 √y 1goesthrough (0, 1), (1, 2), ( 1, 0),domain(−∞, ∞), andrange(−∞, ∞) -3 3 x 2 y

25. Function, y = √1 x2 goesthrough (±1, 0), (0, 1),domain[ 1, 1], andrange[0, 1] 2 -2 x -1 y

23. Notafunction, y2 =1 x2 goesthrough (1, 0), (0, 1), ( 1, 0),domain[ 1, 1], andrange[ 1, 1] -2 2 x 2 -2 y

26. Function, y = √25 x2 goesthrough (±5, 0), (0, 5),domain[ 5, 5], andrange[ 5, 0]

4 6 x -4 -6 y

27. Function y = x3 includesthepoints(0, 0), (1, 1), (2, 8),domainandrangeareboth (−∞, ∞) 1 2 x 1 8 y

31. Function y = −|x| includesthepoints(0, 0), (±1, 1),domainis(−∞, ∞),rangeis (−∞, 0]

28. Function y = x3 includesthepoints(0, 0), (1, 1), (2, 8),domainandrangeareboth (−∞, ∞)

32. Function y = −|x +1| includesthepoints ( 1, 0),(0, 1), ( 2, 1),domainis(−∞, ∞), rangeis(−∞, 0] 1 -4 x -4 4 y

29. Function y =2|x| includesthepoints(0, 0), (±1, 2), domainis(−∞, ∞),rangeis[0, ∞) 1 -1 x 2 5 y

33. Notafunction,graphof x = |y| includesthe points(0, 0), (2, 2), (2, 2),domainis[0, ∞), rangeis(−∞, ∞)

30. Function y = |x 1| includesthepoints (0, 1), (1, 0), (2, 1),domainis(−∞, ∞),range is[0, ∞)

34. x = |y| +1isnotafunctionandincludesthe points(1, 0), (2, ±1),domainis[1, ∞),range is(−∞, ∞) 1 2 x

y

35. Domainis(−∞, ∞),rangeis {±2},some pointsare( 3, 2),(1, 2) -1 1 x

39. Domainis[ 2, ∞),rangeis(−∞, 2], somepointsare(2, 2),( 2, 0),(3, 1)

36. Domainis(−∞, ∞),rangeis {1, 3},some pointsare(0, 2),(4, 1)

40. Domainis(−∞, ∞),rangeis( 1, ∞), somepointsare(1, 1),(4, 2),( 1, 1)

-

37. Domainis(−∞, ∞),rangeis (−∞, 2] ∪ (2, ∞),somepointsare(2, 3), (1, 2)

41. Domainis(−∞, ∞),rangeis[0, ∞),some pointsare( 1, 1),( 4, 2),(4, 2)

2 x 4 2 y

42. Domainis(−∞, ∞),rangeis[3, ∞),some pointsare( 1, 3),(0, 3),(1, 4)

38. Domainis(−∞, ∞),rangeis[3, ∞), somepointsare(2, 3),(3, 4) 2 -2 x 1 3 y

43. Domainis(−∞, ∞),rangeis(−∞, ∞), somepointsare( 2, 4),(1, 1) 1 -1 x 1 3 y

44. Domainis[ 2, ∞),rangeis[0, ∞), somepointsare(±2, 0),(3, 1)

47. Domain[0, 4),rangeis {2, 3, 4, 5},somepoints are(0, 2),(1, 3),(1.5, 3)

45. Domainis(−∞, ∞),rangeisthesetofintegers,somepointsare(0, 1),(1, 2),(1.5, 2) -1 1 x 1 2 y

48. Domainis(0, 5],rangeis {−3, 2, 1, 0, 1, 2}, somepointsare(0, 3),(1, 2),(1.5, 2) 1 3 5 x

2 y

46. Domainis(−∞, ∞),rangeisthesetofeven integers,somepointsare(0, 0),(1, 2),(1 5, 2) -1 1 x -1 2 y

49.a. Domainandrangeareboth(−∞, ∞), decreasingon(−∞, ∞)

b. Domainis(−∞, ∞),rangeis(−∞, 4] increasingon(−∞, 0),decreasing on(0, ∞)

50.a. Domainandrangeareboth(−∞, ∞), increasingon(−∞, ∞)

b. Domainis(−∞, ∞),rangeis[ 3, ∞) increasingon(0, ∞),decreasing on(−∞, 0)

51.a. Domainis[ 2, 6],rangeis[3, 7] increasingon( 2, 2),decreasingon(2, 6)

b. Domain(−∞, 2],range(−∞, 3], increasingon(−∞, 2),constant on( 2, 2)

52.a. Domainis[0, 6],rangeis[ 4, 1] increasingon(3, 6),decreasingon(0, 3)

b. Domain(−∞, ∞),range[1, ∞), increasingon(3, ∞),constanton(1, 3), decreasingon(−∞, 1)

53.a. Domainis(−∞, ∞),rangeis[0, ∞) increasingon(0, ∞),decreasing on(−∞, 0)

b. Domainandrangeareboth(−∞, ∞) increasingon( 2, 2/3), decreasingon(−∞, 2)and( 2/3, ∞)

54.a. Domainis[ 4, 4],rangeis[0, 4] increasingon( 4, 0),decreasingon(0, 4)

b. Domainis(−∞, ∞),rangeis[ 2, ∞) increasingon(2, ∞),decreasing on(−∞, 2),constanton( 2, 2)

55.a. Domainandrangeareboth(−∞, ∞), increasingon(−∞, ∞)

b. Domainis[ 2, 5],rangeis[1, 4] increasingon(1, 2),decreasing on( 2, 1),constanton(2, 5)

56.a. Domainis(−∞, ∞),rangeis(−∞, 3] increasingon(−∞, 2),decreasing on(2, ∞)

b. Domainandrangeareboth(−∞, ∞), decreasingon(−∞, ∞)

57. Domainandrangeareboth(−∞, ∞) increasingon(−∞, ∞),somepointsare(0, 1), (1, 3)

y

58. Domainandrangeareboth(−∞, ∞), decreasingon(−∞, ∞),somepointsare(0, 0), (1, 3)

60. Domainis(−∞, ∞),rangeis[1, ∞), increasingon(0, ∞),decreasingon(−∞, 0), somepointsare(0, 1),( 1, 2) 2 -2 x 1 3 y

61. Domainis(−∞, 0) ∪ (0, ∞),rangeis {±1}, constanton(−∞, 0)and(0, ∞), somepointsare(1, 1),( 1, 1)

59. Domainis(−∞, ∞),rangeis[0, ∞), increasingon(1, ∞),decreasingon(−∞, 1), somepointsare(0, 1),(1, 0)

62. Domainis(−∞, 0) ∪ (0, ∞),rangeis {±2}, constanton(−∞, 0)and(0, ∞), somepointsare(1, 2),( 1, 2) 2 -2 x 1 3 y

63. Domainis[ 3, 3],rangeis[0, 3], increasingon( 3, 0),decreasingon(0, 3), somepointsare(±3, 0),(0, 3) 2 4 x

64. Domainis[ 1, 1],rangeis[ 1, 0], increasingon(0, 1),decreasingon( 1, 0), somepointsare(±1, 0),(0, 1)

2 -2 x -2 1 y

65. Domainandrangeareboth(−∞, ∞), increasingon(−∞, 3)and(3, ∞), somepointsare(4, 5),(0, 2) 3 6 x 5 4 y

66. Domainandrangeareboth(−∞, ∞), decreasingon(−∞, ∞), somepointsare( 1, 1),(1, 1)

4 -4 x 2 -2 y

67. Domainis(−∞, ∞),rangeis(−∞, 2], increasingon(−∞, 2)and( 2, 0), decreasingon(0, 2)and(2, ∞),somepoints are( 3, 0),(0, 2),(4, 1)

2 -2 x 1 3 y

68. Domainis(−∞, ∞),rangeis(−∞, 4], increasingon(−∞, 2)and(0, 2),decreasing on( 2, 0)and(2, ∞),somepointsare( 3, 2), (0, 0),(3, 2) 2 -2 x 2 4 y

69. f (x)= 2for x> 1 1for x ≤−1

70. f (x)= 3for x ≤ 1 2for x> 1

71. Thelinejoining( 1, 1)and( 3, 3)is y = x, andthelinejoining( 1, 2)and(3, 2)is y = x 1.Thepiecewisefunctionis

f (x)= x 1for x ≥−1 x for x< 1.

72. Thelinejoining(1, 3)and( 3, 1)is y = x+2,andthelinejoining(1, 1)and(3, 1) is y =2 x.Thepiecewisefunctionis

f (x)= x +2for x ≤ 1 2 x for x> 1

73. Thelinejoining(0, 2)and(2, 2)is y =2x 2, andthelinejoining(0, 2)and( 3, 1)is y = x 2.Thepiecewisefunctionis

f (x)= 2x 2for x ≥ 0 x 2for x< 0

74. Thelinejoining(1, 3)and(3, 1)is y =4 x, andthelinejoining(1, 3)and( 2, 3)is y =2x +1.Thepiecewisefunctionis

f (x)= 2x +1for x ≤ 1 4 x for x> 1.

75. increasingontheinterval[0.83, ∞), decreasingon(−∞, 0.83]

76. increasingontheinterval(−∞, 0.17], decreasingon[0.17, ∞)

77. increasingon(−∞, 1]and[1, ∞), decreasingon[ 1, 1]

78. increasingon[ 2.35, 0)and[2.35, ∞), decreasingon(−∞, 2.35]and(0, 2.35]

79. increasingon[ 1.73, 0)and[1.73, ∞), decreasingon(−∞, 1 73]and(0, 1 73]

80. increasingon(−∞, 2 59], [ 1 03, 1 03],and[2 59, ∞), decreasingon[ 2 59, 1 03]and[1 03, 2 59]

81. increasingon[30, 50],and[70, ∞), decreasingon(−∞, 30]and[50, 70]

82. increasingon(−∞, 50],and[ 30, ∞), decreasingon[ 50, 30]

83. c,graphwasincreasingatfirst,thensuddenly droppedandbecameconstant,thenincreased slightly

84. a

85. d,graphwasdecreasingatfirst,then fluctuatedbetweenincreasesanddecreases, thenthemarketincreased

86. b

87. Theindependentvariableistime t where t isthenumberofminutesafter7:45andthe dependentvariableisdistance D fromthe holodeck.

D isincreasingontheintervals[0, 3]and [6, 15],decreasingon[3, 6]and[30, 39],and constanton[15, 30].

3 6 t D

88. Independentvariableistime t inseconds,dependentvariableisdistance D fromthepit D isincreasingontheintervals(0, 20), (40, 60),(80, 100),(150, 170),(190, 210),and (230, 250); D isdecreasingontheintervals(20, 40),(60, 80),(100, 120),(170, 190), (210, 230); D isconstanton(120, 150)and (250, 300).

40 80 120 190 250 300 t

89. Independentvariableistime t inyears, dependentvariableissavings s indollars s isincreasingontheinterval[0, 2]; s isconstanton[2, 2 5]; s isdecreasingon[2 5, 4 5].

90. Independentvariableistime t indays,dependentvariableistheamount,a,(indollars)in thecheckingaccount.

a isdecreasingontheinterval[0, 40]; a isconstanton[40, 45]; a isincreasingon[45, 65].

91. In1988,therewere M (18)=565millioncars. In2010,itisprojectedthattherewillbe M (40)=800millioncars.

Theaveragerateofchangefrom1984to1994 is M (24) M (14) 10 =14 5millioncarsper year.

92. IndevelopingcountriesandEasternEurope, theaveragerateofchangeofmotorvehicle ownershipis M (40) M (20) 20 =6 25million vehiclesperyear.

