Plant bioactives as natural panacea against age induced diseases nutraceuticals and functional lead

Page 1

Plant Bioactives

as Natural Panacea

against Age-Induced Diseases: Nutraceuticals and Functional Lead Compounds for Drug Development

Kanti Bhooshan Pandey

Visit to download the full and correct content document:

https://ebookmass.com/product/plant-bioactives-as-natural-panacea-against-age-indu ced-diseases-nutraceuticals-and-functional-lead-compounds-for-drug-development-k anti-bhooshan-pandey/

PlantBioactivesasNaturalPanacea AgainstAge-inducedDiseases

NutraceuticalsandFunctionalLeadCompoundsforDrug Development

Thispageintentionallyleftblank

DrugDiscoveryUpdate

PlantBioactivesas NaturalPanacea AgainstAge-induced Diseases

NutraceuticalsandFunctionalLead CompoundsforDrugDevelopment

KantiBhooshanPandey

CSIR-CentralSalt&MarineChemicalsResearchInstitute,Bhavnagar, Gujarat,India

MaitreeSuttajit

ThaiVegetarianAssociation,Changpuak,ChiangMai,Thailand

SeriesEditor

ChukwuebukaEgbuna

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands

TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright©2023ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans, electronicormechanical,includingphotocopying,recording,oranyinformationstorageand retrievalsystem,withoutpermissioninwritingfromthepublisher.Detailsonhowtoseek permission,furtherinformationaboutthePublisher’spermissionspoliciesandour arrangementswithorganizationssuchastheCopyrightClearanceCenterandtheCopyright LicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions.

Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythe Publisher(otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchand experiencebroadenourunderstanding,changesinresearchmethods,professionalpractices,or medicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgein evaluatingandusinganyinformation,methods,compounds,orexperimentsdescribedherein. Inusingsuchinformationormethodstheyshouldbemindfuloftheirownsafetyandthesafety ofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors, assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterof productsliability,negligenceorotherwise,orfromanyuseoroperationofanymethods, products,instructions,orideascontainedinthematerialherein.

