Solution Manual for College Algebra with Intermediate Algebra A
Blended Course 1st Edition by Beecher Penna Johnson Bittinger
ISBN 0134555260
9780134555263
Full download link at:
Solution manual: https://testbankpack.com/p/solution-manual-for-college-algebra-with-intermediatealgebra-a-blended-course-1st-edition-by-beecher-penna-johnson-bittinger-isbn-0134555260-9780134555263/
Test bank: https://testbankpack.com/p/test-bank-for-college-algebra-with-intermediate-algebra-a-blendedcourse-1st-edition-by-beecher-penna-johnson-bittinger-isbn-0134555260-9780134555263/
Chapter 4
Polynomials and Polynomial Functions
Degrees of terms: 2, 5, 7, 0
Degreeofpolynomial: 7 Leadingterm: a4b3 Leadingcoefficient: 1
Degrees of terms: 6, 8,4,2, 0
Degreeofpolynomial:8 Leading term:5p4w4
Copyright Ⓧ c 2017 Pearson Education, Inc. 3 2 6 3 2 6
22. Q( 2) = 6( 2)3 11( 2) 4 = 30 Exercise Set 4.1 1 1 3 1 67 4 Q 3 = 6 3 11 3 4= 9 , or 7 9 RC2. (d) RC4. (b) RC6. (f) RC8. (e) Q(0) = 6 03 11 0 4 = 4 Q(10) = 6 103 11 10 4 = 5886 24. N(x)= 1 x3 + 1 x2 + 1 x 3 2 6 1 3 1 2 1 N(9) = 3 9 + 2 9 + 6 9 2. y3 5y2 + y +1 729 81 9 Terms: y3 , 5y2 , y, 1 = 3 + 2 + 6 Degrees of terms: 3,2,1,0 Degreeofpolynomial:3 Leading term: y3 Leading coefficient: 1 Constant term: 1 4. a2 +9b5 a4b3 11 = 1458 + 243 + 9 6 6 6 = 1710 =285 6 There are 285 golf balls in the first stack. N(8) = 1 83 + 1 82 + 1 8 512 64 8
a2
9b5
a4b3 , 11 = 3 + 2 + 6
Terms:
,
,
Constant
6. 2p6
5p4w4 13p3w +7p2 10 = 1024 + 192 + 8 6 6 6 = 1224 =204 6 There are 204 golf balls
stack. N(7) = 1 73 + 1 72 + 1 7 Terms: 2 6 4 4 3 2 = 343 + 49 + 7 p ,5p w , 13p w
7p , 10
term: 11
+
in thesecond
,
Constantterm: 10 8. 18y4 +11y3 +6y2 8y +5 10. xy3 x2y2 + x3y +6 12. dy6 +3cy5 2d7y2 7y 2d
Leadingcoefficient: 5
There are 140 golf balls in the third stack.
Copyright Ⓧ c 2017 Pearson Education, Inc. 3 2 6 3 2 6 3 2 6 = 686 + 147 + 7 6 6 6 = 840 =140 6
N(6) = 1 63 + 1 62 + 1 6 = 72+18+1=91
are
golf balls in the
stack. N(5) = 1 · 53 + 1 · 52 + 1 · 5 14. 2+8x 3x2 16. 9xy +5x2y2 +8x3y2 5x4 18. 12a +5xy8 +4ax3 3ax5 +5x5 , or 12a +5xy8 +4ax3 +5x5 3ax5 20. f(4) = 7 43 +10 42 13 = 301 f( 1) = 7( 1)3 +10( 1)2 13= 4 f(0)= 7 03 +10 02 13= 13 = 125 + 25 + 5 3 2 6 = 250 + 75 + 5 6 6 6 = 330 =55 6
fifth
There
91
fourth
There are 55 golf balls in the
stack.
26. a) I(22)= 00560(22)4 +79980(22)3 4361840(22)2 +11, 6278376(22) 90, 625011 ≈ $26, 119
b) I(40) ≈ $45, 000
28. C(x)=5000+0.4x2
a) C(50) = 5000+04(50)2 = $6000
b) C(95) = 5000+04(95)2 = $8610 30. P (x) = 280x 07x2 (8000+05x2) P (x) = 280x 1.2x2 8000, or 12x2 +280x 8000 32. M = 162 84 64+1 = 15
92.
94. The area of the base is x x, or x2 .
The area of each side is x · (x 2).
The total area of all four sides is 4x(x 2).
The area of the top is x x, or x2 .
Thesurfaceareaofthisboxcanbeexpressedasapolynomial.
Copyright Ⓧ c 2017 Pearson Education, Inc. t t 4 2 116 Chapter 4:
and
Functions
Polynomials
Polynomial
34.
36. 4
2 38. 4a b 40. 9x
13 42. 3
2y2 8x3 44. 11a2 +3ab 3b2 46. 4xy2 +11xy + x2y 48. 20 2 +4 +6 82. 84. 86. 1 1 = 1 3 2 6 1 1 2 = 6t 3 = t 88. 9y ≤ 18 y y y ≥ 2 50. 13x 3z +3y 52. 5x2 +4y2 11z2 54. 4a2 +5b 7ab +2 56. 20ab 18ac 3bc 58. 3x2 x 3 90. {y|y ≥ 2}, or [2, ∞) 5 27 60. 24 xy 20x3y2 +14y3 62. ( 8y4 18y3 +4y 9), 8y4 +18y3 4y +9
5
3 8
5
9
5
2
4
10y +4z 72. 5y2 +6y +3y3 74. 3y2 6yz 12z2 76. 17xy +5x2y2 7y3
044x4 +5612x3 004x2 56x
M = 162 82 68+1 = 13
y
+
x
64. (9ax
y
by
abx 16ay),
ax
y3 +8by5 + abx +16ay 66. 13y +3 68. 13y2 +
y +11 70.
x
78.
