Solutions for Chemistry A Molecular Approach 4th Us Edition by Tro

Page 1


Experiment 2

Components of a Mixture – What Is That Stuff in the Bottom of the Cereal Box?

For the Instructor

The mixture per student should contain approximately 5 mg red #40, 100 mg Fe, 100 mg ZnO, 200 mg stearic acid, and 395 mg sucrose per gram. If the sucrose crystals are large, they might take a considerable time to dissolve, and grinding the sucrose before making the mixture is advisable.

The concentration of the methanol solution from 200 to 5-10 mL will take longer than a single lab period. This process can be facilitated by placing in a well-ventilated hood. During the following week, someone will need to check these and move them to a freezer at the appropriate time. Very little time will be required during the next laboratory period to complete the experiment.

This experiment can be performed much faster if gravity filtration is replaced with the use of a Buchner funnel, filter flask, and vacuum source.

Preparation

Information – 24 students

25 g)

Necessary Equipment – 24 students

Paper towels

Disposable gloves

Filter paper

Weigh boats/weighing paper

Funnel

per student

Beaker (20 mL) 2 per student

Beaker(400 mL)

per student

10-mL graduated cylinder 1 per student (optional)

100-mL graduated cylinder 1 per student (optional)

Ring

Iron ring

Experiment 2: Components of a Mixture – What Is That Stuff in the Bottom of the Cereal Box?

Clay triangle

Stirring rod

Wash bottle

1 per student

1 per student

2 per 1-4 students

Spatula 1 per student

Bar magnet

Rubber policeman

Magnetic stirrer/hot plate

1 per 1-4 students

1 per student

1 per 2-4 students (optional)

Balance 4-5 per room

Answers to Pre-Laboratory Questions

1. How could you determine (without tasting) whether a container of a colorless liquid contained ethanol or ethanol and sucrose?

Allow the ethanol to evaporate; a white crystalline solid left would indicate the presence of sucrose.

2. Does this experiment demonstrate the law of conservation of matter?

No. No chemical reactions are involved, only physical separations.

3. Explain the difference between filtration and decantation (see the “Experiment Equipment and Procedures” section of this manual). Why might one want to use filtration in this experiment rather than decantation?

Decanting works if solid(s) stay at the bottom of the container. If they are likely to be disturbed, then filtration should be used.

4. How could one rapidly separate red #40 from zinc oxide? Indicate every step.

Add water and agitate to dissolve the red #40. Filter and wash the solid with water. Solid remaining is zinc oxide.

5. Separation techniques are performed on a sample containing sand and salt. It was determined that there were 5.43 g of sand and 4.52 g of salt. The total sample weight was 10.50 g. What is the percent recovery of sand from the sample?

(5.43 g + 4.52 g)/10.50 g × 100% = 94.8%

Chapter 2. Atoms and Elements

Student Objectives

2.1 BrownianMotion:AtomsConfirmed

• DescribeBrownianmotion

• Describescanningtunnelingmicroscopy(STM)andhowatomsareimagedonsurfaces.

• Define atom and element.

2.2 EarlyIdeasabouttheBuildingBlocksofMatter

• Describetheearliestdefinitionsofatomsandmatter(Greeks).

• Knowthatgreateremphasisonobservationandthedevelopmentofthescientificmethodled tothescientificrevolution.

2.3 ModernAtomicTheoryandtheLawsThatLedtoIt

• Stateandunderstandthelawofconservationofmass(alsofromSection1.2).

• Stateandunderstandthelawofdefiniteproportions.

• Stateandunderstandthelawofmultipleproportions.

• KnowthefourpostulatesofDalton’satomictheory.

2.4 TheDiscoveryoftheElectron

• DescribeJ.J.Thomson’sexperimentswiththecathoderaytubeandunderstandhowthey provideevidencefortheelectron.

• DescribeRobertMillikan’soil-dropexperimentandunderstandhowitenablesmeasurement ofthechargeofanelectron.

2.5 TheStructureoftheAtom

• Define radioactivity, nucleus, proton,and neutron.