ISBN:978-0-323-90581-7

ForInformationonallElsevierpublications

visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: SusanDennis

AcquisitionsEditor: GabrielaCapille

EditorialProjectManager: CatherineCostello

ProductionProjectManager: SruthiSatheesh

CoverDesigner: MatthewLimbert

TypesetbyMPSLimited,Chennai,India

Contents Listofcontributorsxv Prefacexix 1.Agingprinciplesandinterventionalperspectives 1 EwaSikora 1.1Themessageofgeroscience 1 1.2Rejuvenationbydiet 3 1.3Antiagingmoleculesmimickingdietrestrictions 7 1.4Cellularsenescenceandsenotherapy 8 1.4.1Senolytics10 1.4.2Senomorphics11 1.5Moreperspectives 12 Acknowledgment 13 References 14 2.Anti-agingstrategies,plantbioactives,anddrug development:currentinsights 23 BungornSripanidkulchai,MaitreeSuttajitandTreetipRatanavalachai 2.1Introduction 23 2.2Agingtheoriesandmechanisms 24 2.3Antioxidantsandantiinflammatorycompounds: strategiesforaginginterventions 25 2.4Bioactivecompoundsinmedicinalherbsandtheir anti-agingproperties 27 2.4.1Curcumin27 2.4.2Resveratrol28 2.4.3Epigallocatechingallateandepicatechin28 2.4.4Piperine29 2.4.5Piplartine30 2.4.6Terpenoidsandcarotenoids30 2.4.7Vitamins31 2.4.8Fattyacids31 2.5Plantsrichinbioactives:strategicpossibilitytodevelop anti-agingdrugs 31 2.6Plantbioactivesreportedtoprotectagainstskinphotoaging 35 2.7Futuretrends 36 v
2.8Conclusion 36 References 37 3.Nutrigenomics,plantbioactives,andhealthyaging 49 UchennaEstellaOdoh,ChukwumaMichealOnyegbulam, Theodoramba,ObinnaSabastineOnugwu,IkennaChikeokwu andLonginusC.Odoh 3.1Introduction 49 3.2Thehumangenomeproject 50 3.3Functionaldeclineinaging 51 3.4Plantbioactivesandhealthyaging 51 3.5Mechanismsofactionofplantbioactivesinaging 52 3.6Conclusion 56 References 57 4.Plantbioactivesinbalancingglucosehomeostasis duringagingandrelateddiseases 63 SuparnaMandal,RavichandraShivalingappaandSambeAshaDevi 4.1Introduction 63 4.2Glucosehomeostasisandthecentralnervoussystem 65 4.3Naturalpolyphenolsandglucosehomeostasis 67 4.4Bioactivesingrapeseedsandgreentea 68 4.4.1Grapeseedbioactivesandglucosehomeostasis68 4.4.2Greenteabioactivesandglucosehomeostasis71 4.5Epigenetic-mediatedprotectivemechanismsofgrapeseed proanthocyanidinextractandgreentea 74 4.6Futureprospectiveandconclusion 74 Acknowledgements 75 Conflictofinterest 75 References 75 5.Plantbioactivesinimmunemodulationandtheirrole inantiaging 85 YaseminAydin,YaseminUlkuDikbasanandBanuOrta-Yilmaz 5.1Introduction 85 5.2Immunechangeswithage 86 5.3Immunosenescence 87 5.3.1Molecularlevel87 5.3.2Cellularlevel88 5.3.3Systemiclevel88 5.4Inflammaging 88 5.4.1Molecularlevel89 5.4.2Cellularlevel90 5.4.3Systemiclevel90 vi Contents
5.5Immunecellskewing 91 5.5.1Molecularlevel91 5.5.2Cellularlevel92 5.5.3Systemiclevel92 5.6Decliningyouthfactors 92 5.7Plantbioactivemolecules 93 5.7.1Modeofactionofplantbioactivemolecules97 5.8Modulationofimmunefunctionbyplantbioactive moleculesandantiagingeffects 98 5.9Conclusionandfutureperspectives 101 References 101 6.Plantbioactives,genes,andlongevi 111 ManisekaranHemagirri,Shanmugapriya,YengChen, JagatR.KanwarandSreenivasanSasidharan 6.1Introduction 111 6.2Agingandprocessofaging 112 6.3Longevityandprocessoflongevity 113 6.4Longevitygenesinfluencinglongevityinhumans 114 6.4.1Longevitygene114 6.4.2Sirgenes114 6.4.3Telomerasereversetranscriptasegene115 6.4.4DAF-16gene116 6.5Plantextractsandtheirbioactivesinregulationoflongevity genes 117 6.6Plantbioactivesandagingintervention 119 6.7Conclusion 122 Conflictofintereststatement 122 Funding 122 References 122 7.Hormeticeffectsofplantbioactivesonhealthy agingandlongevity 129 PimpisidKoonyosying,NarisaraParadeeand SomdetSrichairatanakool 7.1Introduction 129 7.1.1Hormesisoradaptivestressresponses129 7.1.2Hormeticversusantioxidantresponses130 7.1.3Antiagingandhormesis131 7.2Hormeticeffectsofplantbioactives 132 7.2.1Bioactivesfromgreentea132 7.2.2Bioactivesfromcoffee135 7.2.3Bioactivesfrom Perillafruits 138 7.3Futureprospects 140 7.4Conclusion 140 Contents vii
7.5Acknowledgements 141 References 141 8.Anti-agingeffectofpolyphenols:possibilitiesand challenges 147 WittayaChaiwangyen,OradaChumphukam, NapapanKangwan,KomsakPinthaandMaitreeSuttajit 8.1Introduction 147 8.2Chemistryandclassification 147 8.3Anti-agingpropertiesofpolyphenolsandmechanisms 148 8.3.1Epigeneticmodification148 8.3.2MicroRNAmodulationsandregulations153 8.3.3Antioxidantactivity155 8.3.4Anti-inflammationactivity158 8.3.5Anti-glycationactivity161 8.4Futuretrends:possibilitiesandchallenges 163 8.5Conclusion 166 References 166 9.Plantpolyphenolsinbalancingtheredoxstate duringaging 181 SandeepSingh,GeetikaGargandSyedIbrahimRizvi 9.1Introduction 181 9.2Redoximbalance,oxidativestress,andaging 182 9.3Roleofpolyphenolsinmaintainingredoxstatus 183 9.4Roleofpolyphenolsinage-relateddisordersdueto redoximbalance 186 9.4.1Neurodegenerativediseases186 9.4.2Cardiovasculardiseases186 9.4.3Diabetes187 9.4.4Obesity187 9.4.5Cancer188 9.5Futuretrends 188 9.6Conclusion 189 Acknowledgments 189 Conflictofinterest 189 References 189 10.Mechanismsinvolvedinpreventionofdementiaand promotionofhealthyagingbyresveratrol 197 BrahmKumarTiwariandKantiBhooshanPandey 10.1Introduction 197 10.2Aginganddementia 198 viii Contents
10.3Resveratrol,FrenchParadox,aging,anddementia 200 10.4Mechanismsinvolvedinpreventionofdementiaby resveratrol 201 10.5Clinicaltrialsofresveratrolonneurodegenerativediseases 204 10.6Futureprospectiveandconclusion 206 References 206 11.Aninsightintoplantpolyphenolsinpreventionof brainaging 215 PadmanabhSingh,ArpitaKonarandM.K.Thakur 11.1Introduction 215 11.1.1Anatomical,biochemical,andmoleculartriggers ofbrainaging216 11.2Phytochemicalsasnutraceuticalsforhealthybrainaging 218 11.2.1Polyphenols218 11.2.2Polyphenolsandepigeneticregulationofgene expression225 11.2.3Bioavailabilityofpolyphenols225 11.3Conclusionandfutureperspectives 227 Acknowledgments 227 References 227 12.Plantpolyphenolsintheregulationofion channelsduringagingandinduceddiseases 235 BanuOrtaYilmaz,BuseYilmazandYaseminAydin 12.1Introduction 235 12.2Polyphenols 236 12.2.1Classificationofpolyphenols237 12.2.2Beneficialeffectsofpolyphenolsonhumanhealth237 12.3Agingprocess 240 12.4Thefunctionsofionchannels 240 12.4.1Maintypesandbiologicalrolesofionchannels241 12.4.2Effectsofpolyphenolsonionchannels244 12.5Potentialmechanismsofpolyphenolsintheregulationof ionchannelsrelevanttoagingintervention 245 12.6Conclusionandperspectives 247 References 248 13.Teacatechinsaspotentantioxidantand anti-inflammatoryagents:possibilitiesofdrug developmenttopromotehealthyaging 253 PracheeDubey 13.1Introduction 253 13.2Structureandsourcesofteacatechins 254 Contents ix
13.3Teacatechinsandanti-agingeffects:mechanismsofaction 254 13.3.1Antioxidantactivityofteacatechins255 13.3.2Anti-inflammatoryactivityofteacatechins258 13.4Antioxidativeandanti-inflammatorypropertiesof teacatechinsinpreventingagingandage-relateddiseases 258 13.4.1Cognitivedeclineanddementia258 13.4.2Cardiovasculardiseases260 13.4.3Cancer261 13.4.4Otherage-dependentdiseases262 13.5Futuretrendsandconclusion 263 References 263 14.Functionalfoods,bioactives,andcognitive impairmentsduringaging 271 PrabhakarSinghandMohammadMurtazaMehdi 14.1Introduction 271 14.2Cellularbiomolecules,oxidativestress,aging,and cognitivedysfunction 273 14.3Functionalfoods 274 14.4Bioactivesfromfunctionalfoods,cognitiveimpairments, andaging 274 14.5Dietarypolyphenols,cognitiveimpairments,andaging 275 14.5.1Resveratrol276 14.5.2Curcumin277 14.5.3(-)-Epigallocatechin-3-gallate279 14.5.4Caffeine280 14.6Vitaminsincognitiveimpairmentsduringaging 280 14.7Otherbioactivesinfunctionalfoodsduringaging 281 14.8Conclusionandfutureremarks 281 References 282 15.Functionalfoodsinimprovingbonehealth duringaging 287 SuphachaiCharoensin,PeraphanPothacharoen, OrawanWanachewin,PrachyaKongtawelertandMaitreeSuttajit 15.1Introduction:commonboneandjointchangesduringaging 287 15.2Bonesandtheirassociatedcomponents 288 15.3Nutritionforboneandjointhealth 289 15.3.1Essentialbone-buildingminerals289 15.4Childhoodandadolescence:theagetostartingstrong bonehealth 294 15.5Age-relatedboneandjointdegenerationinagingpeople 295 15.5.1Hormonalregulationofcalcium295 15.5.2Alterationsinconnectivetissue296 15.5.3Osteoporosis297 x Contents
15.5.4Joint,inflammation,andosteoarthritis297 15.5.5Maintainingboneandjointhealthwithfunctional foods298 15.5.6Sesame298 15.5.7Phytochemicals299 15.6Futureprospects 300 15.7Conclusion 300 References 300 16.Dietaryrestriction,vegetariandiet,andaging intervention 307 MaitreeSuttajit,SubramanianThangaleela,BhagavathiSundaram SivamaruthiandSuphachaiCharoensin 16.1Introduction 307 16.2Calories,balancedenergy,overweight,andobesity 309 16.3Dietaryrestriction,calorierestriction,andintermittentfasting 309 16.3.1Dietrestrictionmechanismandhealthbenefits310 16.3.2Caloricrestrictionmechanismandhealthbenefits311 16.3.3Intermittentfastingmechanismandhealthbenefits313 16.3.4Religiousdietaryrestriction315 16.4Theroleandnewinsightsofvegetarianandvegandiets 316 16.5Futuretrends 318 16.6Conclusion 319 References 320 17.Plantbioactivesaspromisingtherapeuticagentsin Parkinson’sdiseasetargetingoxidativestressduring aging 329 NidhiSachan,BrijeshSinghChauhanandSaripellaSrikrishna 17.1Introduction 329 17.2Aging:animportantcontributoryfactorforParkinson’s disease 330 17.2.1EarlyonsetParkinson’sdisease330 17.2.2LateonsetParkinson’sdisease334 17.3TreatmentstrategiesforParkinson’sdisease 335 17.4Flavonoids:promisinganti-Parkinson’sdiseasecompounds 336 17.4.1Baicalein337 17.4.2Curcumin339 17.4.3Epigallocatechin-3-gallate342 17.4.4Naringenin343 17.4.5Quercetin343 17.5Conclusionandfutureprospective 345 Conflictofinterest 345 Funding 345 References 346 Contents xi
18.Novelplantbioactives,theirantiagingpotencies: realityandpromises 359 UmahRaniKuppusamyandBavaniArumugam 18.1Introduction 359 18.2Thehallmarksofaging 360 18.2.1Oxidativestressandaging360 18.2.2Linksbetweenreactiveoxygenspeciesandthe hallmarksofaging361 18.3Plantbioactivesandtheirclassification 363 18.4Novelbioactivecompoundsasantiagingagents 365 18.4.1Novelbioactivesascaloricrestrictionmimetics370 18.4.2Novelbioactivesasmitochondria-localized antioxidants370 18.4.3Gutmicrobiotaastheantiagingtargetofnovel bioactives371 18.4.4NovelGolgi β-galactosidaseaspotentialtargetof novelbioactivesinantiagingtherapy371 18.5Promisingantiagingbioactivesthathavemadeitto humanclinicaltrials 371 18.6Plantbioactivesasantiaging/geroprotectivenutraceuticals: realityandchallengesandfutureperspectives 374 18.6.1Bioavailabilityofthebioactivesandtheirmetabolites374 18.6.2Influenceonthegutmicrobiota376 18.6.3Toxicity,dosage,safety,andshortandlong-terms adverseeffects376 18.6.4Complianceandcontrolinclinicaltrialsandlackof appropriatepanelofantiagingmarkers377 18.7Conclusion 377 References 378 19.Usesofnanotechnologyinrefiningtheanti-aging activitiesofplantbioactives 387 BishnuKumarPandey,KantiBhooshanPandeyand ShailendraKumarSrivastava 19.1Introduction 387 19.2Nanotechnologyinthetherapeuticapplications 388 19.3Nano-deliverysystems 389 19.3.1Nano-emulsion389 19.3.2Nano-liposomes390 19.3.3Nano-polymersomes390 19.3.4Solid-lipidnanoparticles390 19.3.5Micelles390 19.4Nanotechnologyandplantbioactives:promisein anti-agingresearch 390 19.4.1Nano-resveratrol391 xii Contents
19.4.2Nano-curcumin391 19.4.3Nano-quercetin392 19.4.4Nano-epigallocatechingallate393 19.4.5Nano-genistein393 19.5Nanotechnologyinrefiningtheeffectofbioactivesused inskincare 393 19.6Conclusionandfutureoutlook 396 References 397 20.Trendsintheplant-basedanti-agingdietindifferent continentsoftheworld 405 RatanaBanjerdpongchai,MaitreeSuttajitand TreetipRatanavalachai 20.1Introduction 405 20.2Importanceofplant-baseddietsinhealthyaging 406 20.3Activephytochemicalsversuswholeplant-baseddiets 406 20.4Thereducedriskofobesityandotherschronicdiseases duringagingbyadoptionofplant-baseddietarypattern 408 20.5Plant-baseddietsasprebioticspromotingprobiotics 409 20.6Theworld’sagingpopulationsversusplant-based differentdietarypatterns 411 20.7Thestrategiesofplant-baseddietsandhealthyaging establishmentglobally 412 20.8Trendingdietarypatternsandeffectivenessof plant-baseddietsasanti-agingdiets 414 20.9Limitations 416 20.10Futureperspectives 417 20.11Conclusion 418 References 419 21.Functionalfoodsinclinicaltrialsinagingintervention 429 PinarAtukeren 21.1Introduction 429 21.1.1Definingfunctionalfoods429 21.1.2Cellularsenescenceinaging430 21.2Oxidativestressinaging 431 21.2.1Functionalfoodswhichhaveantioxidantproperties432 21.3Impactoffunctionalfoodsinthemanagementof age-relateddiseases 433 21.3.1Neurodegenerativediseases434 21.3.2Cancer434 21.3.3Eyemaculardegenerationandcataract435 21.3.4Cardiovasculardiseases435 21.3.5Osteoporosis436 21.3.6Immunologicaldiseases437 Contents xiii
21.4Futureprospects 437 21.5Conclusion 437 References 438 22.Plantbioactives,agingresearch,anddrugindustry: proceduresandchallenges 447 ChalermpongSaenjum,ThanawatPattananandechaand SutasineeApichai 22.1Introduction 447 22.2Agingresearchandinterventionalpropertiesofplant bioactives 448 22.3Challengesindrugdiscoveryanddevelopmentofa platformforplantbioactives 450 22.3.1Molecularmodeling457 22.3.2Extraction,separation,andstandardization458 22.3.3Organiccultivationofmedicinalplants459 22.4Conclusionandfutureperspective 462 References 462 Index469 xiv Contents

