Solutions for Calculus for Biology And Medicine 4th Us Edition by Neuhauser

Page 1


2.1ExponentialGrowthandDecay

5. Sincethepopulationdoublesevery20minutes,and20minutesistheunitoftime,theformulais Nt = N0 2t.Sincethereareinitially N0 =2individuals,weget Nt

6. Sincethepopulationdoublesevery40minutes,and40minutesistheunitoftime,theformulais Nt = N0 2t.Sincethereareinitially N0 =4individuals,weget

7. Sincethepopulationdoublesevery40minutes,but80minutesistheunitoftime,thepopulation willquadrupleinonetimeunit,sothattheformulais Nt = N0 4t.Sincethereisinitially N0 =1 individual,weget Nt =4t

8. At t =0thepopulationis20 · 40 =20;wewanttodetermine t sothat20 · 4t =2 · 20,sothatwe want4t =2.Thus t = 1 2 ,sothepopulationdoublesafter 1 2 timeunits,or1 5hours.

9. At t =0thepopulationis100 2t =100;wewanttodetermine t sothat100 2t =3 100,sothat wewant2t =3.Thus t = ln3 ln2 ≈ 1 585,sothepopulationtriplesafterabout1 585timeunits,or 1 585 · 2 ≈ 3 17hours,orabout190minutes.

10. Theinitialpopulationis10,andthepopulationtriplesinsizeeverytimeunit,sotheformulais Nt =10 3t

11. Sinceeachcellsplitsintwoeachhour,thepopulationdoubleseachhour.Sincetherewasonecell attime t =0,theformulais Nt =2t: t 012345

2t 12481632

Copyright © 2018PearsonEducation,Inc.

12. Sinceeachcellsplitsintwoevery30minutes,thepopulationdoublesevery30minutes.Lettingthe timeunitbe30minutes,sincetherewasonecellattime t =0,theformulais Nt =2t.Wewant toknowthepopulationafter1,2,3,4,and5hours;thesecorrespondsto t =2, 4, 6, 8, 10:

t 0246810

2t 1416642561024

Onecouldalternativelytakethetimeunitasonehour,inwhichcasetheformulawouldbe Nt =4t .

13. Lettheunitoftimebe42minutes;thensincethedoublingtimeisoneunit,startingfromone bacteriumtheformulais Nt =2t.Then Nt =1024when2t =1024,sowhen t =10.Sinceone timeunitrepresents42minutes,thisis420minutes=7hrs.

14. Lettheunitoftimebe24minutes;thensincethedoublingtimeisoneunit,startingfromone bacteriumtheformulais Nt =2t.Then Nt =512when2t =512,sowhen t =9.Sinceonetime unitrepresents24minutes,thisis24 9=216minutes=3hrs36min.

15. Lettheunitoftimebe10minutes;thensincethedoublingtimeisoneunit,startingfrom5bacteria theformulais Nt =5 2t.Then Nt =320when5 2t =320,or2t =64,sowhen t =6.Sinceone timeunitrepresents10minutes,thisis60minutes=1hr.

16. Lettheunitoftimebe12minutes;thensincethedoublingtimeisoneunit,startingfrom10 bacteriatheformulais Nt =10 2t.Then Nt =160when10 2t =160,or2t =16,sowhen t =4. Sinceonetimeunitrepresents12minutes,thisis48minutes.

17. Sincethepopulationdoubleseveryunitoftime,theequationis Nt = N0 · 2t;sinceinitiallythere are40individuals,wehave N0 =40sothat Nt =40 2t

18. Sincethepopulationhalvesinsizeeveryunitoftime,theequationis Nt = N0 1 2 t;sinceinitially thereare1024individuals,wehave N0 =1024sothat Nt =1024 1 2

10 2

=210 t.Of course,thisisvalidonlyupto t =10,sinceafterthatwearecountingfractionalindividuals.

19. Thereproductiverateis4,sowehave

Thereforethepopulationquintupleseveryunitoftime,sotheequationis Nt = N0 5t;sinceinitially thereare20individuals,theequationis Nt =20 5t .

20. Sincethepopulationtripleseveryunitoftime,theequationis Nt = N0 3t;sinceinitiallythereare 72individuals,wehave N0 =72sothat Nt =72 3t .

21. Sincethepopulationquadrupleseveryunitoftime,theequationis Nt = N0 4t;sinceinitiallythere are5individuals,wehave N0 =5sothat Nt =5 4t

22. Sincethepopulationgrowsby50%,or 3 2 ,everyunitoftime,theequationis N

3 2 t;since initiallythereare32individuals,wehave N0 =32sothat N

Copyright © 2018PearsonEducation,Inc.

Discrete-TimeModels,Sequences,andDifferenceEquations

2.1.2

23. Sincethepopulationdoubleseveryunitoftime,therecursionis Nt+1 =2Nt.(Thecorresponding equationis Nt = N0 2t;sinceinitiallythereare11individuals,wehave N0 =11sothat Nt =11 2t.)

24. Sincethepopulationtripleseveryunitoftime,therecursionis Nt+1 =3Nt.(Thecorresponding equationis Nt = N0 · 3t;sinceinitiallythereare6individuals,wehave N0 =6sothat Nt =6 · 3t.)

25. Sincethepopulationquadrupleseveryunitoftime,therecursionis Nt+1 =4Nt.(Thecorresponding equationis Nt = N0 4t;sinceinitiallythereare30individuals,wehave N0 =30sothat Nt =30 4t.)

26. Thereproductiverateis 1 3 ,sowehave

Therecursionis Nt+1 = 4 3 Nt.(Thecorrespondingequationis Nt = N0 4 3 t;sinceinitiallythere are63individuals,theequationis Nt =63 · 4 3 t.)

2.1.3

27. Thecurveisplottedbelowwiththepointssuperimposedonit:

28. Thecurveisplottedbelowwiththepointssuperimposedonit:

29. Thecurveisplottedbelowwiththepointssuperimposedonit:

30. Thecurveisplottedbelowwiththepointssuperimposedonit:

31. Nt+1 =2Nt with N0 =3,for t =0, 1, 2, 3, 4, 5. t 012345 N (t)3612244896

Ingeneral, Nt =2tN0;since N0 =3weget Nt =3 · 2t

32. Nt+1 =2Nt with N0 =5,for t =0, 1, 2, 3, 4, 5. t 012345 N (t)510204080160

Ingeneral, Nt =2tN0;since N0 =5weget Nt =5 2t .

33. Nt+1 =3Nt with N0 =2,for t =0, 1, 2, 3, 4, 5. t 012345 N (t)261854162486

Ingeneral, Nt =3tN0;since N0 =2weget Nt =2 3t

34. Nt+1 =3Nt with N0 =7,for t =0, 1, 2, 3, 4, 5. t 012345 N (t)721631895671701

Ingeneral, Nt =3tN0;since N0 =7weget Nt =7 · 3t

35. Nt+1 =5Nt with N0 =1,for t =0, 1, 2, 3, 4, 5. t 012345 N (t)15251256253125

Ingeneral, Nt =5tN0;since N0 =1weget Nt =1 5t =5t .

36. Nt+1 =7Nt with N0 =4,for t =0, 1, 2, 3, 4, 5. t 012345 N (t)4281961372960467228

Ingeneral, Nt =7tN0;since N0 =4weget Nt =4 7t Copyright © 2018PearsonEducation,Inc.

Discrete-TimeModels,Sequences,andDifferenceEquations

37. Nt+1 = 1 2 Nt with N0 =640,for t =0, 1, 2, 3, 4, 5. t 012345 Nt 640320160804020

Ingeneral, Nt = 1 2 t N0;since N0 =640weget Nt =640 1 2 t

38. Nt+1 = 3 2 Nt with N0 =32,for t =0, 1, 2, 3, 4, 5. t 012345 Nt 324872108162243

Ingeneral, Nt = 3 2 t N0;since N0 =32weget Nt =32 3 2 t

39. Nt+1 = 1 3 Nt with N0 =1215,for t =0, 1, 2, 3, 4, 5. t 012345 Nt 121540513545155

Ingeneral, Nt = 1 3 t N0;since N0 =1215weget Nt =1215 · 1 3 t

40. Nt+1 = 1 3 Nt with N0 =2430,for t =0, 1, 2, 3, 4, 5. t 012345 Nt 2430810270903010

Ingeneral, Nt = 1 3 t N0;since N0 =2430weget Nt =2430 1 3 t .

