Biopharma PEG
https://www.biochempeg.com
Summary of PROTAC And Other Targeted Protein Degradation Technologies Proteolysis targeting chimeras (PROTACs) has come a long way since Crews first reported in 2001. At present, various degradation technologies based on PROTAC have been successfully developed for the degradation of kinases, nuclear receptors, epigenetic proteins, misfolded proteins and RNA. These technologies have greatly broadened the range of targets and clinical applications for diseases such as cancer, neurodegenerative diseases and viral diseases. To date, more than 15 PROTAC molecules have entered clinical trials. In this article, we summarize various targeted degradation strategies and their respective advantages and disadvantages, hoping to provide guidance value for the development of targeted protein degradation drugs.
Traditional small molecule inhibitors play a therapeutic role by interfering with protein function, while protein-targeted degraders play a role by proteasomal degradation of pathogenic target proteins, resulting in different biological effects, so they have higher selectivity and efficacy. Several targeted protein degradation strategies have been reported, among which the most famous is the proteolysis targeting chimera (PROTAC). In addition, researchers have also developed other types of degraders one after another, including intracellular click-formed proteolysis-targeting chimeras (CLIPTACs), photochemical targeting chimera (PHOTAC), semiconducting polymer nano-PROTAC (SPNpro), floate-PROTAC, antibody-PROTAC conjugate, antibody-based PROTAC (AbTAC), ribonuclease targeting chimera (RIBOTAC), transcription factor PROTAC (TF-PROTAC), chaperone-mediated protein degradation (CHAMP), biological PROTAC (bioPROTAC) and molecular glue, etc.