Organometallic chemistry in industry a practical approach colacot thomas j ed

Page 1

Visit to download the full and correct content document: https://textbookfull.com/product/organometallic-chemistry-in-industry-a-practical-appr oach-colacot-thomas-j-ed/

Chemistry in Industry A Practical Approach Colacot
Organometallic
Thomas J. (Ed.)

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Advances in Organometallic Chemistry 1st Edition Pedro J. Pérez

https://textbookfull.com/product/advances-in-organometallicchemistry-1st-edition-pedro-j-perez/

Advances in Organometallic Chemistry Volume 65 Pedro J. Pérez (Eds.)

https://textbookfull.com/product/advances-in-organometallicchemistry-volume-65-pedro-j-perez-eds/

Advances in Organometallic Chemistry Volume 66 Pedro J. Pérez (Eds.)

https://textbookfull.com/product/advances-in-organometallicchemistry-volume-66-pedro-j-perez-eds/

Advances in Organometallic Chemistry Volume 67 Pedro J. Pérez (Eds.)

https://textbookfull.com/product/advances-in-organometallicchemistry-volume-67-pedro-j-perez-eds/

Advances in Organometallic Chemistry 66 1st Edition

https://textbookfull.com/product/advances-in-organometallicchemistry-66-1st-edition-pedro-j-perez-eds/

Advances in Organometallic Chemistry and Catalysis The Silver Gold Jubilee International Conference on Organometallic Chemistry Celebratory Book 1st Edition

Armando J. L. Pombeiro

https://textbookfull.com/product/advances-in-organometallicchemistry-and-catalysis-the-silver-gold-jubilee-internationalconference-on-organometallic-chemistry-celebratory-book-1stedition-armando-j-l-pombeiro/

Principles of Chemistry A Molecular Approach Nivaldo J.

Tro

https://textbookfull.com/product/principles-of-chemistry-amolecular-approach-nivaldo-j-tro/

Organometallic chemistry 1st Edition Ian Fairlamb

https://textbookfull.com/product/organometallic-chemistry-1stedition-ian-fairlamb/

Chemistry

An Atoms Focused Approach Thomas R. Gilbert

https://textbookfull.com/product/chemistry-an-atoms-focusedapproach-thomas-r-gilbert/

OrganometallicChemistryinIndustry

OrganometallicChemistryinIndustry

APracticalApproach

WithaForewordbyRobertH.Grubbs

Editedby

ThomasJ.Colacot

CarinC.C.JohanssonSeechurn

Editors

ThomasJ.Colacot

MilliporeSigma(divisionofMerck KGaA,Darmstadt,Germany) 6000NTeutoniaAvenue Milwaukee,WI53209 USA

CarinC.C.JohanssonSeechurn JohnsonMattheyPlc 28CambridgeSciencePark MiltonRoad,CambridgeCB40FP UnitedKingdom

Allbookspublishedby Wiley-VCH arecarefullyproduced.Nevertheless, authors,editors,andpublisherdonot warranttheinformationcontainedin thesebooks,includingthisbook,to befreeoferrors.Readersareadvised tokeepinmindthatstatements,data, illustrations,proceduraldetailsorother itemsmayinadvertentlybeinaccurate.

LibraryofCongressCardNo.: appliedfor

BritishLibraryCataloguing-in-Publication Data

Acataloguerecordforthisbookis availablefromtheBritishLibrary.

Bibliographicinformationpublishedby theDeutscheNationalbibliothek TheDeutscheNationalbibliotheklists thispublicationintheDeutsche Nationalbibliografie;detailed bibliographicdataareavailableonthe Internetat <http://dnb.d-nb.de>.

©2020Wiley-VCHVerlagGmbH& Co.KGaA,Boschstr.12,69469 Weinheim,Germany

Allrightsreserved(includingthoseof translationintootherlanguages).No partofthisbookmaybereproducedin anyform–byphotoprinting, microfilm,oranyothermeans–nor transmittedortranslatedintoa machinelanguagewithoutwritten permissionfromthepublishers. Registerednames,trademarks,etc.used inthisbook,evenwhennotspecifically markedassuch,arenottobe consideredunprotectedbylaw.

PrintISBN: 978-3-527-34517-5

ePDFISBN: 978-3-527-81917-1

ePubISBN: 978-3-527-81919-5

oBookISBN: 978-3-527-81920-1

CoverDesign Formgeber,Mannheim, Germany

Typesetting SPiGlobal,Chennai,India PrintingandBinding

Printedonacid-freepaper 10987654321

Contents

Foreword xiii

Preface xvii

1IndustrialMilestonesinOrganometallicChemistry 1 BenM.Gardner,CarinC.C.JohanssonSeechurn,andThomasJ.Colacot

1.1DefinitionofOrganometallicandMetal–OrganicCompounds 1

1.1.1ApplicationsandKeyReactivity 1

1.1.1.1ElectronicApplications 1

1.1.1.2Polymers 2

1.1.1.3OrganicSynthesis 2

1.2IndustrialProcessConsiderations 7

1.3BriefNotesontheHistoricalDevelopmentofOrganometallic ChemistryforOrganicSynthesisApplicationsPertainingtothe ContentsofthisBook 8

1.3.1SynthesisofStoichiometricOrganometallicReagents 9

1.3.1.1ConventionalBatchSynthesis 9

1.3.1.2OrganometallicsinFlow 10

1.3.2Cross-couplingReactions 10

1.3.2.1C—HBondActivation 12

1.3.2.2Carbonylation 13

1.3.2.3CatalysisinWater–MicellarCatalysis 13

1.3.3HydrogenationReactions 14

1.3.4OlefinFormationReactions 15

1.3.4.1WittigReaction 15

1.3.4.2MetathesisReactions 15

1.3.4.3DehydrativeDecarbonylation 16

1.3.4.4OlefinsasStartingMaterials 16

1.3.5Poly-orOligomerizationProcesses 17

1.3.6PhotoredoxCatalysisforOrganicSynthesis 17

1.4ConclusionandOutlook 17

Biography 18 References 19

v

2Design,Development,andExecutionofa

Continuous-flow-EnabledAPIManufacturingRoute 23

AlisonC.Brewer,PhilipC.Hoffman,TimothyD.White,YuLu,LauraMcKee, MoussaBoukerche,MichaelE.Kobierski,NessaMullane,MarkPietz,CharlesA. Alt,JimR.Stout,PaulK.Milenbaugh,andJosephR.Martinelli

2.1Continuous-flow-EnabledSyntheticStrategy 25

2.2DesignandScale-upofChan–LamCoupling 28

2.2.1DevelopmentofHomogeneousConditions 31

2.2.2ApplicationofaPlatformTechnologytoAerobicOxidation 32

2.2.3OptimizationofReactionandWorkupParameters 35

2.2.4SafetyConsiderationsforAerobicOxidationonScale 37

2.2.5ContinuousScale-upandManufacturing 38

2.3DesignandScale-upofaBuchwald–HartwigCross-coupling 42

2.3.1InitialScreening 43

2.3.2SynthesisandIsolationofPd(dba)DPEPhosPrecatalyst 45

2.3.3WorkupProcedure,MetalRemoval,andCrystallization 46

2.3.4Scale-upandManufacturing 48

2.4ImpurityControl 48

2.4.1SolubilityandImpuritySpikingStudies 50

2.5Conclusions 54 Biography 54 References 58

3ContinuousManufacturingasanEnablingTechnologyfor Low-TemperatureOrganometallicChemistry 61 AndreasHafnerandJoergSedelmeier

3.1Introduction 61

3.2Organo-LiandMgProcessesinFlowMode 62

3.2.1TechnologicalAdvantagesofFlowTechnologyComparedto TraditionalBatchOperation 62

