Get Applications of environmental aquatic chemistry a practical guide 2nd edition eugene r. weiner f

Page 1


Applicationsofenvironmentalaquatic chemistryapracticalguide2ndEdition EugeneR.Weiner

https://ebookgate.com/product/applications-ofenvironmental-aquatic-chemistry-a-practicalguide-2nd-edition-eugene-r-weiner/ Download more ebook from https://ebookgate.com

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Lubricant Additives Chemistry and Applications 2nd

Edition Leslie R. Rudnick

https://ebookgate.com/product/lubricant-additives-chemistry-andapplications-2nd-edition-leslie-r-rudnick/

Environmental Forensics Fundamentals A Practical Guide 1st Edition Ioana Gloria Petrisor

https://ebookgate.com/product/environmental-forensicsfundamentals-a-practical-guide-1st-edition-ioana-gloria-petrisor/

Environmental Soil Chemistry 2nd edition Edition Sparks D.L.

https://ebookgate.com/product/environmental-soil-chemistry-2ndedition-edition-sparks-d-l/

Chemistry

Meyer

of Hazardous Materials 5e 5th Edition Eugene

https://ebookgate.com/product/chemistry-of-hazardousmaterials-5e-5th-edition-eugene-meyer/

Biotechnology of Aquatic Animals 1st Edition R

Nagabhushanam (Editor)

https://ebookgate.com/product/biotechnology-of-aquaticanimals-1st-edition-r-nagabhushanam-editor/

An Introduction to Environmental Chemistry 2nd Edition

Julian E. Andrews

https://ebookgate.com/product/an-introduction-to-environmentalchemistry-2nd-edition-julian-e-andrews/

Art in Chemistry Chemistry in Art 2nd Edition Barbara R. Greenberg

https://ebookgate.com/product/art-in-chemistry-chemistry-inart-2nd-edition-barbara-r-greenberg/

A Practical Guide to Clinical Virology Second Edition

L. R. Haaheim

https://ebookgate.com/product/a-practical-guide-to-clinicalvirology-second-edition-l-r-haaheim/

Examination of the Newborn A Practical Guide 2nd Edition Helen Baston

https://ebookgate.com/product/examination-of-the-newborn-apractical-guide-2nd-edition-helen-baston/

Applications of Environmental Aquatic Chemistry

A Practical Guide

CRC Press

Taylor & Francis Group

6000 Broken Sound Parkway NW, Suite 300

Boca Raton, FL 33487-2742

© 2008 by Taylor & Francis Group, LLC

CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed in the United States of America on acid-free paper

10 9 8 7 6 5 4 3 2 1

International Standard Book Number-13: 978-0-8493-9066-1 (Hardcover)

This book contains information obtained from authentic and highly regarded sources Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The Authors and Publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www. copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC) 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Weiner, Eugene R.

Applications of environmental aquatic chemistry : a practical guide / Eugene R. Weiner. -- 2nd ed.

p. cm.

Rev. ed. of: Applications of environmental chemistry / Eugene R. Weiner. 2000. Includes bibliographical references and index.

ISBN 978-0-8493-9066-1 (alk. paper)

1. Environmental chemistry. 2. Water quality. I. Weiner, Eugene R. Applications of environmental chemistry. II. Title.

TD193.W45 2007 628.1’68--dc22 2007048068

Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com

and the CRC Press Web site at http://www.crcpress.com

Contents

PrefacetotheSecondEdition

PrefacetotheFirstEdition

Author

Chapter1

WaterQuality

1.1De finingEnvironmentalWaterQuality

1.1.1Water-UseClassificationsandWaterQualityStandards

1.1.2WaterQualityClassificationsandStandards forNaturalWaters

1.1.3SettingNumericalWaterQualityStandards

1.1.4TypicalWater-UseClassi fications

1.1.4.1Recreational

1.1.4.2AquaticLife

1.1.4.3Agriculture

1.1.4.4DomesticWaterSupply

1.1.4.5Wetlands

1.1.4.6Groundwater

1.1.5StayingUp-to-DatewithStandardsandOtherRegulations

1.2SourcesofWaterImpurities

1.2.1NaturalSources

1.2.2Human-CausedSources

1.3MeasuringImpurities

1.3.1WhatImpuritiesArePresent?

1.3.2HowMuchofEachImpurityIsPresent?

1.3.3WorkingwithConcentrations

1.3.4MolesandEquivalents

1.3.4.1WorkingwithEquivalentWeights

1.3.5CaseHistoryExample

1.3.6HowDoImpuritiesInfluenceWaterQuality? Exercises

Chapter2

ContaminantBehaviorintheEnvironment:BasicPrinciples

2.1BehaviorofContaminantsinNaturalWaters

2.1.1ImportantPropertiesofPollutants

2.1.2ImportantPropertiesofWaterandSoil

2.2WhatAretheFatesofDifferentPollutants?

2.3ProcessesThatRemovePollutantsfromWater

2.3.1NaturalAttenuation

2.3.2TransportProcesses

2.3.3EnvironmentalChemicalReactions

2.3.4BiologicalProcesses

2.4MajorContaminantGroupsandNaturalPathwaysforTheir RemovalfromWater

2.4.1Metals

2.4.2ChlorinatedPesticides

2.4.3HalogenatedAliphaticHydrocarbons

2.4.4FuelHydrocarbons

2.4.5InorganicNonmetalSpecies

2.5ChemicalandPhysicalReactionsintheWaterEnvironment

2.6PartitioningBehaviorofPollutants

2.6.1PartitioningfromaDieselOilSpill

2.7IntermolecularForces

2.7.1TemperatureDependentPhaseChanges

2.7.2Volatility,Solubility,andSorption

2.7.3PredictingRelativeAttractiveForces

2.8OriginsofIntermolecularForces:Electronegativities, ChemicalBonds,andMolecularGeometry

2.8.1ChemicalBonds

2.8.2ChemicalBondDipoleMoments

2.8.3MolecularGeometryandMolecularPolarity

2.8.4ExamplesofNonpolarMolecules

2.8.5ExamplesofPolarMolecules

2.8.6TheNatureofIntermolecularAttractions

2.8.7ComparativeStrengthsofIntermolecularAttractions

2.9SolubilityandIntermolecularAttractions

Exercises

Chapter3

MajorWaterQualityParametersandApplications

3.1InteractionsamongWaterQualityParameters

3.2pH

3.2.1Background

3.2.2DefiningpH

3.2.3Acid-BaseReactions

3.2.4ImportanceofpH

3.2.5MeasuringpH

3.2.6WaterQualityCriteriaandStandardsforpH

3.3Oxidation–ReductionPotential

3.3.1Background

3.4CarbonDioxide,Bicarbonate,andCarbonate

3.4.1Background

3.4.2SolubilityofCO2 inWater

3.4.3SoilCO2

3.5 Acidit y and Alka linity

3.5.1Background

3.5.2Acidity

3.5.3Alkalinity

3.5.4ImportanceofAlkalinity

3.5.5WaterQualityCriteriaandStandardsforAlkalinity

3.5.6CalculatingAlkalinity

3.5.7CalculatingChangesinAlkalinity,Carbonate,andpH

3.6Hardness

3.6.1Background

3.6.2CalculatingHardness

3.6.3ImportanceofHardness

3.7DissolvedOxygen

3.7.1Background

3.8BiologicalOxygenDemandandChemical OxygenDemand

3.8.1Background

3.8.2BOD5

3.8.3BODCalculation

3.8.4CODCalculation

3.9Nitrogen:Ammonia,Nitrite,andNitrate

3.9.1Background

3.9.2NitrogenCycle

3.9.3Ammonia=AmmoniumIon

3.9.4WaterQualityCriteriaandStandardsforAmmonia

3.9.5NitriteandNitrate

3.9.6WaterQualityCriteriaandStandardsforNitrate

3.9.7MethodsforRemovingNitrogenfromWastewater

3.9.7.1Air-StrippingAmmonia

3.9.7.2Nitri fication–Denitrification

3.9.7.3BreakpointChlorination

3.9.7.4AmmoniumIonExchange

3.9.7.5Biosynthesis

3.10SulfideandHydrogenSulfide 3.10.1Background

3.10.1.1FormationofH2SinDetentionPonds,Wetlands, andSewers

3.10.1.2TypicalWaterQualityCriteriaandStandards forH2S

3.10.2CaseStudy

3.10.2.1OdorsofBiologicalOrigininWater(Mostly HydrogenSulfideandAmmonia)

