Viaje al cosmos

Page 227

Figura 52.6. Despedazada. Esta composición muestra cómo la fuerza gravitatoria de un agujero negro atrae y destruye una estrella cercana. A la derecha, imágenes en rayos x y el óptico del fenómeno. Fuente: NASA/ESO.

Figura 52.5. Chorro. La radiogalaxia M87 muestra un chorro de materia que parte del núcleo y que se extiende a lo largo de miles de años luz de distancia. Fuente: HST.

primeras estrellas que se formaron, tan sólo unos 650 millones de años después del Big Bang. Algunas de ellas explotaron como supernovas en los siguientes 200 millones de años y enriquecieron el medio de carbono y oxígeno. Este descubrimiento ha suscitado nuevos interrogantes sobre la naturaleza de las primeras estrellas y sobre cómo se formaron las primeras galaxias.

las partículas relativistas hasta distancias de varios kilopársec. Gracias a las técnicas radiointerferométricas, se dispone de imágenes de alta resolución angular de estos chorros. Sin embargo, no están claros todavía los procesos físicos involucrados en la formación, colimación y aceleración de los chorros hasta velocidades relativistas (próximas a la velocidad de la luz); ni siquiera se conocen con certeza los procesos físicos que originan la actividad en galaxias.

¿De dónde obtienen su energía los chorros que emanan de los cuásares y los núcleos activos de galaxias?

¿Cuál es la naturaleza de los agujeros negros?

Los chorros relativistas presentes en los cuásares y núcleos activos de galaxias son los aceleradores de partículas más eficientes del Universo, pues aceleran 232

La comprensión de la naturaleza, formación y evolución de los agujeros negros es un reto abierto. Con el descubrimiento de los núcleos activos de galaxias surgió la necesidad de encontrar un mecanismo de emisión que fuera capaz de liberar la cantidad


Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.