Indevelopedcountries,theaveragerateof changeofmotorvehicleownershipfrom1990 to2010is10millionvehiclesperyear(seepreviousmodel).Thenvehicleownershipisexpectedtogrowfasterindevelopedcountries.

93. Constanton[0, 104],increasingon [104 , ∞)

94. Decreasingsinceacarhasalowermileage athighspeeds.

95. Thecostisover$235for t in[5, ∞).

96. If200+37[w/100] < 862then [w/100] < 662/37 ≈ 17.9.Then w/100 < 18 andthevaluesof w liein(0, 1800).

97. f (x)= 150if0 <x< 3 50x if3 ≤ x ≤ 10

98. f (x)= 4[ x]if0 <x ≤ 3 15if3 <x ≤ 8

99. Amechanic’sfeeis$20foreachhalf-hourof workwithanyfractionofahalf-hourcharged asahalf-hour.If y isthefeeindollarsand x isthenumberofhours,then y = 20[ 2x]. .5 1

100. Forexample,chooseany a,b satisfying a<b andgraphthefunctiondefinedby f (x)=

2x if x ≤ a 5x 3a if a<x<b 5b 3a if x ≥ b

101. Since x 2 ≥ 0,thedomainis[2, ∞). Since √x 2isnonnegative,wefind √x 2+ 3isatleastthree.Thus,therangeis[3, ∞).

102. Sinceanabsolutevalueisnonnegative,the equation |13x 55| = 9hasnosolution.The solutionsetis ∅.

103. Note,wehave13x 55=0. Thesolutionsetis {55/13}

104. Rewritewithouttheabsolutevalues: 13x 55= ±9 13x =55 ± 9=46, 64

Thesolutionsetis 46 13 , 64 13

105. Sincewehaveaperfectsquare (2x 5)2 =0 thesolutionsetis {5/2}.

106. Applyingthequadraticformulato 2w2 5w 9=0,wefind w = 5 ± √25+72 4

Thesolutionsetis 5 ± √97 4 .

ThinkingOutsidetheBoxXXIII

a) Considerthecircle x2 +(y r)2 = r2 where r> 0.Supposethecircleintersectstheparabola y = x2 onlyattheorigin.Substituting y = x2 , weobtain

y +(y r)2 = r 2 y 2 + y(1 2r)=0

Thus,1 2r =0sincethecircleandthe parabolahasexactlyonepointofintersection. Theradiusofthecircleis1/2.

b) Considerthecircle x2 +(y r)2 = r2 where r> 0.Ifthecircleintersectstheparabola y = ax2 onlyattheorigin,thentheequation belowmusthaveexactlyonesolution,namely, y =0. 1 a y +(y r)2 = r 2 y 2 + y 1 a 2r =0

Necessarily,wehave 1 a 2r =0or a = 1 2r .Thus,if r =3then a =1/6.

2.2PopQuiz

1. Domain[0, ∞),range(−∞, 1]

2. Domain[ 3, 3],range[0, 3]

3. Range[2, ∞)

4. Increasingon[0, ∞)

5. Decreasingon(−∞, 3]

2.2LinkingConcepts

(a) Agraphofthebenefitfunctionisgivenbelow.

(b) B(64)=804(64) 41, 064=$10392

(c) If B =$14, 880,then 960a 51, 360=14, 880 960a =66, 240 a =69. Atage69years,theannualbenefitis$14,880.

(d) Sincethefunctionispiecewisedefinedconsistingoflinearfunctions,theaveragerateof changeistheslopeofthelinearfunction.

Thentheaveragerateofchangeforages62-63 is600.

Theaveragerateofchangeforages64-66is 804.

Theaveragerateofchangeforages67-70is 960.

(e) Yes,theanswerstopart(d)aretheslopesof thethreelinesinthepiecewisefunctiondefiningthebenefitformula.

(f) Note, B(62)=$9000.Thenthetotalamount Bobexpectstowithdrawis

(67 0166(1 00308)62 62)$9000 ≈ $171, 800

(g) Note, B(70)=$15, 840.Thenthetotal amountBillexpectstowithdrawis

(67.0166(1.00308)70 70)$15, 840 ≈ $207, 700.

ForThought

1. False,itisareflectioninthey-axis.

2. True 3. False,ratheritisalefttranslation.

4. True 5. True

6. False,thedownshiftshouldcomeafterthe reflection. 7. True

8. False,sincetheirdomainsaredifferent.

9. True 10. True

2.3Exercises

1. rigid

2. nonrigid

3. parabola

4. translation

5. reflection

6. identity

7. linear

8. constant

9. odd

10. even

11. f (x)= |x|,g(x)= |x|− 4

19. f (x)= √x, g(x)= √x 2 4 x

20. f (x)= x,g(x)= x

43. y = 3|x 7| +9

44. y = 2(x +6) 8or y = 2x 20

45. y =(x 1)2 +2;rightby1,upby2, domain(−∞, ∞),range[2, ∞) 1 -2 x 2 11 y

46. y =(x +5)2 4;leftby5,downby4, domain(−∞, ∞),range[ 4, ∞)

49. y =3x 40, domainandrangeareboth(

50. y = 4x +200, domainandrangeareboth(

47. y = |x 1| +3;rightby1,upby3 domain(−∞, ∞),range[3, ∞) 1 3 x 3 5 y

48. y = |x +3|− 4;leftby3,downby4 domain(−∞, ∞),range[ 4, ∞)

51. y = 1 2 x 20, domainandrangeareboth(−∞, ∞)

52. y = 1 2 x +40, domainandrangeareboth(−∞, ∞)

53. y = 1 2 |x| +40,shrinkby1/2, reflectabout x-axis,upby40, domain(−∞, ∞),range(−∞, 40]

y

x

54. y =3|x|− 200,stretchby3,downby200, domain(−∞, ∞),range[ 200, ∞)

y

55. y = 1 2 |x +4|,leftby4, reflectabout x-axis,shrinkby1/2, domain(−∞, ∞),range(−∞, 0] -3 -5 1 x -1 -3 1 y

56. y =3|x 2|,rightby2,stretchby3, domain(−∞, ∞),range[0, ∞) 2 1 x

57. y = √x 3+1,rightby3, reflectabout x-axis,upby1, domain[3, ∞),range(−∞, 1] 3 12 x

58. y = √x +2 4,leftby2, reflectabout x-axis,downby4, domain[ 2, ∞),range(−∞, 4]

x -4 -6 y

59. y = 2√x +3+2,leftby3,stretchby2, reflectabout x-axis,upby2, domain[ 3, ∞),range(−∞, 2] 6

60. y = 1 2 √x +2+4,leftby2,shrinkby1/2, reflectabout x-axis,upby4, domain[ 2, ∞),range(−∞, 4] 2 -2 x 4 2 y

61. Symmetricabouty-axis,evenfunction since f ( x)= f (x)

62. Symmetricabouty-axis,evenfunction since f ( x)= f (x)

63. Nosymmetry,neitherevennorodd since f ( x) = f (x)and f ( x) = f (x)

64. Symmetricabouttheorigin,oddfunction since f ( x)= f (x)

65. Symmetricabout x = 3,neitherevennor oddsince f ( x) = f (x)and f ( x) = f (x)

66. Symmetricabout x =1,neitherevennorodd since f ( x) = f (x)and f ( x) = f (x)

67. Symmetryabout x =2,notanevenorodd functionsince f ( x) = f (x)and f ( x) = f (x)

68. Symmetricaboutthey-axis,evenfunction since f ( x)= f (x)

69. Symmetricabouttheorigin,oddfunction since f ( x)= f (x)

70. Symmetricabouttheorigin,oddfunction since f ( x)= f (x)

71. Nosymmetry,notanevenoroddfunction since f ( x) = f (x)and f ( x) = f (x)

72. Nosymmetry,notanevenoroddfunction since f ( x) = f (x)and f ( x) = f (x)

73. Nosymmetry,notanevenoroddfunction since f ( x) = f (x)and f ( x) = f (x)

74. Symmetricaboutthey-axis,evenfunction since f ( x)= f (x)

75. Symmetricaboutthey-axis,evenfunction since f ( x)= f (x)

76. Symmetricaboutthey-axis,evenfunction since f ( x)= f (x)

77. Nosymmetry,notanevenoroddfunction since f ( x)= f (x)and f ( x) = f (x)

78. Symmetricaboutthey-axis,evenfunction since f ( x)= f (x)

79. Symmetricaboutthey-axis,evenfunction since f ( x)= f (x)

80. Symmetricaboutthey-axis,evenfunction since f ( x)= f (x)

81. e 82. a 83. g 84. h

85. b 86. d 87. c 88. f

89. (−∞, 1] ∪ [1, ∞)

(−∞, 1) ∪ (5, ∞)

93. Usingthegraphof y =(x 1)2 9,wefind thatthesolutionis( 2, 4). -2 4 x -9 4 y

94. Graphof y = x 1 2 2 9 4 showssolution is(−∞, 1] ∪ [2, ∞) -1 2 x -2 4 y

95. Fromthegraphof y =5 √x,wefindthat thesolutionis[0, 25]. 25 x 5 y

96. Graphof y = √x +3 2showssolutionis [1, ∞)

97. Note,thepointsofintersectionof y =3and y =(x 2)2 are(2 ± √3, 3).Thesolutionset of(x 2)2 > 3is

101. Fromthegraphof y =

98. Thepointsofintersectionof y =4and y =(x 1)2 are( 1, 4)and(3, 4).The solutionsetof(x 1)2 < 4istheinterval ( 1, 3).

weobservethatthesolutionsetof √3x2 + πx 9 < 0is( 3.36, 1.55).

102. Fromthegraphof y = x3 5x2 +6x 1, 4 1 x 2 -1 y thesolutionsetof x3 5x2 +6x 1 > 0 is(0.20, 1.55) ∪ (3.25, ∞).

103.a. Stretchthegraphof f byafactorof2.

99. Fromthegraphof y = √25 x2,weconclude thatthesolutionis( 5, 5). -5 5 x -5 4 y

100. Graphof y = √4 x2 showssolutionis [ 2, 2]

b. Reflectthegraphof f aboutthe x-axis.

c. Translatethegraphof f totheleftby1unit.

g. Translatethegraphof f totherightby 1-unitandupby3-units.

d. Translatethegraphof f totherightby 3-units. 2 3 4

e. Stretchthegraphof f byafactorof3and reflectaboutthe x-axis.

h. Translatethegraphof f totherightby 2-units,stretchbyafactorof3,andup by1-unit.

104.a. Reflectthegraphof f aboutthe x-axis.

f. Translatethegraphof f totheleftby 2-unitsanddownby1-unit.

b. Stretchthegraphof f beafactorof2.

c. Stretchthegraphof f byafactorof3and reflectaboutthe x-axis.

g. Translatethegraphof f totheleftby4unitsandreflectaboutthe x-axis.

d. Translatethegraphof f totheleftby 2-units.

e. Translatethegraphof f totherightby 1-unit.

f. Translatethegraphof f totherightby2unitsandupby1-unit.

h. Translatethegraphof f totherightby3units,stretchbyafactorof2,andupby 1-unit.

105. N (x)= x +2000

106. N (x)=1 05x +3000.Yes,ifthemeritincreaseisfollowedbythecostoflivingraise thenthenewsalarybecomeshigherandis N (x)=1.05(x +3000)=1.05x +3150.

107. Ifinflationrateislessthan50%,then 1 √x< 1 2 . Thissimplifiesto 1 2 < √x. After squaringwehave 1 4 <x andso x> 25%

108. Ifproductionisatleast28windows, then1 75√x ≥ 28.Theyneedatleast x = 28 1.75 2 =256hrs.

109.