3.10.2.2EnvironmentalChemistryofHydrogenSulfi de

3.10.2.3ChemicalControlofOdors

3.10.2.4pHcontrol

3.10.2.5Oxidation

3.10.2.6EliminateReducingConditionsCaused byDecomposingOrganicMatter

3.10.2.7SorptiontoActivatedCharcoal

3.11Phosphorus

3.11.1Background

3.11.2ImportantUsesforPhosphorus

3.11.3PhosphorousCycle

3.11.4MobilityintheEnvironment

3.11.5PhosphorousCompounds

3.11.6RemovalofDissolvedPhosphate

3.12Solids(Total,Suspended,andDissolved)

3.12.1Background

3.12.2TDSandSalinity

3.12.3Speci ficConductivityandTDS

3.12.4TDSTestforAnalyticalReliability

3.13Temperature Exercises Reference

Chapter4

BehaviorofMetalSpeciesintheNaturalEnvironment

4.1MetalsinWater

4.1.1Background

4.1.2MobilityofMetalsintheWaterEnvironment

4.1.3GeneralBehaviorofDissolvedMetalsinWater

4.1.3.1HydrolysisReactions

4.1.3.2HydratedMetalsasAcids

4.1.4InfluenceofpHontheSolubilityofMetals

4.1.5InfluenceofRedoxPotentialontheSolubilityofMetals

4.1.5.1Redox-SensitiveMetals:Cr,Cu,Hg,Fe,Mn

4.1.5.2Redox-InsensitiveMetals:Al,Ba,Cd,Pb,Ni,Zn

4.1.5.3Redox-SensitiveMetalloids:As,Se

4.2MetalWaterQualityStandards

4.3CaseStudy1

4.3.1TreatmentofTraceMetalsinUrbanStormwaterRunoff

4.3.2BehaviorofCommonStormwaterPollutantsunderOxidizing andReducingConditions

4.4CaseStudy2

4.4.1AcidRockDrainage

4.4.1.1SummaryofAcidFormationinAcid RockDrainage

4.4.1.2Non-ironMetalSulfidesDoNotGenerateAcidity

4.4.1.3Acid-BasePotentialofSoil

4.4.1.4DeterminingtheAcid-BasePotential

4.5CaseStudy3

4.5.1IdentifyingMetalLossandGainMechanismsinaStream Exercises References

Chapter5

Soil,Groundwater,andSubsurfaceContamination

5.1NatureofSoils

5.1.1SoilFormation

5.1.1.1PhysicalWeathering

5.1.1.2ChemicalWeathering

5.1.1.3SecondaryMineralFormation

5.1.1.4RolesofPlantsandSoilOrganisms

5.2SoilProfi les

5.2.1SoilHorizons

5.2.2SuccessiveStepsintheTypicalDevelopmentofaSoil andItsProfile(Pedogenesis)

5.3OrganicMatterinSoil

5.3.1HumicSubstances

5.3.2SomePropertiesofHumicMaterials

5.3.2.1BindingtoDissolvedSpecies

5.3.2.2LightAbsorption

5.4SoilZones

5.4.1AirinSoil

5.5ContaminantsBecomeDistributedinWater,Soil,andAir

5.5.1Volatilization

5.5.2Sorption

5.6PartitionCoefficients

5.6.1Air–WaterPartitionCoeffi cient(Henry’sLaw)

5.6.2Soil–WaterPartitionCoefficient

5.6.3Determining Kd Experimentally

5.6.4RoleofSoilOrganicMatter

5.6.5Octanol–WaterPartitionCoeffi cient, Kow

5.6.6Estimating Kd UsingMeasuredSolubilityor Kow

5.7MobilityofContaminantsintheSubsurface

5.7.1RetardationFactor

5.7.2EffectofBiodegradationonEffectiveRetardationFactor

5.7.3AModelforSorptionandRetardation

5.7.4SoilProperties

5.8ParticulateTransportinGroundwater:Colloids

5.8.1ColloidParticleSizeandSurfaceArea

5.8.2ParticleTransportProperties

5.8.3ElectricalChargesonColloidsandSoilSurfaces

5.8.3.1ElectricalDoubleLayer

5.8.3.2AdsorptionandCoagulation

5.9CaseStudy:ClearingMuddyPonds

5.9.1PilotJarTests

5.9.1.1JarTestProcedurewithAlumCoagulant

5.9.1.2JarTestProcedurewithGypsumCoagulant Exercises

References

Chapter6

GeneralPropertiesofNonaqueousPhaseLiquidsandtheBehaviorofLight NonaqueousPhaseLiquidsintheSubsurface

6.1TypesandPropertiesofNonaqueousPhaseLiquids

6.2GeneralCharacteristicsofPetroleumLiquids,theMost CommonLNAPL

6.2.1TypesofPetroleumProducts

6.2.2Gasoline

6.2.3MiddleDistillates

6.2.4HeavierFuelOilsandLubricatingOils

6.3BehaviorofPetroleumHydrocarbonsintheSubsurface

6.3.1SoilZonesandPoreSpace

6.3.2PartitioningofLightNonaqueousPhaseLiquids intheSubsurface

6.3.3ProcessesofSubsurfaceMigration

6.3.4PetroleumMobilityThroughSoils

6.3.5BehaviorofLNAPLinSoilsandGroundwater

6.3.6Summary:BehaviorofSpilledLNAPL

6.3.7WeatheringofSubsurfaceContaminants

6.3.8PetroleumMobilityandSolubility

6.4FormationofPetroleumContaminationPlumes

6.4.1DissolvedContaminantPlume

6.4.2VaporContaminantPlume

6.5EstimatingtheAmountofLNAPLFreeProductintheSubsurface

6.5.1HowLNAPLLayerThicknessintheSubsurfaceAffects LNAPLLayerThicknessinaWell

6.5.1.1EffectofSoilTextureonLNAPLintheSubsurface andinWells

6.5.1.2EffectofWaterTableFluctuationsonLNAPL intheSubsurfaceandinWells

6.5.1.3EffectofWaterTableFluctuationsonLNAPL MeasurementsinWells

6.6EstimatingtheAmountofResidualLNAPLImmobilized intheSubsurface

6.6.1SubsurfacePartitioningLociofLNAPLFuels

6.7ChemicalFingerprintingofLNAPLs

6.7.1FirstStepsinChemicalFingerprintingofFuelHydrocarbons

6.7.2IdentifyingFuelTypes

6.7.3Age-DatingFuelSpills

6.7.3.1Gasoline

6.7.3.2ChangesinBTEXRatiosMeasuredinGroundwater

6.7.3.3DieselFuel

6.8SimulatedDistillationCurvesandCarbonNumberDistribution Curves

References

Chapter7

BehaviorofDenseNonaqueousPhaseLiquidsintheSubsurface

7.1DNAPLProperties

7.2DNAPLFreeProductMobility

7.2.1DNAPLintheVadoseZone

7.2.2DNAPLattheWaterTable

7.2.3DNAPLintheSaturatedZone

7.3TestingforthePresenceofDNAPL

7.3.1ContaminantConcentrationsinGroundwaterandSoil ThatIndicatetheProximityofDNAPL

7.3.2CalculationMethodforAssessingResidualDNAPLinSoil

7.4PolychlorinatedBiphenyls

7.4.1Background

7.4.2EnvironmentalBehavior

7.4.3AnalysisofPCBs

7.4.4CaseStudy:MistakenIdentificationofPCBCompounds

References

Chapter8

BiodegradationandBioremediationofLNAPLsandDNAPLs

8.1BiodegradationandBioremediation

8.2BasicRequirementsforBiodegradation

8.3BiodegradationProcesses

8.3.1CaseStudy

8.3.1.1Passive(Intrinsic)BioremediationofFuelLNAPLs: CaliforniaSurvey

8.4NaturalAerobicBiodegradationofNAPLHydrocarbons

8.5DeterminingtheExtentofBioremediationofLNAPL

8.5.1UsingChemicalIndicatorsoftheRateofIntrinsic Bioremediation

8.5.2HydrocarbonContaminantIndicator

8.5.3ElectronAcceptorIndicators

8.5.4DissolvedOxygenIndicator

8.5.5NitratePlusNitriteDenitri ficationIndicator

8.5.6MetalReductionIndicators:Manganese(IV)toManganese(II) andIron(III)toIron(II)