80. 29 5 8 24 y 4y 112y + 15
Copyright Ⓧ c 2017 Pearson Education, Inc. x2 + 4x (x 2) + x2 = x2 + 4x 2 8x + x2 = 6x 2 8x
A = P + Pi + 4
(a b)(a2 + ab + b2) = (a b)(a2)+(a b)(ab)+(a b)(b2) = a3 a2b + a2b ab2 + ab2 b3
Copyright Ⓧ c 2017 Pearson Education, Inc. 25 9 2 36 Exercise Set 4.2 117 96. (3x6a 5x5a +4x3a +8) 32. b2 2 b + 1 (2x6a +4x4a +3x3a +2x2a) 3 9 6a 5a 3a 34. 2 1 1 5 =(3x 5x +4x +8)+ 3a + 6b 3a 6b ( 2x6a 4x4a 3x3a 2x2a) 2 5 1 5 = (3 2) 6a 5 5a 4 4a +(4 3) 3a 2 2a +8 = 9a2 9ab + 18ab 36b2 x x x x x = x6a 5x5a 4x4a + x3a 2x2a +8 = 2 a2 1 ab 5 b2 Exercise Set 4.2 RC2. False;thesquareofabinomialisatrinomial. RC4. True 36. 12a2 +399.928ab 2.4b2 38. x2 +5x +6 40. y2 + y 6 42. 4x2 4 x + 1 3 9 2. 30x3y 44. 4s2 +12st +9t2 4. 28a3b4 3 1 6. 6a3b6c6 8. 4a3 12a2 10. 4x2y 6xy2 12. 2a4 5a5 14. 8a2 14ab +3b2 16. y2 16 18. a2 +4ab +4b2 20. 6x7 +10x4 21x3 35 46. x2 4x + 8 48. 6b2 11b 10 50. 100p4 +46p2y +5.29y2 52. 4a2 8ab +3b2 54. y8 14y4 +49 56. 9s4 +24s2t2 +16t4 58. x4y2 2x3y4 + x2y6 60. 36m2 +5.4mp2 +0.2025p4 22. 6m4 13m2n2 +5n4 24. (y +3)(y2 3y +9) 62. A = P 1+ i 2 2 i2 = (y +3)(y2)+(y +3)( 3y)+(y +3)(9) = y3 +3y2 3y2 9y +9y +27 A = P 1+ i + 4 P i2 = y3 +27 26.
=
28. x2 2
+ 1 x2 + x + 2 2x2 4x + 2 x3 2x2 + x x4 2x3 + x2 x4 x3 + x2 3x + 2 30. 2x2 + y2 2xy
64.
66. 1 4
2 68. 9
y2 70. 4
4
2
2 72. c2w2 256 74.
=
=
2 76. 9 a2b2 16c2 2 2 78. y4 16 x 2y xy 2x3y xy3 + 2x2y2
a3 b3
x
y2 9
x
x2 49
a
25a
b
( 10xy +5x2)(5x2 +10xy)
(5x2 10xy)(5x2 +10xy)
25x4 100x2y
Copyright Ⓧ c 2017 Pearson Education, Inc. 4xy3 4x2y2 2y4 2x3y + x2y2 + 2x4 4x3y + 3xy3 x2y2 2y4 + 2x4 80. 16x4 8x2y2 + y4 82. (m + n +2)(m + n 2) = (m + n)2 22 = m2 +2mn + n2 4
84. (3a 2b + c)(3a 2b c)
= (3a 2b)2 c2
= 9a2 12ab +4b2 c2
86. ( )=4 +2 2
90. f(x)= 4x 2x2
f(t 1) = 4(t 1) 2(t 1)2
= 4t 4 2(t2 2t +1)
= 4t 4 2t2 +4t 2
f x x x 2 = 2t2 +8t 6
f(t 1) = 4(t 1)+2(t 1)
= 4t 4+2(t2 2t +1)
= 4t 4+2t2 4t +2
= 2t2 2
f(p +1) = 4(p +1)+2(p +1)2
= 4p +4+2(p2 +2p +1)
= 4p +4+2p2 +4p +2
= 2p2 +8p +6
f(a + h) f(a)
= [4(a + h)+2(a + h)2] (4a +2a2)
= 4a +4h +2(a2 +2ah + h2) 4a 2a2
= 4a +4h +2a2 +4ah +2h2 4a 2a2
= 2h2 +4h +4ah 2
f(t 2)+ c = 4(t 2)+2(t 2) + c
= 4t 8+2(t2 4t +4)+ c
= 4t 8+2t2 8t +8+ c = 2t2 4t + c
f(a)+5 = 4a +2a2 +5
f(p +1)= 4(p +1) 2(p +1)2
= 4p +4 2(p2 +2p +1)
= 4p +4 2p2 4p 2
= 2p2 +2
f(a + h) f(a)
= [4(a + h) 2(a + h)2] [4a 2a2]
= 4a +4h 2(a2 +2ah + h2) 4a +2a2
= 4a +4h 2a2 4ah 2h2 4a +2a2
= 2h2 +4h 4ah
f(t 2)+ c = 4(t 2) 2(t 2)2 + c
= 4t 8 2(t2 4t +4)+ c
= 4t 8 2t2 +8t 8+ c
= 2t2 +12t 16+ c
f(a)+5 = 4a 2a2 +5 92. f(x)=2 4x 3x2
f(t 1) = 2 4(t 1) 3(t 1)2
2 4t +4 3(t2 2t +1)
f x x x = 3t2 +2t +3
f(t 1) = 3(t 1)2 4(t 1)+7
3(t2 2t +1) 4t +4+7
3t2 6t +3 4t +4+7
f(p +1)= 2 4(p +1) 3(p +1)2
= 2 4p 4 3(p2 +2p +1)
= 2 4p 4 3p2 6p 3 = 3p2 10p 5
f(p +1) = 3(p +1) 4(p +1)+7
3(p2 +2p +1) 4p 4+7
3p2 +6p +3 4p 4+7
3p2 +2p +6
f(a + h) f(a)
[3(a + h)2 4(a + h)+7] [3a2 4a +7] = 3(a2 +2ah + h2) 4a 4h +7 3a2 +4a 7 = 3a2 +6ah +3h2 4a 4h +7 3a2 +4a 7
= 3h2 +6ah 4h
f(t 2)+ c
f(a + h) f(a)
= [2 4(a + h) 3(a + h)2] [2 4a 3a2]
= 2 4a 4h 3(a2 +2ah + h2) 2+4a +3a2
= 2 4a 4h 3a2 6ah 3h2 2+4a +3a2
= 3h2 4h 6ah
f(t 2)+ c = 2 4(t 2) 3(t 2)2 + c
= 2 4t +8 3(t2 4t +4)+ c
= 2 4t +8 3t2 +12t 12+ c
= 3t2 +8t 2+ c 2
=3(t 2)2 4(t 2)+7+ c f(a)+5 = 2 4a 3a +5
Copyright Ⓧ c
Pearson Education, Inc. 118
2017
Chapter 4: Polynomials and Polynomial Functions
( )=3 2 4
7 = 2 4
4 3
2
6
3
=
88.