3.2.2TemperatureProfileofContinuousFlowReactions 64

3.2.3FlashChemistry:FunctionalGroupTolerance 65

3.2.4FlashChemistry:Selectivity 66

3.2.5FlashChemistry:StoichiometryandChemoselectivity 67

3.3ContinuousFlowTechnology 69

3.3.1CloggingasaMajorHurdleinFlowChemistry 71

3.3.2Start-upandShutdownOperation 72

3.3.3MaterialofConstruction 72

3.3.4SafetyConceptandEmergencyStrategies 73

3.4DevelopmentofaFlowProcess 73

3.4.1ScreeningPhase:FeasibilityStudy 74

3.4.2ProcessDevelopmentPhase:ExtendedEvaluationsIncluding TechnicalFeasibility 75

3.5LiteratureExamples:FlowProcessesonMulti100gScale 76

3.5.1ManufactureofVerubecestat(MK-8931) 77

3.5.2ManufactureofEdivoxetine 77

3.5.3Scale-upofHighlyReactiveArylLithiumChemistry 80

vi Contents

3.5.4SynthesisofBromomethyltrifluoroboratesinContinuousFlow Mode 81

3.5.5Two-StepSynthesisTowardBoronicAcids 82

3.5.6ReactionSequenceTowardaHighlySubstitutedBenzoxazoleBuilding Block 84

3.6ConclusionandFutureProspects 86 Biography 86 References 87

4DevelopmentofaNickel-CatalyzedEnantioselective Mizoroki–HeckCoupling 91 Jean-NicolasDesrosiersandChrisH.Senanayake

4.1Introduction 91

4.1.1NonpreciousMetalCatalysisAdvantagesforIndustry 91

4.1.2Mizoroki–HeckCouplingsinIndustrywithPalladium 92

4.1.3EmergenceofNickel-CatalyzedMizoroki–HeckCouplings 93

4.1.4EnantioselectiveNickel-CatalyzedCouplings 94

4.1.5SynthesisofOxindolesviaMizoroki–HeckCyclizations 96

4.2DevelopmentofaNickel-CatalyzedHeckCyclizationtoGenerate OxindoleswithQuaternaryStereogenicCenters 97

4.2.1PrecedentsandChallenges 97

4.2.2OptimizationofReducingAgentandBase 97

4.2.3LigandScreening 98

4.2.4ImpactofArylElectrophileandofStereochemistryofAlkene Moiety 100

4.2.5ExplorationoftheSubstrateScope 102

4.2.6LimitationsoftheMethodology 104

4.2.7MechanisticConsiderations 104

4.3DevelopmentofFirstEnantioselectiveNickel-CatalyzedHeck Coupling 107

4.3.1LigandScreening 107

4.3.2ImpactofAlkeneStereochemistry 107

4.3.3NeutralvsCationicPathways 108

4.3.4NickelPrecatalystComplexSynthesis 109

4.3.5ExplorationoftheSubstrateScope 110

4.3.6MechanisticStudies 110

4.4Conclusions 113 Biography 114 References 115

5DevelopmentofIron-CatalyzedKumadaCross-couplingforthe Large-ScaleProductionofAliskirenIntermediate 121 SrinivasAchanta,DebjitBasu,UdayK.Neelam,RajeevR.Budhdev,Apurba Bhattacharya,andRakeshwarBandichhor

5.1Introduction 121

5.2OptimizationofGradeandEquivalentsofMgMetal 123

Contents vii

5.3OptimizationofEquivalentsof1,2-Dibromoethane 123

5.4EffectofSolventConcentrationonPreparationofGrignardReagent andKumada–CorriuCoupling 124

5.5EffectofAlkylChloride3AdditionTimeontheGrignardReagent Preparation 125

5.6StabilityofGrignardReagentat0–5 ∘ C 125

5.7Iron-CatalyzedCross-couplingReaction 127

5.8OptimizationofEquivalentsofNMPandFe(acac)3 129

5.9OptimizationofEquivalentsofSubstrate 4 andItsRateof Addition 129

5.10ExecutionatPilotScaleandScale-upIssues 129

5.11AgitatedThinFilmEvaporator(ATFE)forPurificationof2 131

5.12Conclusion 132

Acknowledgments 133

Biography 133 References 135

6DevelopmentandScale-UpofaPalladium-Catalyzed IntramolecularDirectArylationintheCommercialSynthesisof Beclabuvir 137 CollinChan,AlbertJ.DelMonte,ChaoHang,YiHsiao,andEricM.Simmons

6.1Introduction 137

6.2KOAc/DMAcProcess 141

6.3TMAOAc/DMFProcess 141

6.4TMAOAc/DMAcProcess 149

6.4.1CyclizationReaction 151

6.4.2MechanisticUnderstandingoftheCyclizationReactionandImpurity Formation 159

6.4.3HydrolysisandWorkup 162

6.4.4CrystallizationandDrying 164

6.5Conclusion 167 Biography 168 References 169

7Ruthenium-CatalyzedC—HActivatedC—C/N/OBond FormationReactionsforthePracticalSynthesisofHeterocycles andPharmaceuticalAgents 171 AnitaMehta,NareshKumar,andBiswajitSaha

7.1Introduction 171

7.2C–HActivationFollowedbyC—CBondFormation 172

7.2.1C–HActivationFollowedbyC—CBondFormation: Biaryl/HeterobiarylSynthesisinOrganicSolvents 172

7.2.2C–HActivationFollowedbyC—CBondFormation: Biaryl/HeterobiarylSynthesisinGreenSolvents 181

7.3Alkyl/Acyl/AlkenylSubstitutiononHeterocycles 185

viii Contents

7.4C–HActivationFollowedbyC—O/NBondFormation:Heterocycle Synthesis 187

7.4.1C–HActivationFollowedbyC—O/NBondFormation:Heterocycle SynthesisinOrganicSolvents 187

7.4.2C–HActivationFollowedbyC—OandC—NBondFormation: HeterocycleSynthesisinGreenSolvents 189

7.5Conclusion 196 Biography 197 References 198

8Cross-couplingsinWater–ABetterWaytoAssembleNew Bonds 203 ThariqueN.Ansari,FabriceGallou,andSachinHanda