8.5.7SulfateReductionIndicator

8.5.8Methanogenesis(MethaneFormation)Indicator

8.5.9RedoxPotentialandAlkalinityasBiodegradationIndicators

8.5.9.1UsingRedoxPotentialstoLocateAnaerobic BiodegradationwithinthePlume

8.5.9.2UsingAlkalinitytoLocateAnaerobicBiodegradation withinthePlume

8.6BioremediationofChlorinatedDNAPLs

8.6.1ReductiveDechlorinationofChlorinatedEthenes

8.6.2ReductiveDechlorinationofChlorinatedEthanes

8.6.3CaseStudy:UsingBiodegradationPathways forSourceIdentification

References

Chapter9

BehaviorofRadionuclidesintheWaterandSoilEnvironment

9.1Introduction

9.2Radionuclides

9.2.1AFewBasicPrinciplesofChemistry

9.2.1.1MatterandAtoms

9.2.1.2Elements

9.2.2PropertiesofanAtomicNucleus

9.2.2.1NuclearNotation

9.2.3Isotopes

9.2.4NuclearForces

9.2.5Quarks,Leptons,andGluons

9.2.6Radioactivity

9.2.6.1 a Emission

9.2.6.2 b Emission

9.2.6.3 g Emission

9.2.7BalancingNuclearEquations

9.2.8RatesofRadioactiveDecay

9.2.8.1Half-Life

9.2.9RadioactiveDecaySeries

9.2.10NaturallyOccurringRadionuclides

9.3EmissionsandTheirProperties

9.4UnitsofRadioactivityandAbsorbedRadiation

9.4.1Activity

9.4.2AbsorbedDose

9.4.3DoseEquivalent

9.4.4UnitConversionTables

9.4.4.1ConvertingbetweenUnitsofDoseEquivalent andUnitsofActivity(RemstoPicocuries)

9.5NaturallyOccurringRadioisotopesintheEnvironment

9.5.1CaseStudy:RadionuclidesinPublicWaterSupplies

9.5.2Uranium

9.5.2.1UraniumGeology

9.5.2.2UraniuminWater

9.5.3Radium

9.5.3.1RadiuminSoil

9.5.3.2RadiuminWater

9.5.4Radon

9.5.4.1HealthIssues

Exercises References

Chapter10

SelectedTopicsinEnvironmentalChemistry

10.1AgriculturalWaterQuality

10.2SodiumAdsorptionRatio

10.2.1WhatSARValuesAreAcceptable?

10.3DeicingandSandingofRoads:Controlling EnvironmentalEffects

10.3.1MethodsforMaintainingWinterHighwaySafety

10.3.2AntiskidMaterials

10.3.2.1EnvironmentalConcernsofAntiskidMaterials

10.3.3ChemicalDeicers

10.3.3.1ChemicalPrinciplesofDeicing

10.3.3.2Corrosivity

10.3.4EnvironmentalConcernsofChemicalDeicers

10.3.5DeicerComponentsandTheirPotential EnvironmentalEffects

10.3.5.1ChlorideIon

10.3.5.2SodiumIon

10.3.5.3Calcium,Magnesium,andPotassiumIons

10.3.5.4Acetate

10.3.5.5ImpuritiesPresentinDeicingMaterials

10.4DrinkingWaterTreatment

10.4.1WaterSources

10.4.2WaterTreatment

10.4.3BasicDrinkingWaterTreatment

10.4.3.1PrimarySettling

10.4.3.2Aeration

10.4.3.3Coagulation

10.4.3.4Disinfection

10.4.3.5DisinfectionProcedures

10.4.4DisinfectionBy-ProductsandDisinfectionResiduals

10.4.5StrategiesforControllingDisinfectionBy-Products

10.4.6ChlorineDisinfectionTreatment

10.4.6.1Hypochlorite

10.4.6.2De finitions

10.4.7DrawbackstoUseofChlorine:Disinfection By-Products

10.4.7.1Trihalomethanes

10.4.7.2ChlorinatedPhenols

10.4.8Chloramines

10.4.9ChlorineDioxideDisinfectionTreatment

10.4.10OzoneDisinfectionTreatment

10.4.10.1OzoneDBPs

10.4.11PotassiumPermanganate

10.4.11.1Peroxone(OzonePlusHydrogenPeroxide)

10.4.11.2UltravioletDisinfectionTreatment

10.4.11.3MembraneFiltrationWaterTreatment

10.5IonExchange

10.5.1WhyDoSolidsinNatureCarryaSurfaceCharge?

10.5.2Cation-andAnion-ExchangeCapacity(CEC)

10.5.3ExchangeableBases:PercentBaseSaturation

10.5.4CECinClaysandOrganicMatter

10.5.4.1CECinClays

10.5.4.2CECinOrganicMatter

10.5.5RatesofCationExchange

10.6IndicatorsofFecalContamination:Coliform andStreptococciBacteria

10.6.1Background

10.6.2TotalColiforms

10.6.3FecalColiforms

10.6.4 Escherichiacoli

10.6.5FecalStreptococci

10.6.6Enterococci

10.7MunicipalWastewaterReuse:TheMovementandFate ofMicrobialPathogens

10.7.1PathogensinTreatedWastewater

10.7.2TransportandInactivationofVirusesinSoils andGroundwater

10.8OilandGrease

10.8.1OilandGreaseAnalysis

10.8.2SilicaGelTreatment

10.9QualityAssuranceandQualityControlinEnvironmentalSampling

10.9.1QA/QCHasDifferentFieldandLaboratoryComponents

10.9.2EssentialComponentsofFieldQA/QC

10.9.2.1SampleCollection

10.9.3FieldSampleSet

10.9.3.1QualityControlSamples

10.9.3.2BlankSampleRequirements

10.9.3.3FieldDuplicatesandSpikes

10.9.3.4UnderstandingLaboratoryReportedResults

10.10CaseStudy:WaterQualityProfileofGroundwater inCoal-BedMethaneFormations

10.10.1GeochemicalExplanationfortheStiffPatterns

10.10.1.1BicarbonateAnionIncrease

10.10.1.2CalciumandMagnesiumCationDecrease

10.10.1.3SodiumCationMayIncrease

10.10.1.4SulfateAnionDecrease

References

AppendixA

ASelectiveDictionaryofWaterQualityParametersandPollutants

A.1Introduction

A.1.1WaterQualityInorganicParameters:Classi fiedbyAbundance

A.2AlphabeticalListingofChemicalandPhysicalWaterQuality ParametersandPollutants

AnswerstoSelectedChapterExercises

PrefacetotheSecondEdition

Muchnewmaterialhasbeenaddedtothissecondedition.Besidesatotallynew chapteronradionuclides,thetexthasbeenreorganizedandupdatedwithseparate chaptersonmetals,lightnonaqueousphaseliquids(LNAPLs),densenonaqueous phaseliquids(DNAPLs),andbiodegradation.Also,someend-of-chapterexercises havebeenadded.Thedictionaryofinorganicpollutantshasbeenenlargedand someimportantorganicpollutantsadded.Theformerappendiceslistingdrinking waterstandards,waterqualitycriteria,andsamplecollectionprotocolshavebeen omittedbecausethesedataarecontinuallychangingandarereadilyavailableonthe Internet.However,thegoalsofthebookremainthesame tohelpnon-chemist environmentalprofessionalsandstudentsworkwithchemicalinformationintheir workandstudies.

PrefacetotheFirstEdition

Bysensibledefinition,anyby-productofachemicaloperationforwhichthereisno profitableuseisawaste.Themostconvenient,leastexpensivewayofdisposingofsaid waste – upthechimneyordowntheriver – isthebest.

From AmericanChemicalIndustry – AHistory,byW.Haynes, VanNostrandPublishers,1954

Thequoteabovedescribestheusualapproachtowastedisposalasitwaspracticedin the firsthalfofthe1900’s.Currentdisposalandcleanupregulationsareaimedat correctingproblemscausedbysuchmisguidedadviceandgofurthertowardtrying tomaintainanon-degradingenvironment.Regulationssuchasfederalandstate CleanWaterActshavesetinmotionagreatefforttoidentifythechemicalcomponentsandothercharacteristicswhichinfluencethequalityofsurfaceandgroundwatersandthesoilsthroughwhichthey flow.Thenumberofdrinkingwater contaminantsregulatedbytheUnitedStatesGovernmenthasincreasedfromabout fivein1940toover150in1999.

Therearetwodistinctspheresofinterestforanenvironmentalprofessional, theever-changing,constructedsphereofregulationsandthecomparatively stablesphereofthenaturalenvironment.Muchoftheregulatorysphereisbounded byclassi ficationsandnumericalstandardsforwaters,soils,andwastes.Theenvironmentalsphereisboundedbytheinnatebehaviorofchemicalsofconcern. Whilethisbookfocusesontheenvironmentalsphere,itmakesanexcursionintoa smallpartoftheregulatorysphereinChapter1,wheretherationaleforstream classi ficationsandstandardsandtheregulatorydefinitionofwaterqualityare discussed.