+
t +
t
+
t
=
=
= 3t2 10t +14 2
=
=
=
=
94. Let r =thespeedof theplanein stillair.
Solve: d = (r 20)5, d = (r +20)4
Wefindthat r =180mph.
Copyright Ⓧ c 2017 Pearson Education, Inc.
= 3a2 4
= 3(t2 4t +4) 4t +8+7+ c = 3t2 12t +12 4t +8+7+ c = 3t2 16t +27+ c f(a)+5 = 3a2 4a +7+5
a +12 = 3a2 4a +7
Multiply (1) by 5 and add.
5x 20y = 65
5x 7y = 16 27y = 81
Substitute3for y in(1)andsolvefor x
100. One method is as follows. For each equation, let y1 represent the left-hand side and y2 represent the right-hand side,andlet y3 = y2 y1.Thenuseagraphingcalculatorto viewthegraphof y3 and/oratableofvaluesfor y3.If y3 = 0, the equation is correct. If y3 = 0, the equation is not correct.
Not correct
Exercise Set 4.3
RC2. In the expression x(x 2), x and x 2 are factors RC4. A polynomial that cannot be factored is said to be prime.
RC6. When we factor by grouping, we look for a common binomial factor.
Copyright Ⓧ c 2017 Pearson Education, Inc. x y x / Exercise Set 4.3 119
96. x +4y = 13, (1) 5x 7y = 16 (2)
y = 3
x
x
x
98.
104. (y 1)6(y +1)6 = [(y 1)(y +1)]6 = (y2 1)6 = [(y2 1)2]3 = (y4 2y2 +1)3 = [(y4 2y2)+1]2(y4 2y2 +1) = (y8 4y6 +4y4 +2y4 4y2 +1)(y4 2y2 +1) = (y8 4y6 +6y4 4y2 +1)(y4 2y2 +1) = y12 4y10 +6y8 4y6 + y4 2y10 +8y8 12y6 +8y4 2y2 + y8 4y6 +6y4 4y2 +1) = y12 6y10 +15y8 20y6 +15y4 6y2 +1 106. (4x2 +2xy + y2)(4x2 2xy + y2) = [(4x2 + y2) +2xy][(4x2 + y2) 2xy] = (4x2 + y2)2 (2xy)2 = 16x4 +8x2y2 + y4 4x2y2 = 16x4 +4x2y2 + y4 3x +2y = 3 (2) Multiply (2) by 4 and add. 9x 8y = 2 108. 1 1 1 x 7 x2 + 7 x + 49 = x3 + 1 x2 + 1 x 1 x2 1 x 1 12x + 8y = 12 21x = 10 10 x = 7 49 = 3 1 343 7 49 2 2 343 21 Substitute 10 for x in(2)andsolvefor y 21 3 10 +2 = 3 21 10 +2y = 3 7 2y = 11 7 11 y = 14 10 11 110. (xa b)a+b = x(a b)(a+b) = xa b
+4 · 3 = 13
+12= 13
= 1 The solution is (1, 3).
9x 8y = 2, (1)
21, 14 2. 2 (2 +1)
The solution is
102. y3zn(y3nz3 4yz2n) = y3zn(y3nz3) y3zn(4yz2n) = y3+3nzn+3 4y4z3n 4. y2(y +8) 6. 3x2(2+ x2) 8. 5x2y2(y +3x) 10. 5(x2 x +3) 12. 2x(4y +5z 7w) 14. 4(3t5 5t4 +2t2 4) 16. 7a3b5c2(3c5 2a4b) 18. 3x2y4z2(3xy2 4x2z2 + 5yz) 20. 3(t 6) 22. 8(t 5) 24. 2(x2 8x +10) x
a)
b) Correct c) Correct d) Not correct
Copyright Ⓧ c 2017 Pearson Education, Inc. 26. 7(x2 +8y) 28. (m3 + m2 m +2)
(y + z)+ w(y + z) = (y + z)(x + w)
46. y3 y2 +3y 3 = y2(y 1)+3(y 1)
All real numbers, or (−∞ , ∞)
64. a3b7 = (ab4 c2)
Firstfindtheterminthesecondblank. Thisistheexpression that is multiplied with ab4 to obtain a3b7 , or a2b3 .
Then the termin the firstblank isthe productof a2b3 and c2 , or a2b3c2
We have a3b7 a
66. 3a2 +6a +30+
b
(ab4 c2).
Exercise Set 4.4
RC2. To factor x2 11x 12, we look for a factorizationof 12 in which the negative factor has the greater absolute value (because the coefficient of the middle term is negative). The answer is (d).