(a) Bothfunctionsareevenfunctionsand thegraphsareidentical

(b) Onegraphisareflectionoftheother aboutthe y-axis.Bothfunctionsareodd functions.

(c) Thesecondgraphisobtainedbyshifting thefirstonetotheleftby1unit.

If f (x)= x

(d) Thesecondgraphisobtainedbytranslatingthefirstonetotherightby2units and3unitsup.

112. Thegraphisalowersemicircleofradius6 withcenterattheorigin.Thenthedomainis [ 6, 6]andtherangeis[ 6, 0].

113. Note |x|≥ 2/3isequivalentto x ≥ 2/3or x ≤−2/3.Thenthesolutionsetis (−∞, 2/3] ∪ [2/3, ∞).

110. Thegraphof y = x3 +6x2 +12x+8orequivalently y =(x +2)3 canbeobtainedbyshifting thegraphof y = x3 totherightby2units.

ThinkingOutsidetheBoxXXIV

Note,if(x,x + h)issuchanorderedpairthenthe averageis x + h/2.Sincetheaverageisnotawhole number,then h =1.Thus,theorderedpairsare (4, 5),(49, 50),(499, 500),and(4999, 5000).

2.3PopQuiz

1. y = √x +8 2. y =(x 9)2

3. y =( x)3 or y = x3

4. Domain[1, ∞),range(−∞, 5]

5. y = 3(x 6)2 +4

6. Evenfunction

2.3LinkingConcepts

(a) Fromthegraphof y =16 96+9 8(17 67)1/3 20 85 1 25√S

weobtain S mustliein(0, 299 58].

(b) Fromthegraphof

3 y weconclude D mustliein[19.97, ∞).

(c) Givenaportionofthegraphof y =16.96+9.8(17.26)1/3 L 1.25√310.28

y

itfollowsthat L mustliein(0, 20.27].

(d) Thevariableswithnegativecoefficientshave maximumvalues.And,thevariable D (with apositivecoefficient)hasaminimumvalue.

ForThought

1. False,since f + g hasanemptydomain.

2. True 3. True 4. True

5. True,since A = P 2/16. 6. True

7. False,since(f ◦ g)(x)= √x 2 8. True

9. False,since(h ◦ g)(x)= x2 9

10. True,since x belongstothedomainif √x 2 isarealnumber,i.e.,if x ≥ 2.

2.4Exercises

1. sum

2. composition

3. 1+2=1 4. 6+0=6

5. 5 6= 11 6. 42 ( 9)=51

7. ( 4) 2= 8 8. ( 3) 0=0

9. 1/12 10. 12

11. (a 3)+(a2 a)= a2 3

12. (b 3) (b2 b)=2b 3 b2

13. (a 3)(a2 a)= a3 4a2 +3a

14. (b 3)/(b2 b)

15. f + g = {( 3, 1+2), (2, 0+6)} = {( 3, 3), (2, 6)},domain {−3, 2}

16. f + h = {(2, 0+4)} = {(2, 4)}, domain {2}

17. f g = {( 3, 1 2), (2, 0 6)} = {( 3, 1), (2, 6)},domain {−3, 2}

18. f h = {(2, 0 4)} = {(2, 4)}, domain {2}

19. f · g = {( 3, 1 · 2), (2, 0 · 6)= {( 3, 2), (2, 0)}, domain {−3, 2}

20. f h = {(2, 0 4)} = {(2, 0)},domain {2}

21. g/f = {( 3, 2/1)} = {( 3, 2)}, domain {−3}

22. f/g = {( 3, 1/2), (2, 0/6)= {( 3, 1/2), (2, 0)},domain {−3, 2}

23. (f + g)(x)= √x + x 4,domainis[0, ∞)

24. (f + h)(x)= √x + 1 x 2 , domainis[0, 2) ∪ (2, ∞)

25. (f h)(x)= √x 1 x 2 , domainis[0, 2) ∪ (2, ∞)

26. (h g)(x)= 1 x 2 x +4,domain is(−∞, 2) ∪ (2, ∞)

27. (g · h)(x)= x 4 x 2 ,domainis(−∞, 2) ∪ (2, ∞)

28. (f · h)(x)= √x x 2 ,domainis[0, 2) ∪ (2, ∞)

29. g f (x)= x 4 √x ,domainis(0, ∞)

30. f g (x)= √x x 4 ,domainis[0, 4) ∪ (4, ∞)

31. {( 3, 0), (1, 0), (4, 4)} 32. {( 3, 2), (0, 0)}

33. {(1, 4)} 34. {( 3, 0)}

35. {( 3, 4), (1, 4)} 36. {(2, 0)}

37. f (2)=5 38. g( 4)=17

39. f (2)=5 40. h( 22)= 7

41. f (20 2721)=59 8163

42. ≈ g( 2 95667) ≈ 9 742

43. (g ◦ h ◦ f )(2)=(g ◦ h)(5)= g(2)=5

44. (h ◦ f ◦ g)(3)=(h ◦ f )(10)= h(29)=10

45. (f ◦ g ◦ h)(2)=(f ◦ g)(1)= f (2)=5

46. (h ◦ g ◦ f )(0)=(h ◦ g)( 1)= h(2)=1

47. (f ◦ h)(a)= f a +1 3 = 3 a +1 3 1=(a +1) 1= a

48. (h ◦ f )(w)= h (3w 1)= (3w 1)+1 3 = 3w 3 = w

49. (f ◦ g)(t)= f t2 +1 = 3(t2 +1) 1=3t2 +2

50. (g ◦ f )(m)= g (3m 1)= (3m 1)2 +1=9m2 6m +2

51. (f ◦ g)(x)= √x 2,domain[0, ∞)

52. (g ◦ f )(x)= √x 2,domain[2, ∞)

53. (f ◦ h)(x)= 1 x 2,domain(−∞, 0) ∪ (0, ∞)

54. (h ◦ f )(x)= 1 x 2 ,domain(−∞, 2) ∪ (2, ∞)

55. (h ◦ g)(x)= 1 √x ,domain(0, ∞)

56. (g ◦ h)(x)= 1 x = 1 √x ,domain(0, ∞)

57. (f ◦ f )(x)=(x 2) 2= x 4, domain(−∞, ∞)

58. (g ◦ g)(x)= √x = 4 √x,domain[0, ∞)

59. (h ◦ g ◦ f )(x)= h(√x 2)= 1 √x 2 , domain(2, ∞)

60. (f ◦ g ◦ h)(x)= f 1 √x = 1 √x 2, domain(0, ∞)

61. (h ◦ f ◦ g)(x)= h (√x 2)= 1 √x 2 , domain(0, 4) ∪ (4, ∞)

62. (g ◦ h ◦ f )(x)= g 1 x 2 = 1 √x 2 , domain(2, ∞)

63. F = g ◦ h 64. G = g ◦ f

65. H = h ◦ g 66. M = f ◦ g

67. N = h ◦ g ◦ f 68. R = f ◦ g ◦ h

69. P = g ◦ f ◦ g 70. C = h ◦ g ◦ h

71. S = g ◦ g 72. T = h ◦ h

73. If g(x)= x3 and h(x)= x 2,then

(h ◦ g)(x)= g(x) 2= x 3 2= f (x).

74. If g(x)= x 2and h(x)= x3,then

(h ◦ g)(x)= g(x)3 =(x 2)3

75. If g(x)= x +5and h(x)= √x,then

(h ◦ g)(x)= g(x)= √x +5= f (x).

76. If g(x)= √x and h(x)= x +5,then

(h ◦ g)(x)= g(x)+5= √x +5= f (x)

77. If g(x)=3x 1and h(x)= √x,then

(h ◦ g)(x)= g(x)= √3x 1= f (x).

78. If g(x)= √x and h(x)=3x 1,then

(h ◦ g)(x)=3g(x) 1=3√x 1= f (x)

79. If g(x)= |x| and h(x)=4x +5,then

(h ◦ g)(x)=4g(x)+5=4|x| +5= f (x).

80. If g(x)=4x +5and h(x)= |x|,then

(h ◦ g)(x)= |g(x)| = |4x +5| = f (x)

81. y =2(3x +1) 3=6x 1

82. y = 4( 3x 2) 1=12x +7

83. y =(x2 +6x +9) 2= x2 +6x +7

84. y =3(x2 2x +1) 3=3x2 6x

85. y =3 · x +1 3 1= x +1 1= x

86. y =2 1 2 x 5 2 +5= x 5+5= x

87. Since m = n 4and y = m2 , y =(n 4)2 .

88. Since u = t +9and v = u 3 , v = t +9 3

89. Since w = x +16, z = √w,and y = z 8 , weobtain y = √x +16 8

90. Since a = b3 , c = a +25,and d = √c, wehave d = √b3 +25.

91. Aftermultiplying y by x +1 x +1 wehave y = x 1 x +1 +1 x 1 x +1 1 = (x 1)+(x +1) (x 1) (x +1) = x

Thedomainoftheoriginalfunctionis (−∞, 1) ∪ ( 1, ∞)whilethedomainof thesimplifiedfunctionis(−∞, ∞). Thetwofunctionsarenotthesame. -1 2 x -2 1 y

92. Aftermultiplying y by x 1 x 1 wehave y = 3x +1 x 1 +1 3x +1 x 1 3 = (3x +1)+(x 1) (3x +1) 3(x 1) = x

Thedomainoftheoriginalfunctionis (−∞, 1) ∪ (1, ∞)whilethedomainofthe simplifiedfunctionis(−∞, ∞). Thetwofunctionsarenotthesame.

93. Domain[ 1, ∞),range[ 7, ∞)

94. Domain[ 1, ∞),range[ 4, ∞)

97. Domain[0, ∞),range[4, ∞)

95. Domain[1, ∞),range[0, ∞)

98. Domain[ 64, ∞),range[0, ∞)

96. Domain[ 1, ∞),range[1, ∞)

99. P (x)=68x (40x +200)=28x 200. Since200/28 ≈ 7 1,theprofitispositivewhen thenumberoftrimmerssatisfies x ≥ 8.

100. P (x)=(3000x 20x2) (600x +4000)= 20x2 +2400x 4000.

101. A = d2/2 102. P =4√A

103. (f ◦f )(x)=0 899x and(f ◦f ◦f )(x)=0 852x aretheamountsofforestlandatthestartof 2002and2003,respectively.

104. (f ◦f )(x)=2(2x)=4x and(f ◦f ◦f )(x)=8x arethevaluesof x dollarsinvestedinbonds after24and36years,respectively.

105. Totalcostis(T ◦ C)(x)=1 05(1 20x)= 1 26x

106.a) Theslopeofthelinearfunctionis

3200 2200 30 20 =100

Using C(x) 2200=100(x 20),thecost beforetaxesis C(x)=100x +200.

b) T (x)=1 09x c) Totalcostof x palletswithtaxincludedis (T ◦ C)(x)=1.09(100x +200)= 109x +218.

107. Note, D = d/2240 x = d/2240 L3/1003 = 1003d 2240L3 = 1003(26000) 2240L3 = 1004(26) 224L3 = 1004(13) 112L3

Expressing D asafunctionof L,we

write D = (13)1004 112L3 or D = 1.16 × 107 L3

108. Note, S = 6500 (d/64)2/3 = 6500 d2/3/16 = 16(6500) d2/3 .

Expressing S asafunctionof d,we

obtain S = 16(6500) d2/3 or S =104, 000d 2/3

109. Theareaofasemicirclewithradius s/2is (1/2)π(s/2)2 = πs2/8.Theareaofthesquare is s2.Theareaofthewindowis W = s 2 + πs2 8 = (8+ π)s2 8 .