41. Nt+1 = 1 5 Nt with N0 =31250,for t =0, 1, 2, 3, 4, 5. t 012345 N (t)31250625012502505010

Ingeneral, Nt = 1 5 t N0;since N0 =31250weget Nt =31250 · 1 5 t

42. Nt+1 = 1 4 Nt with N0 =8192,for t =0, 1, 2, 3, 4, 5. t 012345 N (t)81922048512218328

Ingeneral, Nt = 1 4 t N0;since N0 =8192weget Nt =8192 1 4 t = 1

43. Since Nt+1 = RNt =2Nt and N0 =2,theformulais Nt =2 2t =2t+1.Agraphof Nt+1 =2Nt in the Nt-Nt+1 plane,withthepoints(Nt,Nt+1)superimposedonitfor t =0, 1, 2,isbelow: 2 4 6 8 Nt 4 8 12 16 Nt+1

44. Since Nt+1 = RNt =2Nt and N0 =3,theformulais Nt =3 · 2t.Agraphof Nt+1 =2Nt inthe Nt-Nt+1 plane,withthepoints(Nt,Nt+1)superimposedonitfor t =0, 1, 2,isbelow:

45. Since Nt+1 = RNt =3Nt and N0 =1,theformulais Nt =3t.Agraphof Nt+1 =3Nt inthe Nt-Nt+1 plane,withthepoints(Nt,Nt+1)superimposedonitfor t =0, 1, 2,isbelow:

Nt+1

46. Since Nt+1 = RNt =4Nt and N0 =2,theformulais Nt =2 · 4t.Agraphof Nt+1 =4Nt inthe Nt-Nt+1 plane,withthepoints(Nt,Nt+1)superimposedonitfor t =0, 1, 2,isbelow:

47. Since Nt+1 = RNt = 1 2 Nt and N0 =16,theformulais Nt =16 · 1 2 t.Agraphof Nt+1 = 1 2 Nt in the Nt-Nt+1 plane,withthepoints(Nt,Nt+1)superimposedonitfor t =0, 1, 2,isbelow:

Discrete-TimeModels,Sequences,andDifferenceEquations

48. Since Nt+1 = RNt = 1 2 Nt and N0 =64,theformulais Nt =64 1 2 t.Agraphof Nt+1 = 1 2 Nt in the Nt-Nt+1 plane,withthepoints(Nt,Nt+1)superimposedonitfor t =0, 1, 2,isbelow:

49. Since Nt+1 = RNt = 1 3 Nt and N0 =81,theformulais Nt =81 1 3 t.Agraphof Nt+1 = 1 3 Nt in the Nt-Nt+1 plane,withthepoints(Nt,Nt+1)superimposedonitfor t =0, 1, 2,isbelow:

50. Since Nt+1 = RNt = 1 4 Nt and N0 =16,theformulais Nt =16 · 1 4 t.Agraphof Nt+1 = 1 4 Nt in the Nt-Nt+1 plane,withthepoints(Nt,Nt+1)superimposedonitfor t =0, 1, 2,isbelow:

51. Since Nt+1 = RNt =2Nt and N0 =2,theformulais Nt =2 · 2t.Agraphof Nt+1 Nt 1= R 1=1in the NtNt+1 Nt 1plane,withthepoint N0, N1 N0 1 superimposedonit,isbelow.Thereproductive rateisthenumberoforganismsaddedperparentfromtime t totime t +1,whichis Nt+1 Nt 1= R 1=1.

4 6 8

52. Since Nt+1 = RNt =2Nt and N0 =4,theformulais Nt =4 · 2t.Agraphof Nt+1 Nt 1= R 1=1in

the NtNt+1 Nt 1plane,withthepoint N0, N1 N0 1 superimposedonit,isbelow.Thereproductive rateisthenumberoforganismsaddedperparentfromtime t totime t +1,whichis Nt+1 Nt 1= R 1=1.

53. Since Nt+1 = RNt =3Nt and N0 =2,theformulais Nt =2 3t.Agraphof Nt+1 Nt 1= R 1=2in the NtNt+1 Nt 1plane,withthepoint N0, N1 N0 1 superimposedonit,isbelow.Thereproductive rateisthenumberoforganismsaddedperparentfromtime t totime t +1,whichis Nt+1 Nt 1= R 1=2.

54. Since Nt+1 = RNt =4Nt and N0 =1,theformulais Nt =4t.Agraphof Nt+1 Nt 1= R 1=3inthe NtNt+1 Nt 1plane,withthepoint N0, N1 N0 1 superimposedonit,isbelow.Thereproductiverate isthenumberoforganismsaddedperparentfromtime t totime t+1,whichis Nt+1 Nt 1= R 1=3.

3 4 Nt+ Nt - 1

55. Since Nt+1 = RNt = 1 2 Nt and N0 =16,theformulais Nt =16 1 2 t.Agraphof Nt+1 Nt 1= R 1= 1 2 inthe NtNt+1 Nt 1plane,withthepoint N0, N1 N0 1 superimposedonit,isbelow. Thereproductiverateisthenumberoforganismsaddedperparentfromtime t totime t +1,which is Nt+1 Nt 1= R 1= 1 2 10.20.30.40. 50. Nt -1. Nt+1 Nt - 1

56. Since Nt+1 = RNt = 1 2 Nt and N0 =128,theformulais Nt =128 · 1 2 t.Agraphof Nt+1 Nt 1= R 1= 1 2 inthe NtNt+1 Nt 1plane,withthepoint N0, N1 N0 1 superimposedonit,isbelow.

Copyright © 2018PearsonEducation,Inc.

Discrete-TimeModels,Sequences,andDifferenceEquations

Thereproductiverateisthenumberoforganismsaddedperparentfromtime t totime t +1,which is Nt+1 Nt 1= R 1= 1 2

t+1 Nt - 1

100.200. 300. Nt -1.

57. Since Nt+1 = RNt = 1 3 Nt and N0 =27,theformulais Nt =27 · 1 3 t.Agraphof Nt+1 Nt 1=

R 1= 2 3 inthe NtNt+1 Nt 1plane,withthepoint N0, N1 N0 1 superimposedonit,isbelow. Thereproductiverateisthenumberoforganismsaddedperparentfromtime t totime t +1,which is Nt+1 Nt 1= R 1= 2 3 25.50.75. 100. Nt -1. Nt+1 Nt - 1

58. Since Nt+1 = RNt = 1 4 Nt and N0 =64,theformulais Nt =64 · 1 4 t.Agraphof Nt+1 Nt 1=

R 1= 3 4 inthe NtNt+1 Nt 1plane,withthepoint N0, N1 N0 1 superimposedonit,isbelow. Thereproductiverateisthenumberoforganismsaddedperparentfromtime t totime t +1,which is Nt+1 Nt 1= R 1= 3 4 .

50.100.150. 200. Nt

Forexercises59—61,whichrefertoFigure2.9,notethatthefirstgraphinFigure2.9describesapopulationwithaconstantreproductiverate,soitrepresentsexponentialgrowth.Inthesecondpopulation, thereproductiveratedecreasestowardszero,sothat Nt+1 Nt 1decreasestozero.Thismeansthat Nt+1 Nt decreasestowards1,sothatthepopulationeventuallybecomesconstant(atthecarryingcapacity).In thethirdgraph, Nt+1 Nt 1increasestosomeconstant,sothat Nt+1 Nt doesaswell.Thisreflectsapopulation thateventuallygrowsexponentiallysincethereproductiverateiseventuallyessentiallyconstant.

59. (a) Thepopulationwillgrowquicklyatfirst(highreproductiverate),butasitgrows,therewillbe lesssugarforeachindividual,sothegrowthratewillslowandeventuallystop;thepopulation willstabilize.Thisisthesecondgraph.

(b) Asthehabitatislarge,thepopulationwillgrowexponentially(intheabsenceofpredators), atleastuntilsomeenvironmentalconstraintsareencountered.Thisisthefirstgraph.

(c) Inthissituation,thereproductiverateishigherwithincreasedpopulation;thisisthethird graph.

60. (a) Thispopulationwillexhibitexponentialgrowthsince(atleastintheshortterm)thereareno environmentalconstraints.Thisisthefirstgraph.

Copyright © 2018PearsonEducation,Inc.

(b) Whilethereareasmallnumberoflionssothatpreyisplentiful,thegrowthratewillbehigh. Asthepopulationincreases,however,theamountofpreyavailableperindividualdecreases, sothepopulationlevelsoffatthecarryingcapacity.Thisisthesecondgraph.

(c) Asthecolonyoutcompetesothercolonies,theresourcesavailabletoitexpandanditcan continuetogrow.Thisisthethirdgraph.

61. (a) Asthepopulationofcellsgetslarger,theycanacquireadditionalresourcesthroughmetastasis, socancontinuetogrow.Thisisthethirdgraph.

(b) Thenumberofsickindividualsfirstexpandsrapidlyasthereisalargepoolofuninfected individuals.Asthoseresources(wellindividuals)becomescarce,thegrowthrateslowsdown andeventuallystops.Thisisgraph2.

(c) Therearenoobviousgrowthconstraintsintheshortterm,sothepopulationgrowsexponentially.Thisisthefirstgraph.

62. (a) Therecursionis Nt+1 = 3 2 Nt,sincethepopulationgrowsby50%eachyear.Thustheformula is Nt = N1 3 2 t 1 (notethatweuse t 1ratherthan t sinceattime1wewanttohave N1 individuals).Further, N1 =16.sotheformulais Nt =16 3 2 t 1

(b) Thepopulationsizeis100when100=16 3 2 t 1,sothat 3 2 t 1 = 25 4 .Thisgives (t 1)ln 3 2 =ln 25 4 ⇒ t 1= ln25 ln4 ln3 ln2 ⇒ t =1+ ln25 ln4 ln3 ln2 ≈ 5 52years

(c) Thepopulationsizeis1000when1000=16 3 2 t 1,sothat 3 2 t 1 = 125 2 .Thisgives (t 1)ln 3 2 =ln 125 2 ⇒ t 1= ln125 ln2 ln3 ln2 ⇒ t =1+ ln125 ln2 ln3 ln2 ≈ 11 2years

(d) Accordingtothemodel,thepopulationsizeis1000000when1000000=16 3 2 t 1,sothat 3 2 t 1 =62500.Thisgives

(t 1)ln 3 2 =ln62500 ⇒ t 1= ln62500 ln3 ln2 ⇒ t =1+ ln62500 ln3 ln2 ≈ 28 2years

Themodelisunlikelytobevalidforsuchalargepopulationunlesstheislandisverylargeor thebirdsrequirelittlespace(andfood).

2.2Sequences

2.2.1

1. With an = n +1,weget n 012345 an 123456

2. With an =3n2,weget n 012345 an 0312274875

Copyright © 2018PearsonEducation,Inc.