RC4. To factor x2 12x +20, we look for a factorizationof 20 in which both factors are negative (because the coefficientofthemiddletermisnegative).Theanswer is (b).
Copyright Ⓧ c 2017 Pearson Education, Inc. 1 . 120 Chapter 4: Polynomials and Polynomial Functions 30. 4(m4 +8m3 16m +3) 13 1 13 1 1 1 1 1 1 y.y < or y > 3 3 ,or ∞ , 3 ∪ 3 , ∞ 32. 6x3 + 2x2 + 3x = x 6x2 + 2 x + 3 , or 60. 2 < 3x +1 < 0 1 x(x2 +3x +2) 6 3 < 3x < 1 1 > x > 1 34. P (n)= n 1 3 1 n , or n(n 3) 3 2 2 2 . < x < 1 3 ,or 1 , 1 3 36. C(x)= 06x(03+ x) 38. a(x2 3) 2(x2 3) = (x2 3)(a 2) 40. (m 4)(m +3)+(m 4)(m 3) 62. m +3 ≤ 2 or m +5 > 5m 1 m ≤ 1 or 6 > 4m 3 m ≥ 1 or 2 > m = (m 4)[(m +3)+(m 3)] = 2m(m 4) 42. b5 3b4 + b 3 = b4(b 3)+(b 3) = (b 3)(b4 +1) 44. xy + xz + wy + wz = x
3
2
2
3
2b
c
= a
=
2
7
2
=
2
6t2 2t 12 68. x1/2 +5x3/2 = x1/2 (1+5x) = t2(t +6) 2(t +6) = (t +6)(t2 2) 50. 10a3 +50a 15a2 75 = 5(2a3 +10a 3a2 15) = 5[2a(a2 +5) 3(a2 +5)] = 5(a2 +5)(2a 3) 52. p2(p4 + p3 p +1) 54. 2xy + x2y 6 3x = xy(2+ x) 3(2+ x) = (2+ x)(xy 3) 56. |2a 3| = |3a +5| 2a 3 = 3a +5 or 2a 3 = (3a +5) 8= a or 2a 3 = 3a 5 8= a or 5a = 2 2 8= a or a = 5 70. x3/4 + x1/2 x1/4 = x1/4(x1/2 + x1/4 1) 72. 2x3a +8xa +4x2a = 2xa(x2a +4+2xa) 74. 4xa+b +7xa b = 4 xa xb +7 xa x b = xa(4xb +7x b)
7a2b +14ab +70b
3(a
+2a +10)+
b(a
+2a +10)
(a
+2a +10)(3+7b) = (y 1)(y2 +3) 48. t3 +
The solution setis 58. |3y 7| +2 > 8 |3y 7| > 6 . 1 x
Copyright Ⓧ c 2017 Pearson Education, Inc. 2 8, 5 2. x2 + 9x +18= (x +3)(x +6) 4. y2 10y +21 = (y 3)(y 7) 6. t2 15 2t = t2 2t 15 = (t 5)(t +3) 3y 7 > 6 or 3y 7 < 6 3y > 13 or 3y < 1 8. 2a2 20a +50 = 2(a2 10a +25) = 2(a 5)(a 5) 13 1 y > 3 or y < 3 10. m2 + m 72 = (m +9)(m 8)
12. 10y + y2 +24= y2 +10y +24=(y +4)(y +6)
14. 2 2 1 1 1
p + 5p + 25 = p + 5 p + 5
16. y2 14y +45 = (y 5)(y 9)
18. x + x2 90 = x2 + x 90 =(x +10)(x 9)
20. y2 +8y +7=(y +7)(y +1)
22. 32+4y y2 = y2 +4y +32 =
1(y2 4y 32)= 1(y 8)(y +4), or ( y +8)(y +4), or (y 8)( y 4)
24. 56x + x2 x3 = x3 + x2 +56x = x(x2 x 56) = x(x 8)(x +7), or x( x +8)(x +7), or x(x 8)( x 7)
26. y4 +5y2 84= (y2 +12)(y2 7)
28. x2 +12x +13 is not factorable into binomials with integer coefficients.
30. p2 5pq 24q2 = (p 8q)(p +3q)
32. 3x2 21x 90=3(x2 7x 30)=3(x 10)(x +3) 34. 24 a2 10a =
56. x2 + qx 32
Allsuch q arethesumsof thefactors of 32.
x3 +6)
40. x8 7x4 +10 = (x4 2)(x4 5) 42. a2 +14a +049=(a +07)(a +07)
44. 8 7t15 t30 = t30 7t15 +8 = 1(t30 +7t15 8) = 1(t15 +8)(t15 1), or ( t15 8)(t15 1), or (t15 +8)( t15 +1)
46. Let x and y representthenumberofweekdaysandweekend days Takako worked, respectively.
Solve: x + y =17
50x +60y = 940
The solution is (8, 9), so Takako worked 8 weekdays.
48. The graph isnot that of a function, because a vertical line can cross the graph at more than one point.
50. The graph is that of a function, because no vertical line
can cross the graph at more than one point.
q canbe31, 31,14, 14,4,or 4.