110. Theareaofthesquareis A = s2 andthearea ofthesemicircleis S = 1 2 π s 2 2

Then s2 = 8S π and A = 8S π

111. Formarighttrianglewithtwosidesoflength s andahypotenuseoflength d.Bythe PythagoreanTheorem,weobtain d2 = s 2 + s 2

Solvingfor s,wehave s = d√2 2 .

112. Constructanequilateraltrianglewherethe lengthofonesideis d/2andthealtitudeis p/2.BythePythagoreanTheorem, (p/2)2 +(d/4)2 =(d/2)2 .

Solvingfor p,weget p = √3 2 d.

113. Ifacoatisonsaleat25%offandthereis anadditional10%off,thenthecoatwillcost 0.90(.75x)=0.675x where x istheregular price.Thus,thediscountsaleis32.5%offand not35%off.

114. Additionandmultiplicationoffunctionsare commutative,i.e.,(f + g)(x)=(g + f )(x)and (f g)(x)=(g f )(x).Addition,multiplication, andcompositionoffunctionsareassociative, i.e.,

Q((f + g)+ h)(x)=(f +(g + h))(x), ((f g) h)(x)=(f (g h))(x), and ((f ◦ g) ◦ h)(x)=(f ◦ (g ◦ h))(x)

115. Thedifferencequotientis 1+ 3 x+h 1 3 x h = 3 x+h 3 x h = 3x 3x 3h xh(x + h) = 3 x(x + h) =

116. Fromthegraphbelow,weconcludethedomainis(−∞, ∞),therangeis( 1, ∞),and increasingon[1, ∞).

117. Since x 3 ≥ 0,thedomainis[3, ∞).Since 5√x 3hasrange(−∞, 0],therangeof f (x)= 5√x 3+2is(−∞, 2].

118. Bythesquarerootproperty,wefind (x 3)2 = 3 2 x 3= ± √6 2 x = 6 ± √6

119. Since5x> 1,thesolutionsetis( 1/5, ∞).

120. Since y = 1 3 x 7 9 ,theslopeis 1 3

ThinkingOutsidetheBox

XXV. 1 (0.7)(0.7)2(0.7)3(0.7)4 ≈ 0.97175or 97.2%

XXVI. Since20=3(3)+11(1)and1=3(4)+ 11( 1),allintegersatleast20canbeexpressedintheform3x +11y.

Note,therearenowholenumbers x and y that satisfy19=3x +11y.Thus,19isthelargest wholenumber N thatcannotbeexpressedin theform3x +11y.

2.4PopQuiz

1. A = πr2 = π(d/2)2 or A = πd2 4

2. (f + g)(3)=9+1=10

3. (f g)(4)=16 2=32

4. (f ◦ g)(5)= f (3)=9

5. {(4, 8+9)} = {(4, 17)}

6. Since(n ◦ m)(1)= n(3)=5,wefind {(1, 5)}.

7. Since(h + j)(x)= x2 + √x +2,thedomainis [ 2, ∞).

8. Since(h ◦ j)(x)= √x +2 2 ,thedomainis [ 2, ∞).

9. Since(j ◦ h)(x)= √x2 +2,thedomainis (−∞, ∞).

2.4LinkingConcepts

a) Let n bethenumberofbeadsinonefootand suppose n isalsothenumberofspaces.Since thesumofthediametersofthenotchesand thespacesis1foot,wehave1=(2n) d 12

Solvingfor n,weobtain n = 6 d

b) If c istheareainsquareinchesofacross sectionofabead,then c = 1 2 π d 2 2 = πd2 8

Thus, c = πd2 8 sqin.

c) Note,aparallelbeadisahalf-circularcylinder. Sincethelengthofabeadis12inchesandthe areaofacrosssectionofabeadisknown(as inpart(b)),thevolumeofabeadisgivenby v1 = c · 12= πd2 8 (12)= 3πd2 2 cubicinches.

d) Thevolume v2 ofglueon1ft2 offlooris v2 = v1 · n.Thus, v2 = v1 · n = 3πd2 2 · 6 d =9πd cubicinches.

e) Note,1ft3 =1728in3 and1gal= 1728 7.5 cubic inches.Let A bethenumberofsquareinches onegallonofgluewillcover.Then A = 1728 7.5 ÷ v2 = 1728 7.5 ÷ (9πd)

Hence, A = 25.6 πd squarefeet.

f) Forthesquarenotchwhosesideis d inchesin length,wefindthecorrespondingvaluesof n, c, v1, v2,and A asinparts(a)-(e).

i) n = 6 d

ii) c = d2 squareinches

iii) v1 = c · 12=12d2 cubicinches

iv) v2 = v1 · n =12d2 · 6 d =72d cubicinches

v) Asinparte),wehave A = 1728 7.5 ÷ v2 = 1728 7.5 ÷ (72d)

Thus, A = 3.2 d squarefeet.

ForThought

1. False,sincetheinversefunctionis {(3, 2), (5, 5)}.

2. False,sinceitisnotone-to-one.

3. False, g 1(x)doesnotexistsince g isnot one-to-one.

4. True

5. False,afunctionthatfailsthehorizontalline testhasnoinverse.

6. False,sinceitfailsthehorizontallinetest.

7. False,since f 1(x)= x 3 2 +2where x ≥ 0

8. False, f 1(x)doesnotexistsince f isnot one-to-one.

9. False,since y = |x| is V -shapedandthe horizontallinetestfails.

10. True

2.5Exercises

1. one-to-one

2. invertible

3. inverse

4. symmetric

5. Yes,sinceallsecondcoordinatesaredistinct.

6. Yes,sinceallsecondcoordinatesaredistinct.

7. No,sincetherearerepeatedsecondcoordinates suchas( 1, 1)and(1, 1).

8. No,sincetherearerepeatedsecondcoordinates asin(3, 2)and(5, 2).

9. No,sincetherearerepeatedsecondcoordinates suchas(1, 99)and(5, 99).

10. No,sincetherearerepeatedsecondcoordinatesasin( 1, 9)and(1, 9).

11. Notone-to-one 12. Notone-to-one

13. One-to-one 14. One-to-one

15. Notone-to-one 16. One-to-one

17. One-to-one;sincethegraphof y =2x 3shows y =2x 3isanincreasingfunction,the HorizontalLineTestimplies y =2x 3is one-to-one.

18. One-to-one;sincethegraphof y =4x 9shows y =4x 9isanincreasingfunction,the HorizontalLineTestimplies y =4x 9is one-to-one.

19. One-to-one;forif q(x1)= q(x2)then 1 x

x2 +5

4(x1 x2)=0 x1 x2 =0

Thus,if q(x1)= q(x2)then x1 = x2. Hence, q isone-to-one.

20. One-to-one;forif g(x1)= g(x2)then x1 +2 x1 3 = x2 +2 x2 3 (x1 +2)(x2 3)=(x2 +2)(x1 3) x1x2 3x1 +2x2 6=

5(x2 x1)=0 x2 x1 =0

Thus,if g(x1)= g(x2)then x1 = x2 Hence, g isone-to-one.

21. Notone-to-onefor p( 2)= p(0)=1.

22. Notone-to-onefor r(0)= r(2)=2.

23. Notone-to-onefor w(1)= w( 1)=4.

24. Notone-to-onefor v(1)= v( 1)=1.

25. One-to-one;forif k(x1)= k(x2)then 3 √x1 +9= 3 √x2 +9 ( 3 √x1 +9)3 =( 3 √x2 +9)3 x1 +9= x2 +9 x1 = x2.

Thus,if k(x1)= k(x2)then x1 = x2. Hence, k isone-to-one.

26. One-to-one;forif t(x1)= t(x2)then √x1 +3= √x2 +3 (√x1 +3)2 =(√x2 +3)2 x1 +3= x2 +3 x1 = x2.

Thus,if t(x1)= t(x2)then x1 = x2. Hence, t isone-to-one.

27. Invertible, {(3, 9), (2, 2)}

28. Invertible, {(5, 4), (6, 5)}

29. Notinvertible

30. Notinvertible

31. Invertible, {(3, 3), (2, 2), (4, 4), (7, 7)}

32. Invertible, {(1, 1), (4, 2), (16, 4), (49, 7)}

33. Notinvertible

34. Notinvertible

35. Notinvertible,therecanbetwodifferentitems withthesameprice.

36. Notinvertiblesincethenumberofyears(given asawholenumber)cannotdeterminethe numberofdayssinceyourbirth.

37. Invertible,sincetheplayingtimeisafunction ofthelengthoftheVCRtape.

38. Invertible,since1 6km ≈ 1mile

39. Invertible,assumingthatcostissimplyamultipleofthenumberofdays.Ifcostincludes extracharges,thenthefunctionmaynotbe invertible.

40. Invertible,sincetheinterestisuniquelydeterminedbythenumberofdays.

41. f 1 = {(1, 2), (5, 3)}, f 1(5)=3, (f 1 ◦ f )(2)=2

42. f 1 = {(5, 1), (0, 0), (6, 2)}, f 1(5)= 1, (f 1 ◦ f )(2)=2

43. f 1 = {( 3, 3), (5, 0), ( 7, 2)}, f 1(5)=0, (f 1 ◦ f )(2)=2

44. f 1 = {(5, 3.2), (1.99, 2)}, f 1(5)=3.2, (f 1 ◦ f )(2)=2

45. NotinvertiblesinceitfailstheHorizontalLine Test. -.02 -.01 -.03 x .000001 -.000001 y

46. NotinvertiblesinceitfailstheHorizontalLine Test. .4 .2 -.1 x .0005 -.0005 y

47. NotinvertiblesinceitfailstheHorizontalLine Test. 2 5 1 x -2 3 -4 y

48. NotinvertiblesinceitfailstheHorizontalLine Test.

50.a) f (x)istheoperationofdividing x by2. Reversingtheoperation,theinverseis

f 1(x)=2x

b) f (x)istheoperationofadding99to x. Reversingtheoperation,theinverseis

f 1(x)= x 99

c) f (x)isthecompositionofmultiplying x by 5,thenadding1.

Reversingtheoperations,theinverseis

f 1(x)=(x 1)/5

49.a) f (x)isthecompositionofmultiplying x by 5,thensubtracting1.

Reversingtheoperations,theinverseis

f 1(x)= x 1 5

b) f (x)isthecompositionofmultiplying x by 3,thensubtracting88.

Reversingtheoperations,theinverseis

f 1(x)= x +88 3

c) f 1(x)=(x +7)/3

d) f 1(x)= x 4 3

e) f 1(x)=2(x +9)=2x +18

f) f 1(x)= x

g) f (x)isthecompositionoftakingthecube rootof x,thensubtracting9.

Reversingtheoperations,theinverseis

f 1(x)=(x +9)3

h) f (x)isthecompositionofcubing x,multiplyingtheresultby3,thensubtracting 7.

Reversingtheoperations,theinverseis

f 1(x)= 3 x +7 3

i) f (x)isthecompositionofsubtracting1 from x,takingthecuberootoftheresult,thenadding5.

Reversingtheoperations,theinverseis

f 1(x)=(x 5)3 +1

j) f (x)isthecompositionofsubtracting7 from x,takingthecuberootoftheresult,thenmultiplyingby2.

Reversingtheoperations,theinverseis

f 1(x)= x 2 3 +7

d) f (x)isthecompositionofmultiplying x by 2,thenadding5.