Listofcontributors

SutasineeApichai DepartmentofPharmaceuticalSciences,FacultyofPharmacy, ChiangMaiUniversity,ChiangMai,Thailand;CenterofExcellencefor InnovationinAnalyticalScienceandTechnologyforBiodiversity-based EconomicandSociety(I-ANALY-S-T_B.BES-CMU),ChiangMaiUniversity, ChiangMai,Thailand

BavaniArumugam DepartmentofBiomedicalScience,FacultyofMedicine, UniversitiMalaya,KualaLumpur,Malaysia

SambeAshaDevi LaboratoryofGerontology,DepartmentofZoology,Bangalore University,Bangalore,Karnataka,India

PinarAtukeren IstanbulUniversity-Cerrahpasa,FacultyofPharmacy,Cerrahpasa MedicalFaculty,DepartmentofMedicalBiochemistry,Istanbul,Turkey

YaseminAydin DepartmentofBiology,FacultyofScience,IstanbulUniversity, Istanbul,Turkey

RatanaBanjerdpongchai DepartmentofBiochemistry,FacultyofMedicine,Chiang MaiUniversity,ChiangMai,Thailand

WittayaChaiwangyen DivisionofBiochemistry,SchoolofMedicalSciences, UniversityofPhayao,Phayao,Thailand

SuphachaiCharoensin

DivisionofNutritionandDietetics,SchoolofMedical Sciences,UniversityofPhayao,Phayao,Thailand

YengChen DepartmentofOral&CraniofacialSciences,FacultyofDentistry, UniversityofMalaya,KualaLumpur,Malaysia

IkennaChikeokwu DepartmentofPharmacognosy,FacultyofPharmaceutical Sciences,EnuguStateUniversityofScienceandTechnology(ESUT),Agbani, EnuguState,Nigeria

OradaChumphukam DivisionofBiochemistry,SchoolofMedicalSciences, UniversityofPhayao,Phayao,Thailand

YaseminUlkuDikbasan

DepartmentofBiology,InstituteofGraduateStudiesin Sciences,IstanbulUniversity,Istanbul,Turkey

PracheeDubey GovernmentG.I.College,Malwan,Fatehpur,UttarPradesh,India

UchennaEstellaOdoh DepartmentofPharmacognosyandEnvironmentalMedicines, FacultyofPharmaceuticalScences,UniversityofNigeria,Nsukka,Nigeria

GeetikaGarg DepartmentofZoology,SavitribaiPhulePuneUniversity,Pune, Maharashtra,India

xv

ManisekaranHemagirri InstituteforResearchinMolecularMedicine (INFORMM),UniversitiSainsMalaysia,USM,PulauPinang,Malaysia

NapapanKangwan DivisionofPhysiology,SchoolofMedicalSciences,University ofPhayao,Phayao,Thailand

JagatR.Kanwar DepartmentofBiochemistry,AllIndiaInstituteofMedical Sciences(AIIMS),Bilaspur,HimachelPradesh,India

ArpitaKonar CSIR-InstituteofGenomics&IntegrativeBiology,NewDelhi,Delhi, India

PrachyaKongtawelert DepartmentofBiochemistry,FacultyofMedicine,Chiang MaiUniversity,ChiangMai,Thailand

PimpisidKoonyosying OxidativeStressResearchCluster,Departmentof Biochemistry,FacultyofMedicine,ChiangMaiUniversity,ChiangMai, Thailand;ClusterofHighValueProductfromThaiRiceandPlantforHealth, ChiangMaiUniversity,ChiangMai,Thailand

UmahRaniKuppusamy DepartmentofBiomedicalScience,FacultyofMedicine, UniversitiMalaya,KualaLumpur,Malaysia

SuparnaMandal LaboratoryofGerontology,DepartmentofZoology,Bangalore University,Bangalore,Karnataka,India

Theodoramba DepartmentofPharmacognosy,FacultyofPharmaceuticalSciences, EnuguStateUniversityofScienceandTechnology(ESUT),Agbani,EnuguState, Nigeria

MohammadMurtazaMehdi DepartmentofBiochemistry,Schoolof BioengineeringandBiosciences,LovelyProfessionalUniversity,Phagwara, Punjab,India

ChukwumaMichealOnyegbulam DepartmentofPharmacognosyand EnvironmentalMedicines,FacultyofPharmaceuticalScences,Universityof Nigeria,Nsukka,Nigeria

LonginusC.Odoh DepartmentofAccountancy,UniversityofNigeria,Nsukka, Nigeria

BanuOrtaYilmaz DepartmentofBiology,FacultyofScience,IstanbulUniversity, Istanbul,Turkey

BishnuKumarPandey DepartmentofPhysics,SPMCollege,Universityof Allahabad,Prayagraj,Allahabad,UttarPradesh,India

KantiBhooshanPandey CSIR-CentralSalt&MarineChemicalsResearchInstitute, Bhavnagar,Gujarat,India

NarisaraParadee OxidativeStressResearchCluster,DepartmentofBiochemistry, FacultyofMedicine,ChiangMaiUniversity,ChiangMai,Thailand

ThanawatPattananandecha DepartmentofPharmaceuticalSciences,Facultyof Pharmacy,ChiangMaiUniversity,ChiangMai,Thailand;CenterofExcellence forInnovationinAnalyticalScienceandTechnologyforBiodiversity-based EconomicandSociety(I-ANALY-S-T_B.BES-CMU),ChiangMaiUniversity, ChiangMai,Thailand

xvi Listofcontributors

KomsakPintha DivisionofBiochemistry,SchoolofMedicalSciences,University ofPhayao,Phayao,Thailand

PeraphanPothacharoen DepartmentofBiochemistry,FacultyofMedicine,Chiang MaiUniversity,ChiangMai,Thailand

TreetipRatanavalachai DepartmentofPreclinicalSciences(Biochemistry),Faculty ofMedicine,ThammasatUniversity,Pathumthani,Thailand

SyedIbrahimRizvi DepartmentofBiochemistry,UniversityofAllahabad, Allahabad,UttarPradesh,India

ObinnaSabastineOnugwu DepartmentofPharmacognosy,Facultyof PharmaceuticalSciences,EnuguStateUniversityofScienceandTechnology (ESUT),Agbani,EnuguState,Nigeria

