SolutionsManual© toaccompany System Dynamics,FourthEdition by William
J.
PalmIII UniversityofRhodeIsland
SolutionstoProblemsinChapterOne
© McGraw Hill LLC. All rights reserved. No reproduction or distribution without the prior written consent of McGraw Hill LLC.
1.1 ( ) ===332.296.6 Wmg lb.
1.2 ===/100/9.8110.19mWg kg. ( ) ==1000.224822.48 W lb. ( ) == 10.190.068520.698 m slug.
1.3 ( )( ) =+=505/120.304815.37 d m.
1.4 ( )( ) == 31000.304891.44 d m
1.5 ( ) ==1003.281328.1 d ft
1.6 ( ) == 503600/528034.0909 d mph
1.7 ( ) ==1000.621462.14 v mph
1.8 ( ) == 3 1/601.3411012.43 n ,orapproximately12bulbs.
1.9 ( ) −= 57032/921.1 C
1.10 ( ) += 930/53286 F
1.11 ( ) ==ωπ30002/60314.16 rad/sec.Period === πω 2/60/30001/50 P sec.
1.12 =ω 5rad/sec.Period === πωπ 2/2/51.257 P sec.Frequency === 1/5/2fP π 0.796 Hz.
1.13 Speed ( ) == 405280/360058.6667 ft/sec.Frequency ==58.6667/301.9556 times persecond.
© McGraw Hill LLC. All rights reserved. No reproduction or distribution without the prior written consent of McGraw Hill LLC.
1.14 = 0.005sin6, xt ( ) == 0.0056cos60.03cos6. xtt Velocityamplitudeis0.03m/s. ( ) =−=−60.03sin60.18sin6. xtt Accelerationamplitudeis0.18m/s2.Displacement, velocityandaccelerationallhavethesamefrequency.
© McGraw Hill LLC. All rights reserved. No reproduction or distribution without the prior written consent of McGraw Hill LLC.
1.15 Physicalconsiderationsrequirethemodeltopassthroughtheorigin,soweseeka modeloftheform = fkx Aplotofthedatashowsthatagoodlinedrawnbyeyeisgiven by = 0.2.fx Soweestimate k tobe0.2lb/in.
© McGraw Hill LLC. All rights reserved. No reproduction or distribution without the prior written consent of McGraw Hill LLC.
1.16 Thescriptfileis
x=[0:0.01:1];
subplot(2,2,1)
plot(x,sin(x),x,x),xlabel(’x(radians)’),ylabel(’xandsin(x)’),...
gtext(’ x ’),gtext(’sin(x)’)
subplot(2,2,2)
plot(x,sin(x)-x),xlabel(’ x(radians)’),ylabel(’Error:sin(x)-x ’)
subplot(2,2,3)
plot(x,100*(sin(x)-x)./sin(x)),xlabel(’x(radians)’),...
ylabel(’PercentError’),grid
Theplotsareshowninthefigure.
Figure:forProblem1.16.
Fromthethirdplotwecanseethattheapproximation sin xx isaccuratetowithin5% if ||0.5 x radians.
© McGraw Hill LLC. All rights reserved. No reproduction or distribution without the prior written consent of McGraw Hill LLC.
1.17 Forθnear /4,π
Forθnear 3/4, π
© McGraw Hill LLC. All rights reserved. No reproduction or distribution without the prior written consent of McGraw Hill LLC.
1.18 Forθnear /3,π
Forθnear 2/3, π
© McGraw Hill LLC. All rights reserved. No reproduction or distribution without the prior written consent of McGraw Hill LLC.
1.19 For h near25,
McGraw Hill LLC. All rights reserved. No reproduction or distribution without the prior written consent
1.20 For r near5,
For r near10,
McGraw Hill LLC. All rights reserved. No reproduction or distribution without the prior written consent of McGraw Hill LLC.
1.21 For h near16, ( ) ( ) ( )
and ( ) 0 fh if −16. h
© McGraw Hill LLC. All rights reserved. No reproduction or distribution without the prior written consent of McGraw Hill LLC.
1.22 Constructastraightlinethepassesthroughthetwoendpointsat = 0 p and = 900. p At = 0, p ( ) = 00. f At = 900, p ( ) == 9000.0029000.06. f Thisstraightlineis ( ) == 0.061 90015,000 fppp
© McGraw Hill LLC. All rights reserved. No reproduction or distribution without the prior written consent of McGraw Hill LLC.
b)
c)Let = .vx
d)Let = .vx
McGraw Hill LLC. All rights reserved. No reproduction or distribution without the prior written consent of McGraw Hill LLC.