Reversingtheoperations,theinverseis

f 1(x)= x 5 2

e) f (x)isthecompositionofdividing x by3, thenadding6.Reversingtheoperations, theinverseis

f 1(x)=3(x 6)=3x 18

f) f (x)istheoperationoftakingthemultiplicativeinverseof x.Sincetakingthe multiplicativeinversetwicereturnstothe originalnumber,theinverseistakingthe multiplicativeinverse,i.e., f 1(x)=1/x

g) f (x)isthecompositionofsubtracting9 from x,thentakingthecuberootofthe result.Reversingtheoperations,theinverseis f 1(x)= x3 +9.

h) f (x)isthecompositionofcubing x,multiplyingtheresultby 1,thenadding4. Reversingtheoperations,theinverseis f 1(x)= 3 (x 4)= 3 √4 x.

i) f (x)isthecompositionofadding4to x, takingthecuberootoftheresult,then multiplyingby3.Reversingtheoperations,theinverseis f 1(x)= x 3 3 4

j) f (x)isthecompositionofadding3to x, takingthecuberootoftheresult,then subtracting9.

Reversingtheoperations,theinverseis f 1(x)=(x +9)3 3.

51. No,sincetheyfailtheHorizontalLineTest.

52. Yes,sincetheyaresymmetricaboutthe line y = x.

53. Yes,sincethegraphsaresymmetricabout theline y = x.

54. Nosince f (x)= x2 failstheHorizontal LineTest.

55. Graphof f 1

Graphof

63. f 1(x)= 3 √x 1 2 x 1 y

64. f 1(x)= 3 √x 2 -2 x -2 2 y

65. f 1(x)=(x +3)2 for x ≥−3

4 -3 x -3 4 y

66. f 1(x)= x2 +3for x ≥ 0

9 3 x 3 9 y

67. Interchange x and y thensolvefor y.

x =3y 7

x +7 3 = y x +7 3 = f 1(x)

68. Interchange x and y thensolvefor y

x = 2y +5

2y =5 x

f 1(x)= 5 x 2

69. Interchange x and y thensolvefor y.

x =2+ y 3for x ≥ 2

(x 2)2 = y 3for x ≥ 2

f 1(x)=(x 2)2 +3for x ≥ 2

70. Interchange x and y thensolvefor y

x = 3y 1for x ≥ 0 x 2 +1=3y for x ≥ 0

f 1(x)= x2 +1 3 for x ≥ 0

71. Interchange x and y thensolvefor y. x = y 9 y = x 9

f 1(x)= x 9

72. Interchange x and y thensolvefor y. x = y +3 y = x +3

f 1(x)= x +3

73. Interchange x and y thensolvefor y. x = y +3 y 5

xy 5x = y +3

xy y =5x +3

y(x 1)=5x +3

f 1(x)= 5x +3 x 1

74. Interchange x and y thensolvefor y

x = 2y 1 y 6

xy 6x =2y 1

xy 2y =6x 1

y(x 2)=6x 1

f 1(x)= 6x 1 x 2

75. Interchange x and y thensolvefor y. x = 1 y xy = 1 f 1(x)= 1 x

76. Clearly f 1(x)= x

77. Interchange x and y thensolvefor y.

x = 3 y 9+5 x 5= 3 y 9 (x 5)3 = y 9

f 1(x)=(x 5)3 +9

78. Interchange x and y thensolvefor y x = 3 y 2 +5 x 5= 3 y 2 (x 5)3 = y 2

f 1(x)=2(x 5)3

79. Interchange x and y thensolvefor y. x =(y 2)2 x ≥ 0 √x = y 2

f 1(x)= √x +2

80. Interchange x and y thensolvefor y x = y 2 x ≥ 0 √x = y sincedomain of f is(−∞, 0] f 1(x)= √xx ≥ 0

81. Note,(g ◦ f )(x)=0.25(4x +4) 1= x and (f ◦ g)(x)=4(0.25x 1)+4= x.

Yes, g and f areinversefunctionsofeach other.

82. Note,(g ◦ f )(x)= 0 2(20 5x)+4= x and (f ◦ g)(x)=20 5( 0.2x +4)= x.

Yes, g and f areinversefunctionsofeach other.

83. Since(f ◦ g)(x)= √x 1 2 +1= x and and(g ◦ f )(x)= √x2 +1 1= √x2 = |x|, g and f arenotinversefunctionsofeachother.

84. Since(f ◦ g)(x)= 4 √x4 = |x| and and(g ◦ f )(x)=( 4 √x)4 = x, g and f arenotinversefunctionsofeachother.

85. Wefind

(f ◦ g)(x)= 1 1/(x 3) +3 = x 3+3

(f ◦ g)(x)= x and (g ◦ f )(x)= 1 1 x +3 3 = 1 1/x

(g ◦ f )(x)= x.

Then g and f areinversefunctionsofeach other.

86. Weobtain

(f ◦ g)(x)=4 1 1/(4 x) =4 (4 x)

(f ◦ g)(x)= x and (g ◦ f )(x)= 1 4 4 1 x = 1 1/x

(g ◦ f )(x)= x

Thus, g and f areinversefunctionsofeach other.

87. Weobtain

(f ◦ g)(x)= 3 5x3 +2 2 5

= 3 5x3 5 = 3 √x3

(f ◦ g)(x)= x and (g ◦ f )(x)=5 3 x 2 5 3 +2 =5 x 2 5 +2 =(x 2)+2

(g ◦ f )(x)= x.

Thus, g and f areinversefunctionsofeach other.

88. Wenote (f ◦ g)(x)= 3 √x +3 3 27 = x and (g ◦ f )(x)= 3 x3 27+3 = x.

Then g and f arenotinversefunctionsofeach other.

89. y1 and y2 areinversefunctionsofeachother and y3 = y2 ◦ y1. -4 4 x -4 -2 y

90. y1 and y2 areinversefunctionsofeachother and y3 = y1 ◦ y2 -4 4 x -4 -2 y

91. C =1 08P expressesthetotalcostasa functionofthepurchaseprice;and P = C/1.08isthepurchasepriceasafunction ofthetotalcost.

92. V (x)= x3,S(x)= 3 √x

93. Thegraphof t asafunctionof r satisfiesthe HorizontalLineTestandisinvertible.Solving for r wefind, t 7 89= 0 39r r = t 7 89 0 39 andtheinversefunctionis r = 7.89 t 0 39 . If t =5 55min.,then r =

=6 rowers.

94. Solvingfor F ,weobtain F 32= 9C 5 F = 9C 5 +32

andtheinversefunctionis F = 9C 5 +32;a formulathatcanconvertCelsiustemperature toFahrenheittemperature.

95. Solvingfor w,weobtain 1.496w = V 2 w

andtheinversefunctionis w =

.If V =115ft./sec.,then w =

96. r = 5.625 × 10 5 V 500 where 0 ≤ V ≤ 0.028125

97.a) Let V =$28, 000.Thedepreciationrateis r =1 28, 000 50, 000 1/5 ≈ 0 109 or r ≈ 10.9%.

b) Writing V asafunctionof r wefind 1 r = V 50, 000 1/5 (1 r)5 = V 50, 000 and V =50, 000(1 r)5

98. Let P =80, 558.Then r = 22, 402 10, 000 1/10 1 ≈ 0 0839

Theaverageannualgrowthrateis r ≈ 8 4%.

Solvingfor P ,weobtain

1+ r = P 10, 000 1/10

(1+ r)10 = P 10, 000 and P =10, 000(1+ r)10

99. Since g 1(x)= x +5 3 and f 1(x)= x 1 2 , wehave g 1 ◦ f 1(x)= x 1 2 +5 3 = x +9 6

Likewise,since(f ◦ g)(x)=6x 9,weget (f ◦ g) 1(x)= x +9 6

Hence,(f ◦ g) 1 = g 1 ◦ f 1

100. Since f ◦ g ◦ g 1 ◦ f 1 (x)= f ◦ (g ◦ g 1) (f 1(x))= f (f 1(x))= x and therangeofonefunctionisthedomainof theotherfunction,wehave (f ◦ g) 1 = g 1 ◦ f 1 .

101. Onecaneasilyseethattheslopeoftheline joining(a,b)to(b,a)is 1,andthattheirmidpointis a + b 2 , a + b 2 Thismidpointlieson theline y = x whoseslopeis1. Then y = x is theperpendicularbisectorofthelinesegment joiningthepoints(a,b)and(b,a)

102. Itisdifficulttofindtheinversementallysince thetwosteps x 3and x+2aredoneseparately andsimultaneously.

103. Dividingweget x 3 x +2 =1 5 x +2

104. f 1(x)= x 1 5 1 2or f 1(x)= 5 1 x 2

105. (f ◦ g)(2)= f (g(2))= f (1)= 2+3 5 =1 (f g)(2)= f (2)g(2))= 7 5 1= 7 5

106. y = 2√x 5

107. Observe,thegraphof f (x)= √9 x2 isa lowersemicircleofradius3centeredat(0, 0). Thendomainis[ 3, 3],therangeis[ 3, 0], andincreasingon[0, 3]

108. No,twoorderedpairshavethesamefirstcoordinates.

109. 0 75+0 80=0 225x 0 125x 1 55=0 1x 15.5= x

Thesolutionsetis {15.5}.

110. Theslopeoftheperpendicularlineis 1/2. Using y = mx + b andthepoint(2, 4),wefind 4= 1 2 (2)+ b 4= 1+ b 5= b

Theperpendicularlineis y = 1 2 x +5.

Since640, 000=210 54,wehaveeither x =210 and y =54,or x =54 and y =210.Ineithercase, |x y| =399.

2.5PopQuiz

1. No,sincethesecondcoordinateisrepeatedin (1, 3)and(2, 3).

2. 2,sincetheorderpair(5, 2)belongto f 1 .

3. Since f 1(x)= x/2, f 1(8)=8/2=4.

4. No,since f (1)=1= f ( 1)orthesecondcoordinateisrepeatedin(1, 1)and(1, 1).

5. f 1(x)= x +1 2

6. Interchange x and y thensolvefor y x = 3 y +1 4 x +4= 3 y +1 (x +4)3 = y +1 (x +4)3 1= y Theinverseis g 1(x)=(x +4)3 1.

7. (h ◦ j)(x)= h( 3 √x +5) = 3 √x +5 3 5 =(x +5) 5 (h ◦ j)(x)= x

2.5LinkingConcepts

a) r =365 A P 1/n 1

b) Forthefirstloan, r =365 229 200 1/30 1 ≈ 1 651

or r ≈ 165 1%annually.

Forthesecondloan,

r =365 339 300 1/30 1 ≈ 1.49 or r ≈ 149%annually.

Forthethirdloan,

r =365 449 400 1/30 1 ≈ 1 409

or r ≈ 140.9%annually.

c) Ifoneborrowed$200atanannualrateof r =165.1%compoundeddaily,thenafterone yearonewillhavetopayback 200 1+ 1.651 365 365 =$1, 038 56

e) Itchargeshighratesbecauseofhighrisks.