Discrete-TimeModels,Sequences,andDifferenceEquations

3. With an = n+2 n ,weget n 012345 an undefined32

4. With an = n n+2 ,weget n 012345 an 0 1 3 1 2

5. WIth f (n)= 1 (1+n)2 ,wehave u 012345

6. With an = 1 √n+1 ,weget n 012345

7. With f (n)=(n +1)2,wehave n 012345 f (n)149162536

8. With f (n)=(n +4)1/3,weget n 012345

9. With an =( 1)n +( 1)n+1,notethatif k iseventhen( 1)k =1,whileif k isoddthen( 1)k = 1. Sinceexactlyoneof n and n +1isevenandtheotherisodd,thesumiszero,sothat an =0for all n

10. With an =( 1)n +1,notethatif n iseventhen( 1)n =1,whileif n isoddthen( 1)n = 1.It followsthat an =1+1=2if n isevenand an = 1+1=0if n isodd: n 012345 an 202020

11. With an = n 2 n+1 ,weget n 012345

12. With an = n3√n +1,weget n 012345

13. With f (n)= en/2,weget n 012345

f (n)1 √eee3/2 e2 e5/2 Copyright © 2018PearsonEducation,Inc.

14. With f (n)=log(n +1),weget n 012345 f (n)0log2log3log4log5log6

15. With f (n)= 1 3 n,wehave n 012345 f (n)1 1 3 1 9 1 27 1 81 1 243

16. With f (n)=20 2n,weget n 012345

17. Thisappearstobethesequenceofsquaresofintegers, an =(n +1)2 for n =0, 1, 2,....Then a5 =36, a6 =49, a7 =64,and a8 =81.

18. Thisappearstobethesequence an = √n,for n =0, 1, 2, 3, 4.Thusfor n =5, 6, 7, 8wehave an = √5, √6, √7, √8.

19. Thisappearstobethesequence an = 1 n+1 for n =0, 1, 2,....Then a5 = 1

20. Thisappearstobethesequence an = ( 1)n+1 (n+1)2 ,for n =0, 1, 2, 3, 4.Thusfor n =5, 6, 7, 8wehave an = 1 36 , 1 49 , 1 64 , 1 81

21. Thisappearstobethesequence an = n+1 n+2 ,for n =0, 1, 2, 3, 4.Thusfor n =5, 6, 7, 8wehave an = 6 7 , 7 8 , 8 9 , 9 10 .

22. Notethateachtermisonemorethanasquare.Thisappearstobethesequence an =(n +2)2 +1= n2 +4n +5.Thusfor n =5, 6, 7, 8wewouldget50,65,82,and101.

23. Thisappearstobethesequence an = (n +1)+ en+1,for n =0, 1, 2, 3, 4.Thusfor n =5, 6, 7, 8 wehave an = √6+ e6 , √7+ e7 ,

,

24. Thisappearstobesuccessivepowersof3: an =3n for n =0, 1, 2,....Then a5 =243, a6 =729, a7 =2187,and a8 =6561.

25. Thegivensequenceis a0 =0,a1 =1,a2 =2,a3 =3and a4 =4.Thuswecanguesstheexpression tobe an = n for n =0, 1, 2,...

26. Thegivensequenceis a0 =0,a1 =2,a2 =4,a3 =6and a4 =8.Thuswecanguesstheexpression tobe an =2n for n =0, 1, 2,...

27. Thegivensequenceis a0 =1,a1 =2,a2 =4,a3 =8and a4 =16.Thuswecanguessthe expressiontobe an =2n for n =0, 1, 2,...

28. Thegivensequenceis a0 =1,a1 =3,a2 =5,a3 =7and a4 =9.Thuswecanguesstheexpression tobe an =2n +1for n =0, 1, 2,....

29. Thegivensequenceis a0 =1,a1 = 1 3 ,a2 = 1 9 ,a3 = 1 27 and a4 = 1 81 .Thuswecanguessthe expressiontobe an = 1 3n for n =0, 1, 2,....

30. Thegivensequenceis a0 = 1 3 ,a1 = 2 5 ,a2 = 3 7 ,a3 = 4 9 and a4 = 5 11 .Thuswecanguessthe expressiontobe an = n+1 2n+3 for n =0, 1, 2,...

Copyright © 2018PearsonEducation,Inc.

Discrete-TimeModels,Sequences,andDifferenceEquations

31. Thegivensequenceis a0 = 1,a1 =2,a2 = 3,a3 =4and a4 = 5.Thuswecanguessthe expressiontobe an =( 1)n+1(n +1)for n =0, 1, 2,...

32. Thegivensequenceis a0 =9, a1 =16, a2 =25, a3 =36,and a4 =49.Wecanguesstheexpression tobe an =(n +3)2 for n =0, 1, 2,...

33. Thegivensequenceis a0 =5, a1 =7, a2 =9, a3 =11,and a4 =13.Wecanguesstheexpression tobe an =2n +5for n =0, 1, 2,...

34. Thegivensequenceis a0 =8, a1 =18, a2 =32, a3 =50,and a4 =72.Notethat 1 2 an =(n +2)2 forthegivenvaluesof n,soweguessthesequencetobe an =2(n +2)2 for n =0, 1, 2,....

35. Thegivensequenceis a0 =2, a1 =0, a2 =2, a3 =0,and a4 =2.Recallingexercise10inthis section,wecanwritethisas an =( 1)n +1.

36. Thegivensequenceisrepetitionsofthesequence0, 1, 2.Onewayofdefining an isthatitisthe remainderupondividing n by3.

2.2.2

37. Wegetthefollowingsequencefor an+1 = √an +1and a0 =1:

n 01234567891011

an 11.4141.5541.5981.6121.6161.6171.6181.6181.6181.

38. Wegetthefollowingsequencefor an+1 = 1 an+1 and a0 =2: n 012345678910

an 20.33330.750.57140.63640.61110.62070.61700.61840.61790.6181

n 111213

an 0 61800 61800 6180

39. Wegetthefollowingsequencefor an+1 = an 1 an and a0 =3:

n 012345678

an 32 6672 2921 8551 3160 557 1 240 0 4341 873

n 91011

an 1 3390 592 1 095

40. Wegetthefollowingsequencefor an+1 = an + 1 an and a0 =2:

n 012345678910

an 122 52 93 2453 5533 8344 0954 3394 5704 789

n 111213

an 4.9985.1985.390

41. Wegetthefollowingsequencefor an+1 = √an +1and a0 =6:

n 012345678910

an 6 0001 8571 5371 4971 4911 4901 4901 4901 4901 4901 490

n 1112

an 1 4901 490 Copyright © 2018PearsonEducation,Inc.

42. Wegetthefollowingsequencefor an+1 = an + 1 a2 n and a0 =1: n 012345678910

an 122 252 4482 6142 7612 8923 0123 1223 2243 321 n 1112 an 3 4113 497

43. Wegetthefollowingsequencefor an+1 = 1 4 an +1and a0 =0: n 012345678910

an 011 251 3131 3281 3321 3331 3331 3331 3331 333 n 11121314

an 1.3331.3331.3331.333

44. Wegetthefollowingsequencefor an+1 = a2 n +1and a0 =1: n 012345678910

an 11 4141 73222 2362 4492 6462 8283 0003 1623 317 n 111213141516 an 3.4643.6063.7423.87344.123

2.2.3

45. Weget

46. Weget

n→∞

47. Weget a0 =0, a1

sobylimitlaw4,

48. Weget a0 =0, a

.Now,

Toseethefinalequality,notethatlimn→∞ 2=2andbylimitlaw9,limn

2 n =0.Sinceboth theselimitsexistandarefinite,limitlaw5thenimpliestheresult.Finally,bylimitlaw9,

© 2018PearsonEducation,Inc.

Discrete-TimeModels,Sequences,andDifferenceEquations

49. Weget a0 =5, a1 =3, a2 = 9 5 , a3 = 7 5 , a4 = 21 17 ,and a5 = 15 13 .Now,

Bylimitlaw9,limn→∞ 4 n2+1 =0,sowecanbreakupthelimitabovebylimitlaw1:

50. Weget a0 =1, a1 = 1 √2 , a2 = 1 √3 , a3 = 1 2 , a

,bylimitlaw9weget

51. a0 isundefined,and a1 = 1, a2 = 1 2 ,

andthatbylimitlaw9,limn→∞ |an| =0.Sincethe an havelimitzeroinabsolutevalue,the an themselvesmustalsohavelimitzero.

52. Weget a0 = 1 3 , a1 = 1 4 , a2 = 1 11 , a3 = 1 30 , a4 = 1 67 ,and a5 = 1 128 .Notethat |an| = 1 n3+3 , andthatbylimitlaw9,limn→∞ |an| =0.Sincethe an havelimitzeroinabsolutevalue,the an themselvesmustalsohavelimitzero.

53. Wehave a0 =0, a1 = 1 2 , a2 = 4 3 , a3 = 9 4 ,and a4 = 16 5 .Now,

Byanargumentsimilartothatgiveninthetextforfindinglimn→∞ n+1 n weseethatthelatter termhaslimit2,whilelimn→∞(n +1)= ∞,sothelimitofthesequenceis ∞.

54. Wehave a0 = 1 2 , a1 = 2 3 , a2 = 3 4 , a3 = 4 5 ,and a4 = 5 6 .Now,

Applyinglaws9and1giveslimn→∞ 1 1 n+2 =limn→∞ 1=1.

55. Wehave a0 =0, a1 =1, a2 = √2, a3 = √3,and a4 =2.Sincethetermsgrowwithoutboundas n →∞,weseethatlimn→∞ √n = ∞

56. Wehave a0 =3, a1 =4, a2 =7, a3 =12,and a4 =19.Sincethetermsgrowwithoutboundas n →∞,weseethatlimn→∞(n2 +3)= ∞.

57. Wehave a0 =1, a1 =2, a2 =4, a3 =8,and a4 =16.Sincethetermsgrowwithoutboundas n →∞,weseethatlimn→∞ 2n = ∞.

58. Wehave a0 =8, a1 =16, a2 =32, a3 =64,and a4 =128.Sincethetermsgrowwithoutboundas n →∞,weseethatlimn→∞ 2n+3 = ∞.

59. Wehave a0 =1, a1 =3, a2 =9, a3 =27,and a4 =81.Sincethetermsgrowwithoutboundas n →∞,weseethatlimn→∞ 3n = ∞.

Copyright © 2018PearsonEducation,Inc.