NidhiSachan CellandNeurobiologyLaboratory,DepartmentofBiochemistry, InstituteofScience,BanarasHinduUniversity,Varanasi,UttarPradesh,India; ToxicogenomicsandPredictiveToxicologyLaboratory,SystemsToxicologyand HealthRiskAssessmentGroup,CSIR-IndianInstituteofToxicologyResearch (CSIR-IITR),VishvigyanBhawan,Lucknow,UttarPradesh,India

ChalermpongSaenjum DepartmentofPharmaceuticalSciences,Facultyof Pharmacy,ChiangMaiUniversity,ChiangMai,Thailand;CenterofExcellence forInnovationinAnalyticalScienceandTechnologyforBiodiversity-based EconomicandSociety(I-ANALY-S-T_B.BES-CMU),ChiangMaiUniversity, ChiangMai,Thailand

SreenivasanSasidharan InstituteforResearchinMolecularMedicine(INFORMM), UniversitiSainsMalaysia,USM,PulauPinang,Malaysia

Shanmugapriya InstituteforResearchinMolecularMedicine(INFORMM), UniversitiSainsMalaysia,USM,PulauPinang,Malaysia

RavichandraShivalingappa DivisionofBiology,IndianInstituteofScience EducationandResearch,Tirupati,AndhraPradesh,India

EwaSikora LaboratoryofMolecularBasesofAging,NenckiInstituteof ExperimentalBiology,PolishAcademyofSciences,Warsaw,Poland

PadmanabhSingh CentreofAdvancedStudy,DepartmentofZoology,Instituteof Science,BanarasHinduUniversity,Varanasi,UttarPradesh,India;Departmentof Zoology,IndiraGandhiNationalTribalUniversity,Amarkantak,Madhya Pradesh,India

PrabhakarSingh DepartmentofBiochemistry,FacultyofScience,VeerBahadur SinghPurvanchalUniversity,Jaunpur,UttarPradesh,India

SandeepSingh DepartmentofBiochemistry,UniversityofAllahabad,Allahabad, UttarPradesh,India;HadassahBiologicalPsychiatryLaboratory,HadassahHebrewUniversityMedicalCenter,Jerusalem,Israel

BrijeshSinghChauhan CellandNeurobiologyLab oratory,Departmentof Biochemistry,InstituteofScience,BanarasHinduUniversity,Varanasi, UttarPradesh,India

Listofcontributors xvii

xviii Listofcontributors

BhagavathiSundaramSivamaruthi InnovationCenterforHolisticHealth, Nutraceuticals,andCosmeceuticals,FacultyofPharmacy,ChiangMaiUniversity, ChiangMai,Thailand

SomdetSrichairatanakool OxidativeStressResearchCluster,Departmentof Biochemistry,FacultyofMedicine,ChiangMaiUniversity,ChiangMai, Thailand;ClusterofHighValueProductfromThaiRiceandPlantforHealth, ChiangMaiUniversity,ChiangMai,Thailand

SaripellaSrikrishna CellandNeurobiologyLaboratory,Departmentof Biochemistry,InstituteofScience,BanarasHinduUniversity,Varanasi, UttarPradesh,India

BungornSripanidkulchai FacultyofPharmaceuticalSciences,KhonKaen University,KhonKaen,Thailand

ShailendraKumarSrivastava SamHigginbottomUniversityofAgriculture, Technology&Sciences,Prayagraj,Allahabad,UttarPradesh,India

MaitreeSuttajit DivisionofNutritionandDietetics,SchoolofMedicalSciences, UniversityofPhayao,Phayao,Thailand;ThaiVegetarianAssociation, Changpuak,ChiangMai,Thailand

M.K.Thakur CentreofAdvancedStudy,DepartmentofZoology,Instituteof Science,BanarasHinduUniversity,Varanasi,UttarPradesh,India

SubramanianThangaleela BehaviouralNeuroscienceLaboratory,Departmentof AnimalScience,SchoolofLifeSciences,BharathidasanUniversity, Tiruchirappalli,TamilNadu,India

BrahmKumarTiwari DepartmentofParamedicalSciences,SGTUniversity, Gurugram,Haryana,India

OrawanWanachewin DepartmentofBiochemistry,FacultyofMedicine,Chiang MaiUniversity,ChiangMai,Thailand

BuseYilmaz

DepartmentofBiology,InstituteofGraduateStudiesinSciences, IstanbulUniversity,Istanbul,Turkey

Preface

Extendinglifespan/healthyaginghasbeenthegreatestwishofhumanssince evolution.Inthepastfewdecades,significantadvanceshavebeenseenin theexplorationoftheagingprocess,itscellularbiology,andbiomarkersof aging,whichhaveprovidedspecifictargetsthatcanbeleveragedforpossibleaginginterventions.Thereisnodoubtthataginginterventionismore complicatedthanfindingthecureforotherdiseases,sincetheagingprocess ishighlyheterochronic.Inaddition,variationsintheoriesexplainingthe agingprocess,thestrategiesbeingexercisedforanagingcure,or/andthe promotionofhealthyagingarealsohighlydiverse.However,interveningin agingisalwaysthenextfrontierincontemporarycureandwillremaintobe ofhigherimportancesinceagingnotonlyaffectsthelifestyleoftheindividualsadverselybutalsobringsdependencyonothersandcostlymedical expenses.

Althoughtheavailabilityofadvancedagecarefacilitieshasdelayedthe developmentandprogressionofagingcomplications,stillitisnotfeasiblefor alargegroupofthepopulationduetohighcosts.Inaddition,sideeffectsassociatedwiththesesyntheticremedieshaverestrictedtheirfrequentandsafe use.Insuchascenario,asustainablecurewithno/leastsideeffectsistheneed ofthehourtocombattheanticipatedfutureburdenofage-dependent complications.

Bioactivesfromplantsofferremar kablefeaturesincomparisonwith traditionalsyntheticmedicines whichendowbothadvantagesandchallengesfordrugdiscovery.Enormouss caffolddiversity,structuralcomplexity,andhighernumbersofH- bondacceptors/donorsprovidehigher molecularrigiditytothesebioactiv escomparedwithsyntheticcompounds, thesecharacteristicsarevaluableind rugdiscoverytacklingprotein-proteininteractions.

Thepresentbookisacomprehensivedescriptionoftheantiagingpotentialofplant-derivedbioactivecompounds,naturallypresentinfoodsand beverages,anditprovidesanupdateonaginginterventionbasedonnatural compounds,whichmaybeutilizedinplant-baseddrugdiscoveryagainstan agingandassociatedcomplications.Writtenbyaglobalteamofexperts,this bookmaybeanidealresourceforresearchersinthisarea.Thisbookhas22 chapters.Chapter1extendsanexpertopiniononagingprinciplesandinterventionalperspectives.Chapters2and22discussanti-agingstrategiesand

xix

thepossibilityofplantbioactivesinantiagingdrugdiscoveryandthechallengesinvolved.Recently,plantpolyphenolshavegainedglobalinterestin aginginterventionduetotheirstrongantioxidativeandimmunomodulatory effects.However,scatteredandcontradictoryliteraturechallengestheconcurringresults.Chapter8exploresmoreonthistopic.Thebookalsocontainsdedicatedchapters9,12,and13onvariousantiagingmechanismsof actionofdifferentpolyphenols.

Neurologicalimpairmentsincludingcognitivedysfunctionareoneofthe majorcomplicationsduringaging,whichcompromisethehealth/lifespansas wellasthequalityoflifeofolderpopulationssignificantly.Chapters10,11, and17specificallydealwiththetherapeuticeffectsofplantbioactivesin counteractingneuroproblemsamongtheelderly.Chapter4focusesonthe advancesmadeindecipheringtheroleofgrapeseedsandgreenteabioactivesinmaintainingglucosehomeostasisinbloodandthebrainduringaging andattenuatingage-associateddisorders.Theimmunomodulatoryroleof plantbioactivesrelevanceinagingisincorporatedinChapter5.

Functionalfoodsrichinbioactivecompoundsarerecentlygainingmuch attentioninpromotinghealthandenhancinglifespan.Keepingthisrationale inminddedicatedChapters14,15,and21areincludedinthebook,which discussestheeffectivenessoffunctionalfoodsinpreventivecognitive impairmentsandimprovingbonehealthintheelderlyandrealisticresultsin clinicaltrialsinagingintervention.