• UnderstandThomson'splum-puddingmodelandhowErnestRutherford’sgold-foil experimentrefuteditbygivingevidenceforanuclearstructureoftheatom.

2.6 SubatomicParticles:Protons,Neutrons,andElectronsinAtoms

• Define atomic mass unit, atomic number,and chemical symbol.

• Recognizechemicalsymbolsandatomicnumbersontheperiodictable.

• Define isotope, mass number,and natural abundance.

• Determinethenumberofprotonsandneutronsinanisotopeusingthechemicalsymboland themassnumber.

• Define ion, anion,and cation

• Understandhowionsareformedfromelements.

2.7 FindingPatterns:ThePeriodicLawandthePeriodicTable

• Definethe periodic law

• Knowthatelementswithsimilarpropertiesareplacedintocolumns(calledgroups)inthe periodictable.

• Defineanddistinguishbetweenmetals,nonmetals,andmetalloids.

• Identifymain-groupandtransitionelementsontheperiodictable.

• Knowthegeneralpropertiesofelementsinsomespecificgroups:noblegases,alkalimetals, alkalineearthmetals,andhalogens.

• Knowandunderstandtherationaleforelementsthatformionswithpredictablecharges.

2.8 AtomicMass:TheAverageMassofanElement’sAtoms

• Calculateatomicmassfromisotopemassesandnaturalabundances.

• Define mass spectrometry andunderstandhowitcanbeusedtomeasuremassandrelative abundance.

2.9 MolarMass:CountingAtomsbyWeighingThem

• Understandtherelationshipbetweenmassandcountofobjectssuchasatoms.

• Define mole and Avogadro’s number.

• Calculateandinterconvertbetweennumberofmolesandatoms.

• Calculateandinterconvertbetweennumberofmolesandmass.

Section Summaries

LectureOutline

• Terms,Concepts,Relationships,Skills

• Figures,Tables,andSolvedExamples

TeachingTips

• SuggestionsandExamples

• MisconceptionsandPitfalls

Lecture Outline

Terms,Concepts,Relationships,Skills

2.1 Brownian Motion: Atoms Confirmed

• Descriptionofscanningtunnelingmicroscopy (STM)

• Introductiontomacroscopicandmicroscopic perspectives.

• Definitionsofatomandelement.

2.2 Early Ideas about the Building Blocks of Matter

• Historyofchemistryfromantiquity(~450bc)

• Scientificrevolution(1400s-1600s)

2.3 Modern Atomic Theory and the Laws That Led to It

• Lawofconservationofmass

o Matterisneithercreatednordestroyed.

o Atomsatthestartofareactionmay recombinetoformdifferentcompounds, butallatomsareaccountedforatthe end.

o Massofreactants=massofproducts.

• Lawofdefiniteproportions

o Differentsamplesofthesamecompound havethesameproportionsof constituentelementsindependentof samplesourceorsize.

• Lawofmultipleproportions

• JohnDalton’satomictheory

Figures,Tables,andSolvedExamples

• Figure2.1ImagingAtoms

• unnumberedfigure:modelsand photosofNaandCl2 forming NaCl

• Example2.1LawofDefinite Proportions

• unnumberedfigure:modelsof COandCO2 illustratingthelaw ofmultipleproportions

• Example2.2LawofMultiple Proportions

• ChemistryinYourDay:Atoms andHumans

SuggestionsandExamples

2.1 Brownian Motion: Atoms Confirmed

• OtherSTMimagescanbefoundreadilyonthe Internet.

• Itisusefultoreiteratetheanalogiesaboutsize;for example,comparinganatomtoagrainofsandand agrainofsandtoalargemountainrange.

2.2 Early Ideas about the Building Blocks of Matter

• Theviewofmatterasmadeupofsmall, indestructibleparticleswasignoredbecausemore popularphilosopherslikeAristotleandSocrates haddifferentviews.

• LeucippusandDemocritusmayhavebeenproven correct,buttheyhadnomoreevidencefortheir ideasthanAristotledid.

• Observationsanddataledscientiststoquestion models;thescientificmethodpromotestheuseofa cycleofsuchinquiry.