58. Left to the student
Chapter 4 Mid-Chapter Review
1. True; 5x +2x2 4x3 = x(5+2x 4x2).
2. The statement is false because one of the variables has a negative exponent. See page 218 in the text.
3. True; see page 219 in the text.
4. False; (
Degreeofeachterm: 7,4,1( a = a1),0(8=8a0)
Degree of the polynomial: 7
Leading term: a7
Leading coefficient: 1 ( a7 = 1 a7)
Constant term:8
7. 3x4 +2x3w5 12x2w +4x2 1
Terms: 3x4 , 2x3w5 , 12x2w, 4x2 , 1
Degree ofeach term: 4, 8(3+5=8),3(2+1=3), 2, 0
Degree of the polynomial: 8
Leadingterm:2x3w5
Leadingcoefficient: 2 Constant term: 1
Copyright Ⓧ c
Education, Inc. 8 Chapter 4 Mid-Chapter Review 121
2017 Pearson
2
1(a2 +10a 24) =
a
10a +24 =
1(a +12)(a 2), or
Terms: a7 , a4 , a,
(
2
x2 + x)= x2 x 5. True; 144 x2 = 122 x2 . 6. a7 + a4 a +8
8 x x2
a 12)(a 2), or (a +12)( a +2) 36. p4 +80p
+79=(p2 +79)(p2 +1) 38. x6 x3 42=(x3 7)(
8. 2y +5 y3 + y9 2y4 =5 2y y3 2y4 + y9 9. 2qx 9qr +2x5 4qx2 = 2x5 4qx2 +2qx 9qr 10. h(x)= x3 4x +5 h(0)= 03 4 0+5=5 h( 2)= ( 2)3 4( 2)+5=
8) 4( 2)+5= 8+8+5 = 21
1 1 3 1 1 7 23 Pair of Factors Sum of Factors 32, 1 32, 1 16, 2 16, 2 8, 4 8, 4 31 31 14 14 4 4
(
Copyright Ⓧ c 2017 Pearson Education, Inc. 52. Allrealnumbers 54. Allrealnumbers h 2 = 2 4 2 +5 = 8 2+5 = 2 , or 8
and 3.
2 4b +21
1(b2 +4b 21) = 1(b +7)(b 3) = ( b 7)(b 3) Multiplying b 7 by 1 =(b +7)( b +3) Multiplying b +3 by 1
26. (9x 4)(9x +4)= (9x)
27. 5h2 +7h = h 5h + h 7= h(5h +7)
16
Copyright Ⓧ c 2017 Pearson Education, Inc. 2 f 4 3 2 122 Chapter 4: Polynomials and Polynomial Functions 11. f(x)= 1 x4 x3 1 1 1 28. x2 +8x 20 Welook for two numbers whose product is 20 and whose f( 1) = 2( 1)4 ( 1)3 = 2 1 ( 1) = 2 +1 = sumis8. Thenumbersweneedare10and 2. 1 1 , or 3 2 2 x2 +8x 20=(x +10)(x 2) 29. 21 4b b2 = b2 4b +21= 1(b2 +4b 21) 1 1 1 1 (1) = (1) 1 = 1 1= 1= Now we factor b2 +4b 21. We look for two numbers whose 2 2 2 2 productis 21andwhosesumis4. Thenumbersweneed f(0) = 1 · 04 03 =0 0=0 12. f(x)= x2 +2x 9 f(a 2) = (a 2)2 +2(a 2) 9 = a2 4a +4+2a 4 9 = a2 2a 9 f(a+h) f(a)=(a + h)2 +2(a + h) 9 (a2 +2a 9) = a2+2ah + h2+2a +2h 9 a2 2a +9 are7
= 2ah + h2 +2h 2 1 1 1 2 1 2 13. (3a2 7b + ab +2)+( 5a2 +4b 5ab 3) 30. m2 + 7m + 49 = m2 +2 m 7 + 7 = m + 7 = (3a2 5a2)+( 7b +4b)+(ab 5ab)+(2 3) = 2a2 3b 4ab 1 14. (x2 +10x 4)+(9x2 2x +1)+(x2 x 5) = (x2 +9x2 + x2)+(10x 2x x)+( 4+1 5) = 11x2 +7x 8 15. (b 12)(b +1)= b2 + b 12b 12= b2 11b 12 16. c2(3c2 c3)= c2 3c2 c2 c3 = 3c4 c5 17. (y4 6)(y4 +3)= y8 +3y4 6y4 18= y8 3y4 18 18. (7y2 2y3 5y) (y2 3y 6y3) = 7y2 2y3 5y y2 +3y +6y3 = 4y3 +6y2 2y 19. (8x 11) ( x +1) = 8x 11+ x 1 = 9x 12 20. (4x 5)2 = (4x)2 2 4x 5+52 = 16x2 40x +25 21. (2x +5)2 =(2x)2 +2 2x 5+52 = 4x2 +20x +25 22. (0.01x 0.5y) (2.5y 0.1x) = 0.01x 0.5y 2.5y +0.1x = 0.11x 3y 23. 13x2 · 10xy = 130x3y 24. x2 2xy + 3y2 x + y x2y 2xy2 +3y3 x3 2x2y +3xy2 x3 x2y + xy2 + 3y3 25. (5x 7)(2x+9) = 10x2 +45x 14x 63= 10x2 +31x 63
b
=
Wecouldalsoexpressthelastformoftheansweras (7+ b)(3 b).
2 42 =
2
81x
Thereisnopairoffactorsof6whosesumis8. This trinomial is not factorable into binomials.
36. Oneexplanationisasfollows.Theexpression (a b) is the opposite of a b. Since (a b)+(b a) = 0, then (a b)= b a
37. No;ifthecoefficientsofat least one pair of like terms are opposites, then the sum is a monomial.For example, (2x +3)+( 2x +1) =4, a monomial.
38. No;considerthepolynomial3x11 +5x7.Allofthecoefficientsandexponentsareprimenumbers,yetthepolynomial can be factored so it is not prime.
39. When coefficients and/or exponents are large, a polynomial is more easily evaluated after it has been factored.
40. a) The middle term, 2 a 3, ismissing from the right-hand side.
(a +3)2 = a2 +6a +9
b) The middle term, 2ab, is missing from the right-hand side and the sign preceding b2 is incorrect.
(a b)(a b)= a2 2ab + b2
c) The product of the outside terms and the product oftheinsidetermsaremissingfromtheright-hand side.
