In-ovo sexing
d
There are a number of technologies under development: • Spectroscopy: A beam of light is shone through the eggshell, or a tiny hole in the shell. The gender can be determined by the way the light scatters. • Biomarkers: This method requires sampling fluid from the egg (allantoic fluid). These tests usually only work from day 7 or 8. Genetic modification will probably be an option in the future. So, either a marker will be developed that already shows a result on day 1, or the hens would only produce female offspring. The real question is whether this will be ethically acceptable for the consumer.
pr ot
ec
te
Spectroscopy This non-invasive method has been ready for practical application since mid-2020, and has an accuracy of more than 95%. One machine can test more than 20,000 eggs an hour. No laboratory analysis is required, which makes this technique environmentally friendly (no chemicals required). Currently, the hyperspectral imaging technique only works with brown layer breeds, as of the 13th incubation day. This is actually a form of colour sexing inside the egg based on feather colour (also see page 175).
co
py
rig
ht
There is increasing resistance to the practice of culling male chicks in batches of day-old chicks for the laying sector. And it is financially advantageous to select out male embryos as early as possible. In addition to in-ovo vaccination, in-ovo sexing has also arrived. In-ovo sexing has made great progress in the last few years, and in some countries a ban on culling day-old male chicks is likely within the foreseeable future. The following information represents the situation in 2021. Various factors play a role in the choice of technology: • Invasive or non-invasive: making a tiny hole in the eggshell risks negatively affecting hatchability. So, the non-invasive option is preferable if reliability is comparable. • High reliability: the level of reliability must equal that of the current sexing method, used after hatching. • Timing of gender determination: the earlier, the better. Ideally, before being set in the incubator. • Speed of sexing: the volume of eggs handled at a hatchery is enormous, so a high capacity and throughput rate must be possible. This is important to prevent the eggs from cooling down too much. • Practical and robust technology: a method that works in laboratory conditions must be suitable for practical application at a hatchery.
The spectroscopic gender determination unit.
8. Tr a n sf e r
Spectroscopic gender determination. The egg is illuminated from below. The gender of the embryo is determined based on the calculated light spectrum. Eggs classified as having female embryos are then incubated normally.
123