2.3 Modern Atomic Theory and the Laws That Led to It

• Thatmatteriscomposedofatomsgrewfrom experimentsandobservations.

• ConceptualConnection2.1TheLawofConservation ofMass

• Investigatingthelawofdefiniteproportions requirespreparingordecomposingasetofpure samplesofacompoundlikewater.

• Investigatingthelawofmultipleproportions requirespreparingordecomposingsetsofpure samplesfromrelatedcompoundslikeNO,NO2,and N2O5

• ConceptualConnection2.2TheLawsofDefiniteand MultipleProportions

MisconceptionsandPitfalls

• STMisnotactuallyshowing imagesofatomslikeonemight imagineseeingwithalight microscope.

• Atomsarenotcoloredspheres; theimagesusecolorto distinguishdifferentatoms.

• Theoriesarenotautomatically acceptedandmaybeunpopular forlongperiodsoftime.

• Philosophyandreligioncanbe supportedbyarguments; sciencerequiresthattheoriesbe testableandtherefore falsifiable.

• Measurementstoestablishearly atomictheorieswereperformed atthemacroscopiclevel.The scientistsobservedproperties forwhichtheycouldcollectdata (e.g.,massorvolume).

Lecture Outline

Terms,Concepts,Relationships,Skills

2.4 The Discovery of the Electron

• Thomson’scathode-raytubeexperiments

o Highvoltageproducedastreamof particlesthattraveledinstraight lines.

o Eachparticlepossessedanegative charge.

o Thomsonmeasuredthecharge-tomassratiooftheelectron.

• Millikan’soil-dropexperiments

o Oildropletsreceivedchargefrom ionizingradiation.

o Chargeddropletsweresuspended inanelectricfield.

o Themassandchargeofeachoil dropwasusedtocalculatethemass andchargeofasingleelectron.

2.5 The Structure of the Atom

• Thomson’splum-puddingmodel: negativelychargedelectronsinaseaof positivecharge

• Radioactivity

o Alphadecayprovidesthealpha particlesforRutherford’s experiment.

• Rutherford’sexperiment

o Alphaparticlesdirectedatathin goldfilmdeflectinalldirections, includingbackatthealphasource.

o Onlyaconcentratedpositivecharge couldcausethealphaparticlesto bounceback.

• Rutherford’snucleartheory

o mostmassandallpositivecharge containedinasmallnucleus

o mostofatombyvolumeisempty space

o protons:positivelycharged particles

o neutralparticleswithsubstantial massalsoinnucleus

Figures,Tables,andSolvedExamples

• Figure2.2CathodeRayTube

• unnumberedfigure:propertiesof electricalcharge

• Figure2.3Thomson’sMeasurementof theCharge-to-MassRatiooftheElectron

• Figure2.4Millikan’sMeasurementofthe Electron'sCharge

• unnumberedfigure:plum-pudding model

• Figure2.5Rutherford’sGoldFoil Experiment

• Figure2.6TheNuclearAtom

• unnumberedfigure:scaffoldingand emptyspace

SuggestionsandExamples

2.4 The Discovery of the Electron

• Reviewtheattraction,repulsion,andadditivityof charges.

• Discussthephysicsofelectricfieldsgeneratedby metalplates.

• Ademonstrationofacathoderaytubewillhelp studentsbetterunderstandThomson’sexperiments.

• DemonstratehowMillikan’scalculationworksand whyhecoulddeterminethechargeofasingle electron.

2.5 The Structure of the Atom

• Itmaybeusefultogiveabriefdescriptionof radioactivity.Rutherford’sexperimentmakesmore senseifoneknowssomepropertiesofthealpha particleandfromwhereitcomes.

• Thomsonidentifiedelectronsandsurmisedthe existenceofpositivechargenecessarytoforma neutralatom.Theplum-puddingmodelisthe simplestwaytoaccountfortheobservations.

• Thefigureaboutscaffoldingsupportsdiscussion aboutanatombeingmostlyemptyspacebutstill havingrigidityandstrengthinthemacroscopicview. Thisisanotherexampleofapparentdifferences betweenthemicroscopicandmacroscopic properties.