Nanotechnologicalapproachestoenhancementofbioavailability,targeted deliveryandpreventionofbiotransformation,andmajorconcernsassociated withplantbioactivestodrugdevelopmentarediscussedinChapter19. Chapter20hasbeenincorporatedinthebooktobetterunderstandtheeffects ofdietarypatternsandassociatedbioactivesonagingandlongevityindifferentcontinentsoftheworld.Inadditiontotheestablishedcompounds,the antiagingpotenciesofnovelbioactivesarediscussedinChapter18, highlightingthereality,promises,andchallengesinapplyingthemasnutraceuticalorfunctionalanti-agingmolecules.Dietaryrestriction,vegetarian diet,andtheirrelationshipwithagingareexploredinChapter16.

Nutrigenomicsstudiesareimportantinunderstandingtheinteractionof nutrition/foodbioactiveswithlongevitygenes.Chapters3and6discusslongevitygenesandtheirinteractionwithplantbioactives,whichishelpfulin drugdiscovery.Recently,hormesisisintroducedincounterbalancingthe progressiveshrinkageofthehomeodynamicspace,whichistheultimate causeofaging.Chapter7dealswiththehormeticeffectsofplantbioactives inpromotinghealthyagingandlongevity.

Thisbookprovidescutting-edgeupdatedinformationandfutureperspectivesonplantbioactivesasemergingsourcesofleadcompoundsfornew drugdiscoveryagainstagingandrelateddiseases,whichofferpossiblehope forhealthandlongevity.

xx Preface

Preface xxi

WeextendourthankstoallourcontributorswhoprovideduswithsplendidchaptersinthisfieldandElsevier,Inc.formakingeveryefforttopublish thisbook,whenalargegroupofpopulationworldwideisconcernedwiththe age-associatedhealthissues.

Thispageintentionallyleftblank

Agingprinciplesand interventionalperspectives

EwaSikora

LaboratoryofMolecularBasesofAging,NenckiInstituteofExperimentalBiology,Polish AcademyofSciences,Warsaw,Poland

1.1Themessageofgeroscience

Agingischaracterizeddemographicallybyincreasedmortalityanddecreased reproductivesuccesswithadvancingage.Sincetheforceofselection declineswithage,aging,accordingtothenotmutuallyexclusiveevolutionarytheories,evolvesduetomutationaccumulation(mutationaccumulation theory)orasabenefittotheearlylifefitness(antagonisticpleiotropytheory) (Flatt&Partridge,2018).

Agingisaseeminglyuniversalbiologicalphenomenon,whichbegins aftersexualmaturityandgraduallyleadstoadeclineinvariousfunctioning (althoughtheexamplesofanimalsthatdolivewithoutcharacteristicsymptomsofdecreasingfunctionalityandreproductionhavebeendescribedand arecategorizedasnegligiblesenescence)(Finch,2009).Withage,thecharacteristicfunctionalchanges,knownasbiological“hallmarks”ofaging, occuratboththemolecularandcellularlevels.Recently,nineindicative hallmarksthatrepresentcommondenominatorsofagingindifferentorganisms,withspecialemphasisonmammalianaging,havebeenproposed. Namely,genomicinstability,telomereattrition,epigeneticalterations,lossof proteostasis,deregulatednutrient-sensing,mitochondrialdysfunction,cellular senescence,stemcellexhaustion,andalteredintercellularcommunication. Accordingtotheauthorswhoproposedthesehallmarks:“amajorchallenge istodissecttheinterconnectednessbetweenthecandidatehallmarksand theirrelativecontributiontoaging,withthefinalgoalofidentifyingpharmaceuticaltargetstoimprovehumanhealthduringagingwithminimalsideeffects”(Lo ´ pez-Ot´ınetal.,2013).

Thesamegoalofimprovingagingconditionswaspursuedbyotherleadersofbiogerontology,whoassumedthatagingisthemainriskfactorfor manygeriatricsyndromes(GSs)andage-relateddiseases(ARDs),suchas

PlantBioactivesasNaturalPanaceaagainstAge-InducedDiseases.

DOI: https://doi.org/10.1016/B978-0-323-90581-7.00002-5 © 2023ElsevierInc.Allrightsreserved.

Chapter1
1

sarcopenia,osteoporosis,frailty,cardiovasculardiseases,metabolicsyndrome,osteoarthritis,neurodegenerativediseases,andsomecommoncancers,suchasbreast,prostate,andcoloncancers.Manyofthemolecularand biochemicalmechanismsthatdeterminetherateofagingwerealsounder investigationinlaboratoriesthatfocusedsolelyonindividualchronicdiseases.Thuscollaborationsbetweenscientistsworkingonagingandchronic diseaseshavebecometheneedofthehour.Accordingly,aninterdisciplinary scienceattheinterfaceofnormalagingandchronicdiseasewascreatedand termed“geroscience.”Geroscienceseesagingastheprimarycauseofmany chronicdiseasesoflaterlife.Thusthepremiseunderlyinggeroscienceisthat bytargetingagingwecanpreventordelaymultiplechronicdiseasesand deathsimultaneously(Kennedyetal.,2014).Indeed,invariousexperimental interventionsinlaboratorymodels,itispossibletoslowandpartiallyreverse thefeaturesofaging(Childsetal.,2015).Thebasicmechanismssharedby agingandARDs/GSshavebeenidentifiedas“sevenpillars,”whichinclude adaptationtostress,lossofproteostasis,stemcellexhaustion,metabolism derangement,macromoleculardamage,epigeneticmodifications,andinflammation(Kennedyetal.,2014).Thegoalofgeroscienceistopromotehealthy aging;however,itisgoodtorealizethathealthspanandlonglifespan(longevity)areintimatelyrelated,asindividualswholiveexceptionallylong tendtobehealthyformuchoftheirlives(Franceschietal.,2018).Onthe otherhand,increasedlifeexpectancyobservedduringthepastfewcenturies (althoughdisturbedrecentlybytheCOVID-19pandemic(Maroisetal., 2020))resultedinincreasedmorbidityanddisabilityinoldandveryoldpeople(Chengetal.,2020).

Agingistheresultofacontinuousinteractionbetweenanindividual’s “geneticmakeup”andenvironmentalfactors,characterizedbylifelongdamageaccumulationandprogressivelossoftissueandorganfunctionality (Kirkwood,2017).Indeed,longevityhasheritablecomponents,however, theirinfluencehasbeenoverestimatedforalongtime,andisnowthoughtto benomorethan10%(Melzeretal.,2020).AlsoARDshaveaheritability component,butitdependsverymuchonthetypeofdisorder(Tenesa& Haley,2013).Nonetheless,relativelylowheritabilityofthedurationoflifespanstrengthensthelong-lastingassumptionthatagingisaplasticprocess, whichcanbemodifiedbylifestyleandenvironment(Kirkwood,2017).Thus prolongingnotonlylifespanbut,firstofall,healthspan,ispossible,since accordingtogeroscience(letusrepeat)both“physiological”and“pathological”agingsharethesamebasicmolecularandcellularmechanisms,and shouldbeconsideredasthesameprocessbutoccurringwithadifferentrate dependingondiversegeneticbackgroundandlifestyle(Franceschietal., 2018).Fromtheplethoraofanimalandhumandatacollectedsofar,it emergesthatthereareseveralcommonmolecularandcellulartargets,which atleastpartiallyoverlapwithcommonaginghallmarks,andwhichcanbe modifiedbylifestyle.Theseincludespecialdiets,food,nutrition,physical 2

PlantBioactivesasNaturalPanaceaagainstAge-InducedDiseases

activity,andpharmacologicalapproach.Someofthebeneficialinterventions andtheirtargetsarebrieflyreviewedbelow.

1.2Rejuvenationbydiet

AnoldChineseproverbsays:showmewhatyoueatandI’lltellyouwho youare.Itcanbeparaphrasedasfollows:showmewhatandhowyoueat, andIwilltellyouwhatageyouare.Wemeanthebiologicalage,whichis differentfromthecalendarage.Eachofushasourownaginghistoryreflectingourgeneticbackgroundandlifestyle.Thematteristofollowtherulesof life,whichwillallowustodieyoungaslateaspossible.Epidemiological, clinical,andpreclinicalstudiesactuallyshowedthatwhatweeatandhow muchweconsumecontributestodeterminingourhealthspan(Ekmekcioglu, 2020).Manipulationofanutritionallybalanceddiet,whetherbyalteringthe caloricintakeormealtiming,canleadtoadelayintheonsetandprogressionofdiseasesandincreaselifeinmostorganisms(DiFrancescoetal., 2018).