60. Wehave a0 =1, a1 = 1 9 , a2 = 1 81 , a3 = 1 729 ,and a4 = 1 6561 .Further, lim n→∞ 3 2n =lim n→∞ 1 9n ; since9n growswithoutboundas n →∞,itfollowsthatlimn→∞ 9n = ∞,sobylimitlaw9, limn→∞ 3 2n =0.

61. With an = 1 n ,since n growswithoutboundas n →∞,itfollowsthatlimn→∞ an =0.Now,we needtofindaninteger N suchthat 1 n 0 < =0 01whenever n>N .Solvingtheinequality

1 n 0 < 0 01forpositive n,weget 1 n < 0 01or n> 1 0 01 =100.Thusthesmallestvalueof N thatwecanchooseis N =100.Andindeed a101 = 1 101 ≈ 0.00990 < 0.01.

62. With an = 1 n ,since n growswithoutboundas n →∞,itfollowsthatlimn→∞ an =0.Now,we needtofindaninteger N suchthat 1 n 0 < =0.02whenever n>N .Solvingtheinequality

1 n 0 < 0 02forpositive n,weget 1 n < 0 02or n> 1 0 02 =50.Thusthesmallestvalueof N that wecanchooseis N =50.Andindeed a51 = 1 51 ≈ 0 0196 < 0 02

63. With an = 1 n2 ,since n2 growswithoutboundas n →∞,itfollowsthatlimn→∞ an =0.Now,we needtofindaninteger N suchthat 1 n2 0 < =0 01whenever n>N .Solvingtheinequality

1 n2 0 < 0 01weget 1 n2 < 0 01or n2 > 1 0 01 =100.Thisgives n> 10,sothesmallestvalueof N thatwecanchooseis N =10.Andindeed

a11 = 1 121 ≈ 0.008 < 0.01.

64. With an = 1 n2 ,since n2 growswithoutboundas n →∞,itfollowsthatlimn→∞ an =0.Now,we needtofindaninteger N suchthat 1 n2 0 < =0.001whenever n>N .Solvingtheinequality

1 n2 0 < 0.001weget 1 n2 < 0.001or n2 > 1 0 001 =1000.Thisgives n> √1000 ≈ 31.62,sothe smallestvalueof N thatwecanchooseis N =31.Andindeed a32 = 1 322 = 1 1024 ≈ 0 0009766 < 0 001

65. With an = 1 √n ,since √n growswithoutboundas n →∞,itfollowsthatlimn→∞ an =0.Now,we needtofindaninteger N suchthat 1 √n 0 < =0 1whenever n>N .Solvingtheinequality

1 √n 0 < 0 1weget 1 √n < 0 1or √n> 1 0 1 =10.Thisgives n> 100,sothesmallestvalueof N thatwecanchooseis N =100.Andindeed a101 = 1 √101 ≈ 0 0995 < 0 1

66. With an = 1 √n ,since √n growswithoutboundas n →∞,itfollowsthatlimn→∞ an =0.Now,we needtofindaninteger N suchthat 1 √n 0 < =0 05whenever n>N .Solvingtheinequality

1 √n 0 < 0 05weget 1 √n < 0 05or √n> 1 0 05 =20.Thisgives n> 400,sothesmallestvalueof N thatwecanchooseis N =400.Andindeed a401 = 1 √401 ≈ 0 04994 < 0 05

Copyright © 2018PearsonEducation,Inc.

Discrete-TimeModels,Sequences,andDifferenceEquations

67. With an = ( 1)n n ,since n growswithoutboundas n →∞,itfollowsthatlimn→∞ an =0.Now, weneedtofindaninteger N suchthat ( 1)n n 0 = ( 1)n n = 1 n < =0 01whenever n>N.

Solvingtheinequality 1 n < 0 01weget n> 100,sothesmallestvalueof N thatwecanchooseis N =100.Andindeed |a101 0| = ( 1)11 11 ≈ 0.0099 < 0.01.

68. With an = e n = 1 en ,since en growswithoutboundas n →∞,itfollowsthatlimn→∞ an =0. Thuswewanttofindaninteger N suchthat |e n 0| = |e n| < =0 01whenever n>N .Since e n isalwayspositive,thisisequivalenttosayingthat e n < 0 01for n>N .Takingnaturallogs gives n< ln0.01 ≈−4.61,sothat n> 4.62.Sotaking N =4(thatis, n ≥ 5)willsuffice.And indeed e 5 ≈ 0.0067 < 0.01.

69. With an = e 3n = 1 e3n ,since e3n growswithoutboundas n →∞,itfollowsthatlimn→∞ an =0. Thuswewanttofindaninteger N suchthat e 3n 0 = e 3n < =0 001whenever n>N Since e 3n isalwayspositive,thisisequivalenttosayingthat e 3n < 0 001for n>N .Taking naturallogsgives 3n< ln 0 001 ≈−6 91,sothat n> 6 91 3 ≈ 2 30.Sotaking N =2(thatis, n ≥ 3)willsuffice.Andindeed e 3 3 ≈ 0 00012 < 0 001.

70. Wehave an =ln 1+ 1 n .Sincelimn→∞ 1+ 1 n =1bylimitlaws9and1,itfollowsthat limn→∞ ln 1+ 1 n =limn→∞ ln1=0.Thuswewanttofindaninteger N suchthat ln 1+ 1 n 0 = ln 1+ 1 n < =0.1whenever n>N.

Since1+ 1 n > 1for n> 0,itfollowsthatln 1+ 1 n > 0,sowecanremovetheabsolutevaluesigns andsolveln 1+ 1 n < 0.1.Exponentiatebothsides,giving1+ 1 n = e0 1,sothat n = 1 e0 1 1 ≈ 9.51. Sotaking N =9(thatis, n ≥ 10)willsuffice.Andindeedln 1+ 1 10 ≈ 0 095 < 0 1.

71. With an =2 n = 1 2n ,since2n growswithoutboundas n →∞,itfollowsthatlimn→∞ an =0. Thuswewanttofindaninteger N suchthat |2 n 0| = |2 n| < =0 01whenever n>N .Since 2 n isalwayspositive,thisisequivalenttosayingthat2 n < 0 01for n>N .Takingnaturallogs gives n ln2 < ln0 01,sothat n> ln100 ln2 ≈ 6 64.Sotaking N =6(thatis, n ≥ 7)willsuffice.And indeed2 7 ≈ 0.007 < 0.01.

72. Wehave an =log 1+ 2 n2 .Sincelimn→∞ 1+ 2 n2 =1bylimitlaws9and1,itfollowsthat limn→∞ log 1+ 2 n2 =limn→∞ log1=0.Thuswewanttofindaninteger N suchthat log 1+ 2 n2 0 = log 1+ 2 n2 < =0.05whenever n>N.

Since1+ 2 n2 > 1for n> 0,itfollowsthatlog 1+ 2 n2 > 0,sowecanremovetheabsolutevalue signsandsolvelog 1+ 2 n2 < 0.05.Exponentiatebothsides,giving1+ 2 n2 =100 05,sothat n 2 2 = 1 100 05 1 .Solvingfor n gives n ≈ 4 05.Sotaking N =4(thatis, n ≥ 5)willsuffice.And indeedlog 1+ 2 25 ≈ 0.033 < 0.05.

Copyright © 2018PearsonEducation,Inc.

73. Wemustshowthatforevery > 0wecanfind N suchthat 3 n 0 = 3 n < whenever n>N.

Tofindacandidatefor N ,wesolve 3 n < forpositive n.Thisgives 3 n < ,or n> 3 .Thus N = 3 givestherequiredinequality.

74. Wemustshowthatforevery > 0wecanfind N suchthat 1 n +1 0 = 1 n +1 < whenever n>N.

Tofindacandidatefor N ,wesolve 1 n+1 < forpositive n.Thisgives 1 n+1 < ,or n +1 > 1 ,so that n> 1 1.Thuswemaychoose N = 1 ,sincethisisclearlygreaterthan 1 1.If n>N then 1 n+1 < 1 n < 1 N =

75. Wemustshowthatforevery > 0wecanfind N suchthat 1 n2 0 = 1 n2 < whenever n>N.

Tofindacandidatefor N ,wesolve 1 n2 = 1 n2 < forpositive n.Thisgives n2 > 1 ,or n> 1 √ Thus N = 1 √ givestherequiredinequality.

76. Wemustshowthatforevery > 0wecanfind N suchthat e 2n 0 = e 2n < whenever n>N.

Tofindacandidatefor N ,wesolve e 2n < for n.Since e 2n > 0forall n,wecandrop theabsolutevaluesigns,giving e 2n < .Nowtakenaturallogs,giving 2n< ln ,sothat n> ln 2 = 1 2 ln 1 .Thus N = 1 2 ln 1 givestherequiredinequality.

77. Wemustshowthatforevery > 0wecanfind N suchthat 2 3n 0 = 2 3n < whenever n>N.

Tofindacandidatefor N ,wesolve 2 3n < for n.Since2 3n > 0forall n,wecandrop theabsolutevaluesigns,giving2 3n < .Nowtakenaturallogs,giving 3n ln2 < ln ,sothat n> ln 3ln2 = 1 3ln2 ln 1 .Thus N = 1 3ln2 ln 1 givestherequiredinequality.

78. Wemustshowthatforevery > 0wecanfind N suchthat n n +1 1 = 1 n +1 < whenever n>N.

Tofindacandidatefor N ,wesolve 1 n+1 < forpositive n.Thisgives 1 n+1 < ,or n +1 > 1 , sothat n> 1 1.Thuswemaychoose N = 1 ,sincethisisclearlygreaterthan 1 1.If n>N then 1 n+1 < 1 n < 1 N = .