8.1Introduction 203

8.2TransitionMetalCatalysisinOrganicSolventsvsMicellar Catalysis 204

8.2.1Micellization 205

8.2.2SurfactantSolution–AHighlyOrganizedReactionMediumto EnhanceReactionRate 206

8.2.3ReactionTemperature 207

8.2.4SizeofMicelles 207

8.2.5NatureofCatalyst 208

8.2.6IncreasingtheEfficiencyinMicellarCatalysis 209

8.2.7OrderofAddition 210

8.2.8ProductPrecipitationorExtraction 211

8.2.9TraceMetalintheProduct 211

8.3HighlyValuableReactionsinWater 212

8.3.1Suzuki–MiyauraCouplings 212

8.3.2HeckCouplings 217

8.3.3NegishiCouplings 219

8.3.4C–HArylations 221

8.3.5Aminations 225

8.3.6Borylation 228

8.3.7ArylationofNitroCompounds 228

8.3.8AdoptionofMicellarTechnologybyPharmaceuticalIndustry 229

8.4Conclusions 234 Biography 234 References 235

9AspectsofHomogeneousHydrogenationfromIndustrial Research 239 StephenRoseblade

9.1HomogeneousHydrogenation:ABriefIntroduction 239

9.2CatalystSelectionbyEffectiveScreeningApproaches 240

9.3ConsiderationsforReactionScale-up 244

Contents ix

x Contents

9.4NotesonAdditiveEffects 247

9.5ANovelApproachtoAliskirenUsingAsymmetricHydrogenationasa KeyStep 249

9.6EfficientChemoselectiveAldehydeHydrogenation 252

9.7ClosingRemarks/Summary 253 Biography 255 References 255

10LatestIndustrialUsesofOlefinMetathesis 259 JohnH.Phillips

10.1Introduction 259

10.2GeneralInformation 260

10.2.1Non-rutheniumCatalysts 260

10.2.2RutheniumCatalysts 261

10.3IndustrialUses 262

10.3.1Ring-closingMetathesis(RCM) 262

10.3.2Cross-metathesis(CM) 264

10.3.3Ring-OpeningMetathesisPolymerization(ROMP) 268

10.4ReactionConsiderations 270

10.4.1CatalystChoice 271

10.4.2CatalystLoading 273

10.4.3Solvent 273

10.4.4ReactionConcentration 273

10.4.5OverallHandling 274

10.4.6ApplicationGuideandAvailability 274

10.5Troubleshooting 275

10.5.1CatalystRemoval 275

10.5.2FunctionalGroupTolerance 276

10.5.3SubstratePurity 276

10.5.4CatalystDecomposition–Isomerization 277

10.6Conclusion 277 Biography 277 References 278

11DehydrativeDecarbonylation 283 AlexJohn

11.1Introduction 283

11.2UseofSacrificialAnhydrideandCatalyticMechanism 285

11.3Rh-,Pd-,andIr-Catalysis 286

11.3.1EarlyStudies 286

11.3.2RecentStudies 289

11.4MilderTemperatures 291

11.4.1PdCl2 /XantPhos/(t Bu)4 biphenolSystem 291

11.4.2Well-DefinedPd-bis(phosphine)Precatalysts 294

11.5NickelandIronCatalysis 295

11.6EsterDecarbonylation 297

11.7SyntheticUtility: α-VinylCarbonylCompounds 299

11.8ConclusionsandFutureProspects 300

Biography 300

References 301

Index 305

Contents xi

Foreword

Inthelate1960sandthroughthe1970s,organometallicchemistryemergedfrom beingasubfieldofinorganicchemistry,wheretheinterestwasinbodingand structure,toafieldinitsownrightwithchemiststrainedininorganicororganic chemistry.Theorganicchemistsbroughtreactivitytothefieldandhelpedto moveorganometallicchemistryintocatalysis.ThepioneeringworkofCollman, Vaska,andHalpernamongothersdefinedthebasicmechanismsofthefieldand providedthebasisfortheapplicationofthisnewfieldinorganictransformations andorganicsynthesis.Now,mostpharmaceuticalsandnaturalproductsyntheses involveone,ifnotmore,catalyticsteps.Thestudyofasymmetrichydrogenation andtheligandsandmechanismsthatcontrolledtheseprocessespavedtheway forthediscoveryofawidearrayofasymmetricprocesses.Thestructuralflexibilityofhomogeneouscatalystsandthewidearrayofligandsnowavailablehave resultedinmostcatalyticprocessesnowbeingcapableofproducingproducts inhighasymmetricpurity.Heterogeneouscatalysts,althoughtheyaregenerallyfavoredforeaseofprocessing,donotprovidetheflexibilityrequiredfor moreprecisetransformations.Theriseofhomogeneouscatalystshasrequired thedevelopmentofprocessesandmethodsthatallowhomogeneouscatalyststo beexploitedinpracticallarge-scaleprocesses.

Colacot(MilliporeSigma,abusinessofMerckKGaA)andSeechurn(Johnson Matthey),theeditorsofthisbook,haveaddressedtheseissues.Afterauthoring thefirstchapter,whichprovidesthehistoricalbackgroundforthedevelopmentof homogeneouscatalystsandthebasicmechanisms,theyhavechosenanoutstandinggroupofauthorstoprovidespecificinformationaboutthepracticalaspects oftheconversionoflaboratory-scalereactionsintorealprocesses.Mostofthe processesaredemonstratedbyrealexamples.Themesofthechaptersemphasize newdevelopmentsinthepharmaceuticalindustryprocessessuchasflowand continuousprocessesandthedevelopmentofcatalystsbasedonearth-abundant metals.

Chapters2and3discusstheadvantagesofcontinuousflowprocess.For example,thesafeuseofoxygenwithorganicsolventscanbemitigatedbythe useofflowsystems,andefficientprocessescanbedevelopedforhomogeneous reactionsonscale.ParticularlyinterestingistheuseoftheBuchwald–Hartwig reactioninaflowsystemwiththeefficientremovaloftheresidualpalladium catalysts.Thesecondofthetwochaptersdescribesthemethodsfortheuseof low-temperatureprocessesintheproductionofmaterialsonalargescale,which

xiii

involvereactiveandenvironmentallysensitivereagents.Thesetwochapters provideadetailedupdateonflowprocesseswiththegoalofincreasingtheuseof flowprocessesinhomogeneousprocesses.Theseprocessesregainsomeofthe advantagesthatweretraditionalwithheterogeneouscatalystswhilemaintaining theselectivityofhomogeneousprocesses.Inarelatedprocessdevelopment, Chapter8describestheuseofanother“nanoreactor”:micellesinwater.In thischapter,thedevelopmentsoftraditionalhomogeneouscross-coupling reactionssuchasHeckandSuzuki–Miyaurainaqueousenvironmentsusing amicelleenvironmentaredescribed.Carryingoutthereactionsinnanoreactors–micelles–resultsininterestingnewselectivityandreactivity.From aprocesschemist’sperspective,micelle-enabledprocessescanofferbenefits suchasthereplacementoftoxicorganicsolvents,reducedPMIvalue,improved reactionyields,highpurityofAPIwithreducedmetalcontents,andhighcost efficiency.

Asprocessesarescaled,thecostsofthemetalandligandsbecomemoreimportant.Chapters4and5describethedevelopmentofprocessesthataretraditionallycarriedoutusingpreciousmetalsbyratheremployingeithernickelor iron.Thesesuccessfulexampleswillencouragefurtherdevelopmentofefficient selectivecatalystsbasedonearth-abundantmetals.Inspiteofpotentialcosts, palladiumcatalystshavebeenshowntohaveawidearrayofactivitiesandselectivities.Chapter6demonstratesanoutstandingexampleoftheuseofpalladium inthecommercialsynthesisofbeclabuvirutilizingtheselectivityofpalladium catalysts.Although,earth-abundantmetalscantaketheplaceofpalladiumina numberofreactions,orrathercomplementPd,theefficiencyandselectivityof manypalladiumcatalystswillensurethatitcontinuestobeusedinthepharmaceuticalandfinechemicalindustryformanyyearstocome.

Chapters7,9,and10coverspecificreactionsinprocesschemistry.Thechapter onhomogeneoushydrogenationprovidesaguidetotheuseofasymmetrichydrogenationinthesynthesisofcomplexstructuresonacommercialscale.Asymmetrichydrogenationisoneoftheoldestandmostusedasymmetricprocessesin synthesis.Thisup-to-dateguideprovidesthehighlightsofthisfieldandhelpsto simplifythevastliterature.Incontrast,CHactivationincomplexsynthesisisone ofthenewerareasofemphasis.Foranumberofyears,therehasbeentherecognitionofthevalueofbeingabletofunctionalizeC—Hbondsdirectly,although C–Hactivationhasnotrisenuplikethecross-couplingreactionsforindustrial process.Therefore,theeditorswereconscientiousenoughtoaddachapteron thistopic.AsisdemonstratedinChapter7,thispromiseisnowbeingrealizedas demonstratedbytheuseofaCHactivationprocessinthesynthesisofimportant compoundssuchasMerck’sanacetrapib,sartans,etc.Olefinmetathesishasbeen animportanttopicinacademicsynthesisforseveraldecades;Phillipsprovides exampleswherethisbackgroundofreactivityisnowbeingtranslatedintokey structuresforthepharmaceuticalindustry.Heprovidesparticularlygoodcoverageoftheimportanttopicssuchascatalyststabilityandremovalthatarerequired fortheuseofahomogeneouscatalystinalargerprocess.

xiv Foreword

Thelastchaptertakeshomogeneouscatalystsoutsideoftheapplicationsin thepharmaceuticalindustrytotheconversionofbiomass-derivedmaterialsinto chemicalfeedstocks.Asmanybiomasssourcesaresolids,asolublecatalystis particularlysuitedforsuchapplications.Althoughtheyfocusontheconversion ofcarboxylicacidsintoolefins,thetechniquesandstrategieswouldapplyto manyothersuchprocessesandcanbedevelopedforpotentialapplicationsin industry.