Thebeneficialeffectsofcaloricrestriction(CR)onlifespanhavebeen discoveredmorethanacenturyago(Osborneetal.,1917).Later,thepositiveeffectofCRonhealthspanandlifespanhasbeendocumentedinmany modelorganisms,suchasyeast, Caenorhabditiselegans, Drosophilamelanogaster,mice,andprimates,pointingtothestrongevolutionaryconservationofthecommonmechanismsconnectingfoodintaketolongevity(De Cabo&Mattson,2019).CRinvolvesa20% 40%reductionincalorie intakewithoutcausingmalnutrition.Also,inhumans,datafromobservationalandrandomizedclinicaltrialsindicatethatCRelicitsthesame mechanismsandbeneficialeffectsasinanimalmodelsoflongevity. ModerateCRinhumansamelioratesmultiplemetabolicandhormonalfactorsthatareimplicatedinthepathogenesisoftype2diabetes,cardiovascular diseases,cancer,andneurologicaldisorders,theleadingcausesofmorbidity, disability,andmortality(Dorlingetal.,2020;Mostetal.,2017).

Foodprovidesuswithnutrientsandenergynecessaryforgrowth,reproduction,andthesustainenceoflife.Moreover,nutrientsregulatemanyprocessesonthemolecular,cellular,andorganismallevelsviaso-callednutrient signalingpathways,whichinfluencetheagingprocess.Genetic,pharmacological,ordietaryinterventionstargetingnutrientsignalingpathwayshave beenshowntoattenuateaginginmanyorganisms(Johnson,2018).Theinsulin/insulin-likegrowthfactor1(IGF-1)signalingpathway(ILS)wasthefirst definedgeneticpathwayregulatingagingandARDsinmodelorganisms (Kenyon,2011).Additionalplayershavesincebeenidentified,suchas mTOR(mechanistictargetofrapamycin),AMPK(50 AMP-activatedprotein kinase),andsirtuins,asrobustmediatorsoftheprotectiveeffectsofdietary restriction(Johnson,2018).Allthesesignalingpathwaysaresomehow interconnected.

Agingprinciplesandinterventionalperspectives Chapter|1 3

4 PlantBioactivesasNaturalPanaceaagainstAge-InducedDiseases

ThemaincomponentofILSisIGF-1,ananabolichormonemainlyproducedintheliverandlocallyexpressedinperipheraltissues.Inmammals, IGF-1isunderthecontrolofgrowthhormone(GH)fromthepituitaryand secretionofGH/IGF-1isessentialfornormalgrowthandforthemaintenanceofanabolicprocesses.DownstreamofIGF-1areforkheadboxtranscriptionfactors(FOXOs).CRnegativelyregulatesILS,thusprolonging lifespaninmodelorganisms(Yuetal.,2021).mTORisanutrient-sensing threonine-serinekinasethatintegratesextra-andintracellularsignalsfrom nutrients,growthfactors,andvariousstresses.TORcomplexI(TORC1)is rapamycin-sensitiveandisthecentralelementoftheTORsignalingnetwork. TORC1activityinfluencestranscription,mRNAtranslation,autophagy, metabolismandcellsurvival,proliferation,sizeandgrowth,andmanyother processes.StudiesinlaboratorymodelssupportthenotionthattheTORsignalingnetworkmodulatesaging(Kapahietal.,2010).

AMPKisakeyregulatorofenergyinthecell,whichallowsthecell/ organismtosurviveevenwithadeficitofATP.Downstreammediatorsof AMPKsignalingincludemTOR,aminocyclopropane-1-carboxylicacid (ACC1),glucosetransporter1(GLUT1)/GLUT4,p53,autophagyactivating kinase1/2(ULK1/2),peroxisomeproliferator-activatedreceptor-gamma coactivator-1(PGC1-),FOXOs,whicharecomponentsofthecentralmetabolicactivitiesintheagingprocess.Thusthekinaseregulatesglucoseconsumption,cellproliferation,autophagy,andsynthesisofproteinsandfatty acids;alltheseprocessesarecloselyrelatedtolongevity(Morgunova& Klebanov,2019).

Sirtuinsarethefamilyofproteinsalsotermedtheproteinsofyouthas theirleveldeclineswithage.Inhumans,thefamilyconsistsofsevenmembers(SIRT1 7)thatpossesseithermono-ADPribosyltransferaseordeacetylaseactivity.Althoughsomedataputinquestionthedirectinvolvementof sirtuinsinextendingthehumanlifespan,itwasdocumentedthataproper lifestyleincludingphysicalactivityanddietcaninfluencehealthspanvia increasingthelevelofsirtuins.Sirtuinsinfluencetheactivityofmanymoleculesandsignalingpathwaysinvolvedintheprocessofsenescence,suchas FOXO,NF-κB,TOR,p53,andDNAdamage/repair(Grabowskaetal., 2017).ThusCRseemstobearelativelywell-recognizedmeansofinfluencingatleastseveralmolecularmechanismsinvolvedinmetabolism,redirectingitintoatrackthatfavorshealthspan.Itseemsthatbeneficialeffectsof moderate,butnotsevereCR,havebeenwelldocumentedinpreclinicaland clinicalstudies.ThequestioniswhyCRcannotbeimplementedasaroutine inthehumanlifestyle?Theanswerseemstobeascomplicatedastheworld welivein.However,justconsideringhumannature,itseemsthatkeeping permanentfooddisciplineintheobesogenicWesternworldisextremelydifficult.Moreover,studiesinmiceandnonhumanprimateshaverevealedthat theeffectofCRonlifespanextensionisnotuniversal(Ingram&deCabo, 2017).CRregimens,sex,age,andgeneticbackgroundcontributetothe

outcomesregardinghealthandsurvivalinmice,thushighlightingthecomplexitiesoftranslationofCRintohumans(Mitchelletal.,2016).Moreover, chronicCRhasbeenreportedtoexertadverseeffectsonanumberofmouse strains(includingshortenedlifespan)(Liaoetal.,2010).Furthermore,itis difficulttopredicthowCR,inwhichdailycaloricintakeistypically decreasedby15% 40%,mayaffectthephysicalandmentalconditionof oldpeople,whoarealreadymuchmorevulnerableintheseaspectsthan youngindividuals.

ThishasraisedinterestinalternativefeedingregimensthatmayrecapitulateatleastsomeofthebeneficialeffectsofCRbycontrollingfeedingfastingpatternswithoutadrasticreductionincaloricintake(DeCabo& Mattson,2019;Fantietal.,2021;Mattsonetal.,2014).Noveltherapeutic strategies,focusedprimarilyondietaryinterventions,havebeenproposed: time-restrictedeating,altereddiet,intermittentfasting(IF),andperiodic fasting/fasting-mimickingdiet(FMD)(Fantietal.,2021).Theyarefocused alsoonreducingobesity,butanelevatedBMIresultsinmanypathologies, whichshortenlifespan(Mattsonetal.,2014).Indeed,animalsundergoing differenttypesoffastingcanlivelongerthanthosethateateveryday adlibitum.Inmice,FMDrejuvenatestheimmunesystem,reducescancer incidence,promoteshippocampalneurogenesis,improvescognitiveperformance,andprolongshealthspan.Inhumans,FMDcausedbeneficialchanges inriskfactorsofARDs(Brandhorstetal.,2015).Bothinanimalsand humans,differentdietprotocolspromotehealthbenefits,includingresistance todiabetes,cancers,cardiovascular,andneurodegenerativediseases(Fanti etal.,2021).

Mechanistically,duringfasting ,similartoCR,theratioofAMPto ATPisincreasedandAMPKisactivated ,triggeringrepairandinhibition ofanabolicprocesses.AcetylcoenzymeA(CoA)andNAD 1 serveas cofactorsforepigeneticmodifierssuc hassirtuins.Sirtuinsdeacetylate FOXOsandPGC-1 α,whichresultsintheexpressionofgenesinvolvedin stressresistanceandmito chondrialbiogenesis( Mattsonetal.,2018 ). Sincesirtuin1deacetylatesseveral cytoplasmicproteins,suchasAMPdependentkinase,theresultingAMPKautophagy-relevantgeneproducts maybemajoractivatorsofautophagy.Thishasbeendocumentedby usinganaturalproduct,resveratrol,presentingrapesandredwine,which isadirectsirtuin1activator( Madeoetal.,2010 ).Severalothersmall molecules,whicharesirtuins’regul ators,arealreadyinclinicaltrials ( Daietal.,2018 ).