Copyright © 2018PearsonEducation,Inc.

Discrete-TimeModels,Sequences,andDifferenceEquations

79. Sincelimn→∞ 1 n =0andlimn→∞ 2 n2 =0bylimitlaw9(sincelimn→∞ n = ∞ andlimn→∞ n2 = ∞), limitlaw1impliesthat

80. Sincelimn→∞ 2 n =0andlimn→∞ 3 n2+1 =0bylimitlaw9(sincelimn→∞ n = ∞ andlimn→∞ n2 + 1= ∞),limitlaw1impliesthat

81. Wecanwrite n+1 n as1+1/n.Sincebothlimn→∞ 1andlimn→∞ 1 n existandareequalto1and0 respectively,wehavebylimitlaw1that

.

82. Wehave

Since2n1/2 increaseswithoutboundas n →∞,wehavelimn→∞(2n1/2)= ∞.Also,since √n increaseswithoutboundas n →∞,wehavelimn→∞ √n = ∞,sobylimitlaw9,limn→∞ 3 √n =0. Thusbylimitlaw5,thegivenlimitis ∞

83. Wecanwrite n 2+1 n2 as1+ 1 n2 .Sincebothlimn→∞ 1existsandisequalto1,andbylimitlaw9 limn→∞ 1 n2 existsandisequalto0,wehavebylimitlaw1that

84. Wehave

Since3n increaseswithoutboundas n →∞,wehavelimn

3n = ∞.Also,since n increases withoutboundas n →∞,wehavelimn→∞ n = ∞,sobylimitlaw9,limn→∞ 5 n =0.Thusby limitlaw5,thegivenlimitis

85. Factorthedenominatorof n+1 n2 1 ,sothat

(Notethatthisisvalidonlyif n = 1,butsinceweareinterestedinthebehavioras n →∞,we maycertainlyassumethat n = 1.)Bylimitlaw9,since n 1increaseswithoutboundas n →∞, weseethatlimn→∞ 1 n 1 existsandisequalto0.Thusbylimitlaw9

Copyright © 2018PearsonEducation,Inc.

86. Wehave

Since n2 increaseswithoutboundas n →∞,wehavelimn→∞ n2 = ∞,sobylimitlaw9, limn→∞ 4 n2 =0,andthenlimitlaw1impliesthatlimn

1=1, limitlaw4applies,giving

87. Notethat 1 3 n = 1 3n ,andthat3n increaseswithoutboundas n →∞.Thuslimn→∞ 3n = ∞,so thatlimn→∞ 1 3 n =0bylimitlaw9.Further,limn→∞ 2n = ∞.Thusbylimitlaw5,

88. First,noticethattheexpression3 n 4 n canalsobewrittenas 1 3 n 1 4 n.ByExample12, weknowthatbothlimn→∞ 1 3 n andlimn→∞ 1 4 n existandareequalto0.Thusbylimitlaw1 wehave

.

89. First,noticethattheexpression(n +2 n)/n canalsobewrittenas1+ 1 2 n 1 n .Sincethelimits limn→∞ 1, limn→∞ 1 2 n andlimn→∞ 1 n existandareequalto1,0and0respectively,wehavethat

90. Notethat

Sincelim

=1+0 0=1.

,itfollowsfromlimitlaw9thatlim

=0, sothat

2.2.4

91. Byrepeatedlyapplyingtherecursiontotheequation an+1 =2an with a0 =1,wehave

92. Byrepeatedlyapplyingtherecursiontotheequation

93. Byrepeatedlyapplyingtherecursiontotheequation

94. Byrepeatedlyapplyingtherecursiontotheequation

95. Byrepeatedlyapplyingtherecursiontotheequation

96. Byrepeatedlyapplyingtherecursiontotheequation

97. Byrepeatedlyapplyingtherecursiontotheequation an+1 = an 1+an with a0 =1,wehave

98. Byrepeatedlyapplyingtherecursiontotheequation an+1 = √an with a0 =16,wehave

99. Byrepeatedlyapplyingtherecursiontotheequation

100. Byrepeatedlyapplyingtherecursiontotheequation

101. FollowingthemethodofExample14,herewehave f (a)= 1 2 a +2.If a isafixedpoint,thenit mustsatisfytheequation a = f (a).Thentheonlyfixedpointis a

102. FollowingthemethodofExample14,herewehave f (a)= 1 3

+ 4 3 .If a isafixedpoint,thenit mustsatisfytheequation a = f (a).Thatis,

Thustheonlyfixedpointis a =2.

103. FollowingthemethodofExample14,wehave

satisfytheequation a = f (a).Thatis,

Theonlyfixedpointis a = 5 3

104. FollowingthemethodofExample14,wehave f (a)= a2 a.If a isafixedpoint,thenitmust satisfytheequation a = f (a).Thatis,

Thetwofixedpointsare a =0and a =2.

105. FollowingthemethodofExample14,herewehave f (

)= 4 a .If a isafixedpoint,thenitmust satisfytheequation a = f (a).Thatis,

Thustherearetwofixedpoints,namely a =2and a = 2.

106. FollowingthemethodofExample14,wehave f (

)= 4 a 3 .If a isafixedpoint,thenitmustsatisfy theequation a = f (a).Thatis,

Thetwofixedpointsare a = 1and a =4.

107. FollowingthemethodofExample14,herewehave f (a)= 2 a+2 .If a isafixedpoint,thenitmust satisfytheequation a = f (a).Thatis,

Thustherearetwofixedpoints,namely a = 1+ √3and a = 1 √3.

108. FollowingthemethodofExample14,wehave f (a)= 8 √a .If a isafixedpoint,thenitmustsatisfy theequation a = f (a).Thatis,

Theonlyfixedpointis a =4.

Copyright © 2018PearsonEducation,Inc.

109. FollowingthemethodofExample14,herewehave f (a)= √5a.If a isafixedpoint,thenitmust satisfytheequation a = f (a).Thatis, a = √5a ⇒ a 2 =5a ⇒ a(a 5)=0 ⇒ a =0or5

Thustherearetwofixedpoints,namely a =0and a =5.

110. FollowingthemethodofExample14,wehave f (a)= √a +2.If a isafixedpoint,thenitmust satisfytheequation a = f (a).Thatis,

However,notethat √a +2 ≥ 0,sothat a = 1cannotbeafixedpoint.Theonlyfixedpointis a =2.

111. Wefirstcomputethefixedpoints.AsinExample14,wesolvetheequation a = 1 3 a + 4 3 ,giving a =2,soweguessthatthelimitis2.Evaluating an forvariousvaluesof n supportsthatconclusion:

0123456 an 01 3331 7781 9261 9751 9921 997

112. Wefirstcomputethefixedpoints.AsinExample14,wesolvetheequation a = 1 3 a + 1 9 tofind that 2a 3 = 1 27 ,orthat a = 1 18 .Nowwhen a0 =1,then an < 1forall n =1, 2, 3,...,andsowe couldconcludethatlimn→∞ an = 1 18 ≈ 0 05556.Evaluating an forvariousvaluesof n supports thatconclusion:

n 0123456 an 10.370370.160490.090540.067220.059440.05685

113. Wefirstcomputethefixedpoints.AsinExample14,wesolvetheequation a = √2a tofindthat a(a 2)=0,whichmeansthat a =0or a =2.Nowwhen a0 =1,then an > 1forall n =1, 2, 3,... andsowecouldconcludethatlimn→∞ an =2.Evaluating an forvariousvaluesof n supportsthat conclusion:

n 0123456 an 121/2 2

114. Wefirstcomputethefixedpoints.AsinExample14,wesolvetheequation a = 3 a+2 ,giving a =1 or a = 3.Since a1 ispositive,succeedingtermsarepositiveaswell,soweguessthatthelimitis 1.Evaluating an forvariousvaluesof n supportsthatconclusion: n 0123456 an 01 50 8571 050 9841 0050 998

115. Wefirstcomputethefixedpoints.AsinExample14,wesolvetheequation a =2a(1 a)tofind that a(2a 1)=0,whichmeansthat a =0or a = 1 2 .Nowwhen a0 =0 1,then an > 0 1forall n =1, 2, 3,... andsowemightconcludethatlimn→∞ an = 1 2 .Evaluating an forvariousvaluesof n supportsthatconclusion:

n 0123456

an 0.10.180.29520.416110.485920.49960.49999

116. Notethatif a0 =0,then an =0forall n,sinceeach ai isamultipleofthepreviousone.Thus limn→∞ an =0.

Copyright © 2018PearsonEducation,Inc.

Discrete-TimeModels,Sequences,andDifferenceEquations

117. Wefirstcomputethefixedpoints.AsinExample14,wesolvetheequation a = 1 3 a + 2 a ,giving a =1or a = 1.Since a0 ispositive,succeedingtermsarepositiveaswell,soweguessthatthe limitis1.Evaluating an forvariousvaluesof n supportsthatconclusion:

0123456 an 31 2220 9531 0170 9941 0020 999

118. Wefirstcomputethefixedpoints.AsinExample14,wesolvetheequation a = 1 2 a + 9 a tofind that a = 9 a ,orthat a = ±3.Nowwhen a0 = 1,then an < 1forall n =1, 2, 3,... soweguess thatlimn→∞ an = 3.Evaluating an forvariousvaluesof n supportsthatconclusion:

3 n=0

Copyright © 2018PearsonEducation,Inc.

129. Notethateachdenominatorisfivegreaterthanthecorrespondingnumerator,soonewaytowrite

2.3ModelingwithRecursionRelations

2.

3.

4.