Itisparticularlypleasingtoseetheevolutionoforganometallicchemistryinto catalystsforextremelyusefulorganictransformations.Thebasicprincipleand reactionmechanismsthatweredevelopedintheearlydecadesoftheareaare nowthebasisformajorprocessesthatopentheefficientsynthesisofanamazing arrayofnewchemicalstructuresthathaverevolutionizedhowpresent-day bioactivematerialsaredesignedandprepared.ColacotandSeechurnhaveused theirbroadexperienceinnewcatalystdevelopment,organicsynthesis,and processchemistryinvolvinghomogeneouscatalyststoassembleanoutstanding teamofauthorsfromallovertheworldtohighlighttheimportantdevelopments requiredtofulfillthepromiseofcatalysisinorganicsynthesisforthetwenty-first century.Thisisaverytimelybookforbothacademiaandindustrychemists andengineerstounderstandhowacademicconceptsaretranslatedintoindustrieswithawidevarietyofimportantmoleculesasdepictedinthecoverof thebook.

RobertHowardGrubbs

DivisionofChemistryandChemicalEngineering CaliforniaInstituteofTechnology,Pasadena,CA91125USA (626)3956003,rhg@caltech.edu

Prof.GrubbsBiography

B.A.andM.S.Chemistry,UniversityofFlorida,Gainesville,Florida,1963and 1965.Ph.D.,Chemistry,ColumbiaUniversity,NewYork,1968.NIHPostdoctoralFellow,Chemistry,StanfordUniversity,1968-69.HeistheVictorandElizabethAtkinsProfessorofChemistryattheCaliforniaInstituteofTechnology, Pasadena,California,USA,andafacultymembersince1978.Hewasafaculty memberatMichiganStateUniversityfrom1969to1978.

TheGrubbsgroupdiscoversnewcatalystsandstudiestheirfundamentalchemistryandapplications.Forexample,afamilyofcatalystsfortheinterconversion ofolefins,theolefinmetathesisreaction,hasbeendiscoveredintheGrubbslaboratory.Inadditiontotheirbroadusageinacademicresearch,thesecatalystsare nowusedcommercially.Otherprojectsinvolvethedesignandsynthesisofmaterialsforuseinmedicalapplications.Hehasalsobeeninvolvedinthetranslation oftechnologythroughthefoundingoffivecompanies.

Foreword xv

xvi Foreword

HisawardshaveincludedtheNobelPrizeinChemistry(2005)and10ACS NationalAwards.HewaselectedtotheNationalAcademyofSciences(1989), FellowoftheAmericanAcademyofArtsandSciences(1994),theHonoraryFellowshipoftheRoyalSocietyofChemistry(2006),FellowofNationalAcademyof Inventors,NationalAcademyofEngineering(2015),andForeignMemberofthe ChineseAcademyofSciences(2014)andofGreatBritains’sRoyalSociety(2017). Hehas655+ publicationsand160+patentsbasedonhisresearch.

Preface

Theperceptionthat“thereisprobablynochemicalreactionthatcannotbe influencedcatalytically”wasclearlystatedbyWilhelmOstwaldeveninthe beginningofthepastcentury.Manyclassicindustrialprocesses,suchasthe productionofammoniabyHaberprocessandsulfuricacidornitricacid,require theuseofheterogeneouscatalystssuchasfinallydividedtransitionmetals.

Althoughindustrialprocessesingeneralweredominatedbyheterogeneous catalysis,organometalliccomplexesemergedasanewclassofcompoundswith amajorfunctionashomogeneouscatalystswithmoreprecisionforthesynthesis oforganicchemicals.Theearlierexampleofsuchaprocessisthemanufacture ofaceticacidbyCativaprocess,wheremethanolwassubjectedtocarbonylation withthehelpofanIr-orRh-basedorganometalliccomplex.

Theareaofhomogeneouscatalysisliterallybecameanemergingareaforthe synthesisoffinechemicalsandpharmaceuticalproductsafterthediscoveryof afewimportantcatalystsbyWilkinsonin1950s.Hence,Wilkinsonshouldbe recognizedasthefatherofmodernhomogeneouscatalysis.Wilkinson’swork laterinspiredWilliamKnowlestocomeupwithachiralRh-basedorganometalliccomplexforanewareaofhomogeneouscatalysis,calledasymmetrichydrogenation.In2001,WilliamStandishKnowlesandRyojiNoyorisharedtheNobel Prizefortheirworkonenantioselectivehydrogenationreactions,whiletheother halfwasawardedtoK.BarrySharplessforhisworkonenantioselectiveoxidationreactions.ThechemistrycommunitymayremembertheworkofKagan aswell,althoughhedidnotgettheNobelPrize.Synthesisofnumerouspharmaceuticallyrelevantmoleculesfortreatmentofseveraldiseases,agro-chemical compoundssuchas(S)-metolachlor,andfragrancesinmulti-tonquantitiesare someofthemajorapplicationsofthisarea.Thediscoveryanddevelopmentof theolefinmetathesisreactionsinorganicsynthesisalsoledtothe2005Nobel PrizetoYvesChauvin,RobertH.Grubbs,andRichardR.Schrock.Industries havestartedutilizingthismethodforspecialpolymers,drugsynthesis,aswellas biologicalpesticidessuchaspheromones.Thereisnoareainorganicchemistry thathasbecomeaspopularasthecross-couplingfield,wheretheapplicationslie intheareasofdrugsynthesis,OLED,andrelatedelectronicaswellasagrochemicalapplications.Forthisarea,althoughtheannouncementwasabitdelayed,the 2010NobelPrizeinChemistrywasawardedjointlytoRichardF.Heck,Professor Ei-ichiNegishi,andProfessorAkiraSuzukifortheirworkonpalladium-catalyzed cross-couplinginorganicsynthesis.Someoftheemergingareasinhomogeneous

xvii

catalysisareC–Hactivationandphotoredoxreactionswheretheorganometallic complexeshaveabigimpactonselectivityandactivity.However,theseareashave notquitereachedthesamestageasinthecaseofcross-coupling.Althoughaphotocatalystisrequiredtogenerateanorganicradical,asecondarycatalystsuchas aNi-basedorganometalliccompoundisrequiredtodosomeofthechallenging couplingreactionssuchassp2 –sp3 ,sp3 –sp3 ,andC–O/Scoupling.TheC–Hactivatedprocesswasalsocapableoffunctionalizingasp3 carbon.Thesechemistries inconjunctionwithflowprocessesaregettingincreasinglyprominentinindustrialprocessesandapplications.Similarlydoingchemistrywithbetter E -factors isalsobecomingimportantintheindustrialarea.Inspiredbytheorganometallic catalyzedreactions,particularlymetal-catalyzedC–Hactivation,cyclopropanation,transferhydrogenation,andemergingtechnologiessuchas“directedevolution”(2018NobelPrizeinChemistrywhereFrancesArnoldsharedtheprizefor generatinghighlyactiveenzymesbymutation)andelectrocatalysisaregaining momentumaspotentialtechnologiestobetranslatedtoindustry.