NutrientstarvationtriggersdownregulationoftheILSsignalingpathway andreductionofcirculatingaminoacids,whichrepresstheactivityof mTOR,resultingininhibitionofproteinsynthesisandalsostimulationof autophagy.mTORisanegativeregulatorofautophagy.Indeed,thereis accumulatingevidencethatbothfastingandCRhavearoleintheupregulationofautophagy(Bagherniyaetal.,2018).Autophagyisaprocesswhereby

Agingprinciplesandinterventionalperspectives Chapter|1 5

6 PlantBioactivesasNaturalPanaceaagainstAge-InducedDiseases

cellularmaterialisdegradedinalysosome-dependentmannerandrecycled. Autophagyisanevolutionarilyconservedphysiologicalprocesswithafundamentalroleduringdevelopment,differentiation,andsurvival,essentialfor homeostasisineukaryoticcells(Dudkowskaetal.,2021).Severaltypesof autophagycanbedistinguisheddependingonthemechanismsoftheuptake ofcytosolicmaterialbylysosomes(Yim&Mizushima,2020).Themostfrequentlyobservedtypeofautophagyismacroautophagy(hereinreferredtoas autophagy),whichischaracterizedbytheformationofautophagosomes, theirfusionwithlysosomes,andcargodegradation(Mizushima&Komatsu, 2011).Thusthespecificstagesofautophagyareinduction,formationofthe isolationmembrane(phagophore),formationandmaturationoftheautophagosome,and,finally,fusionwiththelysosometoformtheautolysosome (Nakamura&Yoshimori,2018).Moreover,theso-calledselectiveautophagy,whichmeansdegradationofspecificorganelles,suchasmitochondria (mitophagy),lysosomes(lysophagy),ormolecules(lipophagy,aggrephagy), canbedistinguished(Hansenetal.,2018).Autophagy,whichcanbe inhibitedatanystageleadingtotheaccumulationofundigesteddefective moleculesandorganelles,contributestoage-relateddisorders,suchasneurodegenerativediseases,heartdiseases,andcancer.Ontheotherhand,active autophagyisconsideredtocontributetoahealthylifespanandlongevity (Nakamura&Yoshimori,2018).Thusrestoring/activationofautophagy maybearationalstrategyforhealthspan(Rubinszteinetal.,2011).Indeed, itwasdocumentedthatsometissuesmaybenefitfromautophagyactivation inlongevitymodels,astissue-specificoverexpressionofsingleautophagy genesissufficienttoextendlifespan.Moreover,selectivetypesofautophagy maybecrucialforlongevitybyspecificallytargetingdysfunctionalcellular componentsandpreventingtheiraccumulation(Hansenetal.,2018). Themostspectacularnaturalcompound,polyaminespermidine,hasbeen recentlyshowntopromoteautophagyandlongevity.Externaladministration ofspermidineprolongsthelifespanofyeasts,flies,andwormsinan autophagy-dependentfashionandspermidine-mediatedtranscriptionof autophagy-relevantgenesmayaccountfortheobservedinductionofautophagy(Madeoetal.,2019).

BesidessomedoubtsconcerningCRdescribedabove,itseemsthattheso farcollecteddatastronglysupportbeneficialeffectsonthehealthspanofany kindofdietrestrictionandmanymechanismsinvolvedinthisprocesshave beenelucidated.However,toimplementanydietrestriction,peoplerequire strongmotivation,discipline,changingtheorganizationoflife,givingup habitsandfavoritefoods.Itcanalsonegativelyinfluencesociallifeandrelationshipwithothers.Thusmanynutraceuticalsandpharmacological approaches(besidesthosedescribedabove),thatmimictheeffectsofdiet restrictionwithouttheneedtosubstantiallyalterfeedingandsocialhabits, havebeenproposedandmorestudiesareinprogress.Theyarebriefly describedbelow.

1.3Antiagingmoleculesmimickingdietrestrictions

Variousorganiccompoundshavebeenshowntomodulateagingpathwaysin amannersimilartoCRandIFandare,therefore,referredtoasCRmimetics (Marteletal.,2021).Someofthem,namelyresveratrolandspermidine,have alreadybeenmentioned.Thebest-knownotherexamplesofcompoundsthat canbeclassifiedasCRmimeticsarerapamycin,metformin,andcurcumin.

Rapamycinisamacrolidecompoundinitiallyisolatedfrom Streptomyces bacteriaandusedtopreventorgantransplantrejectionduetoitsimmunosuppressiveeffects.RapamycininhibitsmTOR.Treatmentwithrapamycin extendslifespanandimproveshealthmarksininvertebratesandmice (Johnsonetal.,2013).Duetosomeserioussideeffectsofrapamycin,such asincreasedrisksofcataracts,infections,andinsulinresistance,thehopeis inderivativescalledrapalogs.First-generationrapalogs,suchaseverolimus andsirolimus,havebeenapprovedtopreventorganrejectionorforcancer treatment.Second-andthird-generationcompoundsarecurrentlybeing investigatedinpreclinicalandclinicalstudies(e.g.,NVP-BEZ235,OSI-027, andRapaLink-1)(Boutoujaetal.,2019).

Metformin,initiallyderivedfrombiguanidesisolatedfromFrenchlilac, isawidelyprescribedantidiabeticdrugthathasbeenfoundtoattenuatehallmarksofaging(Kulkarnietal.,2020).Moreover,itwasshowntoimprove insulinsensitivitythroughvariousmechanismsthatincludeinhibitionof complexIoftheelectrontransportchain,activationofAMPKandautophagy,inducedglucagon-likepeptide-1(GLP-1)secretion,andmodulationof thegutmicrobiota.Inrandomizedtrials,metforminnotonlypreventedthe onsetofdiabetesbutimprovedcardiovascularriskfactors(Knowleretal., 2002).Epidemiologicalstudieshavesuggestedthatmetforminusemight alsoreducetheincidenceofcancerandneurodegenerativediseases(Barzilai etal.,2016)andretrospectiveanalysisofpatientswithdiabeteswhoreceived metforminshowedincreasedlifespanincomparisontoindividualswithout diabetes(Bannisteretal.,2014).Dueinparttoitsrelativelysafeprofileand evidenceindicatingthatmetforminmayreducemortalityinhumans,this drugwillbethefirstCRmimetictobetestedtodelaysignsofagingand chronicdiseaseinhealthyhumansaspartoftheTargetingAgingwith Metformin(TAME)clinicaltrial(Kulkarnietal.,2020).

Curcuminisaphytochemicalbelongingtopolyphenols.Polyphenolsare afamilyofsecondarymetabolitespresentinleaves,bark,vegetables,fruits, herbs,andmanyhigherplants.Theyareinvolvedinthechemicalprotection ofplants,alsoplayanimportantroleinplantreproductionandgrowth,and arethemostcommonbioactivenaturalproducts(DelBoetal.,2019).As curcumincaninteractwithmanyreceptors(e.g.,EGFR,CXCR4),growth factors(e.g.,EGF,TGF),kinases(e.g.,MAPK,FAK),transcriptionfactors (e.g.,NF-KB,STAT1 5),enzymes(e.g.,DNApol,COX2),adhesionmolecules(e.g.,ICAM-1,VCAM-1),apoptoticregulators(e.g.,survivin,Bcl-2),

Agingprinciplesandinterventionalperspectives Chapter|1 7

8 PlantBioactivesasNaturalPanaceaagainstAge-InducedDiseases

proinflammatorycytokines(e.g.,interleukin(IL)-8,tumornecrosisfactor (TNF)),andotherproteins(e.g.,p53,cyclinB1),itcanevokeabroadcellularresponse.Furthermore,curcuminup-anddownregulatesdifferentRNAs andtakespartinepigeneticalterationsbyinhibitingDNAmethyltransferases andregulatinghistonemodificationsviaeffectsonhistoneacetyltransferases andhistonedeacetylases.Thuscurcuminaffectsdiversebiologicalprocesses, suchastheredoxstate,inflammation,proliferation,migration,apoptosis, woundhealing,and,therefore,improvesmemory,postponesaging(inmodel organisms),andARDssuchasatherosclerosis.Therearemanycomprehensivereviewsconcerningthebeneficialeffectsofcurcuminonhealthspanand someofthemcomefromourlaboratory(Bielak-Zmijewskaetal.,2019; Salviolietal.,2007;Sikoraetal.,2010).Duetoallthosepropertiesofcurcumin,ithasbeenusedinavastnumberofclinicaltrialsasadrugoradjuvantinthetreatmentofvariousdiseases(Salehietal.,2019).Recently, curcuminhasbeenclassifiedasaweaksenolytic(Yousefzadehetal.,2018). However,theseriousobstacleinclassifyingcurcuminasapanaceaforaging andARDsisitslowbioavailability,whichresearchersaretryingtoovercomebydesigningcurcuminnano-formulations(Mahjoob&Stochaj,2021). However,itisworthytonotethatnotonlycurcuminbutalsootherdietary restrictionmimetics(includingphytochemicals),anddietaryrestrictionby themselves,areconsideredashormetics.Hormeticagentsproducea biphasic,hormeticresponseonphysiologicalfunctions,inwhichbeneficial effectsareobservedatlowdoses,whereasdetrimentaleffectsareproduced athighdoses.Thusitcannotbeexcludedthatincreasedbioactivitymay relatetounpredictedharmfuleffects(Marteletal.,2019).