Thisbookisintendedtobeaguideandreferenceforprofessionalsandstudents. Itisstructuredtobeespeciallyusefulforthosewhomustusetheconceptsof environmentalchemistrybutarenotchemistsanddonothavethetimeand=or inclinationtolearnalltherelevantbackgroundmaterial.Chemistrytopicsthatare mostimportantinenvironmentalapplicationsaresuccinctlysummarized,witha genuineefforttowalkthemiddlegroundbetweentoomuchandtoolittleinformation.Frequentlyusedreferencematerialsarealsoincluded,suchaswatersolubilities, partitioncoeffi cients,naturalabundanceoftracemetalsinsoil,andfederaldrinking waterstandards.Particularlyusefularethefrequent ‘‘rules-of-thumb’’ lists,which convenientlyofferwaystoquicklyestimateimportantaspectsofthetopicbeing discussed.

Althoughitisoftentruethat ‘‘alittleknowledgecanbedangerous’’,itisalso truethatalittlechemicalknowledgeofthe ‘‘rightsort’’ canbeagreathelptothe busynon-chemist.Althoughno ‘‘practicalguide’’ willpleaseeveryonewithits choiceofinclusionsandomissions,Ihavebasedmychoicesonthemostfrequently

askedquestionsfrommycolleaguesandthematerialI findmyselflooking-upover andoveragain.Themaingoalofthisbookistooffernon-chemistreadersenough chemicalinsighttohelpthemcontendwiththoseenvironmentalchemistryproblems thatseemtoarisemostfrequentlyintheworkofanenvironmentalprofessional. Environmentalchemistsandstudentsofenvironmentalchemistryshouldalso find thebookvaluableasageneral-purposereference.

Author

EugeneR.Weiner,PhD isprofessoremeritusofchemistryattheUniversityof Denver,Colorado.In1965hejoinedtheUniversityofDenver’sfaculty.From1967 to1992,hewasaconsultantwiththeU.S.GeologicalSurvey,WaterResources DivisioninDenver,andhasconsultedonenvironmentalissuesformanyother private,state,andfederalentities.After27yearsofresearchandteachingenvironmentalandphysicalchemistry,hejoinedWrightWaterEngineersInc.,anenvironmentalandwaterresourcesengineering firminDenver,asaseniorscientist.

HereceivedaBSinmathematicsfromOhioUniversity,anMSinphysicsfrom theUniversityofIllinois,andaPhDinchemistryfromJohnsHopkinsUniversity. Hehasauthoredandcoauthoredmorethan400researcharticles,books,andtechnicalreports.Inrecentyears,hehasconducted16shortcourses,dealingwiththe movementandfateofcontaminantsintheenvironment,inmajorcitiesaroundthe UnitedStatesforthecontinuingeducationprogramoftheAmericanSocietyofCivil Engineers.

1 WaterQuality

1.1DEFININGENVIRONMENTALWATERQUALITY

Waterqualitymeansdifferentthingstodifferentpeople,dependingontheirgoalsfor thewater.Achemistinthelaboratorywillregardhigh-qualitylaboratorywateras waterfreefromchemicalimpuritiesorsuspendedsolids.High-qualityenvironmental waterhasdifferentcriteria.Thesamechemistonawildernessbackpacktripmight identifyhigh-qualitywateraswaterinapristineenvironmentunalteredbyhuman activity.Ifthechemistisalsoa fisherman,sheorhemightregardhigh-qualitywater asagoodhabitatfor fishandotheraquaticorganisms.Adrinkingwatertreatment plantmanagerwilldefinehigh-qualitywateraswaterwithaminimumamountof substancesthathavetoberemovedortreatedtoproducesafeandpalatabledrinking water.Abroadviewofhigh-qualitywaterwilltakeintoconsiderationitssuitability forparticularuses.

TheU.S.CongressrecognizedthiswhentheyenactedtheFederalWaterPollutionControlActAmendmentsof1972(PublicLaw92500,alsoknownastheClean WaterAct)whereitisstated, ‘‘Theobjectiveofthisactistorestoreandmaintainthe chemical,physical,andbiologicalintegrityoftheNation’swaters.’’ Inthelaw,water qualityisameasureofitssuitabilityforparticulardesignateduses.Implementingthe lawentailsidentifyingtheseuses,settingstandardsthatareprotectiveofthedesignateduses,andprovidingenforcementproceduresthatrequirecompliancewiththe standards.

1.1.1WATER-USE CLASSIFICATIONSAND WATER QUALITY STANDARDS

Inmostpartsoftheworld,thedaysarelonggonewhenrivers,lakes,springs,and wellsfromwhichonecandirectlydrinkcouldreadilymeetalmostallneedsforhighqualitywater.Wheresuchwaterremains,mostlyinhighmountainregions untouchedbymining,grazing,orindustrialfallout,itmustbeprotectedbystrict regulations.IntheUnitedStates,manystatesseektopreservehigh-qualitywaters withantidegradationpolicies.Butmostofthewaterthatisusedfordrinkingwater supplies,irrigation,andindustry,nottomentionsupplyingasupportinghabitatfor natural floraandfauna,ismuch-reusedwaterthatoftenneedstreatmenttobecome acceptable.

Wheneveritisrecognizedthatwatertreatmentisrequired,newissuesarise concerningthedegreeofwaterqualitysought,thecostsinvolved,and,perhaps, restrictionsimposedontheusesofthewater.Sinceitiseconomicallyimpossibleto makeallwaterssuitableforallpurposes,itbecomesnecessarytodesignateforwhich usesvariouswatersaresuitable.

Inthiscontext,apracticalevaluationofwaterqualitydependsonhowthewater isused,aswellasitschemicalmakeup.Thequalityofwaterinastreammightbe consideredgoodifthewaterisusedforirrigationbutpoorifitisusedasadrinking watersupply.Todeterminewaterquality,onemust firstidentifythewaysinwhich thewaterwillbeusedandonlythendetermineappropriatenumericalstandards forimportantwaterqualityparametersthatwillsupportandprotectthedesignated wateruses.

Strictlyspeaking,awaterimpurityisanysubstanceinthewaterthatisnotapart ofawatermolecule,andabsolutelypurewaterisunattainableinanyrealisticwater sample.High-qualitywaterisnotpure;itjustcontainsamountsofimpuritiestoo smalltobeharmfultoitsintendeduses.Manyimpuritiesinwaterarebeneficial.For example,carbonate(CO2 3 )andbicarbonate(HCO2 3 )makewaterlesssensitiveto acidrainandacidminedrainage;hardnessandalkalinitydecreasethesolubilityand toxicityofmetals;nutrients,dissolvedcarbondioxide(CO2),anddissolvedoxygen (O2)areessentialforaquaticlife.Outsideachemicallaboratory,extremelypure watergenerallyisnotdesirable.Waterwithverylowconcentrationsofdissolved impuritiesismorecorrosive(aggressive)tometalpipesthanwatercontaininga measureofhardness,itcannotsustainaquaticlife,anditcertainlydoesnottasteas goodasnaturalwatersaturatedwithdissolvedoxygenandcontainingahealthymix ofminerals.

Inthisbook,thefollowingdefinitionsareused:

. Awaterimpurityisanysubstanceinwaterthatisnotderivedfromawater moleculeonly,*regardlessofwhetheritisconsideredharmful,benefi cial, orneutraltotheintendedusesofthewater.

. Awaterpollutantorcontaminantisanysubstanceinwaterthatisnot derivedfromawatermoleculeonly,andisconsidered,whenpresentin sufficientconcentration,tobeharmfultothewater’sintendeduses.

Formostpurposes,thequalityofwaterisnotjudgedbyitspuritybutratherbyits suitabilityforthedifferentusesintendedforit.Thewatercontaminantnitrate(NO3 ) illustratesthispoint.Indrinkingwatersupplies,nitrateconcentrationsgreaterthan 10mg=Lareconsideredapotentialhealthhazard,particularlytoyoungchildren.On theotherhand,nitrateisabenefi cialplantnutrientinagriculturalwaterandisadded asafertilizer.Watercontainingmorethan10mg=Lofnitrateisofpoorqualityifitis usedforpotablewaterbutmaybeofgoodqualityforagriculturaluse.

Thus,waterusesmustbeidenti fiedbeforewaterqualitycanbejudged.Oncethe waterusesaredefined,numericalwaterqualitystandardsforharmfulimpuritiescan beestablishedtoprotecteachuse.

Therearethreedifferenttypesofwaterqualitystandardssetbystateandfederal regulations:

*ThespeciesHþ,OH ,H3Oþ , H5 Oþ 2 canallbederivedfromwatermoleculesonly.SpeciessuchasCl , Naþ , MnO4 ,Ca(OH)2,etc.,clearlycannot.