From(1.4.4),
From(1.4.2),
© McGraw Hill LLC. All rights reserved. No reproduction or distribution without the prior written consent of McGraw Hill LLC.
1.25 Let ( ) ==− 0 0.hbv
Thus
Also,since = ,ha
© McGraw Hill LLC. All rights reserved. No reproduction or
1.26 Werequirethat ( ) =− ff htv .From(1.4.3), ( ) =−+ α 2 00 2 t htgvth
Equation(1.4.4)staysthesame,sothethruststaysthesameas(1.4.6): ( ) =+ α 1 fmg
© McGraw Hill LLC. All rights reserved. No reproduction or distribution without the prior written consent of McGraw Hill LLC.
1.27 a.
Find a and .b
Solve(1)and(2)for a and :b
Thus f t isfreetobechosen. b.1.
LLC.
1.28 Thetotalinertiais =++=++=0.0050.0020.0080.015. mSL IIII
FromFigure1.5.4 weobtaintherequiredangularaccelerationfromtheslopeofthevelocitycurve.Thisgives
Thustherequiredtorqueis
Sothemaximumrequiredtorqueis30N m.
Thermsaveragetorqueiscalculatedasfollows:
© McGraw Hill LLC. All rights reserved. No reproduction or distribution without the prior written consent of McGraw Hill LLC.
1.29 Theequationofmotionisnow
Sothemaximumrequiredtorqueis33andthermstorqueis
© McGraw Hill LLC. All rights reserved. No reproduction or distribution without the prior written consent of McGraw Hill LLC.
1.30 Thetotalloaddisplacementisgivenas = θπ 10 f rad.Wealsohave =0.5 f t sanda slewtimeof −= 21 0.4 tt s.Usingasymmetricalvelocityprofilerequiresthat = 1 0.05 t and = 2 0.45. t Thetotalinertiais =++=3433 610510107.510 I
FromTable1.5.1 wehave ==ωπ10/0.469.813 max rad/sor ( ) = ωπ 60/2666.667 max rpm.Sothe loadwillrotateatthatspeedfor0.4s.
Wearegiventhat = 2 dT N m.Sothemaximumtorquerequiredis = 12.4720 max T N m andthermsaveragetorqueis = 5.0924 rms T N m.
© McGraw Hill LLC. All rights reserved. No reproduction or distribution without the prior written consent of McGraw Hill LLC.
1.31 Thetotalloaddisplacementisgivenas = θπ 4 f rad.Wealsohave =1 f t sandaslew timeof −= 21 0.6 tt s.Usingasymmetricalvelocityprofilerequiresthat = 1 0.2 t and = 2 0.8. t Thetotalinertiais =++=2433 1061021011.610 I
FromTable1.5.1 wehave ==ωπ4/0.815.7083 max rad/sor ( ) = ωπ 60/2150 max rpm.Sotheload willrotateatthatspeedfor0.6s.
Wearegiventhat = 0.5 dT N m.Sothemaximumtorquerequiredis = 1.4111 max T N m andthermsaveragetorqueis = 0.7629 rms T N m.
© McGraw Hill LLC. All rights reserved. No reproduction or distribution without the prior written consent of McGraw Hill LLC.
1.32 Theequivalentinertiaoftheloadmassis,from(1.5.11),
Themassofthescrewis ( )
kg r mVρπ andtheinertiaofthescrewis
Sothetotalsysteminertiais
Fromtheequationofmotion,therequiredtorqueis = . TIω Thelineardisplacement x of themassisrelatedtotherotationangleθofthescrewby = /2. xLθπ Thusthelinear acceleration x isrelatedtotheangularacceleration = θωby = 2/. xLωπ Thegivenlinearaccelerationis ( ) =−==0.30/0.221.5 x m/s2.Thus ( ) == 2 21.5 1178.1 0.008rad/s
torque
© McGraw Hill LLC. All rights reserved. No reproduction or distribution without the prior written consent of McGraw Hill LLC.
1.33
>>x=2;y=5;(y*x^3)/(x-y)
ans= -13.3333
>>3*x/(2*y)
ans= 0.6000 >>(3.2)*x*y
ans= 32 >>x^5/(x^5-1)
ans= 1.0323
1.34
>>x=-7-5j;y=4+3j; >>x+y
ans= -3.0000-2.0000i >>x*y
ans= -13.0000-41.0000i >>x/y
ans= -1.7200+0.0400i
© McGraw Hill LLC. All rights reserved. No reproduction or distribution without the prior written consent of McGraw Hill LLC.