Wearefortunateenoughtoassembleagroupofoutstandingprocesschemistry researchersmostlyfromindustry,withtheexceptionofafewfromacademia,to writevariouschaptersrelevanttocurrent-daydevelopmentsinorganicsynthesis.Weaimedtocoverasmanydifferenttopicsaspossiblewiththe11chapters ofthebook.Theintroductionchaptersetsthesceneforthevariousreactivities oforganometalliccomplexesthatfundamentallyenableallchemistriesdiscussed inthesubsequentchapters.Chapters2and3discussthetypesofchemistrythat havebeenfoundtobeadvantageouslyperformedinaflowchemistrysetting. Chapters4and5detailcasestudieswherenon-preciousmetalcatalysiscouldbe applied,withclearcostandsustainabilitybenefitscomparedtousingprecious metalcatalysts.InChapters6and7,C—Hactivationprocessesaredescribed, whichintroduceamoreatom-economicalwayofformingC—C,orC—X,bonds. Inthefirstcase,apalladium-catalyzeddirectarylationreactionisdiscussed,and inthesecondcase,aruthenium-catalyzeddirectedCH-functionalizationchemistryisdetailed.Chapter8outlinesthepotentialusesandadvantagesofcarryingoutconventionalreactionswithmicellarcatalysisinwater,whichisavery attractive,moreenvironmentallyfriendly,option.Chapter9discusseshomogeneoushydrogenation,whichispossiblyoneofthemostfrequentlyseenapplicationsfororganometallicchemistry,orrathercatalysis,thatwasrecognizedby the2001NobelPrize.InChapter10,industrialapplicationsofolefinmetathesis,anotherNobelPrizewinningtechnology,areexemplified.Finally,Chapter 11outlinesareasonablyrecentlineofthoughtwithinthefieldoforganometallic chemistry,convertingbiomassintochemicallyusefulbuildingblocks.Thisparticularchapterfocusesontheconversionofcarboxylicacidsintoolefins.Wethank alltheauthorsfortheirscholarlycontributionstomakethisbookauniqueone. WethankWiley-VCHespecially,Dr.ElkeMaaseforgivingthisopportunity andforworkingwithuspatiently,aswellasProf.Grubbsforgraciouslytaking timetowritetheforeword.Weacknowledgeallthereviewersalthoughwewould liketokeeptheirnamesconfidential.WealsothankMilliporeSigma(abusiness ofMerckKGaA,Darmstadt,Germany)andJohnsonMattheyfortheirsupport onthiscollaborativeprojectinhelpingscienceandtechnologytoimprovethe

xviii Preface

Preface xix qualityofthisplanetandlifeingeneralthroughtheutilizationoforganometallic chemistry.Weareconfidentthatthisbookwillhelpchemistsandchemicalengineersinbothacademiaandindustrytoimprovetheirskillsinorganicsynthesis.

August9,2019 Milwaukee,USAandCambridge,UK

ThomasJ.Colacot CarinC.C.JohanssonSeechurn

IndustrialMilestonesinOrganometallicChemistry

BenM.Gardner 1 ,CarinC.C.JohanssonSeechurn 2 ,andThomasJ.Colacot 3

1 CambridgeDisplayTechnologyLtd,Unit12CardinalPark,CardinalWay,GodmanchesterPE292XG,UK

2 JohnsonMatthey,28CambridgeSciencePark,MiltonRoad,CambridgeCB40FP,UK

3 MilliporeSigma(ABusinessofMerckKGAaDarmstadt,Germany),6000NTeutoniaAvenue,Milwaukee,WI 53209,USA

1.1DefinitionofOrganometallicandMetal–Organic Compounds

Organometalliccompoundscanbedefinedascompoundsthatcontainatleast onechemicalbondbetweenacarbonatomofanorganicmoietyandametal.The metalcanbealkaline,alkalineearth,transitionmetal,lanthanide,orametalloid suchasboron,silicon,andphosphorus.Therefore,metal–phosphinecomplexes arealsooftenincludedinthiscategory,althoughtheydonotcontainatypical metal–carbonbond–theyaremorecommonlyreferredtoas“metal–organic compounds.”Forthepurposesofthisbook,applicationsofbothorganometallicandmetal–organiccompoundsarediscussedonthebasisof“organometallic chemistry.”

1.1.1ApplicationsandKeyReactivity

Thethreemajortypesofapplicationsoforganometalliccompoundsinindustry areintheareasofelectronics,polymers,andorganicsynthesis.Inorganicsynthesis,theorganometalliccompoundsareusedaseithercatalystsorstoichiometric reagents.

1.1.1.1ElectronicApplications

Forelectronicapplicationstypically,theorganometalliccomplexissubjectedto chemicalvapordeposition(CVD)toformanappropriatethinlayerorsubjected toorganometallicchemicalvapordeposition(OMCVD)wherethedeposition ultimatelyoccursviaachemicalreactionatthesubstratesurfacetoproducea high-qualitymaterial.Theproductionofthinfilmsofsemiconductormaterialsis used,forexample,forLEDapplicationsviametal–organicvapor-phaseepitaxy (MOVPE)wherevolatileorganometallicMe3 E(E = Ga,In,Al,andSb)compoundsareusedasprecursors.Theyreactwithultrapuregaseoushydridesin aspecializedreactortoformthesemiconductingproductasacrystallinewafer [1–23].

OrganometallicChemistryinIndustry:APracticalApproach, FirstEdition. EditedbyThomasJ.ColacotandCarinC.C.JohanssonSeechurn. ©2020Wiley-VCHVerlagGmbH&Co.KGaA.Published2020byWiley-VCHVerlagGmbH&Co.KGaA.

1 1

1.1.1.2Polymers

Anothermajorapplicationfororganometalliccomplexesisinthepolymerindustry.Threecommontypesofpolymersproducedviacatalysisareparticularlynoteworthy.Polysiloxanes,alsoknownassilicone,arepolymersmadeupofrepeatingunitsofsiloxane[4].Theyhavewidespreadapplicationinalargenumberof differentfieldsrangingfromcookwaretoconstructionmaterials(e.g.GEsilicone),medicine,andtoys.Pt-basedcatalystsarecommonlyappliedinthesiliconeindustryfortheproductionofavarietyofproducts[5].Amilestonein thehistoryoforganometallicchemistryintheindustrywasthediscoveryofthe Ziegler–Nattacatalystanditsapplicationinpolymerizationreactions[6].Ziegler andNattawereawardedtheNobelPrizefortheirworkinthisfieldin1963[7]. Anotherareathathasbeenrecognizedforitsimportanceisolefinmetathesisfor whichaNobelPrizehasbeenawardedtoGrubbs,Schrock,andChauvin.Thishas beenappliedtosynthesizepolymersviaROMP(ring-openingmetathesispolymerization)[8].

1.1.1.3OrganicSynthesis

Thefocusofthisbook,however,isontheexploitationoforganometalliccompoundsfororganicsynthesis,relevanttoindustryapplications.Oneofthemajor applicationsinorganicsynthesisiscatalysis.

Incaseswheretheorganometalliccompoundisusedasacatalyst,forexample inaprocessinvolvingcrosscoupling,aprecatalystshouldbeabletogetactivated totheactivecatalyticspeciestobindwiththeorganicsubstrate(s),dothetransformation,andreleasetheproductsuchthattheactivecatalyticspeciesreturns toitsoriginalstateinthecatalyticcycle.Duringtheorganictransformation,the concentrationofthecatalystcandecreasewithtimebecauseofpoisoning.The efficacyandefficiencyofthecatalystdependonhowfastandhowlongitcan retainitsoriginalactivity.Theturnovernumbers(TONs)andturnoverfrequencies(TOF)areusuallyusedtodescribetheactivityofacatalyst.Organicchemists havestartedusingorganometalliccompoundsascatalyststodevelopmoreefficientandpracticalprocesses[9–12].

Thereactivityoforganometalliccomplexestowardvariousreagentsisthe reasonbehindthewidespreaduseoforganometalliccompoundsascatalystsfor avarietyoforganictransformations.Themostimportanttypesoforganometallicreactionsareoxidativeaddition,reductiveelimination,carbometalation, hydrometalation, β-hydrideelimination,organometallicsubstitutionreaction, carbon–hydrogenbondactivation,cyclometalation,migratoryinsertion,nucleophilicabstraction,andelectrontransfer.Inthefollowingparagraphs,wewill provideabriefoverviewofthebasictheorywithsomeselectedapplications.