(x +3)(x 4)= x2 x 12
Copyright Ⓧ c 2017 Pearson Education, Inc. · 31. 2xy x2y 5x +10 = xy(2 x)+5( x +2) = xy(2 x)+5(2 x) = (2 x)(xy +5) 32. 3w2 6w +3=3(w2 2w +1)=3(w 1)2 33. t3 +3t2 + t +3 = t2(t +3)+(t +3) = (t +3)(t2 + 1) 34. 24xy6z4 16x4y3z = 8xy3z 3y3z3 8xy3z 2x3 = 8xy3z(3y3z3 2x3) 35. x2 +8x +
6
d) Thereshouldbeaminussignbetweenthetermsof the product.
p +7)(p 7) = p2 49
e) The middle term, 2 t 3,ismissingfromtherighthand side and the sign preceding 9 is incorrect.
41. Answermayvary.Forthepolynomial4a3 12a,anincor-rect factorization is 4a(a 3). Evaluating both the poly- nomial andthefactorizationfor a =0,weget0ineachcase.Thus, the evaluation does not catch the mistake.
Exercise Set 4.5
RC2. The product of the last terms mustbe1.
RC4. Bothlasttermsmustbenegative(becausethecoefficient of the middle term is negative).
RC6. Findtwointegerswhoseproductis20andwhosesum is 21. The integers are 20 and 1.
RC8. Factor by grouping.
2. 8x2 6x 9=(4x +3)(2x 3)
16(3)2 +96(3)+880=1024 ft
h(8)= 16(8)2 +96(8)+880=624ft
h(10)= 16(10)2 +96(10)+880=240 ft
b) h(t)= 16t2 +96t +880
y
Multiply(1)by2andadditto(2).
4x + 2y + 4z = 10
4 2 3 = 5 = 5(3a 1)(2a 5)
16. 18y2 +51y +15 = 3(6y2 +17y +5) =3(3y +1)(2y +5)
18. 15x3 19x2 10x = x(5x +2)(3x 5)
20. 70x4 68x3 +16x2 = 2x2(5x 2)(7x 4)
22. 6a2 7a 10 = (6a +5)(a 2)
24. 6y2 y 2 = (3y 2)(2y +1)
x y z
8x + z = 15 (4)
Add (1) and (3).
2x + y + 2z = 5
8x y + z = 5
6x + 3z = 0 (5)
Multiply (4) by 3 and add it to (5).
24x 3z = 45
6x + 3z = 0
26. 8 6a 9a2 = 9a2 6a +8 = 1(9a2 +6a 8) = 1(3a 2)(3a +4), or 30x = 45 3 ( 3a +2)(3a +4), or (3a 2)( 3a 4)
28. 12a2 +7a 1= 1(4a 1)(3a 1), or
x = 2
Substitute 3 for x in(4) andsolvefor z 2
Copyright Ⓧ c 2017 Pearson Education, Inc. · · x z , Exercise Set 4.5 123
(
34. 36a3 +21a2 3a = 3a(12a2 7a +1) = 3a(4a 1)(3a 1) 36. 15 +10 +47 = 15 +47 +10 y3 y y2 y3 y2 y
(t
3)2 = t2 6t +9
4. 6 3 2 2 = y(15y2 47y 10) = y(5y +1)(3y 10) 38. 10y2 +23y +12=(5y +4)(2y +3) 40. 24y4 +2y2 15 = (6y2 +5)(4y2 3) 42. 20p2 23pq +6q2 =(4p 3q)(5p 2q) 44. 8m2 6mn 9n2 = (4m +3n)(2m 3n) 46. 30p2 +21pq 36q2 =3(10p2 +7pq 12q2)= 3(2p +3q)(5p 4q) 48. 4p2 +12pq +9q2 =(2p +3q)(2p +3q) 50. 2p8 +11p4 +15=(2p4 +5)(p4 +3) 52. a) h(0)= 16(0)2 +96(0)+880=880ft h(1)= 16(1)2 +96(1)+880= 960 ft h(3)=
x + x 12x = x(6x + x 12) =
= x(3x 4)(2x +3)
12b2 8b +1=(2b 1)(6b 1) 54.
9
2
18a +8=
2)(3
8
30x2 6 = 2(5x +3)(3
18x2 24 6x =6(3x 4)(x +1) 14. 30a2 85a +25 = 5(6a2 17a
5)
16(t2 6t 55)
6.
2 + = 16(t 11)(t +5) + 2 = 5 (1) 8.
a
+
(3a +
a +4) 10.
x +
x 1) 12.
+
4x 2y 3z = 5, (2) 8x y + z = 5 (3)
Copyright Ⓧ c 2017 Pearson Education, Inc. 2 ( 4a +1)(3a 1), or (4a 1)( 3a +1) 30. 18y3 3y2 10y = y(6y 5)(3y +2) 32. 15y2 10 15y =5(3y2 2 3y) 8 3 + z = 15 12+ z = 15 z = 3
Substitute 2 for x and 4 for y in (2) and solve for z 2
+12+ z = 17 z +16=17 z = 1
The solution is (2, 4, 1).
58. Write each equation in slope-intercept form. 7 y = 7x 3
= 7x 9
Since the lines have the same slope and different yintercepts, they are parallel.
60. Write each equation in slope-intercept form:
Sincetheproductoftheslopesis 1,thelinesareperpendicular.