1.Surfaceandgroundwaterstandards,fortheambientqualityofnatural waters(rivers,lakes,reservoirs,wetlands,andgroundwater).Thesestandardsarechosentoprotectthecurrentandintendedusesofnaturalwaters,as discussedlater.

2.Effluentstandards,controlledbydischargepermitsundertheNational PollutantDischargeEliminationSystem(NPDES).Effl uentstandardsare chosensothatwastewatersdischargingintonaturalwatersdonotcausethe receivingwaterstoexceedtheirsurfaceandgroundwaterstandards.Effl uentstandardsareaffectedbytheambientstandardsforthereceivingwater, theassimilationcapacityofthereceivingwater,thetotalpollutantload contributedbyalldischargersintothatwater,etc.

3.Drinkingwaterstandards,whichapplybothtogroundwaterusedasapublic watersupplyandtowaterdeliveredtothepublicfromdrinkingwater treatmentplants.Drinkingwaterstandardsarechosentoprotectthepublic health.

1.1.2WATER QUALITY CLASSIFICATIONSAND STANDARDS FOR NATURAL WATERS

Thefollowingpreliminarysteps,takenbyastateorfederalagency,areacommon approachtoevaluatingwaterqualityinnaturalwaters:

1.Defi neingeneralthebasicpurposesforwhichnaturalwaterswillpotentiallybeused(watersupply,aquaticlife,recreation,agriculture,etc.).These willbethecategoriesusedforclassifyingusesforexistingbodiesofwater.

2.Setnumericalwaterqualitystandardsforphysicalandchemicalcharacteristicsthatwillsupportandprotectthedifferentwater-usecategories.

3.Comparethewaterqualitystandardswith fieldmeasurementsofexisting bodiesofwater,andthenassignappropriateuseclassi ficationstothewater bodiesaccordingtowhethertheirpresentorpotentialqualityissuitablefor theassignedwateruses.

Afteranaturalbodyofwaterisclassifiedforoneormoreuses,compilean appropriatesetofnumericalstandardstoprotectitsassigneduseclassi fications. Wheredifferentassignedclassi ficationshavedifferentstandardsforthesameparameter,themorestringentstandardwillapply.

Itisclearthatmeasuringthechemicalcompositionofawatersamplecollectedin the fieldisjustonestepindeterminingwaterquality.Thesampledatamustthenbe comparedwiththestandardsassignedtothatwaterbody.Ifnostandardsare exceeded,thewaterqualityisdefi nedasgoodwithinitsclassifieduses.Asnew informationiscollectedaboutenvironmentalandhealtheffectsofindividualwater constituents,itmaybenecessarytorevisethestandardsfordifferentwateruses. Federalandstateregulationsrequirethatwaterqualitystandardsbereviewed periodicallyandmodi fiedwhenappropriate.

Inadditiontothereviewprocessforexistingstandards,theSafeDrinkingWater ActrequirestheEnvironmentalProtectionAgency(EPA)toperiodicallypublisha

Dri

nking Water Contaminant Candidat e List (CCL), a list of contam inants that, ‘‘at the time of publicati on, are not subject to any proposed or promulgat ed national prim ary drinking water regulatio ns, are known or anticipated to occur in public water systems, and may require regulations.’’* Contaminants on the list are studied until EPA concludes that there are sufficient data and information to either propose appropriate regulations or conclude that no action is currently necessary.

1.1.3 SETTING NUMERICAL WATER QUALITY STANDARDS

Numerical water quality standards are chosen to protect the current and intended uses (classifi cations) for environment al waters. The water quality standards for each water body are based on all the uses for which it is classi fied. In addition, site-spec ific standards may be established where special conditions exist, such as where aquatic life has become acclimat ed to high levels of dissolved metals. Each state has tables of water quality standards for each classi fied water body. In addition to standards for environment al waters, there are separate human health-bas ed standards for groundwater used for public drinking water supplies, and for treated drinking water as delivered from a water treatmen t plant or, for some parameters such as lead and copper, as delivered at the tap.

The states, not the U.S. EPA, have the primary responsibility for setting water quality standards. However, EPA sets baseline standards for different use classi fications that serve as minimum requirements for the state standards. In addition, EPA issues guidance and model regulations regarding standards, and EPA approval is required before standards can be adopted or changed by states.

Water quality standards are defined in terms of

. Chemical composition: Concentratio ns of metals, organic compounds, chlorine, nitrates, ammonia, phosphorus, sulfate, etc.

. General physical and chemi cal properties: Temperature, alkalinity, conductivity, pH, dissolved oxygen , hardness, total dissolved solids (TDS), chemi cal oxygen demand, etc.

. Biological charact eristics : Biological oxygen demand, Escherichia coli, fecal coliform s, whole effluent toxicity (WET), etc.

. Radionuclides : Radium-226, radium-228, uranium, radon, gross alpha and grossbetaemissions,etc.

1.1.4TYPICAL WATER-USE CLASSIFICATIONS

Allstatesclassifysurfacewatersandgroundwateraccordingtotheircurrentand intendeduses.Typicalclassi ficationsaredescribedinthefollowingsections.

1.1.4.1Recreational

Class1 Primarycontact:Thesesurfacewatersaresuitableorintendedtobecome suitableforrecreationalactivitiesinoronthewaterwhentheingestionofsmall

* More information may be found at: www.epa.gov=safewater=ccl=index.html

quantitiesofwaterislikelytooccurandprolongedandintimatecontactwiththe bodyisexpected,e.g.,swimming,rafting,kayaking,tubing,windsurfi ng,waterskiing,etc.TheCleanWaterActrequiresthatwatersshallbepresumed,bydefault, tobesuitableorpotentiallysuitableforclass1uses,unlessauseattainability analysisdemonstratesthatthereisnotareasonablepotentialforprimarycontact usestooccurinthewatersegmentsinquestionwithinthenext20yearperiod.For watersthatarenotcurrentlysuitableforclass1statusbutcouldberestoredwithin20 years,statesmaysubdividetheprimarycontactrecreationclassi ficationintoclass1a andclass1b:

Class1a Existingprimarycontact:Class1awatersarethoseinwhich primarycontactuseshavebeendocumentedorarepresumedtobepresent. Watersforwhichnouseattainabilityanalysishasbeenperformeddemonstratingthatarecreationclass2classi ficationisappropriateshallbe assignedaclass1aclassification,unlessareasonablelevelofinquiryhas failedtoidentifyanyexistingclass1usesofthewatersegment.

Class1b Potentialprimarycontact:Thisclassificationshallbeassignedto watersegmentsforwhichnouseattainabilityanalysishasbeenperformed demonstratingthatarecreationclass2classifi cationisappropriate,anda reasonablelevelofinquiryhasfailedtoidentifyanyexistingclass1usesof thewatersegment.

Class2 Secondarycontact:Surfacewatersnotsuitableforaprimarycontact classi ficationbutaresuitableorintendedtobecomesuitableforrecreationaluses inoraroundthewater,whicharenotincludedintheprimarycontactcategories, e.g.,wading, fishing,motoryachting,andotherstreamsideorlakesiderecreation activities.

1.1.4.2AquaticLife

Surfacewatersthatpresentlysupportaquaticlifeusesasdescribedbelow,ormay reasonablybeexpectedtodosointhefutureduetothesuitabilityofpresent conditions.Aquaticlifeclassi ficationsalsoapplytowatersthatareintendedto becomesuitableforsuchusesasagoal.Separatestandardsshouldbeappliedto protect:

Class1 Coldwateraquaticlife:Thesearewatersthat(1)arecurrentlycapableof sustainingawidevarietyofcoldwaterbiota(consideredtobetheinhabitantsof waterinwhichtemperaturesnormallydonotexceed208C),includingsensitive speciesor(2)couldsustainsuchbiotabutforcorrectablewaterqualityconditions. Watersshallbeconsideredcapableofsustainingsuchbiotawherephysicalhabitat, water flowsorlevels,andwaterqualityconditionsresultinnosubstantialimpairmentoftheabundanceanddiversityofspecies.

Class1 Warmwateraquaticlife:Thesearewatersthat(1)arecurrentlycapable ofsustainingawidevarietyofwarmwaterbiota(consideredtobetheinhabitants ofwaterinwhichtemperaturesnormallyexceed208C),includingsensitivespecies

or(2)couldsustainsuchbiotabutforcorrectablewaterqualityconditions.Waters shallbeconsideredcapableofsustainingsuchbiotawherephysicalhabitat,water fl owsorlevels,andwaterqualityconditionsresultinnosubstantialimpairmentofthe abundanceanddiversityofspecies.