OxidativeadditioninvolvesthebreakageofabondbetweentwoatomsX–Y. SplittingofH2 withtheformationoftwonewmetal–Hbondsisanexampleof anoxidativeadditionprocess(Scheme1.1).Reductiveeliminationisthereverse ofthisprocess.Inanoxidativeadditionprocess,theoxidationstateofthemetal isincreasedby2,whereasinreductiveelimination,oxidationstateofthemetalis decreasedby2.Bothstepsarecrucialformetal-catalyzedcross-couplingreactions,asthefirstandthelaststepsofthecatalyticcycle.Severalfactorscan affectthesetwosteps.Thestructureoftheligand(phosphineorothermolecules

2 1IndustrialMilestonesinOrganometallicChemistry

1.1DefinitionofOrganometallicandMetal–OrganicCompounds 3 coordinatedwiththemetal),thecoordinationnumberofthemetalinthecomplex,andthewayinwhichthecomplexisactivatedtothecatalyticspeciesin thecatalyticcycle,etc.,canbemodifiedandtailoredtogetthebestoutcome foraparticularreaction[13].TheoxidativeadditionofH2 ontoVaska’scomplex(Scheme1.1)isacrucialstepinmetal-catalyzedhydrogenationreactions. Theapplicationofthismethodologytoindustriallyrelevantmoleculesisfurther discussedinSection1.3.3.

Scheme1.1 Oxidativeadditionandreductiveelimination.

Carbometalationinvolves,asthenamesuggests,thesimultaneousformation ofacarbon–metalandaC—Cbond.Thisismostcommonlyusedtoformastoichiometricmetal-containingreagent,suchasthereactionbetweenethyllithium andbis-phenylacetyleneinthesynthesisofTamoxifenTM ,abreastcancerdrug (Scheme1.2)[14].

Scheme1.2 CarbometalationasakeysteptowardthesynthesisofTamoxifenTM .

Hydrometalationissimilartocarbometalation,where,insteadofaC—C bond,aC—Hbondisformedalongsidethecarbon–metalbond.Onesuch exampleishydroalumination,whereDIBAL(i-Bu2 AlH)isaddedacrossan alkyne(Scheme1.3)[15].This,similartocarbometalation,ismostcommonly astoichiometrictransformationwiththeaimofpreparinganorganometallic reagentthatcanbeusedasareactantforsubsequentdesiredtransformations.

β-Hydrogenelimination,technicallythereverseofhydrometalation,canin somecasesresultintheformationofundesiredsideproducts.Inothercases,it isa“blessing”asthepreferredreactionpathway.InShellhigherolefinprocess (SHOP),fortheoligomerizationtooccur,afinal β-hydrogeneliminationreaction isperformedtoreleasethesubstratefromthecatalyst(Scheme1.4a)[16].In thecross-couplingreactionbetweenanarylhalideandanorganometallic

Ir Ph3P PPh3 Cl OC H2 –H2 Ir Ph3P PPh3 H OC H Cl Oxidative addition Reductive elimination (I)(II)
Li THF, –10 °C, 2 h Li Carbometalation O N Tamoxifen

Hydrometalation

Scheme1.3 Hydroaluminationofalkynes.

Scheme1.4 a) β-hydrideeliminationisexploitedintheShellhigherolefinprocess(SHOP). b)sp2 sp3 cross-couplinginthesynthesisofadiabetesdrug.

reagentcontaining β-hydrogens,thisreactioncanformtheundesiredalkene sideproducts,hencedetrimental.Thisisthereasonwhysp2 –sp3 couplingand sp3 –sp3 couplingbecomeverychallengingeventoday.However,afewsuccess storiesofthesetypesofcross-couplingreactionshavebeenreported,suchas sp2 –sp3 NegishireactionforthesynthesisofLX2761,adiabetesdrugbyLexicon Pharmaceuticals(Scheme1.4b)[17].

Organometallicsubstitutionreactionscanoccureitherviaanassociativeora dissociativesubstitutionmechanism.ThiscanbecomparedtoSN 1andSN 2substitutionmechanismsinorganicchemistry.Theoveralloutcomeineithercaseis anexchangeofaligandontheorganometalliccomplex.Scheme1.5illustratesan associativesubstitutionmechanismtoexchangeClforXonVaska’scomplex.This complexdoesnothaveanysignificantreferencestobeingemployedinindustry asacatalyst,butstudiesofitsreactivityhasbeenvitalinprovidingtheconceptual frameworkforhomogeneouscatalysis[18].

Oneofthereactionsthathasbecomeincreasinglyexploited,particularlyto complementthecross-couplingchemistry,isC–Hactivation.Thisiswherethe

4 1IndustrialMilestonesinOrganometallicChemistry HO R i-Bu2AlH HO Ali-Bu2 R H
H2CCH2 O Ni P H O Ph Ph H2C n via O Ni P O Ph Ph H α β β-hydride elimination
EtO O ZnBr + Br OTMS Pd(OAc)2/SPhos LiCl, THF EtO O OTMS H N O N H O N O H HO OH OH S LX2761
(a) (b)

1.1DefinitionofOrganometallicandMetal–OrganicCompounds 5

Organometallic substitution reaction

Scheme1.5 OrganometallicsubstitutionreactionexemplifiedbyVaska’scomplex.Source: Wilkins1991[24].ReproducedwithpermissionofJohnWiley&Sons. metalgetsinsertedintoaC—Hbondofthesubstrate.Therearemanydifferentpathwaysforthistohappen;itcanbepromotedanddirectedtothesiteof choicebyusingadirectinggroup,suchastheamideexemplifiedinScheme1.6. Iridium-catalyzeddirectborylationreactionscanalsobeconsideredasatype ofC–Hfunctionalizationreaction.Thistypeofreactionsisfurtherdiscussedin Section1.3.2.1. Carbon–hydrogen bond

Scheme1.6 Carbon–hydrogenbondactivationexemplifiedbythetotalsynthesisof calothrixinB,whichpossessesvariousbiologicalactivitiessuchasanti-malarialandanti-cance. Source:RamkumarandNagarajan2013[25].ReproducedwithpermissionofAmerican ChemicalSociety.

Incyclometalationreaction,thestrainofcertainmotifsisoftenexploitedto insertthemetalintoC—Cbonds.OneexampleistheRh-catalyzedinsertion intocyclopropanestoformmetallacyclobutanes(Scheme1.7).Thishasbeen appliedinthetotalsynthesisof(±)-β-cuparenone[19].Metallacyclobutanesalso formaverycrucialpartofthemetathesisolefinationmechanism,asdeducedby Chauvin[20].

Cyclometalation

(±)-β-cuparenone

Scheme1.7 CyclometalationexemplifiedbytheoxidativeadditionsofRhintoa cyclopropanemoiety.

Ir Cl CO PPh3 Ph3P +X– Ir CO Cl X PPh3 Ph3P –Cl– Ir X CO PPh3 Ph3P
activation N MeO MOM Pd(OAc)2 KOAc, DMF O N MOM I N MeO MOM O N MOM I [Pd] N H O O N Calothrixin B
R1 R2
[Rh] R1 R2
[Rh] O
R3
R3

Migratory insertion

Scheme1.8 MigratoryinsertionexemplifiedbyastepintheCativaprocess.

Migratoryinsertioniscrucialforanycarbonylationreactionandisillustrated inScheme1.8byastepintheiridium-catalyzedCativaprocess,wheremethanol isconvertedintoaceticacid[21].Themigrationinvolvestheinsertionofoneligand(CO)intothemetal—Cbond(Ir-Me).Thereversereaction,decarbonylation ofaldehydestoformanalkanewiththereleaseofCO,isalsoareactionknown tobecatalyzedbyRhcomplexes[22],suchasWilkinson’scatalyst[23].MigratoryinsertionisnotrestrictedtoCOalonebutcanalsooccurwithSO2 ,CO2 , and,mostimportantly,alkenes.TheinsertionofanalkeneintoanM—Cbondis thekeystepinanyoligo-orpolymerizationreaction,suchastheZiegler–Natta process[26].

Nucleophilicabstractionisaprocesswhenaligandisfullyorpartlyremoved fromthemetalbytheactionofanucleophile.InScheme1.9,theactionof n-BuLi onachromium-coordinatedbenzeneligandresultsinhydrogenabstraction[27]. Basically,thechemicalreactivityoftheligandisalteredwhencoordinatedwitha metal.Thisaltersthereactivityoftheligatedcompoundandmayresultinreactionsthatarenotpossibletocarryoutwiththesamenon-ligatedsubstrate.