Copyright Ⓧ c 2017 Pearson Education, Inc. 124
3 for x and3for z
(1)andsolvefor y 62. m = 4 ( 3) = 1 3 2 5 2 3 2 · 2 + y +2 · 3 = 5 3+ y +6 = 5 y +9 = 5 y = 4 Substitutetofind b y = mx + b 1 3= 3 · 2+ b 2 3= + b 3 3 The solution is 2, 4, 3 7 3 = b 56. x 3y + 2z = 8, (1) The equation is y = 1 x 7 2x + 3y + z = 17, (2) 5x 2y + 3z = 5 (3) 3 3 4 1 5
64. m = 4 3 2 = 2 3 x 3y + 2z = 8 4x 6
2z = 34 Substitutetofind b y = mx + b 3x 9
=
1 = 5 2
6
=
x
Chapter 4: Polynomials and Polynomial Functions Substitute
in
Multiply (2) by 2 and add it to (1).
y
y
42 (4)
Multiply (2) by 3 and add it to (3).
x 9y 3z = 51 5x 2y + 3z
5
11y = 46 (5)
24y = 96 2 3 + b 5 1 = 3 + b 2 3 = b 5 2 The equation is y = 2 x 3. 66.
student 68. 2x4y6 3x2y3 20 =(2x2y3 +5)(x2y3 4) y = 4 70. 1 2 2 4 1 2 1 2 Substitute4
y in(5)
x 4p 5p + 25 = 2p 5 2p 5 x 11 4 = 46 x 44 = 46 x = 2 x
2
Multiply (5) by 3 and add it to (4). 3x 9y = 42 3x +33y = 138
Left to the
for
andsolvefor
=
4
2+3 4+ z = 17
y
y = x +7 y = x +3
Exercise Set 4.6
Copyright Ⓧ c 2017 Pearson Education, Inc. · 72. 4x2a 4xa 3 = (2xa 3)(2xa +1)
2
36x4 1 = (6x2)2 12
this
difference
2. y2 16y +64= (y 8)2 4. x2 +8x +16=(x +4)2 6. x2 +1 2x = x2 2x +1=
x 1)2 8. 25x2 60x +36 =(5x 6)2 10. 24a2 + a3 +144a = a3 +24a2 +144a = a(a2 + 24a + 144) = a(a +12)2 12. 20y2 +100y +125 =5(4y2 +20y +25) =5(2y +5)2 14. 32x2 +48x +18=2(16x2 +24x +9)=2(4x +3)2 16. 64+25y2 80y = (8 5y)2 , or (5y 8)2
RC2. x2 20x +100= x2 2 x 10+10
; this is a trinomialsquare. RC4. None of these RC6. None of these RC8.
;
is a
of squares.
(
x2 25) = x(3x +5)(3x 5)
46. 2a9 32a =2a(a8 16)=2a(a4 +4)(a4 4)=
a(a4 +4)(a2 +2)(a2 2) 48. 16x6 121x2y4 = x2(16x4 121y4)=
2(4x2 +11y2)(4x2 11y2)
50. 1 2 = 1 + 1 100 10 10
ab3 +125a = a(b3 +125) = a(b +5)(b2 5b +25)
92. 2y3z4 54z7 = 2z4(y3 27z3) = 2z4(y 3z)(y2 +3yz +9z2)
94. 125c6 8d6 = (5c2 2d2)(25c4 +10c2d2 +4d4)
96. t6 +1= (t2 +1)(t4 t2 +1)
98. p6 q6 = (p3 + q3)(
Copyright Ⓧ c 2017 Pearson Education, Inc. y x y x y x y b3 b y y y Exercise Set 4.6 125 30. 9x10 +12x5 +4=(3x5 +2)2 32. a6 2a3b4 + b8 = (a3 b4)2 82. + 1 = + 1 27 3 1 1 b2 3 b + 9 34. m2 64 =(m +8)(m 8) 36. 4 18 2+81=( 2 9)2 =[( +3)( 3)]2 =( +3)2( 3)2 84. y3 +0125 = (y +05)(y2 05y +025) 86. 3z3 3 = 3(z3 1) = 3(z 1)(z2 + z +1) y y y 38. 2 2 81=( +9)( y y 9) y y 88. 54x3 +2 = 2(27x3 +1) = 2(3x +1)(9x2 3x +1) a b ab ab 40. 8x2 8 2 =8( 2 2)=8( + )( ) 42. 25ab4 25az4 = 25a(b4 z4)= 25a(b2 + z2)(b2 z2)= 25a(b2 + z2)(b + z)(b z) 44. 9x3 25x = x(9
2
x
90.
p3 q3) = (p + q)(p2 pq + q2)(p q)(p2 + pq + q2) 100. a9 +64b9 = (a3 +4b3)(a6 4a3b3 +16b6) 102. 27 x3 y3 = 3 x y 9 x2 + 3 xy + y2 52. 001x2 004y2 = (01x +02y)(01x 02y) 125 5 25 5 54. x3 +8x2 x 8 = x2(x +8) (x +8) = (x +8)(x2 1) = (x +8)(x +1)(x 1) 56. p2q 25q +3p2 75 = q(p2 25)+3(p2 25) = (p2 25)(q +3) = (p +5)(p 5)(q +3) 58. (p 7)2 144 = (p 7+12)(p 7 12) = (p +5)(p 19) 104. 0125r3 0216s3 = (05r 06s)(025r2 +03rs + 036s2) 106. y =3x 8, (1) 4x 6y = 100 (2) Substitute 3x 8 for y in (2) and solve for x 4x 6(3x 8) = 100 4x 18x +48 = 100 14x =52 26 x = 7 60. 100 (x 4)2 = [10+(x 4)][10 (x 4)] = (6+ x)(10 x +4) Substitute 26 7 for x in(1)andcalculate y = (6+ x)(14 x) y =3 26 7 78 8= 7 8= 134 7 62. x2 2xy + y2 25=(x y)2 25=(x y +5)(x y 5) 64. c2 +4cd +4d2 9p2 =(c +2d)2 9p2 = The solution is 26 7 , 134 7 . (c +2d +3p)(c +2d 3p) 18. 5c3 +20c2 +20c =5c(c2 +4c +4)=5c(c +2)2 70. a3 +8=(a +2)(a2 2a +4) 20. 0.04x2 0.28x +0.49=(0.2x 0.7)2 72. c3 64=(c 4)(c2 +4c +16) 22. m2 +2mn + n2 =(m + n)2 74. 64 125x3 =(4 5x)(16+20x +25x2) 24. 49x2 14xy + y2 =(7x y)2 76. 27x3 +1 = (3x +1)(9x2 3x +1) 26. 49p2 84pw +36w2 = (7p 6w)2 78. 27y3 +64 = (3y +4)(9y2 12y +16) 28. p6 10p3 +25=(p3 5)2 80. x3 y3 = (x y)(x2 + xy + y2)
Copyright Ⓧ c 2017 Pearson Education, Inc. 66. 12x2 +12x +3 3y2 = 3[(4x2 +4x +1) y2] = 3[(2x +1)2 y2] = 3(2x +1+ y)(2x +1 y) 68. 16 (x2 2xy + y2) = 16 (x y)2 = [4+(x y)][4 (x y)] = (4+ x y)(4 x + y) 108. 7x 2y = 11, 2y 7x = 18 Add the equations. 7x 2y = 11 7x +2y = 18 0 = 29
get a false equation. There is no solution.