MisconceptionsandPitfalls

• Millikandidnotmeasurethe chargeofasingleelectron;he measuredthechargeofa numberofelectronsand deducedthechargeofasingle electron.

• Studentsoftendon’t understandthe source ofalpha particlesinRutherford’s experiments.

Lecture Outline

Terms,Concepts,Relationships,Skills

2.6 Subatomic Particles: Protons, Neutrons, and Electrons in Atoms

• Propertiesofsubatomicparticles

o atomicmassunits(amu)

 proton,neutron:~1amu

 electron:~0.006amu

o charge

 relativevalue: 1for electron,+1forproton

 absolutevalue:1.6 × 10 19 C

• Atomicnumber(numberofprotons): definingcharacteristicofanelement

• Isotope:sameelement,differentmass (differentnumberofneutrons)

• Ion:atomwithnonzerocharge

o anion:negativelycharged(more electrons)

o cation:positivelycharged(fewer electrons)

2.7 Finding Patterns: The Periodic Law and the Periodic Table

• Periodiclawandtheperiodictable

o generallyarrangedbyascending mass

o recurring,periodicproperties; elementswithsimilarproperties arrangedintocolumns:groups(or families)

• Majordivisionsoftheperiodictable

o metals,nonmetals,metalloids

o main-groupelements,transition elements

• Groups(families)

o noblegases(group8A)

o alkalimetals(group1A)

o alkalineearthmetals(group2A)

o halogens(group7A)

• Ionswithpredictablecharges:basedon stabilityofnoble-gaselectroncount

o group1A:1+

o group2A:2+

o group3A:3+

o group5A:3

o group6A:2

o group7A:1

Figures,Tables,andSolvedExamples

• unnumberedfigure:baseball

• Table2.1SubatomicParticles

• unnumberedfigure:lightningand chargeimbalance

• Figure2.7HowElementsDiffer

• Figure2.8ThePeriodicTable

• unnumberedfigure:portraitof MarieCurie

• Example2.3AtomicNumbers,Mass Numbers,andIsotopeSymbols

• ChemistryinYourDay:WhereDid ElementsComeFrom?

• unnumberedfigure:discoveryof theelements

• Figure2.9RecurringProperties

• Figure2.10MakingaPeriodicTable

• unnumberedfigure:stamp featuringDmitriMendeleev

• Figure2.11Metals,Nonmetals,and Metalloids

• Figure2.12ThePeriodicTable: Main-GroupandTransition Elements

• unnumberedfigure:thealkali metals

• unnumberedfigure:thehalogens

• Example2.4PredictingtheCharge ofIons

• Figure2.13ElementsThatForm IonswithPredictableCharges

• ChemistryandMedicine:The ElementsofLife

• Figure2.14ElementalComposition ofHumans(byMass)

Teaching Tips

SuggestionsandExamples

2.6 Subatomic Particles: Protons, Neutrons, and Electrons in Atoms

• Theanalogyofthebaseballandagrainofricetoa protonandanelectronismeanttoillustratethe differenceinmassbutnotsize.

• Electricalchargecanbedemonstratedwithstatic electricity.Twoballoonschargedwithwoolor humanhairwillrepeleachother.

• Namesofelementscomefromvarioussources.Tom Lehrer’s“ElementSong”canbefoundonthe Internet.

• Isotopicabundancesareinvariantintypicallabsizedsamplesbecauseofsuchlargenumbersof atoms.

• ConceptualConnection2.5TheNuclearAtom, Isotopes,andIons

• Thehistoryofchemistryinvolvesconsiderable culturalandgenderdiversity.Examplesinclude bothLavoisiers(French),Dalton(English), Thomson(English),MarieCurie(Polish/French), Mendeleev(Russian),Millikan(American),Robert Boyle(Irish),AmedeoAvogadro(Italian).

• TheChemistryinYourDayboxgivesabroad descriptionoftheoriginofatoms.