Class2 Coldandwarmwateraquaticlife:Thesearewatersthatarenot capableofsustainingawidevarietyofcoldorwarmwaterbiota,includingsensitive species,duetoconditionsofphysicalhabitat,water flowsandlevels,oruncorrectablewaterquality,whichresultinsubstantialimpairmentoftheabundanceand diversityofspecies.

1.1.4.3Agriculture

Surfacewatersthataresuitableorintendedtobecomesuitableforirrigationofcrops andthatarenothazardousasdrinkingwaterforlivestock.

1.1.4.4DomesticWaterSupply

Surfacewatersthataresuitableorintendedtobecomesuitableforpotablewater supplies.Afterreceivingstandardtreatment definedascoagulation, fl occulation, sedimentation, filtration,anddisinfectionwithchlorineoritsequivalent these waterswillmeetfederalandstatedrinkingwaterstandards.

1.1.4.5Wetlands

Wetlandsmaybedefinedasareasthatareinundatedorsaturatedbysurfaceor groundwateratafrequencyanddurationsufficienttosupport,andundernormal circumstancesdosupport,aprevalenceofvegetationandorganismstypically adaptedforlifeundersaturatedsoilconditions.Surfacewaterandgroundwater thatsupplywetlandsmaybesubjecttothesamestandardsappliedtowetlands.

Astatemayadoptawetlandsclassi ficationbasedonthefunctionsofthe wetlandsinquestion.Wetlandfunctionsthatmaywarrantsite-specificprotection includegroundwaterrechargeordischarge, flood fl owalteration,sedimentstabilization,sedimentorotherpollutantretention,nutrientremovalortransformation, biologicaldiversityoruniqueness,wildlifediversityorabundance,aquaticlife diversityorabundance,andrecreation.

1.1.4.6Groundwater

Subsurfacewatersinazoneofsaturationthatareatthegroundsurfaceorcan bebroughttothegroundsurfaceorbroughttosurfacewatersthroughwells, springs,seeps,orotherdischargeareas.Separatestandardsareappliedtogroundwaterusedfor

Domesticuse:Groundwatersthatareusedoraresuitableforapotablewater supply.

Agriculturaluse:Groundwatersthatareusedoraresuitableforirrigatingcrops andlivestockwatersupply.

Surface water quality protection: This classi fication is used for groundw aters that feed surface waters. It places restrict ions on proposed or existing activities that could impact groundw aters in a way that water quality standards of classifi ed surface water bodies could be exceeded.

Potentially usable: Groundwaters that are not used for domestic or agricultural purposes, where background levels are not known or do not meet human health and agricultural standards, where TDS levels are less than 10,000 mg=L, and where domestic or agricultural use can be reasonably expected in the future.

Limited use: Groundwaters where TDS levels are equal to or greater than 10,000 mg=L, where the groundwater has been speci fically exempted by regulatio ns of the state, or where the criteria for any of the above classifications are not met.

RULEOFTHUMB

Generally,themoststringentstandardsarefordrinkingwaterandaquaticlife classi fications.

1.1.5 STAYING UP-TO-DATE WITH STANDARDS AND OTHER REGULATIONS

This is a daunting challenge and, in the opinion of some, an impossible one. Not only are the federal regulations continually changing but also individual states may promulgat e different rules because of local needs. The usual approach is to obtain the latest regulatory information as the need arises, always recognizing that your current knowledge may be outdated. Part of the problem is that few environmental profession als can find time to regularly read the Federal Register, where the EPA first publishes all proposed and final regulations.

Fortunately, most trade magazines and professional journals highlight importan t changes in standards and regulations that are of interest to their readers . If you stay abreast of this literat ure, you will be aware of the regulatory chang es and their implications. For the greatest level of securi ty, one has to often contact state and federal information centers to ensure you are working with the regulations that are currently being enforced. Amon g the most useful sources for stayi ng abreast of the latest informat ion is the EPA Web site on the Internet (www.epa.go v). This Web site has links to information hotlines, laws and regulatio ns, databases and software, availablepublications,andotherinformationsources.Eachstateenvironmental agencyalsohasitsownWebsite.

1.2SOURCESOFWATERIMPURITIES

As discussed in Section 1.1.1, a water impurit y is any substanc e other than water(H2O)thatisfoundinthewatersample,whetherharmfulorbeneficial.

Thus,calciumcarbonate(CaCO3)isawaterimpurityeventhoughitisnotconsideredhazardousandisnotregulated.Impuritiescanbedividedintothreeclasses:(1) regulatedimpurities(pollutants)consideredharmfuloraestheticallyobjectionable, (2)unregulatedimpuritiesnotconsideredharmful,and(3)unregulatedimpuritiesnot yetevaluatedfortheirpotentialhealthrisks.*

Inwaterqualityanalysis,unregulatedaswellasregulatedimpuritiesaremeasured.Forexample,hardnessisawaterqualityparameterthatresultsmainlyfromthe presenceofdissolvedcalciumandmagnesiumions,whichareunregulatedimpurities.However,highhardnesslevelscanpartiallymitigatethetoxicityofmany dissolvedmetalstoaquaticlife.Hence,itisimportanttomeasurewaterhardness inordertoevaluatethehazardsofdissolvedmetals.

Dataconcerningunregulatedwaterimpuritiesarealsohelpfulforanticipating certainnon-health-relatedpotentialproblems,suchasatendencyforthewatertoform depositsinpipesandboilers,tocausemetalcorrosion,andforirrigationwatertocause soilstoswellanddiminishtheirpermeability.Unregulatedimpuritiescanalsohelpto identifytherechargesourcesofwellsandsprings,identifythemineralformations throughwhichsurfacewaterorgroundwaterpasses,andage-datewatersamples.

1.2.1NATURAL SOURCES

Snowandrainwatercontaindissolvedandparticulatemineralscollectedfrom atmosphericparticulatematter,andsmallamountsofgasesdissolvedfromatmosphericgases.Snowandrainwaterhavevirtuallynobacterialcontentuntiltheyreach thesurfaceoftheearth.

Afterprecipitationreachesthesurfaceoftheearthand fl owsoverandthrough thesoil,thereareinnumerableopportunitiesforintroductionintothewaterof mineral,organic,andbiologicalsubstances.Watercandissolveatleastalittleof nearlyanythingitcontacts.Becauseofitsrelativelyhighdensity,watercanalso carrysuspendedsolids.Evenunderpristineconditions,surfaceandgroundwaterwill usuallycontainvariousdissolvedandsuspendedchemicalsubstances.

1.2.2HUMAN-CAUSED SOURCES

Manyhumanactivitiescauseadditionalpossibilitiesforwatercontamination.Some importantsourcesare

. Constructionandminingwherefreshlyexposedsoilsandmineralscan contact flowingwater

. Industrialwastedischargesandspills

. Petroleumleaksandspillsfromstoragetanks,pipelines,tankers,andtrucks

. Agriculturalapplicationsofchemicalfertilizers,herbicides,andpesticides

*The1996AmendmentstotheSafeDrinkingWaterActcreatedaContaminantCandidateListanda processtodetermineifnewregulationsareneededtoprotectdrinkingwatersafety.EPAisrequiredto periodicallypublishalistofpotentialcontaminantsthat, ‘‘atthetimeofpublication,arenotsubjectto anyproposedorpromulgatednationalprimarydrinkingwaterregulation,whichareknownoranticipatedtooccurinpublicwatersystems,andwhichmayrequireregulation.’’

. Urbanstormwaterrunoff,whichmaycontactallthedebrisofacity, includingspilledfuels,animalfeces,dissolvedmetals,organicscraps, roadsalt,tireandbrakeparticles,constructionrubble,etc.

. Effluentsfromindustriesandwastetreatmentplants

. Leachatefromland fills,septictanks,treatmentlagoons,andminetailings

. Falloutfromatmosphericpollution

Environmentalprofessionalsmustremainalerttothepossibilitythatnaturalimpurity sourcesalsomaybecontributingtoproblemsthatat firstappeartobesolelytheresult ofhuman-causedsources.Wheneverpossible,oneshouldobtainbackgroundmeasurementsthatdemonstratewhatimpuritiesarepresentintheabsenceofknownhumancausedcontaminantsources.Forinstance,groundwaterinanareaimpactedbymining oftencontainsrelativelyhighconcentrationsofdissolvedmetals.Beforeanyremediationprogramsareinitiated,itisimportanttodeterminewhatthegroundwaterquality wouldhavebeenifthemineshadnotbeenthere.Thisgenerallyrequires finding,if possible,alocationupgradientoftheareainfluencedbymining,wherethegroundwaterencounterssubsurfacemineralstructuressimilartothoseintheminedarea.