1.35
>>(3+6j)/(-7-9j)
ans=
-0.5769-0.1154i
>>(5+4j)/(5-4j)
ans=
0.2195+0.9756i >>(3/2)*j
ans= 0.0000+1.5000i >>3/(2j)
ans= 0.0000-1.5000i
1.36
>>x=5+8j;y=-6+7j; v>>u=x+y
u=
v-1.0000+15.0000i >>v=x*y
v= -86.0000-13.0000i >>w=x/y
w=
0.3059-0.9765i >>z=exp(x)
z=
-2.1594e+01+1.4683e+02i >>r=sqrt(y)
r= 1.2688+2.7586i >>s=x*y^2
s= 6.0700e+02-5.2400e+02i
© McGraw Hill LLC. All rights reserved. No reproduction or distribution without the prior written consent of McGraw Hill LLC.
1.37
>>exp(2)
ans= 7.3891 >>log10(2)
ans= 0.3010 >>log(2)
ans= 0.6931
1.38 >>cos(pi/3)
ans= 0.5000 >>cosd(80)
ans= 0.1736 >>acos(0.7)
ans= 0.7954 >>acosd(0.6)
ans= 53.1301
© McGraw Hill LLC. All rights reserved. No reproduction or distribution without the prior written consent of McGraw Hill LLC.
1.39
>>atan(2) ans= 1.1071
>>atan(100) ans= 1.5608
Theanswersfor(c),(d),and(e)areindegrees.
>>atan2d(3,2)
ans= 56.3099 >>atan2d(3,-2)
ans= 123.6901
>>atan2d(-3,2)
ans= -56.3099
1.40
>>x=1:0.2:5; >>y=7*sin(4*x); >>length(y)
ans= 21 >>y(3)
ans= -4.4189
© McGraw Hill LLC. All rights reserved. No reproduction or distribution without the prior written consent of McGraw Hill LLC.
1.41
roots([13,182,-184,2503])
ans=
-15.6850+0.0000i
0.8425+3.4008i
0.8425-3.4008i
1.42
roots([70,24,-10,20])
ans=
-0.8771+0.0000i
0.2671+0.5044i
0.2671-0.5044i
1.43
>>poly([-2+5j,-2-5j,-7])
ans= 11157203
Thisgivesthepolynomial
Tocheck, >>roots(ans)
ans=
-7.0000+0.0000i
-2.0000+5.0000i
-2.0000-5.0000i
© McGraw Hill LLC. All rights reserved. No reproduction or distribution without the prior written consent of McGraw Hill LLC.
1.44
>>x=linspace(0,2,300);u=2*log10(60*x+1);v=3*cos(6*x);
>>plot(x,u,x,v,’–’),xlabel(’Miles’),ylabel(’Mph’),gtext(’u’),gtext(’v’)
1.45
>>h=polyval([0.0125,-5,500],t);
>>plot(t,h),xlabel(’Time(s)’),ylabel(’Height(m’))
© McGraw Hill LLC. All rights reserved. No reproduction or distribution without the prior written consent of McGraw Hill LLC.
1.46 Thegivenparametersare ,m ,g 0, h and 0. v FollowExample1.4.1andprogram equations(1.4.3)forα and(1.4.2)for . f t
1.47
t1=0:0.001:0.5; om1=300*t1; t2=0.501:0.001:2.5; om2=150*ones(size(t2)); t3=2.501:0.001:3; om3=-300*(t3-2.5)+150; t=[t1,t2,t3]; om=[om1,om2,om3]; plot(t,om)
© McGraw Hill LLC. All rights reserved. No reproduction or distribution without the prior written consent of McGraw Hill LLC.
1.48 Hereisafragmentoftheprogram.Youmustcreatecodetoinputthefollowing parameters:θf , dT , 1t , 2t , f t ,and .I
om max=theta f/t2
alpha max=theta f/(t1*t2)
T max=I*theta f/(t1*t2)+Td
T rms=sqrt(2*I^2*theta f^2/(tf*t1*t2^2)+Td^2)
© McGraw Hill LLC. All rights reserved. No reproduction or distribution without the prior written consent of McGraw Hill LLC.
FollowExample1.5.5.Theequationsare:
© McGraw Hill LLC. All rights reserved. No reproduction or distribution without the prior written consent of McGraw Hill LLC.