2.7 Finding Patterns: The Periodic Law and the Periodic Table

• Otherdisplaysoftheperiodictablecanbefoundin journals(Schwartz, J. Chem. Educ. 2006, 83,849; Moore, J. Chem. Educ. 2003, 80,847;Bouma, J. Chem. Educ. 1989, 66,741),books,andontheInternet.

• Periodictablesarearrangedaccordingtothe periodiclawbutcancomparemanyfeatures,e.g. phasesofmatter,sizesofatoms,andcommonions. Thesearepresentedasaseriesoffiguresinthetext.

• ChemistryandMedicine:TheElementsofLife providesanopportunitytorelatethetopicsto everydaylife.Someoftheotherelementsinthe figureandtablerepresenttracemineralsthatare partofgoodnutrition.Theperiodiclawaccounts forwhysomearenecessaryandothersaretoxic.

MisconceptionsandPitfalls

• Studentssometimesconfusethe massnumberasbeingequalto thenumberofneutrons,notthe numberofneutronsplusthe numberofprotons.

• Studentslogically(but mistakenly)presumethatthe massofanisotopeisequalto thesumofthemassesofthe protonsandneutronsinthat isotope.

• Theperiodictableisbetterat predictingmicroscopic properties,thoughmacroscopic propertiesarealsooften illustrated.

Lecture Outline

Terms,Concepts,Relationships,Skills

2.8 Atomic Mass: The Average Mass of an Element’s Atoms

• Averageatomicmassisbasedonnatural abundanceandisotopicmasses.

• Massspectrometry

o atomsconvertedtoionsand deflectedbymagneticfieldsto separatebymass

o outputdata:relativemass vs. relativeabundance

2.9 Molar Mass: Counting Atoms by Weighing Them

• MoleconceptandAvogadro’snumber

• Convertingbetweenmolesandnumberof atoms

• Convertingbetweenmassandnumberof moles

Figures,Tables,andSolvedExamples

• unnumberedfigure:periodictablebox forCl

• Example2.5AtomicMass

• Figure2.15TheMassSpectrometer

• Figure2.16TheMassSpectrumof Chlorine

• unnumberedfigure:pennies containing~1molofCu

• unnumberedfigure:1tbspofwater contains~1molofwater

• Example2.6 Convertingbetween NumberofMolesandNumberof Atoms

• unnumberedfigure:relativesizesof Al,C,He

• unnumberedfigure:balancewith marblesandpeas

• Example2.7ConvertingbetweenMass andAmount(NumberofMoles)

• Example2.8TheMoleConcept–ConvertingbetweenMassand NumberofAtoms

• Example2.9TheMoleConcept

Teaching Tips

SuggestionsandExamples

2.8 Atomic Mass: The Average Mass of an Element's Atoms

• Themassesofisotopesmustbereconciledwithan elementhavingonlywholenumberquantitiesof protonsandneutrons;thevaluesshouldbenearly integralsincethemassofelectronsissosmall.

• Massspectrometryisaneffectivewayto demonstratewherevaluesofnaturalabundance areobtained.

2.9 Molar Mass: Counting Atoms by Weighing Them

• Reviewthestrategyforsolvingnumerical problems:sort,strategize,solve,check.

• Estimatinganswersisanimportantskill;the numberofatomswillbeverylarge(i.e.somelarge poweroften)evenfromasmallmassorsmall numberofmoles.

• ConceptualConnection2.7Avogadro’sNumber

• ConceptualConnection2.8TheMole

MisconceptionsandPitfalls

• Studentsaretemptedto calculateaverageatomicmass byaddingtogetherisotopic massesanddividingbythe numberofisotopes.

• Atomicmassontheperiodic tableisusuallynotintegraleven thoughelementshaveonly wholenumbersofprotonsand neutrons.

• Manystudentsareintimidated byestimatinganswersin calculationsinvolvingpowers often.

Additional Problem for Converting between Number of Moles and Number of Atoms (Example 2.6)

Sort

You are given a number of iron atoms and asked to find the amount of iron in moles.

Strategize

Convert between number of atoms and number of moles using Avogadro’s number.

Calculate the number of moles of iron in a sample that has 3.83 × 1023 atoms of iron.