ForThought

1. False

2. False,sincecostvariesdirectlywiththenumber ofpoundspurchased.

3. True 4. True

5. True,sincetheareaofacirclevariesdirectly withthesquareofitsradius.

6. False,since y = k/x isundefinedwhen x =0

7. True 8. True 9. True

10. False,thesurfaceareaisnotequalto (SurfaceArea)= k length width height forsomeconstant k

2.6Exercises

1. variesdirectly

2. variation

3. variesinversely

4. variesjointlly

5. G = kn 6. T = kP 7. V = k/P 8. m1 = k/m2 9. C = khr 10. V = khr2

11. Y = kx √z 12. W = krt/v

13. Avariesdirectlyasthesquareofr

14. CvariesdirectlyasD

15. y variesinverselyas x 16. m1 variesinverselyas m2

17. Notavariationexpression

18. Notavariationexpression

19. a variesjointlyas z and w

20. V variesjointlyas L,W ,and H

21. H variesdirectlyasthesquarerootof t and inverselyas s

22. B variesdirectlyasthesquareof y and inverselyasthesquarerootof x

23. D variesjointlyas L and J andinverselyas W

24. E variesjointlyas m andthesquareof c.

25. Since y = kx and5= k 9, k =5/9. Then y =5x/9.

26. Since h = kz and210= k 200, k =21/20. So h =21z/20.

27. Since T = k/y and 30= k/5, k = 150 Thus, T = 150/y

28. Since H = k/n and9= k/( 6), k = 54 So H = 54/n

29. Since m = kt2 and54= k · 18, k =3 Thus, m =3t2

30. Since p = k 3 √w and 3 √2 2 = k 3 √4,we get k = 3 √2

31. Since y = kx/√z and2.192= k(2.4)/√2.25, weobtain k =1.37.Hence, y =1.37x/√z.

32. Since n = kx√b and 18.954= k( 1 35)√15 21,wefind k =3 6. So n =3 6x√b

33. Since y = kx and9= k(2),weobtain y = 9 2 · ( 3)= 27/2.

34. Since y = kz and6= k√12,weobtain y = 3 √3 √75=15

35. Since P = k/w and2/3= k 1/4 ,wefind k = 2 3 ·· 1 4 = 1 6 .Thus, P = 1/6 1/6 =1.

36. Since H = k/q and0 03= k 0.01 ,weget P = 0.0003 0.05 =0 006

37. Since A = kLW and30= k(3)(5√2), weobtain A = √2(2√3) 1 2 = √6.

38. Since J = kGV and √3= k√2√8,we

find J = √3 4 √6 · 8=2√18=6√2.

39. Since y = ku/v2 and7= k 9/36, wefind y =28 · 4/64=7/4.

40. Since q = k√h/j3 and18= k√9/8, weget q =48 4 1/8 =1536

41. Let Li and Lf bethelengthininchesandfeet, respectively.Then Li =12Lf isadirectvariation.

42. Let Ts and Tm bethetimeinsecondsandminutes,respectively.Then Ts =60Tm isadirect variation.

43. Let P and n bethecostperpersonandthe numberofpersons,respectively.Then P =20/n isaninversevariation.

44. Let n and w bethenumberofrodsandthe weightofarod,respectively.

Then n = 40, 000 w isaninversevariation.

45. Let Sm and Sk bethespeedsofthecarinmph andkph,respectively.Then Sm ≈ Sk/1.6 ≈ 0 6Sk isadirectvariation.

46. Let Wp and Wk betheweightinpoundsand kilograms,respectively.Then Wp =2.2Wk is adirectvariation.

47. Notavariation 48. Notavariation

49. Let A and W betheareaandwidth,respectively.Then A =30W isadirectvariation.

50. Let A and b betheareaandbase,respectively. Then A = 1 2 10b =5b isadirectvariation.

51. Let n and p bethenumberofgallonsandprice pergallon,respectively.Since np =5,we obtainthat n = 5 p isaninversevariation.

52. Let L and W bethelengthandwidth,respectively.Then L =40/W isaninversevariation.

53. If p isthepressureatdepth d,then p = kd. Since4.34= k(10), k =0.434.At d =6000ft, thepressureis p =0.434(6000)=2604lbper squareinch.

54. Solvingforthedepth d in2170=0.434d, wefind d = 2170 0.434 =5000feet.

55. If h isthenumberofhours, p isthenumberof pounds,and w isthenumberofworkersthen h = kp/w.Since8= k(3000)/6, k =0 016. Fiveworkerscanprocess4000poundsin h =(0 016)(4000)/5=12 8hours.

56. Since V = k√A and154= k√16000,wefind k ≈ 1 21747.Theviewfrom36000feet is V =(1 21747)√36000 ≈ 231miles.

57. Since I = kPt and20 80= k(4000)(16),we find k =0 000325.Theinterestfromadeposit of$6500for24daysis

I =(0 000325)(6500)(24) ≈ $50 70

58. Since d = kt2 and16= k(12), k =16.Thus, after2secondsthecabfalls d =(16)4=64 feet.

59. Since C = kDL and18 60= k(6)(20),we obtain k =0 155.Thecostofa16ftpipe withadiameterof8inchesis

C =0 155(8)(16)=$19 84

60. Since C = kDL and36.60= k(0.5)(20),we find k =3.66.Thecostofa100ftcopper tubingwitha 3 4 -inchdiameteris

C =3.66(0.75)(100)=$274.50.

61. Since w = khd2 and14 5= k(4)(62),wefind k = 14 5 144 .Thena5-inchhighcanwitha diameterof6incheshasweight w = 14 5 144 (5)(62)=18.125oz.

62. Since V = kt/w and10= k(80)/600,weget k =75.At90oFand800poundsthevolume is V =75(90)/(800) ≈ 8.4375cubicinches.

63. Since V = kh/l and10= k(50)/(200),weget k =40.Thevelocity,iftheheadis60ftand thelengthis300ft,is V =(40)(60)/(300)=8 ft/year.

64. Since V = kiA and3= k(0.3)(10), k =1. Ifthehydraulicgradientis0.4andthe dischargeis5gallonsperminutethen 5=(1)(0.4)A.Thecross-sectionalareais A =12.5ft2 .

65. No,itisnotdirectlyproportionalotherwise thefollowingratios 42, 506 1.34 ≈ 31, 720, 59, 085 0.295 ≈ 200, 288,and 738, 781 0 958 ≈ 771, 170wouldbeall thesamebuttheyarenot.

66. Let r = knw c .Tofind k,wesolve

54= k(50)(27) 25

Weobtain k =1andconsequently r = nw c If n =40, c =13,and w =26,thenthe gearratiois r = 40(26) 13 =80. If n =45, w =27,and r =67 5,thenby solving67 5= 45(27) c oneobtains c =18.

67. Since g = ks/p and76= k(12)/(10), k = 190 3 . IfCalvinstudiesfor9hoursandplaysfor 15hours,thenhisscoreis

g = 190 3 · s p = 190 3 · 9 15 =38

68. Since c = klw and263 40= k(12)(9),weget k = 263.4 108 .Acarpetwhichis12ftwideand thatcosts$482.90(i.e.482.90= 263.4 108 12 l) haslength l =16 5ft.

69. Since h = kv2 and16= k(32)2,weget k = 1 64 . Toreachaheightof20 2 5 ,thevelocity v mustsatisfy

20+ 2 5 12 = 1 64 v 2 .

Solvingfor v,wefind v ≈ 35.96ft/sec.

73. Interchange x and y thensolvefor y. x = 3 y 9+1 (x 1)3 = y 9 (x 1)3 +9= y f 1(x)=(x 1)3 +9

74. If s isthesideofthesquare,thenthediagonal is d = √2s bythePythagoreanTheorem.If A istheareaofthesquare,then A = s2.Since s = √A,weobtain d = √2s = √2√A or d = √2A

75. Let x betheaveragespeedintherain.Then 3x +5(x +5)=425

Solvingfor x,wefind x =50mph.

76. Since f ( x)= f (x),thegraphissymmetric abouttheorigin.

77. Theslopeofthelineis1/2.Using y = mx + b andthepoint( 4, 2),wefind

2= 1 2 ( 4)+ b 2= 2+ b 4= b

Thelineisgivenby y = 1 2 x +4,or2y = x +8. Astandardformis x 2y = 8.

78. Since 6 < 3x 9 < 6,weobtain

3 < 3x< 15.

Thesolutionsetis(1, 5).

ThinkingOutsidetheBoxXXVIII

Let d bethedistanceSharonwalks.Since2minutesisthedifferenceinthetimesofarrivalat4mph and5mph,weobtain d 4 d 5 = 2 60

Thesolutionoftheaboveequationis d =2/3mile. Since d/4=(2/3)/4=10/60,Sharonmustwalk toschoolin9minutestoarriveontime.Thus, Sharon’sspeedinordertoarriveontimeis r = d t = 2/3 9/60 = 40 9 mph.

2.6PopQuiz

1. Since4= k 20,theconstantofvariationis k =4/20=1/5.

2. a = k/b =10/2=5

3. Since C = kr2 and108= k 32,wefind k =12. Then C =12 42 =$192.

4. Since C = kLW and180= k(6)(2),weobtain k =15.Then C =15(5)(4)=$300.

2.6LinkingConcepts

a) m = kd3 p2 where m isthemassoftheplanet,

d isthemeandistancebetweenthesatellite andtheplanet, p isperiodofrevolutionofthe satellite,and k istheproportionconstant.

b) Solving5.976 × 1024 = k(384 4 × 103)3 27 3222 for k,

wefind k ≈ 7 8539 × 1010 ≈ 7 85 × 1010

c) ThemassofMarsis

7.8539 × 1010(9330)3 (7 65/24)2 ≈ 6 278 × 1023 kg

d) AnapproximateratioofEarth’smassto Mars’massis 5.976 × 1024 6 278 × 1023 ≈ 10 ortheratioisapproximately10to1.

e) Solvingfor d,weobtain (7 8539 × 1010)d3 (42.47/24)2 =1 921 ×

7 8539 × 10

d ≈ 424, 678km d ≈ 4.247 × 105 km.

ReviewExercises

1. Function,domainandrangeareboth {−2, 0, 1}

x -2 1 y

2. Notafunction,domainis {0, 1, 2},rangeis {±1, ±3}

3. y =3 x isafunction,domainandrange areboth(

,

4. 2x + y =5isafunction,domainandrange areboth(−∞, ∞)

5. Notafunction,domainis {2},rangeis(−∞, ∞) 3 1 x 3 -3 y

6. Function,domainis(−∞, ∞),rangeis {3},

7. x2 + y2 =0.01isnotafunction,domain andrangeareboth[ 0.1, 0.1] -0.2 0.2 x 0.2 -0.2 y

8. (x 1)2 +(y +2)2 =5isnotafunction,domain is[1 √5, 1+ √5],rangeis[ 2 √5, 2+ √5]

12. x = √y isafunction,domainandrange areboth[0, ∞)

9. x = y2 +1isnotafunction,domainis[1, ∞), rangeis(−∞, ∞) 1 5 x 2 -2 y

10. y = |x 2| isafunction,domainis(−∞, ∞), rangeis[0, ∞) 2 6 x 2 4 y

11. y = √x 3isafunction,domainis[0, ∞), rangeis[ 3, ∞) 1 9 x -3 2 y

13. 9+3=12 14. 6 7= 1 15. 24 7=17 16. 1+3=4 17. If x2 +3=19,then x2 =16or x = ±4.