Nt+1 = Nt +numberofcodfishbornduringtheyear numberofcodfishdyingofoldageduringtheyear numberofcodfishkilledbypredatorsduringtheyear numberofcodfishremovedbyfishingboatsduringtheyear

Nt+1 = Nt +numberofchildrenbornduringtheyear +numberofpeoplemovingintothetownfromothertownsduringtheyear numberofpeopledyingfromanycauseduringtheyear numberofpeopleleavingthetowntoliveinothertownsduringtheyear

Nt+1 = Nt +numberofkakapobirthsinthewildduringtheyear +numberofkakaporeintroducedintothewildfromcaptivebreedingduringayear numberofkakaporemovedforcaptivebreedingduringtheyear numberofkakapokilledbypredatorsduringtheyear numberofkakapodeathsfromdiseaseduringtheyear

Nt+1 = Nt +numberoftreesseededinthewildduringtheyear +numberoftreesplantedbypeopleduringtheyear numberoftreeskilledbydiseaseduringtheyear numberoftreescutdownbyloggersduringtheyear

Copyright © 2018PearsonEducation,Inc.

5.

Nt+1 = Nt +areaofreefrestoredorrebuiltduringtheyear areakilledbyoceanacidificationduringtheyear areakilledbyfishingduringtheyear

6. Notethatthenumberofrhinosborninotherparksduringtheyeardoesnotimpactthepopulation inthenationalparkunderconsideration.Neitherdoesthenumberofillorinjuredrhinos,the numberoffemalerhinos,orthenumberthatbecomepregnant(thoughthelattertwocategories arecertainlyinterestingforpopulationconsideration,theydonotdirectlyaffectthepopulation— onlythenumberofbirthsdoes).

Nt+1 = Nt +numberofrhinosbornintheparkduringtheyear +rhinosintroducedintotheparkfromcaptivebreedingprogramsduringtheyear +rhinosrelocatedtothisparkfromotherparksduringtheyear rhinosmovedoutofthisparktootherparksduringtheyear rhinosthatdieduringtheyear

7. Sincewearemodelingthepopulationofamœba,notthepopulationofbacteria,thenumberof bacteriaontheplate,thenumberthatareeateninonehour,andthenumberthatdivideinto twocellsinonehourareirrelevanttothemodel.Theycertainlyaffecttheamœbapopulationby modifyingthefoodsupply,buttheyarenotdirectinputstothemodel.

Nt+1 = Nt +numberofamœbacellsthatdivideintotwocellsinonehour numberofamœbathatdieinonehour

8. Thetotalnumberofstudentsoncampus,andthenumberwhoarenotsick,arenotdirectinputsto themodel(althoughtheydohaveaneffectontherateatwhichthediseasespreads).Thenumber ofdoctorsornursesisalsonotadirectinput,thoughittoohasaneffectonthenumberofstudents withtheflu.

Nt+1 = Nt +numberofstudentswhocatchtheflu numberofstudentswhorecoverfromthefluinoneday numberofstudentswhoreturnhometorecuperatefromthefluinoneday

9. (a) (i) Ifthereare Nt individuals,then Nt · 0 5ofthosearefemale.Ofthose,onequarterlays aneggthisyear(sinceonaverageeachfemalelaysonceeveryfouryears),sothereare Nt · 0 5 · 0 25eggs.Ofthose,only29%=0 29survivethefirstyear,sothenumberof birthsthatsurvivethefirstyearis Nt 0 5 0 25 0 29=0 03625Nt

(ii) Sinceoneinfiftywilldieinagivenyear,thedeathsreducethepopulationby 1 50 Nt = 0.02Nt.

(iii) Therecursionformula,fromtheabovecalculations,is Nt+1 = Nt +0 03625Nt 0 02Nt =

1 01625Nt.Inthefirstfiveyears,thepopulationisgivenbythetablebelow: t 012345 Nt 5050.851.652.553.354.2

Ofcourse,intherealworld,therewouldalwaysbeanintegernumberofindividuals,but keepingthefractionsduringthecomputationpreventserrorsfrombuildinguptooquickly.

Copyright © 2018PearsonEducation,Inc.

(iv) Theformulainpart(iii)representsexponentialgrowth;since N0 =50theformulais Nt =50 · 1 01625t.Thepopulationreaches n individualswhen

n =50 1 01625t ⇒ n 50 =1 01625t ⇒ ln n 50 = t ln1 01625 ⇒ t = ln n/50 ln1 01625

Sothepopulationreaches n =100and n =200atthefollowingtimes:

n =100 t = ln 100/50 ln1 01625 = ln2 ln1 01625 ≈ 43years

n =200 t = ln 200/50 ln1 01625 = ln4 ln1 01625 ≈ 86years

(b) (i) Ifstrategy1isimplemented,thenthenumberofbirthssurvivingthefirstyearbecomes Nt · 0 5 · 0 5 · 0 29=0 0725Nt,sinceonaveragehalfthefemaleswilllayeachyear.Sothe recurrencebecomes Nt+1 = Nt +0 0725Nt 0 02Nt =1 0525Nt.Thepopulationinthe nextfiveyearsisasfollows:

t 012345

Nt 5052 655 458 361 464 6

(ii) Ifstrategy2isimplemented,thenthenumberofbirthssurvivingthefirstyearbecomes Nt · 0 5 · 0 25 · 0 75=0 09375Nt,sincethreequartersoftheeggswillsurvivetheirfirst year.Sotherecurrencebecomes Nt+1 = Nt +0 09375Nt 0 02Nt =1 07375Nt.The populationinthenextfiveyearsisasfollows:

t 012345

Nt 5053 757 661 966 571 4

(iii) Clearlythesecondstrategycausesthepopulationtoincreasemorerapidly.

10. (a) (i) Ifthereare Nt individuals,50%=0.5ofthemarefemale,sothereare0.5 Nt females. Ofthose,75%=0 75ofthemarefemalesofreproductiveage,sothereare0 75 0 5 Nt femalesofreproductiveage.Finally,ofthose,22%=0 22willgivebirthinagivenyear, sothereare0 75 · 0 5 · 0 22 · Nt =0 0825Nt birthseachyear.

(ii) 4 5%=0 045ofthe Nt individualswilldie,sothenumberofdeathsis0 045Nt

(iii) Fromthepreviousparts,therecursionrelationis Nt+1 = Nt +0 0825Nt 0 045Nt = 1 0375Nt.Thisrepresentsexponentialgrowth; Nt = N0 · 1 0375t;ifthereare300gorillas initially,theformulais Nt =300 · 1 0375t

(iv) Usingtheformulaabove,weget t 012510

Nt 300311 2322 9360 6433 5

(v) Thepopulationwilldoubleto600when600=300·1 0375t,or1 0375t =2.Takingnatural logsandsolvingfor t gives t = ln2 ln1.0375 ≈ 18 8years

(b) (i) Sincethebirthrateis0 0825,inorderforthepopulationtoremainstagnant,thedeath ratewouldhavetobethesame,or0 0825=8 25%.

(ii) Sincethenumberofdeathsis0 045Nt,inorderforthepopulationtoremainstagnant, thenumberofbirthswouldhavetobethesame,or0 045Nt.Soif r isthebirthratefor femalesofreproductiveage,wemusthave0 5 0 25 r =0 045,or r =0 36=36%.The birthrateforfemalesofreproductiveagewouldhavetobe36%.

Copyright © 2018PearsonEducation,Inc.

Discrete-TimeModels,Sequences,andDifferenceEquations

(iii) Therecursionis Nt+1 =1 0375Nt;is r gorillasleaveeachyear,therecursionwould be Nt+1 =1 0375Nt r.Wewant Nt+1 = Nt,sosolving Nt =1 0375Nt r gives r =0 0375Nt.Thus3 75%ofthegorillaswouldhavetoleavetheparkeachyearforthe populationtoremainconstant.Sincethereare300gorillas,thisis0 0375 300=11 25. Soonaverage11 25gorillaswouldhavetoleaveeachyear.

11. Inthismodel, R0 =4and a = 1 30 ,sothefixedpointsare N =0and N = R0 1 a = 3 1/30 =90.

12. Inthismodel, R0 =2and a = 1 60 ,sothefixedpointsare N =0and N = R0 1 a = 1 1/60 =60.

13. Inthismodel, R0 =2and a = 1 90 ,sothefixedpointsare N =0and N = R0 1 a = 1 1/90 =90.

14. Inthismodel, R0 =3and a = 1 100 ,sothefixedpointsare N =0and N = R0 1 a = 2 1/100 =200.

15. Inthismodel, R0 =3and a = 1 30 ,sothefixedpointsare N =0and N = R0 1 a = 2 1/30 =60.

16. Inthismodel, R0 =5and a = 1 240 ,sothefixedpointsare N =0and N = R

17. Thepopulationsizesaregivenby

t 012345 Nt 23 927 5514 0424 6239 51

Since N0 > 0,thelimitingvalueisgivenby

18. Thepopulationsizesaregivenby N

t 012345

Nt 23.3356.6788.89

Since N0 > 0,thelimitingvalueisgivenby

19. Thepopulationsizesaregivenby

t 012345

Nt 715 5626 2534 0537 839 24

Since N0 > 0,thelimitingvalueisgivenby

20. Thepopulationsizesaregivenby

t 012345

Nt 36 9212 2716 5318 6919 54

Since N0 > 0,thelimitingvalueisgivenby

21. Thepopulationsizesaregivenby

012345 Nt 27 6225 662 4497 52113 46

Since N0 > 0,thelimitingvalueisgivenby

22. Thepopulationsizesaregivenby

012345 Nt 27.7427.4375.29133.57165.61

Since N0 > 0,thelimitingvalueisgivenby

23. Sincelim

Sincelim

25. Since Nt+1 = R(Nt)Nt = R0 1+aNt Nt,substitutingthegivenvaluesweget

26. Since Nt+1 = R(Nt)Nt = R0 1+aNt Nt,substitutingthegivenvaluesweget 40= 4 1+50a 50= 200 1+50a ⇒ 2000a +40=200 ⇒ a =0 08

2.3.3

27. Fromthediscussioninthetext, xt+1 = R0xt(1 xt)= xt(1 xt)with R0 =1.Since xt = Nt R0/b = Ntb R0 ,wehave xt = Nt1/10 1 = Nt 10 .

