s e c ue n c ia 3 0 Procedimiento 2. Calculamos en centímetros cuadrados el área de la mesa cuadrada, esto es: cm x cm = cm 2 Como el vidrio para la mesa redonda costó la mitad, entonces el área de la mesa redonda es la mitad del área de la mesa cuadrada, es decir:
Respuestas. Procedimiento 1. El resultado no es correcto. Si el radio mide 0.5 m, su área es: π x 0.5 x 0.5 = 0.7854 m2. Pero el área debe ser la mitad del área de la mesa cuadrada, esto es 0.5m2. Procedimiento 2. El área de la mesa cuadrada es de 100 cm x 100 cm = 10 000 cm2. Entonces la mesa redonda tiene un área de 5 000 cm2. Este procedimiento es correcto porque el área de la mesa circular sí es la mitad del área de la mesa cuadrada. El área se calcula con la fórmula π × r2. Una buena aproximación para el número que buscamos es 40 cm: 3.1416 × 40 × 40 = 5 024. Los alumnos pueden continuar buscando con números decimales, una mejor aproximación es 39.9 cm o 39.89 cm. En metros el resultado es 0.4 m o 0.39 m.
Área de la mesa circular = Área mesa cuadrada= 2
cm 2
Como el área de un círculo se calcula con la fórmula: buscamos, con ayuda de la calculadora, un número que multiplicado por sí mismo y después por 3.14 nos dé el área de la mesa circular. Ese número es: • ¿Cuál es el área, en centímetros cuadrados, de una mesa circular cuyo radio tiene esta última medida? • Compara las áreas de ambas mesas. • ¿Consideras correcto este resultado? • ¿Por qué? Comparen y comenten sus respuestas con sus compañeros de grupo. ii. La siguiente figura es un disco compacto. Las áreas anaranjada y blanca se llaman coronas circulares.
1.9 cm
0.75 cm
5.95 cm
162
162
MAT1 B4 S30 maestro.indd 162
8/25/07 3:12:41 PM