18. If2x 7=9,then2x =16or x =8.

19. g(12)=17 20. f ( 1)=4

21. 7+( 3)=4 22. 7 ( 11)=18

23. (4)( 9)= 36 24. 19

25. f ( 3)=12 26. g(7)=7

27. f (g(x))= f (2x 7) =(2x 7)2 +3 =4x 2 28x +52

28. g(f (x))= g(x 2 +3) =2(x 2 +3) 7 =2x 2 1

29. (x2 +3)2 +3= x4 +6x2 +12

30. 2(2x 7) 7=4x 21

31. (a +1)2 +3= a2 +2a +4

32. 2(a +2) 7=2a 3

33. f (3+ h) f (3) h = (9+6h + h2)+3 12 h = 6h + h2 h =6+ h

34. g(5+ h) g(5) h = 2(5+ h) 7 3 h = 2h h =2

35. f (x + h) f (x) h = (x2 +2xh + h2)+3 x2 3 h = 2xh + h2 h = 2x + h =

36. g(x + h) g(x) h = 2(x + h) 7 2x +7 h = 2h h =2

37. g x +7 2 =(x +7) 7= x

38. f √x 3 =(x 3)+3= x

39. g 1(x)= x +7 2

40. Fromnumber39, g 1( 3)= 3+7 2 =2

41. f (x)= √x,g(x)=2√x +3;leftby3, stretchby2 -3 6 x 1 6 y

42. f (x)= √x,g(x)= 2√x +3;stretchby2, reflectabout x-axis,upby3 1 8 x 1 3 y

43. f (x)= |x|,g(x)= 2|x +2| +4;leftby2, stretchby2,reflectabout x-axis,upby4 -2 4 x -2 4 y

44. f (x)= |x|,g(x)= 1 2 |x 1|− 3;rightby1, stretchby 1 2 ,downby3 1 2 x -3 2 y

45. f (x)= x2,g(x)= 1 2 (x 2)2 +1;rightby2, stretchby 1 2 ,upby1 1 2 x 1 3 y

46. f (x)= x2,g(x)= 2x2 +4;stretchby2, reflectabout x-axis,upby4 1 2 x -4 4 y

47. (f ◦ g)(x)= √x 4,domain[0, ∞)

48. (f ◦ g)(x)= √x 4,domain[4, ∞)

49. (f ◦ h)(x)= x2 4,domain(−∞, ∞)

50. (h ◦ f )(x)=(x 4)2 = x2 8x +16,domain (−∞, ∞)

51. (g ◦ f ◦ h)(x)= g(x2 4)= √x2 4. Tofindthedomain,solve x2 4 ≥ 0.Then thedomainis[2, ∞) ∪ (−∞, 2]

52. (h ◦ f ◦ g)(x)= h(√x 4)=(√x 4)2 . Then(h◦f ◦g)(x)= x 8√x+16.Thedomain is[0, ∞).

53. Translatethegraphof f totherightby2units,stretchbyafactorof2,shiftupby1unit.

55. Translatethegraphof f totheleftby1-unit, reflectaboutthe x-axis,shiftdownby3-units.

56. Translatethegraphof f totherightby1-unit, reflectaboutthe x-axis,shiftupby2-units.

57. Translatethegraphof f totheleftby2-units, stretchbyafactorof2,reflectaboutthe xaxis.

54. Translatethegraphof f totheleftby3-units, stretchbyafactorof2,shiftdownby1-unit.

58. Stretchthegraphof f byafactorof3,reflect aboutthe x-axis,shiftupby1-unit.

59. Stretchthegraphof f byafactorof2,reflect aboutthe x-axis,shiftupby3-units.

1 2 1 2 3 3 x 4 5 3 y

60. Translatethegraphof f totherightby1-unit, stretchbyafactorof4,shiftupby3-units.

1 2 3 x 3 5 7 y

61. F = f ◦ g 62. G = g ◦ f

63. H = f ◦ h ◦ g ◦ j 64. M = j ◦ h ◦ g

65. N = h ◦ f ◦ j or N = h ◦ j ◦ f

66. P = g ◦ g ◦ g ◦ g ◦ j

67. R = g ◦ h ◦ j 68. Q = j ◦ g

69. f (x + h) f (x) h = 5(x + h)+9+5x 9 h = 5h h = 5

70. f (x + h) f (x) h = = √x + h 7 √x 7 h √x + h 7+ √x 7 √x + h 7+ √x 7 = (x + h 7) (x 7) h √x + h 7+ √x 7 = 1 √x + h 7+ √x 7

71. f (x + h) f (x) h = = 1 2x +2h 1 2x h · (2x +2h)(2x) (2x +2h)(2x) = (2x) (2x +2h) h(2x +2h)(2x) = 2 (2x +2h)(2x) = 1 (x + h)(2x)

72. f (x + h) f (x) h = = 5(x2 +2xh + h2)+(x + h)+5x2 x h = 10xh 5h2 + h h = 10x 5h +1

73. Domainis[ 10, 10],rangeis[0, 10], increasingon[ 10, 0],decreasingon[0, 10] -10 10 x -10 12 y

74. Domainis[ √7, √7],rangeis[ √7, 0], increasingon[0, √7],decreasingon[ √7, 0] -5 5 x -3 -2 y

75. Domainandrangeareboth(−∞, ∞), increasingon(−∞, ∞) -1 1 x 1 -1 y

76. Domain(−∞, 4],range[0, ∞), increasingon[0, 4],decreasingon(−∞, 0] -2 3 x 3 4 y

77. Domainis(−∞, ∞),rangeis[ 2, ∞), increasingon[ 2, 0]and[2, ∞), decreasingon(−∞, 2]and[0, 2] -2 2 x -2 4 y

78. Domainis(−∞, ∞),rangeis[ 1, ∞), increasingon[1, ∞),decreasingon(−∞, 1], constanton[ 1, 1]

-2 2 x -2 4 y

79. y = |x|− 3,domainis(−∞, ∞), rangeis[ 3, ∞)

80. y = |x 3|− 1,domainis(−∞, ∞), rangeis[ 1, ∞)

81. y = 2|x| +4,domainis(−∞, ∞), rangeis(−∞, 4]

82. y = 1 2 |x| +2,domainis(−∞, ∞), rangeis(−∞, 2]

83. y = |x +2| +1,domainis(−∞, ∞), rangeis[1, ∞)

84. y = −|x +1|− 2,domain(−∞, ∞), range(−∞, 2]

85. Symmetry: y-axis 86. Symmetry: y-axis

87. Symmetricabouttheorigin

88. Symmetricabouttheorigin

89. Neithersymmetry 90. Neithersymmetry

91. Symmetricaboutthe y-axis

92. Symmetricaboutthe y-axis

93. Fromthegraphof y = |x 3|− 1,thesolution setis(−∞, 2] ∪ [4, ∞) 3 6 x 2 -1 y

94. Nosolutionsinceanabsolutevalueis nonnegative

95. Fromthegraphof y = 2x2 +4,thesolution setis( √2, √2)

4 y

x

96. Fromthegraphof y = 1 2 x 2 +2,thesolution setis(−∞, 2] ∪ [2, ∞)

100. Inversefunctions, f (x)=(x 2)3,g(x)= 3 √x +2

101. Inversefunctions, f (x)=2x 4,g(x)= 1 2 x +2

97. Nosolutionsince √x +1 2 ≤−2

3 x -2 1 y

98. Fromthegraphof y = √x 3,thesolutionset is[0, 9)

102. Inversefunctions, f (x)= 1 2 x +4,g(x)= 2x +8

99. Inversefunctions,

103. Notinvertible,sincetherearetwosecond componentsthatarethesame.

104. f 1 = {(1/3, 2), (1/4, 3), (1/5, 4)} with domain {1/3, 1/4, 1/5} and range {−2, 3, 4}

105. Inverseis f 1(x)= x +21 3 with domainandrangeboth(−∞, ∞)

106. Notinvertible 107. Notinvertible

108. Inverseis f 1(x)=7 x with domainandrangeboth(−∞, ∞)

109. Inverseis f 1(x)= x2 +9for x ≥ 0 withdomain[0, ∞)andrange[9, ∞)

110. Inverseis f 1(x)=(x +9)2 for x ≥−9 withdomain[ 9, ∞)andrange[0, ∞)

111. Inverseis f 1(x)= 5x +7 1 x with domain(−∞, 1) ∪ (1, ∞),and range(−∞, 5) ∪ ( 5, ∞)

112. Inverseis f 1(x)= 5x +3 x +2 domain(−∞, 2) ∪ ( 2, ∞),and range(−∞, 5) ∪ (5, ∞)

113. Inverseis f 1(x)= √x 1with domain[1, ∞)andrange(−∞, 0]

114. Inverseis f 1(x)= 4 √x 3for x ≥ 81 withdomain[81, ∞),range[0, ∞)

115. Let x bethenumberofroses.Thecost functionis C(x)=1.20x +40,therevenue functionis R(x)=2x,andtheprofitfunction is P (x)= R(x) C(x)or P (x)=0.80x 40.

Since P (50)=0,tomakeaprofitshemust sellatleast51roses.

116.a) Since V = πr2h and V =1,weobtain h = 1 πr2

b) Since V = πr2h and V =1,weget 1 πh = r 2 or r = 1 √πh .

c) Fromparta),wehave h = 1 πr2 .

Since S =2πr2 +2πrh,weobtain S =2πr 2 +2πr 1 πr2

S =2πr 2 + 2 r

117. Since h(0)=64and h(2)=0,therangeof h = 16t2 +64istheinterval[0, 64]. Thenthedomainoftheinversefunctionis [0, 64].Solvingfor t,weobtain

16t2 =64 h

t2 = 64 h 16 t = √64 h 4

Theinversefunctionis t = √64 h 4

118. Solvingfor S in T =1.05S,we obtain S = T 1 05 .

119. Since A = π d 2 2 , d =2 A π

120. If A istheareaofthesquare,thenthelength ofonesideis √A. Sinceonesideofthesquare istwicetheradius r then √A =2r Then A =4r2

121. Theaveragerateofchangeis 8 6 4 =0.5inch/lb.

122. Theaveragerateofchangeis 130 40 3 =30mph/sec.

123. Since D = kW and9= k · 25,weobtain D = 9 25 100=36.

124. Since t = ku/v and6= k 8/2,we find k =1.5.Then t =(1.5)(19)/3=19/2.

125. Since V = k√h and45= k√1.5,thevelocity ofaTriceratopsis V = 45 √1.5 √2.8 ≈ 61kph.

126. Since R = k/p and21= k/240,wefind k =5040.If p =224,thenheneeds R =5040/224=22.5rows.

127. Since C = kd2 and4.32= k 36,a16-inch diameterglobecosts C = 4 32 36 162 =$30.72.

128. F = k m1m2 d2 where m1,m2 arethemasses and d isthedistancebetweenthecentersof theobjects.

130. No,itisnotafunctionsincetherearetwo orderedpairsinaverticallinewiththesame firstcoordinateanddifferentsecond coordinates.

ThinkingOutsidetheBox

XXIX. Thequadrilateralhasvertices A(0, 0), B(0, 9/2), C(82/17, 15/17),and D(7/2, 0). Theareaoftriangle∆ABC is

1 2 9 2 82 17 = 369 34 andtheareaoftriangle∆ACD is

1 2 7 2 15 17 = 105 68

Thesumofareasofthetwotrianglesisthe areaofthequadrilateral,i.e.,

Area= 369 34 + 105 68 = 843 68 squareunits

XXX. Note,thenumberofhandshakesinagroup with n peopleis

1+2+3+ +(n 1)= (n 1)n 2

Inthefirstdelegation,thenumberofhandshakesis (n 1)n 2 =190whichimpliesthat n =20,thenumberofmembersinthefirst delegation.

Sincetherewere480handshakesbetweenthe firstdelegationandseconddelegation,thesize oftheseconddelegationis

480 n = 480 20 =24delegates.

Thus,thetotalnumberofdelegatesis20+24, or44delegates.

Chapter2Test

1. No,since(0, 5)and(0, 5)aretwoordered pairswiththesamefirstcoordinateand differentsecondcoordinates.

2. Yes,sincetoeach x-coordinatethereisexactly one y-coordinate,namely, y = 3x 20 5

3. No,since(1, 1)and(1, 3)aretwoordered pairswiththesamefirstcoordinateand differentsecondcoordinates.

4. Yes,sincetoeach x-coordinatethereisexactly one y-coordinate,namely, y = x3 3x2 +2x 1.

5. Domainis {2, 5},rangeis {−3, 4, 7}

6. Domainis[9, ∞),rangeis[0, ∞)

7. Domainis[0, ∞),rangeis(−∞, ∞)

8. Graphof3x 4y =12includesthe points(4, 0), (0, 3) 4 -4 x -3 -6 y

9. Graphof y =2x 3includesthe points(3/2, 0), (0, 3) 4 2 x -3 1 y

10. y = √25 x2 isasemicirclewithradius5

11. y = (x 2)2 +5isaparabolawithvertex (2, 5)

12. y =2|x|− 4includesthepoints(0, 4), (±3, 2)

2 x 2 -4 y

13. y = √x +3 5includesthepoints (1, 3), (6, 2)

14. Graphincludesthepoints ( 2, 2), (0, 2), (3, 2)

15. √9=3 16. f (5)= √7

17. f (3x 1)= (3x 1)+2= √3x +1.