28. Fromthediscussioninthetext, xt+1 = R0xt(1 xt)= xt(1 xt)with R0 =1.Since xt = Nt R0/b = Ntb R0 ,wehave xt = Nt1/20 1 = Nt 20 .

29. Fromthediscussioninthetext, xt+1 = R0xt(1 xt)=2xt(1 xt)with R0 =2.Since xt = Nt R0/b = Ntb R0 ,wehave xt = Nt1/15 2 = Nt 30

30. Fromthediscussioninthetext, xt+1 = R0xt(1 xt)=2xt(1 xt)with R0 =2.Since xt = Nt R0/b = Ntb R0 ,wehave xt = Nt1/20 2 = Nt 40

31. Fromthediscussioninthetext, xt+1 = R0xt(1 xt)=2 5xt(1 xt)with R0 =2.Since xt = Nt R0/b = Ntb R0 ,wehave xt = Nt1/30 2 5 = Nt 75

Copyright © 2018PearsonEducation,Inc.

Discrete-TimeModels,Sequences,andDifferenceEquations

32. Fromthediscussioninthetext, xt+1 = R0xt(1 xt)=2 5xt(1 xt)with R0 =2.Since xt = Nt R0/b = Ntb R0 ,wehave xt = Nt1/50 2 5 = Nt 125

33. Afixedpointoccurswhen Nt+1 = Nt = N ,soweget N = R

2

R

)N = N (bN +1 R0)=0.Thefixedpointsaretherefore N =0and N = R0 1 b

34. Since Nt → 50, N =50isafixedpoint,sothat50= R0 1 b = 1 b andtherefore b = 1 50 .

35. Since Nt → 40, N =40isafixedpoint,sothat40= R

36. Wehave Nt+1 = R0 · Nt b · N 2 t .Substitutingthegivenvaluesgives15=2 · 10 b · 102 =20 100b, sothat b = 5 100 = 1 20

37. Wehave Nt+1 = R0 · Nt b · N 2 t .Substitutingthegivenvaluesgives30=3 · 15

2 =45 225b, sothat b = 15 225 = 1 15

·

38. Wehave Nt+1 = R0·Nt b·N 2 t .Substitutingthegivenvaluesgives20=15R0 1 10 ·152 =15R0 22 5, sothat R0 ≈ 2 833.

39. 5 10 15 20

40. 5 10 15 20

Discrete-TimeModels,Sequences,andDifferenceEquations 50. 5 10 15 20 -1.0 -0.5

2.3.4

51. (a) Since7.7%=0.077ofthedrugiseliminatedeachhour,wehave C

(b) Therecurrencerelationexpressesexponentialdecay: Ct = C0 0 923t.Since C0 =33 8ng/ml, wehave Ct =33 8 0 923t ng/ml.

(c) Wewanttofind t suchthat Ct =0 1;then0 1=33 8 · 0 923t,sothat 0 1 33 8 =0 923t.Taking naturallogsofbothsidesandsimplifyinggives t = ln0.1 ln33.8 ln0.923 ≈ 72 67hrs

52. (a) Giventheabsorptionrate,andsince10%=0 1ofthedrugiseliminatedeachhour,wehave

(b) Startingwith a0 =0weget t 0123456 at 0101313.312.6111.6110.55

(c) Themaximumamountofdrugis ≈ 6 38,at t =5.

(d) Continuingthetablefrompart(b)through t =24gives t 789101112131415

at 9.538.607.746.976.285.655.084.584.12 t 161718192021222324

at 3 713 343 002 702 432 191 971 771 60

Copyright © 2018PearsonEducation,Inc.

(e) Plotting at against t usingasemilogplotgivesthegraphbelow:

Semilogplot

For t largerthanabout4,thegraphisroughlylinear,indicatingexponentialdecay.

53. (a) Giventheabsorptionrate,andsince40%=0 4ofthedrugiseliminatedeachhour,wehave

(b) Startingwith a0 =0weget

0123456 at 020 0016 0010 406 403 872 33

(c) Themaximumamountofdrugis20,at t =1.

(d) Continuingthetablefrompart(b)through t =24gives(tothreedecimalplaces) t 789101112131415 at 1.400.840.500.300.180.110.070.040.02 t 161718192021222324 at 0 010 010 01000000

(e) Plotting at against t usingasemilogplotgivesthegraphbelow.For t largerthanabout1, thegraphisroughlylinear,indicatingexponentialdecay. 4 8 12

Semilogplot

Discrete-TimeModels,Sequences,andDifferenceEquations

54. (a) Sincethedrughaszerothordereliminationkinetics,theamountremovedeachhouris20 14mg=6mg.

(b) Eachhour,6mgisremoved,soweget at+1 = at 6.

(c) Since6mgisremovedeachhour,after t hourswehaveremoved6t mg,sotheexplicitformula is at =20 6t

(d) Theamountofdrugpresentdropstozerowhen20 6t =0,sowhen t = 10 3 ≈ 3 33hours.

55. (a) Thepercentageremovedbetween t =0and t =1is 20 14 20 = 6 20 =0 3=30%.Sincethedrug hasfirstordereliminationkinetics,thispercentageisremovedeachhour.

(b) at+1 = at 0 3at =0 7at

(c) Therecursionrelationexpressesexponentialdecay,so at = a0 · 0 7t =20 · 0 7t

(d) Since0 7t > 0forallvaluesof t,theamountofdrugpresentwillneverbezeroaccordingto themodel.

56. (a) Ifthedrughaszerothorderkinetics,theamounteliminatedeachhouris40 32=8mg/ml.

(b) Since8mg/mliseliminatedeachhour,wehave ct+1 = ct 8,so c2 shouldbe c1 8=24.

(c) Ifthedrughasfirstorderkinetics,thepercentageeliminatedeachhouris 40 32 40 =0 2=20%.

(d) Since20%iseliminatedeachhour,weget ct+1 = ct 0 2ct =0 8ct.Thenwewouldexpect c2 =0 8c1 =25 6.

(e) Sincetheamountfoundmatchestheamountinpart(d),weconcludethatthedrughasfirst orderkinetics.

57. (a) Ifthedrughaszerothorderkinetics,theamounteliminatedeachhouris50 35=15mg/ml.

(b) Since15mg/mliseliminatedeachhour,wehave ct+1 = ct 15,so c2 shouldbe c1 15=20.

(c) Ifthedrughasfirstorderkinetics,thepercentageeliminatedeachhouris 50 35 50 =0 3=30%.

(d) Since30%iseliminatedeachhour,weget ct+1 = ct 0 3ct =0 7ct.Thenwewouldexpect c2 =0 7c1 =24 5.

(e) Sincetheamountfoundmatchestheamountinpart(b),weconcludethatthedrughaszeroth orderkinetics.

58. (a) Since23%ofthedrugiseliminatedeachhour,wehave ct+1 = ct 0 23ct =0 77ct

(b) Thisrecursionexpressesexponentialdecay;sincetheinitialconcentrationis15 µg/mlat t =1, theformulais ct =15 · 0 77t 1

(c) Fromtheformulainpart(b), c4 =15 · 0

(d) Duringthathour,15 µg/mlenterthebloodstream,and0 23oftheamountpresentattime t =4leavesthebloodstream,sotheamountinthebloodstreamat t =5is

(e) Usingtherecursionrelation

(f) Duringtheninthhour,15 µg/mlentersthebloodstream,and0 23c8 leaves,sotheamountat t =9is

9 = c8 +15 0 23c8 =9 27+15 2 13 ≈ 22 14 µg/ml

(g) Onehourafterthe nth pillistaken,theamountinthebloodstreamis0 77timestheamount whenthepillwastaken(accountingforelimination)plus15 µg/ml.Theamountinthebloodstreamwhenthepillwastakenis0 773 timestheamountonehourafterthepreviouspillwas taken,sincethreehourselapse.Sotheamountisthebloodstreamonehourafterthe nth pill istakenis

(h) Sincepillsaretakenat t =1, 5, 9,... , C1 correspondsto t =1, C2 to t =5, C3 to t =9,and ingeneral Cn correspondsto t4n 3

(i) Seethediscussioninpart(g)fortherecursion. c1 =15sincethatistheconcentrationone hourafterthefirstpillwastaken.

(j) Usingtherecursionfrompart(i),weget t 123456 Ct 1520.27322.12722.77823.00723.088

(k) Theamountofincreaseineach Cn appearstobedecreasing,soitseemslikelythat Cn converges.

(l) Afixedpointoftherecursionrelationisfoundbysolving C =0 774C +15=0 35

that0.65C =15and C ≈ 23.1 µg/ml.

59. Sincetheabsoluteamountbywhichtheconcentrationdecreaseschangeseachhour(itdecreases), thiscannotbezerothorderkinetics,soitmustbefirstorderkinetics.Indeed,computingthe percentagedecreaseeachhourweget

, sothat25%ofthedrugiseliminatedeachhour.

60. Since2 µg/mliseliminatedeachhour,thisdrughaszerothorderkinetics.

61. Since4 µg/mliseliminatedeachhour,thisdrughaszerothorderkinetics.

62. Sincetheabsoluteamountbywhichtheconcentrationdecreaseschangeseachhour(itdecreases), thiscannotbezerothorderkinetics,soitmustbefirstorderkinetics.Indeed,computingthe percentagedecreaseeachhourweget

sothat10%ofthedrugiseliminatedeachhour.

63. (a) at+1 = at +amountaddedtothebloodin tth day amounteliminatedin tth day. (b) Theamountaddedeachdayis20 µg,andtheamountremovedeachdayis4%oftheamount present(atthestartoftheday).Thus

Discrete-TimeModels,Sequences,andDifferenceEquations

(c) Applyingtherecursionweget t 0123456 at 02039.257.63275.32792.314108.621

(d) Solving a =0 96a +20gives0 04a =20,sothat a =500 µg.