Anotherimportantorganometallicreactiontobediscussediselectron transfer.Theabilityofcertainorganometalliccomplexestoinitiateelectron transferreactionsincombinationwithavisiblelightsourcehasmadesome transformationspossiblethatcannotbeachievedusingconventionalchemistry. ThisisillustratedinScheme1.10withonestepinthephotocatalyticPschorr reactionusingRu(bpy)32+ asthephotoredoxcatalyst[28,29].Thephenanthrene formedcanbefurtherusedforvariouspurposes,suchasinthemanufacture ofdyes,pharmaceuticals,etc.[30].Thepotentialofmetal-catalyzedelectron transferreactionsformsthebasisforanewareainorganicsynthesiswithlotof potentials[31].

Exploitationofthewidevarietyof“organometallicreactivity”hasmadethefield oforganometallicsoneofthemostappliedareasinprocesschemistrywithparticularimportancetothepharmaceutical,agrochemical,polymer,andfinechemical industries.

6 1IndustrialMilestonesinOrganometallicChemistry
Ir CH3 CO CO CO I I Ir CO I I CO O CH3 H3C OH O
Nucleophilic abstraction
H BuLi Cr(CO)3 Li
Cr(CO)3 Scheme1.9 Nucleophilicabstractionillustratedbyhydrogenabstractionusing n-BuLi.

Scheme1.10 ElectrontransferillustratedbyonestepinthephotocatalyticPschorrreactionto formphenanthrene.

1.2IndustrialProcessConsiderations

Organometalliccompoundsareroutinelypreparedandusedasstoichiometric reagentsorcatalystsforarangeofsyntheticprocessesonamultikilogramscale orevenatonscale.

Inordertooperateacommerciallyviableindustrialchemicalprocess,areliablechemicalsynthesisrouteisneededaswellasanunderstandingofhowa processwillbehaveduringthescaleupbytakingintoconsiderationfactorssuch asheatandmasstransfer,mixing,particlesize,andfilterability,etc.Air,moisture,andthermalsensitivityofsomeoftheorganometalliccomplexesortheir intermediatesneedstobeaddressedwithproperhandlingtechniquesincluding inertconditionstoachievethemaximumprocessefficiencyandprocesssafety. Inaddition,incorporationofenvironmentalimpactoftheprocessisalsovery important,whereexposureofchemicalsandsolventsandwastegenerationneed tobeminimized.

Itisimportanttohaveascalablechemicalprocess,usuallyoptimizedona benchscaletoproducemilligramtogramandthentransferredtothepilotplant, typicallytoakilogramscale.Duringthistransfer,typically,oneneedstoreadjusttherateofreagentadditiontomanagetheexotherm,rateofagitation,rateof heating,degassingcycles,reactiontime,etc.Identifyingtheoptimalcatalystwith theminimalloadingespeciallywhenoneuses platinumgroupmetals (PGMs) inconjunctionwithexpensiveligandsisalsoimportant.Evenforawell-known organictransformationsuchasaPd-catalyzedcross-coupling,theprocesswill notbeeconomicalifthereactionispoorlyoptimized,consideringmetalloss, purificationoftheproducts,andwastedisposal.Aproperunderstandingofthe thermodynamicsandkineticsisalsoimportant.

ExperienceinusingDOEcoupledwitha“knowledge-based”processapproach canacceleratetheprocessdevelopment.Itisimportanttoinvolvebothchemists andchemicalengineersduringthescale-upandprocessoptimization,consideringtheequipmentdesign,safety,rawmaterialselection,etc.Eveniftheprecatalystisnotsensitivetoair,onehastoconductthereactionsunderinertconditions asthe“activecatalyticspecies”inthecyclemightbesensitivetoair.Thiscannot onlyminimizetheby-productformationbutalsoincreasethelifecycleofthe catalystandhencetheTONsandTOFs.

1.2IndustrialProcessConsiderations 7 Electron transfer N2 CO2H R Ru(bpy)32+* Ru(bpy)33+ CO2H R + N2 Ru(bpy)32+ Visible light CO2H R

Thekineticcontrolofanorganometallicprocesscanbeanotherimportantfactor.Oneexampleislow-temperaturereactionsinvolvingorganolithiumreagents, whereitisessentialtoavoidsignificantdecompositionofthermallysensitive species,thermalpromotionofundesiredsidereactions,andcontrolthereactivity ofexothermicprocesses.

Treatmentofwastestreamsfromorganometallicprocessesmustbeconsideredcarefullyastheymaycontainpreciousmetalorevenothertransitionmetal residuesoriginatingfromthedecompositionoftheorganometalliccompounds. Apartfromthewell-documentedenvironmentalimpactofPGMcompounds, finelydividedPGMparticles,ifallowedtodryout,poseasignificantfire hazard.Becauseofthesignificantenvironmentalhazardsassociatedwithheavy metalresidues,predominantlyarisingfromtheirpersistenceinthebiosphere viabioaccumulation,generationofthistypeofwastestreamonproduction scaleshouldbeavoidedwhereverpossible,withenvironmentalregulations strictlycontrollingthelevelofanyemissions.Somecommoncatalystprecursor complexesreleaseharmfulsideproductswhenactivatedorsubstituted.For instance,[Pd(COD)(Cl)2 ]releases1,5-cyclooctadiene(COD)inthepresence ofphosphines,which,amongitsotherchemicalhazards,hasapungentodor eveninlowconcentrations.Therefore,extremecaremustbetakenwhendealing withprocesswastethatcontainsit.Similarly,manyofthemetalcarbonyl compoundscangenerateCOgas,whichneedstobeproperlyvented.Someof thesecarbonyl-basedcompoundsundergosublimationaswell.

1.3BriefNotesontheHistoricalDevelopment ofOrganometallicChemistryforOrganicSynthesis ApplicationsPertainingtotheContentsofthisBook

Mostorganometallicprocesseshaveevolvedanddevelopedfromseminaldiscoveriesinthelate1800sorearly1900s.Insomecases,itiseasiertopinpointthe exactseminalreports,whereasinothercases,thistaskisnotsoeasy.Sabatier’s reportofnickel-catalyzedhydrogenationcaneasilybeidentifiedasthediscoveryofmetal-catalyzedhydrogenationreactions[32],forwhichhegottheNobel PrizeinChemistryin1912.Forthecross-couplingarea,itsoriginisslightlymore difficulttodeducepreciselyalthoughour2012reviewarticlesandbookprovidea muchbetterunderstandingofthearea[9,10,13,33,34].Onecouldarguethatit datesbackto1912NobellaureateVictorGrignard’sdiscoveryofRMgXreagents, whereGrignardsharedtheNobelPrizewithSabatier.Althoughbothtechnologies(Grignardin1912andcross-couplingin2010)gotNobelPrizes,theformeris consideredtobea“breakthroughinnovation,”whereasthelatteriscalled“incrementalinnovation.”Theimpactofcross-couplinginchemicalprocessesshowsits significancebybeingawardedtheNobelPrize,incomparisontomanycompeting technologies.

Inthissection,wewillbrieflygothroughtheoriginsofafewprominentareas withinorganometallicchemistryandhowtheyrelatetothecurrentindustrial applicationswithrespecttothetopicscoveredbythechaptersinthisbook.

8
1IndustrialMilestonesinOrganometallicChemistry

1.3.1SynthesisofStoichiometricOrganometallicReagents

1.3.1.1ConventionalBatchSynthesis

Arguably,themostimportantstoichiometricorganometallicreagentsare organolithiumcompounds,RLi.Thestudiesofthesereagentswerepioneered byKarlZiegler,GeorgWittig,andHenryGilman[35].Theirrelativelystraightforwardpreparation,highbasicity,andwidearrayoffunctionalityprovide convenientaccesstousefulsyntheticroutessuchasmetalation,deprotonation,carbolithiation,andtransferorexchangeofthenucleophilicorganic fragmentR .