1.3MEASURINGIMPURITIES

Therearefourcharacteristicsofwaterimpuritiesthatareimportantforaninitial assessmentofwaterquality:

1.Whatkindsofimpuritiesarepresent?Aretheyregulatedcompounds?

2.Howmuchofeachimpurityispresent?Areanystandardsexceededforthe waterbodybeingsampled?

3.Howdotheimpuritiesin fluencewaterquality?Aretheyhazardous?Beneficial?Unaesthetic?Corrosive?

4.Whatisthefateoftheimpurities?Howwilltheirlocation,quantity,and chemicalformchangewithtime?

1.3.1WHAT IMPURITIES ARE PRESENT?

Thechemicalcontentofawatersampleisfoundbyqualitativechemicalanalysisof collectedenvironmentalsamples.Qualitativeanalysisidenti fiesthechemicalspecies presentbutnotthequantity(althoughqualitativeandquantitativeanalysesareoften combinedinasinglemeasurement).Someoftheanalyticalmethodsusedaregasand ionchromatography,massspectroscopy,opticalemissionandabsorptionspectroscopy,electrochemicalprobes,andimmunoassaytesting.

1.3.2HOW MUCHOF EACH IMPURITY IS PRESENT?

Theamountofimpurityisfoundbyquantitativechemicalanalysisofthewater sample.Theamountofimpuritycanbeexpressedintermsoftotalmass(e.g., ‘‘There are15tonsofnitrateinthelake.’’),orintermsofconcentration(e.g., ‘‘Nitrateis presentataconcentrationof12mg=L.’’).Concentrationisusuallythemeasureof

interestforpredictingtheeffectofanimpurityontheenvironment.Itisusedfor defi ningenvironmentalstandards,andisreportedinmostlaboratoryanalyses.In additiontoconcentrationstandards,anadditionallimitoftotalmassmaybeapplied tosomeriversintheformoftotalmaximumdailyloads(TMDLs)ofcertain pollutants.Totalmaximumdailyloadsareusedinsettingstandardsforwaste effl uentdischargessothatallowabletotalloadsarenotexceeded.

1.3.3WORKINGWITH CONCENTRATIONS

Unfortunately,thereisnotoneall-purposemethodforexpressingconcentration.The bestchoiceofconcentrationunitsdependsinpartonthemedium(liquid,solid,or gas),andinpartonthepurposeofthemeasurement.Theexampleproblemsinthis andthefollowingsectionsillustratesomeapplicationsofconcentrationcalculations. Forregulatorycompliancepurposes,concentrationisusuallyexpressedasmass ofimpurityperunitvolumeorunitmassofsample.

. Inwatersamples,impurityconcentrationsaretypicallyreportedasmilligrams(mg),micrograms(mg),ornanograms(ng)ofimpurityperliter(L) ofwatersample.Althoughthisisactuallycomparingaweighttoavolume, itisgenerallyassumedthattheliterofwatersampleweighsexactly1000 grams,sothatanimpurityconcentrationof1mg=Lisequivalentto1gram ofimpurityin1milliongramsofwater,oronepartpermillion(1ppm).*

1mg=L ¼ 10 3 g=L ¼ 1partpermillion(ppm)

1 mg=L ¼ 10 6 g=L ¼ 1partperbillion(ppb)

1ng=L ¼ 10 9 g=L ¼ 1partpertrillion(ppt)

. Insoilsamples,impurityconcentrationsaretypicallyreportedasmilligrams,micrograms,ornanogramsofimpurityperkilogramofsoilsample.

1mg=kg ¼ 10 3 g=kg ¼ 1partpermillion(ppm)

1 mg=kg ¼ 10 6 g=kg ¼ 1partperbillion(ppb)

1ng=kg ¼ 10 9 g=kg ¼ 1partpertrillion(ppt)

. Ingassamples(normallyairsamples),concentrationscannotbeexpressed assimplyasinwaterorsoils,becausegasvolumesanddensitiesare stronglydependentontemperatureandpressure.Inaddition,theamount ofsomeairpollutants(suchascarbonmonoxideororganicvapors)canbe aslargeorasgreaterthantheoxygenandnitrogenlevelsinseverely pollutedair;thus,theapproximationofthefootnotebelow,usedforwater concentrations,maynotapplytoairconcentrations.

Forthesereasons,partspermillionforgasesisdifferentfrompartspermillion forliquidsandsolids.Forliquidsandsolids,ppmisaratiooftwomasses

*Notethattheactualmassofthewatersampleincludesthemassofthewaterplusthemassofthe impurity.Since1Lofpurewaterat48Cand1atmpressureweigh1000g,thereisaninherent assumptionwhenequating1mg=Lto1ppm,thatthemassoftheimpurityinthesampleisnegligible comparedtothemassofwaterandthatthedensityofthesampledoesnotchangesignificantlyoverthe temperatureandpressurerangesencounteredinenvironmentalsampling.

Another random document with no related content on Scribd:

enthält, schon ein unausgesprochener Hinweis auf die Grethener Aussetzung enthalten? Szalays Angabe (Wisente im Zwinger): »1746 (mit Fußnote: »Oder etwas früher«) hat man in Grethen bei Grimma einige Wisente ausgesetzt«, muß nach dem oben gehörten in »Einige Jahre vor 1746« abgeändert werden.

Vom Aschberg zum Kiel

Von PaulApitzsch, Oelsnitz i. V.

Mit sieben photographischen Aufnahmen von Curt Sippel, Plauen

Ein klarer Wintertag liegt über den Waldbergen des südöstlichen Vogtlandes. Ich steige mutterseelenallein von Klingenthalauf steilen, eisbekrusteten Pfaden zum Ortsteil Körnerberg empor. Im Schnee vergraben, hocken am Hange die letzten Hütten. Tief unten das engbebaute Zwotatal. Gegenüber ein blendendweißes, dunkelgesäumtes Wiesenband zu beiden Seiten des Markhausener Baches mit dem bewaldeten Nebelberg (758,9 Meter) und dem kahlen Falkenberg (744,3 Meter). Südostwärts weiterwandernd, ändert sich urplötzlich die Szenerie. Von den gewundenen Wegen der »Quittenbachalpen« aus wird ein wahrhaft alpiner Tief- und Fernblick gegen Süden frei. Kurz hinter Kamerun wird zum ersten Male die Schneekuppe des Aschberges sichtbar. Rechts, gegen Süden, erscheinen die Graslitzer Berge: Hausberg, Eibenberg und Grünberg; dahinter breitgelagert Glasberg und Muckenbühl sowie die prachtvolle Silhouette des Königs im Grenzgebirge, des Silberbacher Spitzberges (994,3 Meter). Jenseits des Waldgutes Untersachsenberg nimmt die sächsisch-böhmische Grenzstraße den Charakter eines ausgesprochenen Kammweges an. Schneidender Höhenwind peitscht und biegt die Vogelbeerebereschen am Wege. Brennendrote Fruchtbündel hängen noch immer im Geäst, und schillernde Krammetsvögel streichen lautlos von dannen beim Nahen menschlicher Tritte. Allmählich erschließt sich nordwärts der Blick in die Täler des Brunndöbra- und Steindöbrabaches, während anderseits immer noch das böhmische Gipfeltriumvirat GlasbergMuckenbühl-Spitzberg das Landschaftsbild beherrscht. Ein alter, siebzigjähriger Schwaderbacher Einwohner, der mit schwerer Bürde am Gestänge des Wegrandes ausruht, bezeichnet mir die

Grenzstraße als »evangelische Strassen«. Tatsächlich ist hier die politische Grenze identisch mit der konfessionellen.

Abb. 1 Aus Schwaderbach

Der nun folgende Ortsteil »Grenzstraße« schneidet genau das sächsische Untersachsenberg von dem böhmischen Schwaderbach (Abb. 1), dessen graues katholisches Gotteshaus inmitten verstreuter Holzhütten aufragt. Der Weg erreicht bei Grenzstein 600 den Ort Obersachsenberg. Beim Waldgut Obersachsenberg weder links, noch rechts abbiegen, sondern den steilansteigenden Grenzweg geradeaus. Oberhalb der zweiten, struppigen jungen Buche, unweit der letzten, höchsten Hütten von Schwaderbach und Aschberg, da, wo die im Schnee verschütteten Steingeröllmauern des Gipfelplateaus beginnen, steht in etwa neunhundert Meter Seehöhe der Grenzstein 606. Hier stoße den Wanderstab in die kristallene Kruste des Hartschnees; hier halte inne und schaue rückwärts. Denn hier bei Grenzstein 606 am Westhange des Aschberges, nicht auf

dem Gipfel des Aschberges, ist, meiner persönlichen Auffassung nach, derbedeutendsteAussichtspunktdesgesamtenVogtlandes.