Given 3.83 × 1023 Fe atoms

Find mol Fe

Conceptual Plan atoms → mol × 23 1 mol Fe 6.022 10 Fe atoms

Relationships Used

6.022 × 1023 = 1 mol (Avogadro’s number)

Solve

Follow the conceptual plan. Begin with 3.83 × 1023 Fe atoms and multiply by the ratio that equates moles and Avogadro’s number.

Check

Solution × × × = 23 23 1 mol Fe 3.8310 Fe atoms 6.02210 Fe atoms

0.636 mol Fe

The sample was smaller than Avogadro’s number so the answer should be a fraction of a mole. The value of the sample has 3 significant figures, and the answer is provided in that form.

Additional Problem for Converting between Mass and Number of Moles (Example 2.7)

Sort

You are given the amount of silver in moles and asked to find the mass of silver.

Strategize

Convert amount (in moles) to mass using the molar mass of the element.

Calculate the number of grams of silver in an American Silver Eagle coin that contains 0.288 moles of silver.

Given 0.288 mol Ag

Find g Ag

Conceptual Plan

mol Ag → g Ag

107.87 g Ag 1 mol Ag

Relationships Used

107.87 g Ag = 1 mol Ag

Solve

Follow the conceptual plan to solve the problem. Start with 0.288 mol, the given number, and multiply by the molar mass of silver.

Solution

0.288molAg × 107.87gAg 1molAg = = 31.07gAg

31.07g31.1gAg

Check The magnitude of the answer makes sense since we started with an amount smaller than a mole. The molar amount and answer both have 3 significant figures.

Additional Problem for the Mole Concept—Converting between Mass and Number of Atoms (Example 2.8)

Sort

You are given a number of iron atoms and asked to find the mass of Fe.

Strategize

Convert the number of Fe atoms to moles using Avogadro’s number. Then convert moles Fe into grams of iron using the molar mass of Fe.

What mass of iron (in grams) contains 1.20 × 1022 atoms of Fe? A paperclip contains about that number of iron atoms.

Given 1.20 × 1022 Fe atoms

Find g Fe

Conceptual Plan

Solve

Follow the conceptual plan to solve the problem. Begin with 1.20 × 1022 atoms of Fe, multiply by the ratio derived from Avogadro’s number, and finally multiply by the atomic mass of Fe.

Check

Relationships Used 6.022 × 1023 = 1 mol (Avogadro’s number) 55.85 g Fe = 1 mol Fe

Solution × 221.2010 Fe atoms × 1 mol Fe × 236.02210 Fe atoms × 55.85 g Fe 1 mol Fe = 1.11 g Fe

The units and magnitude of the answer make sense. The sample is smaller than a mole. The number of atoms and mass both have 3 significant figures.

Additional Problem for the Mole Concept

(Example 2.9)

Sort

You are given the number of iron atoms in a sphere and the density of iron. You are asked to find the radius of the sphere.

Strategize

The critical parts of this problem are density, which relates mass to volume, and the mole, which relates number of atoms to mass:

(1) Convert from the number of atoms to the number of moles using Avogadro’s number;

(2) Convert from the number of moles to the number of grams using the molar mass of iron;

(3) Convert from mass to volume using the density of iron;

(4) Find the radius using the formula for the volume of a sphere.

An iron sphere contains 8.55 × 1022 iron atoms. What is the radius of the sphere in centimeters? The density of iron is 7.87 g/cm3 .

Given 8.55 × 1022 Fe atoms

d = 7.87 g/cm3

Find radius (r) of a sphere

Conceptual Plan

Relationships Used

g Fe = 1 mol Fe

Solve

number)

(density of Fe) = 7.87 g/cm3 V = 4/3 πr3 [volume of a sphere with a radius of r]

Follow the conceptual plan to solve the problem. Begin with 8.55 × 1022 Fe atoms and convert to moles, then to grams and finally to a volume in cm3. Solve for the radius using the rearranged equation. Solution

Check

The units (cm) are correct and the magnitude of the answer makes sense compared with previous problems.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.