18. g 1(x)= x +1 3 19. √16+41=45

20. g(x + h) g(x) h = 3(x + h) 1 3x +1 h = 3h h =3

21. Increasingon(3, ∞),decreasingon(−∞, 3)

22. Symmetricaboutthe y-axis

23. Add1to 3 <x 1 < 3toobtain 2 <x< 4. Thus,thesolutionset( 2, 4).

24. f (x)isthecompositionofsubtracting2from x,takingthecuberootoftheresult,then adding3.Reversingtheoperations,theinverseis f 1(x)=(x 3)3 +2.

25. Therangeof f (x)= √x 5is[0, ∞).Then thedomainof f 1(x)is x ≥ 0Note, f (x)is thecompositionofsubtracting5from x,then takingthesquarerootoftheresult.Reversing theoperations,theinverseis f 1(x)= x2 +5 for x ≥ 0.

26. 60 35 200 =$0.125perenvelope

27. Since I = k/d2 and300= k/4,weget k =1200 If d =10,then I =1200/100=12 candlepower.

28. Let s bethelengthofonesideofthecube. BythePythagoreanTheoremwehave s2 + s2 = d2.Then s = d √2 andthevolume is V = d √2 3 = √2d3 4 .

TyingItAllTogether

1. Add3tobothsidesof2x 3=0toobtain 2x =3.Thus,thesolutionsetis 3 2 .

2. Add2x tobothsidesof 2x +6=0toget 6=2x.Thenthesolutionsetis {3}

3. Note, |x| =100isequivalentto x = ±100. Thesolutionsetis {±100}

4. Theequationisequivalentto 1 2 = |x +90| Then x +90= ± 1 2 and x = ± 1 2 90. Thesolutionsetis {−90.5, 89.5}.

5. Note,3=2√x +30.Ifwedivideby2and squarebothsides,weget x +30= 9 4 .

Since x = 9 4 30= 27 75,thesolutionset is {−27 75}

6. Note, √x 3isnotarealnumberif x< 3. Since √x 3isnonnegativefor x ≥ 3,it followsthat √x 3+15isatleast15. Inparticular, √x 3+15=0hasno realsolution.

7. Rewriting,weobtain(x 2)2 = 1 2 .Bythe

squarerootproperty, x 2= ± √2 2

Thus, x =2 ± √2 2 .Thesolutionset is 4 ± √2 2

8. Rewriting,weget(x +2)2 = 1 4 .Bythesquare

rootproperty, x +2= ± 1 2 .Thus, x = 2 ± 1 2

Thesolutionsetis 3 2 , 5 2

9. Squaringbothsidesof √9 x2 =2,weget 9 x2 =4.Then5= x2 Thesolutionsetis ±√5

10. Note, √49 x2 isnotarealnumberif 49 x2 < 0.Since √49 x2 isnonnegative for49 x2 ≥ 0,wegetthat √49 x2 +3is atleast3.Inparticular, √49 x2 +3=0has norealsolution.

11. Domainis(−∞, ∞),rangeis(−∞, ∞), x-intercept(3/2, 0) 1 2 x 3 1 y

12. Domainis(−∞, ∞),rangeis(−∞, ∞), x-intercept(3, 0) 1 3 x 3 6 y

13. Domainis(−∞, ∞),rangeis[ 100, ∞), x-intercepts(±100, 0)

14. Domainis(−∞, ∞),rangeis(−∞, 1], x-intercepts( 90 5, 0)and( 89 5, 0).

15. Domainis[ 30, ∞)sinceweneedtorequire x +30 ≥ 0,rangeis(−∞, 3], x-interceptis ( 27 75, 0)sincethesolutionto 3 2√x +30=0is x = 27.75

16. Domainis[3, ∞)sinceweneedtorequire x 3 ≥ 0,rangeis[15, ∞),no x-intercept 3 7 x

17. Domainis(−∞, ∞),rangeis(−∞, 1]since thevertexis(2, 1),andthe x-interceptsare 4 ± √2 2 , 0 sincethesolutionsof 0= 2(x 2)2 +1are x = 4

20. Domainis[ 7, 7],rangeis[3, 10]sincethe graphisasemi-circlewithcenter(0, 3)and radius7,thereareno x-interceptsasseenfrom thegraph

18. Domainis(−∞, ∞),rangeis[ 1, ∞)sincethe vertexis( 2, 1),andthe x-interceptsare ( 5/2, 0)and( 3/2, 0)forthesolutionsto 0=4(x +2)2 1are x = 5/2, 3/2.

21. Since2x> 3or x> 3/2,thesolutionset is(3/2, ∞).

22. Since 2x ≤−6or x ≥ 3,thesolutionset is[3, ∞).

23. Basedontheportionofthegraphof y = |x|− 100abovethe x-axis,andits x-intercepts,thesolutionsetof |x|− 100 ≥ 0 is(−∞, 100] ∪ [100, ∞).

24. Basedonthepartofthegraphof y =1 2|x +90| abovethe x-axis,andits x-intercepts,thesolutionsetof1 2|x+90| > 0 is( 90 5, 89 5).

25. Basedonthepartofthegraphof y =3 2√x +30belowthe x-axis,andits x-intercepts,thesolutionsetof 3 2√x +30 ≤ 0is[ 27 75, ∞).

19. Domainis[ 3, 3],rangeis[ 2, 1]sincethe graphisasemi-circlewithcenter(0, 2)and radius3.The x-interceptsare(±√5, 0)forthe solutionsto0= √9 x2 2are x = ±√5. Thegraphisshowninthenextcolumn.

26. Solutionsetis(−∞, ∞)sincethegraph isentirelyabovethe x-axis

27. Basedontheportionofthegraphof y = 2(x 2)2 +1belowthe x-axis,and

its x-intercepts,thesolutionsetof 2(x 2)2 +1 < 0is −∞, 4 √2 2 ∪ 4+ √2 2 , ∞

28. Basedonthepartofthegraphof y =4(x +2)2 1abovethe x-axis,and its x-intercepts,thesolutionsetof 4(x +2)2 1 < 0is(−∞, 5/2] ∪ [ 3/2, ∞).

29. Basedonthepartofthegraphof y = √9 x2 2abovethe x-axis,andits x-intercepts,thesolutionsetof √9 x2 2 ≥ 0is[ √5, √5].

30. Sincethegraphof y = √49 x2 +3isentirely abovetheline y =3,thesolutionto √49 x2 +3 ≤ 0istheemptyset ∅

31. f (2)=3(2+1)3 24=3(27) 24=57

32. Thegraphof f (x)=3(x +1)3 24isgiven.

36. Solvingfor x,weobtain y +24=3(x +1)3 y +24 3 =(x +1)3 3 y +24 3 = x +1 3 y +24 3 1= x.

37. Basedontheanswerfromnumber36,the inverseis f 1(x)= 3 x +24 3 1

38. Thegraphof f 1 isgivenbelow.

33. f = K ◦ F ◦ H ◦ G

34. Solvingfor x,weget 3(x +1)3 =24 (x +1)3 =8 x +1=2 x =1 Thesolutionsetis {1}

35. Basedonthepartofthegraphof y =3(x +1)3 24abovethe x-axis,and its x-intercept(1, 0),thesolutionsetof 3(x +1)3 24 ≥ 0is[1, ∞).

39. Basedonthepartofthegraphof f 1 above the x-axis,andits x-intercept( 21, 0),thesolutionsetof f 1(x) > 0is( 21, ∞).

40. Since f = K ◦ F ◦ H ◦ G,weget f 1 = G 1 ◦ H 1 ◦ F 1 ◦ K 1

ConceptsofCalculus

1.a) Let f (x)= x2 f (2+ h) f (2) h = (2+ h)2 22 h = 4+4h + h2 4 h = 4h + h2 h = h(4+ h) h f (2+ h) f (2) h =4+ h

b) Note,2+ h getscloserandcloserto2 as h approaches0.Usingtheresultsfrom parta),weconclude lim h→0 f (2+ h) f (2) h =lim h→0(4+ h) =4.

2.a) Let f (x)= x2 2x. f (x + h) f (x) h = (

Thus,weobtain f (x + h) f (x) h = 1 √x + h + √x

b) Note,as h approaches0,weseethat

getscloserandcloserto

Thatis,bytakingthelimit,wehave

Thus,weobtain f (x + h) f (x) h =2x + h 2

b) Note,2x + h 2getscloserandcloserto 2x 2as h approaches0.Thenweobtain lim h→0 f (x + h) f (x) h =lim h→0(2x + h 2) =2x 2.

Thus,lim h→0 f (x + h) f (x) h =2x 2.

c) Basedonpartb),theinstantaneousrate ofchangeof f (x)= x2 2x is2x 2. And,when x =5theinstantaneousrate ofchangeis2(5) 2or8.

3.a) Let f (x)= √x.Thenwecalculatetheinstantaneousrateofchangeof f . f (x + h) f (x) h = √

c) Thentheinstantaneousrateofchangeof f (x)= √x is 1 2√x .And,when x =9the instantaneousrateofchange 1 2√9 or 1 6

4.a) Let f (t)= 16t2 +128t.Then

f (0)= 16(0)2 +128(0)=0 and f (3)= 16(9)2 +128(3)=240

b) Thedistancetraveledinthefirst threesecondsis

f (3) f (0)=240 0=240ft.

c) Theaveragerateofchangeoftheheightis

f (3) f (0) 3 0 = 240ft 3sec =80ft/sec.

d) Wecalculatethedifferencequotient.

f (t + h) f (t) h =

5.a) Let f (x)=1/x. f (x) f (2)

16(t + h)2 +128(t + h) 16t2 +128t h = 16(t2 +2ht + h2 )+128t +128h 16t2 +128t h =

Thus,wefind

f (t + h) f (t) h = 32t 16h 128.

e) When h becomescloserandcloserto0,we obtainthat

32t 16h +128 getscloserandcloserto 32t +128

Thus, lim h→0

f (t + h) f (t) h = 32t +128

f) Note,basedontheanswerfromparte),the instantaneousvelocityoftheballattime t is

32t +128ft/sec

When t =0,theinstantaneousvelocityis

32(0)+128=128ft/sec

When t =2,theinstantaneousvelocityis

32(2)+128=64ft/sec

When t =4,theinstantaneousvelocityis

32(4)+128=0ft/sec.

When t =6,theinstantaneousvelocityis

32(6)+128= 64ft/sec

When t =8,theinstantaneousvelocityis

32(8)+128= 128ft/sec.

b) If x iscloseto2,then

.

c) Let h = x c.Note, h iscloseto0if x is near c,andconversely.Then lim x→c f (x) f (c) x c =lim h→0 f (c + h) f (c) h

Thus,theinstantaneousrateofchange when x =2is lim x→2

asshowninpartb).

6.a) Let f (x)= x3

b) If x isclosetoc,then lim x→c f (x) f (c) x c =lim x→c (x 2 + cx + c 2) = c 2 + c(c)+ c 2

Thus,lim x→c f (x) f (c) x c =3c 2

c) Itisshownin5c)thattheinstantaneous rateofchangeisalimitofanaveragerate ofchangeas h approaches0.Thus,the instantaneousrateofchangewhen x = c is lim x→c f (x) f (c) x c =3c 2 asshowninpartb).

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.