Abb. 2 Blick gegen Böhmen

Im zweiten Jahrgange seiner Monatszeitschrift »Das Vogtland und seine Nachbargebiete« warf Kurt Arnold Findeisen die Preisfrage auf: Welches ist der hervorragendste Aussichtspunkt des Vogtlandes? Ich beteiligte mich an dem Preisausschreiben, sprach dem Silberbacher Spitzberg die Siegespalme zu und heimste einen Preis ein. Heute, zehn Jahre später, bin ich andrer Ansicht. Ich habe seitdem auf meinen Wanderfahrten kreuz und quer durchs Vogtland mancherlei Neues geschaut, aber nirgends einen Fernblick gefunden, der sich messen könnte mit dem vom Grenzstein 606 aus. Nach Einheitlichkeit, Geschlossenheit, Großzügigkeit und Eigenart steht für mich auch heute noch der Silberbacher Spitzberg an erster Stelle. Aber die allseitig geschlossenen, starren Waldkonturen und der Blick auf ein beinahe unbebautes Gelände verleihen der Rundschau vom Granitgipfel des Spitzberges etwas unsagbar Totes, Einsames,

Gedrücktes. Es fehlt das Belebende menschlicher Wohnstätten, das Abwechselnde in Form und Farbe, das Frohe und Freudige. Und gerade das bietet der Blick vom Grenzstein 606 aus in überreichem Maße. Die zahllosen, verstreuten Häuschen und Hüttchen von Schwaderbach und Quittenbach, von Ober- und Untersachsenberg, von Brunndöbra, Steindöbra und Georgenthal, die stattlichen Gotteshäuser und Schulgebäude im Tal, die schmucken Stätten der Industrie und anheimelnde Landhäuser im Heimatstil geben dem Bilde etwas ungemein Liebliches. Graue Sträßchen und schmale Fußsteige ziehen im Sommer von Haus zu Haus durchs grüne Gelände. Wedelnde Wäsche auf schwanken Leinen in den Farben der nahen Tschechoslowakei, weiß, blau und rot, flattert im Bergwind vor den Hütten. Überall wird das Grün der Hänge und Hügel unterbrochen und belebt von bunten Farbflecken.

Heut’ freilich ist alles in einfache Formen und einheitliche Farben gegossen. Wuchtig hebt sich Terrasse über Terrasse, reiht sich Kuppe an Kuppe (Abb. 2). Alle Einzelheiten verwischt, alles Kleinliche getilgt, die ganze weite Winterwelt in blendender Größe als Einheit vor uns hingestellt.

Abb. 3 Neuschnee am Aschberg

Im Westen glutet blutigrot der Feuerball der scheidenden Sonne. Rasch senkt sich Dämmerung über das Waldland. Wie mit krallenden Fingern kriecht und klettert die Dunkelheit aus den Tälern herauf zu meinem sonnigen Hochsitz. Und dann kommt das Schönste. Wie ein Lichtlein nach dem anderen in tausend Fensterchen aufglimmt, wie mählich die Linien der Ferne und die Umrisse der Nähe zergehen, wie aus der stärker einsetzenden Nacht immer zahlreicher und deutlicher die stillen Lichter aufflammen und wie schließlich ein irdisches Sternenheer in schier überirdischer Schönheit uns entgegenleuchtet. In den Tälern die Lichtflecken gehäuft, an den Hängen die Lichtfünklein weiter voneinander entfernt, auf den Höhen hier und da ein einsames Leuchten. Und ganz in der Weite der fleckenlose, fahle Schein fernabgelegener größerer Ortschaften. Das Bellen eines Hundes, das Rattern eines Eisenbahnzuges, sonst kaum ein Geräusch in weiter Runde.

Kurz vor der Schlafenszeit der Waldbewohner erreicht die Schönheit des Lichterglanzes ihren Höhepunkt. Und dann verlöscht ein Fünklein nach dem anderen. Nur einigen wenigen fleißigen Arbeitsbienen oder wohl auch fröhlich-faulen Zechern leuchten die letzten Lichter, bis auch diese verlöschen und rabenschwarz die Bergnacht über dem Grenzgebirge liegt.

So stehe ich lange, lange mit schmauchendem Pfeiflein am Grenzstein 606, sehe den Wintertag schwinden und die Winternacht heraufziehen, sehe das Lichtermeer des südvogtländischen

Abb. 4 Waldwand

Musikwinkels kommen und gehen und steige in später Stunde hinab zu den Wohnstätten der schlafenden Waldbewohner. –

Am anderen Morgen, in aller Herrgottsfrühe, geht’s empor zum Gipfel des Aschberges. (Abb. 3.) Winterpracht! Rauhreif liegt über den Höhen. Jede junge Fichte eine Kristallkrone, jede Kiefer ein Gespenst, jedes Wacholderbäumchen eine duftigzarte Filigranarbeit. Alle Formen einseitig verzerrt. Die dünnen Stangen des Wildgatters sind zu breiten Brettern, die Bretter zu Balken geworden. Am Boden ragen die starren Stengel des Wegerichs, die buschigen Schäfte der Schafgarbe und zierlich mit Eisnadeln besetzte Dolden über die Schnee-Ebene. An der unbewaldeten Seite des Gipfels ziehen zahllose parallele Skifahrerfährten geradlinig dahin. Die glatten Felsen des Kulminationspunktes mit der Triangulierungssäule (939,5 Meter) sind an der Wetterseite mit gewellten Eisplatten bekrustet. Von Böhmen herüber schieben sich Nebelschwaden vor und geistern zwischen einseitig bereiften Fichtenstangen. (Abb. 4.) Und nun

Abb. 5 Straße Klingenthal–Auerbach (Steindöbra)

steuere ich weglos nach der Senke zwischen Aschberg und Großem Rammelsberg, um bei Grenzstein 624 die von Obersachsenberg nach Morgenröthe führende Waldstraße zu erreichen. Die Nebelfetzen wachsen an zu Wolkenbalken, und da die von Schneemassen überwuchteten Grenzsteine kaum erkennbar sind, ist größte Aufmerksamkeit erforderlich. Trotz der frühen Morgenstunde ist die Waldstraße belebt von Skifahrern, die auf leichten Brettern nach der rechts des Weges gelegenen Kurt-Seydel-Sprungschanze gleiten. Der mächtige Holzbau, heute überzuckert mit Rauhreif und Neuschnee, wurde 1923 vom Wintersportverein »Aschberg« errichtet und bietet prächtige Blicke hinab ins Tal und empor zu den Waldhängen des 962,7 Meter hohen Rammelsberges. Ich aber biege links ab und folge den blauen Zackenzeichen des Erzgebirgskammweges bis zur Staatsstraße »Klingenthal–Auerbach« (Abb. 5). Im »Buschhaus« zu Mühlleithen halte ich Mittagsrast und breche, um vor Anbruch der Dämmerung den Abendzug in Muldenberg zu erreichen, zeitig auf. Mein Nachmittagsziel ist der 941,3 Meter hohe Kiel. Es ist dies kein eigentlicher Berg, sondern ein Gebirgsstock, der sich in einer Gesamtflächenausdehnung von fünfundzwanzig Quadratkilometern stufenförmig aus den Tälern des Steinbaches, der kleinen Pyra, der Boda, des Sau- und Silberbaches, also im Wasserscheidengebiet Mulde–Eger, aufbaut und von einem Vasallenkranz von zwölf Vorbergen umgürtet wird. Das Aschberggebiet mit seiner dichten Besiedelung, mit seinen Skihütten und Sprungschanzen tritt von Jahr zu Jahr mehr aus seiner Wintereinsamkeit heraus. An klaren Wintersonntagen wimmeln seine Hänge von skifahrenden Naturgenießern. Am Kiel, bei Winselburg und um den Schneckenstein, steht schweigend der weite Winterwald. Der Massensportbetrieb konnte hier noch nicht festen Fuß fassen. Es fehlen die waldlosen, geneigten Flächen, und wenn auch hier und da zwischen weitständigem Hochwald eine Blöße lagert, so gibt es am Kiel doch zu viele Fichtendickungen, die dem Sportsmanne das Fortkommen erschweren. Und doch lockt mehr als eine breite Schneise den Fahrer zu Tal. (Abb. 6.) Weite Fernsichten lassen die Höhenwanderer nicht los, obwohl schon dämmerig lange Baumschatten über den Weg huschen.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.