In1899,bysubstitutingMgforZninalkylationreactions,PhilippeBarbier’s studentVictorGrignard(Figure1.1)developedtheRMgXalkylatingagentsthat bearhisnametothisday.Beingalesssensitivebutmorepotentsourceofalkyl anionsthantheirZn-basedcounterparts,Grignardshowedhowtheycanefficientlyalkylatecarbonylcompounds,adiscoverythatprovedtohavehugeimpact insyntheticchemistryandearnedhimaNobelPrizein1912[36].

Today,VictorGrignardisrememberedasthefatheroforganometallicchemistry.Organomagnesiumcompoundsrepresentveryusefulalternativestotheir lithiumcounterparts,exemplifiedbythewidespreaduseofGrignardreagents, RMgX,forefficientalkylationsandarylations.Thesereagentsarenowproduced inmultitonquantities.Organocalciumcompoundsaremorereactivealkyl sourcesthanGrignardreagents,buttheirapplicationsarelimitedbecauseof theincreaseddifficultyoftheirpreparationandthethermalinstabilitythey exhibit.Organocalciumcompoundshavealsoshownpromiseashydroamination catalysts.Incomparisontoorganolithiumandorganomagnesium,organoaluminumcompounds,R3 Alreagents,aregenerallyfarlesseffectivestoichiometric reagentsbutdoaddtoalkenesandalkyneswithhighregio-andstereoselectivity viacarboalumination.Importantly,however,theyhavefoundparticularuseasa vitalcomponentoftheheterogeneousZiegler–Nattapolymerizationprocessfor theindustrial-scaleproductionofpolyethyleneandpolypropylene.Aluminum

Figure1.1 VictorGrignard.Source:https://commons .wikimedia.org/w/index.php?curid=545837.Licensed underCCBY3.0.

1.3BriefNotesontheHistoricalDevelopment 9

alkylsarealsowidelyutilizedforgroupIII–Vchemistryfortheproductionof electronicmaterialsviaCVD.

1.3.1.2OrganometallicsinFlow

Industrial-scaleorganicsynthesisforfinechemicalapplications,suchasnatural productsoractivepharmaceuticalingredients(APIs),andorganometallicsyntheseshavetraditionallybeenconductedinbatchusinglarge-volume(>100l) reactors.Incontinuousflowprocesses,smallamountsofreagentsolutionsare continuouslypumpedalongaflowingstreamtomixataspecificjunctionwith resonancetimetoreactthemtogethertoyieldtheproduct,whichisbeingpurifiedundertheflowconditionsandcollected.Insomecases,acascadeapproach hasbeenconsideredwheremultiplereagentshavebeenmixedsequentially ratherthanperformingreactionsindifferentbatchreactors.Industrieshave beenusingthistechniqueforthemanufactureofpetrochemicalsandbulk chemicalsasthisapproachhasproventobenotonlymosteconomicalbut alsoproducegood-qualityproductsconsistently.Therecentinterestinflow chemistryinacademiaforthesynthesisofmorecomplexorganiccompounds hasincreasedeffortstoapplythisrapidlyburgeoningtechnologybothinfine chemicalandpharmaceuticalindustries.Theadvantagesthatflowprocessescan bringinacommercialcontextrelativetobatchproductionareshorterreaction times,greatertemperaturecontrol,rapidoptimization,shorterpathlengthfor photochemicalreactions,andimprovedprocesssafety.Chapter2,authored byJosephMartinelliofEliLilly,presentsthedesign,development,andimplementationofanAPImanufacturingrouteundercontinuousflowconditions toshowcasetheapplicationofthistechnologyinorganicsynthesis.Chapter3 detailsthelithiationandborylationchemistryunderflow,asdevelopedbyJoerg SedelmeierandAndreasHafneratNovartis.Thischapterprovidesasnapshot ofhowthistechnologycanalsobeappliedforthesynthesisoforganometallic reagents.

1.3.2Cross-couplingReactions

SeveralyearsafterGrignard’sdiscoveryofRMgXreagents,in1941,Kharaschundertookthefirstsystematicinvestigationoftransition-metal-catalyzed sp2 –sp2 carboncoupling,detailingtheobservationofhomocouplingofGrignard reagents[37,38].Subsequentresearchfromhisgroupledtotheearliestreport ofacross-couplingreaction,whereacobalt-basedcatalystwasusedtocouple vinylbromidewithanarylGrignardreagent[39].Thismadehimtobethefather ofcross-couplingreactions.

Themetalcatalystsinquestionarealsoorganometalliccomplexesthatmediatethecouplingoftwodifferenthydrocarbonfragmentsfororganicsynthesis purposesinthefinechemical,agrochemical,andpharmaceuticalindustries.A simplifiedcatalyticcycleisshowninScheme1.11.Manyofthekeyreactivity stepsthatarecharacteristicfororganometalliccomplexesareaprerequisitefor thesereactionstotakeplace.Initialoxidativeadditionisfollowedbytransmetalation(organometallicsubstitution)andfinallyreductiveeliminationtoformthe

10
1IndustrialMilestonesinOrganometallicChemistry

Reductive elimination

Transmetalation

Oxidative addition

Negishi Suzuki–Miyaura Stille Kumada, etc.

insertion

Heck–Mizoroki

Scheme1.11 Simplifiedcatalyticcyclesforcross-couplingreactions.

desiredproductandregeneratethecatalyst.Eachofthesestepshasbeenthesubjectofanumberofstudiestotryandunderstandtheexactnatureoftheirmechanism.ForSuzuki–Miyaurareactions,thetransmetalationstephasbeenthefocus ofattentionofseveralresearchgroups.TheDenmark,Lloyd-Jones,andHartwig groupshaveindependentlystudiedthisstepofthecatalyticcycleforthesetypes ofcross-couplingreactions[40–42].InSonogashirareactions(sp–sp2 bondformation),aCucocatalystiscommonlyemployed[43].Inmanyrecentrefinements ofthisreaction,however,theneedforacocatalysthasbeencircumventedby, forexample,acarefulchoiceofPdcatalystandreactionconditions[44–46].The mechanismoftheHeckreactiondiffersfromtheothernamedcross-coupling reactionsinthata β-hydrogeneliminationiscrucialfortheformationofthefinal product.

Manypioneershaveplayedaroleinthedevelopmentofthisareaandlenttheir namestothereactionstheyhavediscovered.Theimportanceofcross-coupling tothefieldofchemistrywasultimatelyrecognizedin2010byawardingthe NobelPrizetoRichardF.Heck,Ei-ichiNegishi,andAkiraSuzukifortheir researcheffortsinpalladium-catalyzedcross-couplingsinorganicsynthesis [9,10,13,35,36].Cross-couplingisanexamplewhereincrementalinnovationis ofequalimportancetothebreakthroughdiscovery,significantenoughevenfor theawardoftheNobelPrize.

FollowingfromanearlierworkbyFujiwara,in1969,RichardHeckpublished thefirstexamplesofcross-couplingusingstoichiometricpalladium(II).Building onaseparateworkbyMizoroki,heproposedthefirstPd(0)-mediatedcatalytic cycleforthecross-couplingofiodobenzeneandstyrene,openingthedoorfor anexplosionofdiscoveriesinPd-catalyzedcross-couplingchemistry.ThetraditionalMizoroki–Heckreactionformsasubstitutedalkeneviacross-coupling ofanunsaturatedhalideorpseudo-halidewithanalkeneunderPdcatalysis andisfrequentlyemployedforC–Ccouplinginindustrialsettings.TheHeck mechanismcanalsobeaccessedusingnickeltomediatethecatalysis.Under

1.3BriefNotesontheHistoricalDevelopment 11 LnPd(II) R X
R-X R1 R1 (II)PdXLn H Pd(II)Ln X R R1 H-X
M-X LnPd(II) R R1
Migratory
β-Hydride elimination
R1-M R-R1
H R
LnPd(0)

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.