Solutions for Precalculus Enhanced With Graphing Utilities 7th Us Edition by Sullivan

Page 1

CLICK HERE TO ACCESS THE COMPLETE Solutions

Chapter 2 Functions and Their Graphs 12. True

Section 2.1 1.

13. False; if the domain is not specified, we assume it is the largest set of real numbers for which the value of f is a real number.

 1,3

2. 3  2   5  2   2

1

 2 

 3  4   5  2    12  10  

1 2

14. False; the domain of f  x  

1 2

43 or 21 12 or 21.5 2

3. We must not allow the denominator to be 0. x  4  0  x  4 ; Domain:  x x  4 . 4. 3  2 x  5 2 x  2 x  1 Solution set:  x | x  1 or  , 1 

5.

16. c 17. d 18. a

20. Not a function

21. Not a function

52

22. Function Domain: {Less than 9th grade, 9th-12th grade, High School Graduate, Some College, College Graduate} Range: {$18,120, $23,251, $36,055, $45,810, $67,165}

7. independent; dependent

0,5

We need the intersection of the intervals  0, 7 

and  2,5 . That is, domain of f  domain of g . 





f g f+g

9.  ; f; g 10.

15. a

19. Function Domain: {Elvis, Colleen, Kaleigh, Marissa} Range: {Jan. 8, Mar. 15, Sept. 17}

6. radicals

8.

x2  4 is  x | x  0 . x

 g  f  x  or g  x   f  x 

23. Not a function 24. Function Domain: {–2, –1, 3, 4} Range: {3, 5, 7, 12} 25. Function Domain: {1, 2, 3, 4} Range: {3} 26. Function Domain: {0, 1, 2, 3} Range: {–2, 3, 7} 27. Not a function

11. False; every function is a relation, but not every relation is a function. For example, the relation x 2  y 2  1 is not a function.

28. Not a function

76 Copyright © 2017 Pearson Education, Inc.


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.