64. (a) at+1 = at +amountaddedtothebloodin tth day amounteliminatedin tth day.

(b) Onthe tth day,10t +10mgisadded,andeachdayhalfoftheexistingamountisremoved; substitutingthisinformationgives

+10(t +1)+10mg

(c) Applyingtherecursionweget t 012345 at 102542 561 2580 625100 312

(d) at reaches(andbarelyexceeds)100atthestartofthesixthday.

Chapter2Review

1. Theexpression2 n canalsobewrittenas 1 2 n.Thus,fromExample12inSection2.2.2,we concludethat

2. Forsuccessivevaluesof n,thevalues1, 3, 9, 27, 81, 243,... of3n indicatethatthetermscontinue togrow.Thus3n goestoinfinityas n →∞,andwecanwritelimn→∞ 3n = ∞.Thiscanalsobe seenusingExample12inSection2.2.2,fromwhichweconcludethatsince R =3 > 1,

3. Theexpression40(1 4 n)canbewrittenas40 40 1 4 n.FromExample12inSection2.2.2,we knowthatlimn→∞ 1 4 n =0.Also,itisobviousthatlimn→∞ 40=40.Thus lim n→∞ 40(1 4 n)=lim n→∞

4. Theexpression 2 1+2 n canbewrittenas 2 1+(1/2)n .FromExample12inSection2.2.2,weknowthat limn→∞ 1 2 n existsandisequalto0.Thus

5. Example12inSection2.2stateswithoutproofthatthislimitis ∞.Toseethatthisistrue,choose anyrealnumber K> 0,andlet x = a 1.Since a> 1,weseethat x> 0,sothereissomepositive integer n suchthat nx>K 1.Now,usingthebinomialexpansionof(1+ x)n,weget an =(1+ x)n ≥ 1+ nx> 1+(K 1)= K, sothat an >K.Thisprovesthatnomatterwhatrealnumber K wechoose,wecanfindan n such that an >K,sothat an growswithoutboundas n →∞,andthuslimn→∞ an = ∞

Copyright © 2018PearsonEducation,Inc.

6. Let b = 1 a .Since0 <a< 1,wehave b> 1,sothatlimn→∞ an =limn→∞ 1 bn .Bytheprevious exercise,limn→∞ bn = ∞,sothatbythelimitruleslimn→∞ an =0.

7. Notethattheexpression n(n+1) n2 1 canbewrittenas n(n+1) (n+1)(n 1) ,whichisthesameas n n 1 if n = 1. Sinceweareinterestedinthebehaviorof an as n →∞,wemayassumethat n = 1.Since limn→∞ 1 n =0wehave

(n +1)

8. Notethattheexpression n 2+n 6 n 2 canbewrittenas (n 2)(n+3) n 2 ,whichisthesameas n +3if n =2. Sinceweareinterestedinthebehaviorof an as n →∞,wemayassumethat n> 2.Recallingthat limn→∞ n doesnotexist,sincesuccessivevaluesof n growwithoutbound,wehave

9. Notethatbydividingnumeratoranddenominatorby n,theexpression √n n+1 canbewrittenas 1/√n 1+1/n Recallingthatbothlimn→∞ 1/n andlimn→∞ 1/√n existandareequalto0,wehave

10. Wefirstnotethattheexpression n+1 √n canbewrittenas √n + 1 √n .Now,limn→∞ 1 √n =0,but thesuccessiveterms1, √2, √3, 2, √5, √6,... of √n areclearlygrowingwithoutbound.Thatis, limn→∞ √n = ∞.Then

11. Lookingatthesequence,wecanguessthenextterms,namely, 11 12 , 13 14 , 15 16 , 17 18 , 19 20 andsoon.We thusfind an = 2n +1 2n +2 for n =0, 1, 2, 3,...

12. Notethatthenumeratorof an isthesumofthefirst n +1evennumbers,startingwith2,soitis twicethesumofthefirst n +1positiveintegers;thissumis2 · (n+1)(n+2) 2 =(n +1)(n +2).The denominatorsarepowersoftwo.Sowecanguessthatthesequenceis an = (n +1)(n +2) 2n+1 for n =0, 1, 2, 3,...

Sothenextfewtermsofthesequencewouldbe 42 64 , 56 128 , 72 256 , 90 512 ,and 110 1024

13. Thenumeratorof an appearstobe n +1,whilethedenominatoris(n +1)2 +1,sowecanguess thatthesequenceis an = n +1 (n +1)2 +1 = n +1 n2 +2n +2 for n =0, 1, 2, 3,...

Sothenextfewtermsofthesequencewouldbe 6 37 , 7 50 , 8 65 , 9 82 ,and 10 101

Copyright © 2018PearsonEducation,Inc.

Discrete-TimeModels,Sequences,andDifferenceEquations

14. Lookingatthesequence,wecanguessthenextterms,namely, 5 7 , 6 8 , 7 9 , 8 10 ,, 9 11 andsoon.Wethus find

,...

15. (a) (i) Aplotofthepointstogetherwithaplotofthenumberofpupsbornasafunctionofthe populationsize Nt isbelow:

Thelineisareasonablygoodapproximationtothedata.

(ii) Thenumberofwolvesthatdieis0 22Nt,soputtingthattogetherwiththeapproximation frompart(i),weget

(iii) Applyingtherecursionweget

t 012345678910

(iv) Accordingtothetableabove,thepopulationsizeof220willbereachedsometimeinthe tenthyear.

(b) (i) Thepopulationincreasesbythenumberofpupsborn,whichisunchangedat0 28Nt,and alsobythenumberofnewwolvesintroduced,whichis r.Itdecreasesbythedeathrate, whichisnowonly0.30Nt.Puttingthistogethergives

(ii) For r =5, N0 =130,applyingtherecursiongives

t 012345678910

Nt 130132 4134 8137 1139 3141 5143 7145 8147 9150152

Ifweuse r =10,weget

t 012345678910

Nt 130137.4144.7151.8158.7165.5172.2178.8185.2191.5197.7

(c) Assumingtheoriginalrecursionrelation,frompart(a),butadding r =10pupseachyear,we getforarecursion

t+1 =1 06Nt +10

Computingthisrelationfor N0 =130gives t 012345678910 Nt 130147 8166 7186 7207 9230 3254 2279 4306 2334 5364 6

Apopulationof220isreachedunderthisstrategyinthefifthyear.However,thepopulation atthestartofthefifthyearinpart(b)is165 5,whichisfartherfrom220thanthepopulation of230 3inthispart;weexpect220tobereachedsoonerusingthestrategyinthispart.

16. (a) N2 = N1 + N0 =1+1=2.

(b) N3 = N2 + N1 =2+1=3, N4 = N3 + N2 =3+2=5, N5 = N4 + N3 =5+3=8,and N6 = N5 + N4 =8+5=13.

(c) Valuesof Nk for k upto20arebelow: k 012345678910 Nk 1123581321345589 k 11121314151617181920 Nk 144233377610987159725844181676510946

(d) Therequiredsemilogplotisbelow:

Thepointsareapproximatelylinear,sotheFibonaccisequenceappearstogrowexponentially.

17. (a) Calculatingtherecurrencegives

k 01234 Nk 1019 537 167 3112

(b) Fixedpointsfortherelationaregivenbysolving N =2N 1 200 N 2,or N 2 200N =0.This gives N =0or N =200;sincethepopulationisincreasing,weseethatlimt→∞ Nt =200.

(c) Weneedtofindfixedpointsof N =2N 1 200 N 2 pN .Simplifyinggives N 2 +200(p 1)N =0 → N (N +200(p 1))=0 → N =0or N =200(1 p)

Thelimitingpopulationis200(1 p).

(d) Sincetheobservedpopulationlimitis160,solving160=200(1 p)gives1 p =0 8,sothat p =0 2.

Copyright © 2018PearsonEducation,Inc.

Semilogplot

Discrete-TimeModels,Sequences,andDifferenceEquations

18. (a) Since42%ofthedruginthegutleavesthegut(intotheblood),wegetarecursionrelation at+1 = at 0 42at =0 58at, a0 =10.

(b) Therecursionexpressesexponentialdecaywithaninitialvalueof10: at =10 0.58t .

(c) Solving10 0 58t =0 01 10=0 1gives0 58t =0 001;takinglogsandsimplifyinggives t = ln0 001 ln0 58 ≈ 12 7hours.

(d) Theamountofdrugenteringthebloodattime t is0 42at,andtheamountleavingisthe amounteliminated,whichis0.06bt,so

(e) Substitutingtheexplicitformulafor at intotheabove,weget

Calculatingvaluesgives k 0123456 bk 04.206.387.417.797.807.

Themaximumamountofdruginthebloodisabout7 80,inthefifthorsixthhour.

(f) Continuingthetablefromthepreviouspart,weget k 789101112131415

bk 7 316 966 606 235 885 545 214 904 61 k 161718192021222324 bk 4.334.073.833.603.383.182.992.812.64

Aplotofthesevaluesisbelow:

(g) (i) Ifthedrugimmediatelyenteredthebloodstream,thennomorewouldcomeinafter theinitialbolus,buteachhour6%ofitwouldbeeliminated,sothatwewouldhave bt+1 = bt 0 06bt =0 94bt

(ii) Themodelaboveisexponentialdecaywithinitialvalue10,sowehave bt =10 · 0 94t Setting t =24gives b24 ≈ 2 265mg.

(iii) Theamountintheblood24hourslaterislowerwithimmediateabsorption.

Copyright © 2018PearsonEducation,Inc.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Solutions for Calculus for Biology And Medicine 4th Us Edition by Neuhauser by 6alsm - Issuu