1.4Cellularsenescenceandsenotherapy

Agingismanifestedontheorganismallevel.MostARDsaffecttheentire system.However,thebasicbuildingandfunctionalblocksofmulticellular organismsarecells.Althoughdependingontheorgan,thecellshavevery specializedfunctions,theyalsohavethesamebasalpropensities,namely divisions,differentiation,programmedcelldeath,autophagy,andsenescence. Thesepropensitiesarechangingduringlifespan.Withage,whentheperiod ofgrowthisfinished,therearefewerproliferating,differentiating,anddying cells,butmoresenescentcellsandcellswithdysregulatedautophagy.By modulatingautophagyandcellsenescence,whicharetosomeextentinterconnected,itispossibletoprolonghealthspan.Recently,atotallynew approach,thatissenotherapy,hasbeenproposed(reviewedin(Sikoraetal., 2019)).Itreliesontheassumptionthattheburdenofsenescentcellsincreasingwithage,despitesomebeneficialproperties,isresponsibleforagingand ARDs(Farretal.,2017;Sikoraetal.,2011).Accordingly,selectivekillers ofsenescentcellswereidentified(Zhuetal.,2015).

Originally,cellularsenescencewasdescribedasaprocessofproliferation cessationcausedbyexhaustionofcelldivisionpotentialduetotelomereerosion(replicativesenescence).Later,itappearedthatoncogeneactivation (oncogene-inducedsenescence—OIS)andvariousformsofstress(stressinducedprematuresenescence—SIPS)canstopcelldivisionsandleadtothe manifestationofothercellularsenescencemarkers,suchasincreasedlevel ofcellcycleinhibitors,p16andp21,DNAdamage,chromatinrearrangements,decreasedleveloflaminB1,increasedgranularity,andenlargedcell size(Bielak-Zmijewskaetal.,2018;Gorgoulisetal.,2019).Moreover,the senescentphenotypehasrecentlybeenassignedtoproliferation-noncompetent,post-mitoticcells(Sikoraetal.,2021;VonZglinickietal.,2021). Senescentcellsarealive,metabolicallyactive,resistanttoapoptosis,but havedisturbedproteostasis(Sabathetal.,2020).Senescentcellssecretealot offactors,includingcytokines,growthfactors,andmetalloproteinases,which arecommonlydescribedasasenescence-associatedsecretoryphenotype (SASP)(Freundetal.,2010).SASPparticipatesingeneratingthestateof low-gradechronicinflammation,calledinflammaging,althoughoriginally inflammagingwasstrictlyconnectedwithimmunosenescence(Franceschi etal.,2000).

InflammagingislinkedtoARDsandGSssuchascancer,type2diabetes, cardiovasculardiseases,neurodegenerativediseases,andfrailty(Franceschi &Campisi,2014).Otherfactorsthatcontributetoinflammaginginclude obesityandchangesinthepermeabilityoftheintestinalbarrierassociated withthetranslocationofbacterialproducts(Fransenetal.,2017).

Interestingly,dietaryrestrictionreducesinflammatorybiomarkers (Fontana,2009).Onthebasisofthesefindings,inflammagingisnowconsideredtobeabiomarkerforacceleratedagingandoneofthehallmarksof agingbiology.Senescentcellsaccumulatewithageand,togetherwith inflammaging,areconsideredtobethemainculpritofagingandARDs(Di Miccoetal.,2021;Sikoraetal.,2014;Sikoraetal.,2019).Inaseminal paperbyBakeretal.(Bakeretal.,2011),ithasbeenshownthatbygenetic manipulationinamousemodelitispossibletoclearsenescentcells,thus postponingtheagingprocess.Duringthepastdecade,thenumberofpreclinicalstudiesusinggeneticandpharmacologicalapproacheshasincreaseddramatically.Thesestudiesprovedthattargetingsenescentcellsresultsin alleviationofmanyaging-relateddisorders,suchasosteoarthrosis,liverstenosis,kidneyandpulmonarydysfunction,heartstroke,cognitiveimpairment, Parkinson’sandAlzheimer’sdisease,physicalweakness,andmanyothers (Childsetal.,2017;Pignoloetal.,2020;Tchkoniaetal.,2021).Moreover, pharmacologicaltreatmentbysenolyticsappearedtobeeffectiveasanantiagingstrategyandpreliminaryevidencecomingfromclinicaltrialsshows thatsenolyticscanbeappliedalsoforhumantreatmentgivingthepromise ofhealthspan(Kirklandetal.,2017;Kirkland&Tchkonia,2020).Sofarthe mosteffectivesenolyticsapprovedforuseinhumansaredasatinib,whichis

Agingprinciplesandinterventionalperspectives Chapter|1 9

ananticancerdrug,appliedtogetherwithanaturalcompound,quercetin (Justiceetal.,2019).However,manyotherpotentialsenolyticsarecurrently testedinagrowingnumberoflaboratories.Furthermore,theemergenceof senomorphic(orhemostatic)compounds(Shortetal.,2019),whichtarget molecularpathwaysresponsibleforSASP,isobserved.Thus,collectively, senotherapeuticsareanewclassofdrugsandnaturalproductsthatconsistof senolyticsandsenomorphics(Lagoumtzi&Chondrogianni,2021). Moreover,thereisapossibilitytoreducetheburdenofsenescentcellsindirectlybyimprovingimmunecellfunction.Functionalimmunecells,includingNKcells,macrophages,andTcells,canremovesenescentcells. However,astheimmunesystemages,theabilitytoclearsenescentcells diminishes.Thereforeitisconceivabletousethesamemechanismsthatthe immunesystemdoestotargetotherthreats,toeliminatesenescentcells. Severalsuchapproacheshavebeenrecentlyimplementedandarebeing reviewed(Ovadya&Krizhanovsky,2018).Thusthemaingoalofsenotherapeuticsistoeliminateordelaytheadverseeffectsofcellularsenescence and,consequently,theprocessofagingandage-relatedpathologies (Lagoumtzi&Chondrogianni,2021).

1.4.1Senolytics

Senescentcellsareresistanttoapoptosis.Usingbioinformaticsapproaches basedontheRNAandproteinexpressionprofilesofsenescentcells,five senescent-cellantiapoptoticpathways(SCAPs)wereidentified:BCL-2/BCLXL,PI3K/AKT/ceramidemetabolicnetwork,MDM2/p53/p21/serpineelements,ephirins/dependencereceptors/tyrosinekinases,andhypoxia-inducible factor(HIF-1α)pathway.TherequirementofSCAPsforsenescentcellviabilitywasverifiedbyRNAinterferencestudies,inwhichkeyproteinsin thesepathwayswerereduced(Kirkland&Tchkonia,2017;Zhuetal.,2015). Knocking-downexpressionoftheseproteins(Achilles’heels)causedthe deathofsenescentbutnotofnonsenescentcells(Zhuetal.,2015).Sincethe discoveryofthefirstfiveSCAPs,anotheronewasidentified,namelythe HSP-90-dependentpathway(Fuhrmann-Stroissniggetal.,2017).This approachwassubsequentlyusedtoidentifyputativesenolytictargets (reviewedby(Kirklandetal.,2017)).Thefirsttwosenolytics,namelyquercetinanddasatinib,weredescribedin2015(Zhuetal.,2015).Tillthistime varioussenotherapystrategieshavebeendevelopedusingacombinationof invitromodelsofsenescenceandinvivoanimalmodels(DiMiccoetal., 2021).

Manynaturalagentsknownmainlyfromtheiranticanceractivityand influencingmanysignalingpathwaysarenowknownassenolytics. Quercetin’sactionincludesestrogenreceptorsignaling,mTOR,NF-K,PI3k/Akt, p53/p21/serpine,andHIF-1α pathways(Reyes-Farias&Carrasco-Pozo,2019). Fisetin,similarto quercetin,isanaturalflavonoidthatimpactsPI3K/AKT/mTOR,

10 PlantBioactivesasNaturalPanaceaagainstAge-InducedDiseases

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.