We
Substitute 2 for m, 1 for x, and 7 for y in y = mx + b
Line perpendicular to x 4y =10:
The slope is 4. Substitute to find b.
y = mx + b
0 = 4 · 6+ b 24 = b
Theequation is y = 4x +24.
118. If P (x)= x4 , then P (a + h) P (a) = (a + h)4 a4 = [(a + h)2 + a2][(a + h)2 a2] = [(a + h)2 + a2][(a + h)+ a][(a + h) a] = (a2 +2ah + h2 + a2)(2a + h)(h)
= h(2a + h)(2a2 +2ah + h2)
120. The model shows a cube with volume a3 from which a portionwhosevolumeis b3 hasbeenremoved. Thisleaves a remaining volume which can be expressed as a2(a b)+ ab(a b
(a b), or (a b)(a2 +ab+b2). Thus, a3 b3 =
Copyright Ⓧ c 2017 Pearson Education, Inc. 3 2 2 4 1 126 Chapter 4: Polynomials and Polynomial Functions 110. 112.
2
3
= 6 2 y = 3x 2
6:
114.
x
y
Line parallel to 2x 3y =
andsolvefor b
2
(
122. 9x2n 6xn +1 = (3xn)2 6xn +1 = (3xn 1)2 124. a3x3 b3y3 = (ax by)(a2x2 + axby + b2y2) 2 126. 8 3 1 3 2 1 4 2 1 2 7= 3 · 1+ b 27 x + 64y = 3x + 4y 9x 6 xy + 16y 23 = b 128. 7 3 7 3 1 1 2 + 1 + 1 3 x 8 =7 x 8 =7 x 2 x 2 x 4 The equation is y = 2 x 23 130. (1 x)3 +(x 1)6 3 3 =[ (x 1)]3 +(x 1)6 Line perpendicular to 2x 3y =6: The slope is 3 Substitute to find b y = mx + b 3 7= 2 1+ b 11 2 = b = (x 1)3[ 1+(x 1)3] = (x 1)3[(x 1) 1][(x 1)2 +(x 1)+1] = (x 1)3(x 2)(x2 2x +1+ x 1+1) = (x 1)3(x 2)(x2 x +1) 132. y4 8y3 y +8 = y3(y 8) (y 8) The equation is y = 3 x 116. x 4y = 10 11 2 = (y 8)(y3 1) = (y 8)(y 1)(y2 + y +1) 1 5 y = 4x + 2 Line parallel to x 4y =10: Substitute 1 for m, 6 for x, and 0 for y in y = mx + b and solve for b. 4 0 = 1 · 6+ b 3 2 = b The equation is y = 1 x 3 . (4, 1) (4, 1)
)+b
a b)(a2 + ab + b2).
Exercise Set 4.7
RC2. If there are two terms, determine whether the binomialisadifferenceofsquares,asumofcubes, oradifferenceof cubes.
RC4. Iftherearefourterms,tryfactoringbygrouping RC6. Always check by multiplying.
Copyright Ⓧ c 2017 Pearson Education, Inc.
x2 400 =(x +20)(x 20) 4 2 4. 8a2 +18a 5=(4a 1)(2a +5)
2.
= (a + b)2(a b)
b2)
28. 37x2 + x4 +36 = x4 37x2 +36
= (x2 36)(x2 1)
= (x +6)(x 6)(x +1)(x 1)
30. xw yw + xz yz
= w(x y)+ z(x y)
= (x y)(w + z)
32. 9c2 +12cd 5d2 =(3c d)(3c +5d)
34. 9m2 +3m3 +8m +24
= 3m3 +9m2 +8m +24
= 3m2(m +3)+8(m +3)
= (m +3)(3m2 +8)
36. 3x3 +6x2 27x 54
= 3(x3 +2x2 9x 18)
= 3[x2(x +2) 9(x +2)]
= 3(x +2)(x2 9)
6
50. 23xy +20x2y2 +6
= 20x2y2 23xy +6
= (4xy 3)(5xy 2)
52. 64p4 p
= p(64p3 1)
= p(4p 1)(16p2 +4p +1)
54. m2 n2 8n 16
= m2 (n2 +8n +16)
= m2 (n +4)2
= [m +(n +4)][m (n +4)]
= (m + n +4)(m n 4)
56. y2 14y +49 z2 = (y 7)2 z2
= (y 7+ z)(y 7 z)
58. Let x and y represent the length of a side of the pentagon and the octagon, respectively.
Solve:5x =8y,
Copyright Ⓧ c 2017 Pearson Education, Inc. Exercise Set 4.7 127 6. 3xy2 75x = 3x(y2 25) = 3x(y +5)(y 5) 8. a2 +49+14a = a2 +14a +49=(a +7)2 10. 3y2 15y 252 = 3(y2 5y 84) = 3(y 12)(y +7) 40. 2b 28a2b +10ab = 28a2b +10ab +2b = 2b(14a2 5a 1) = 2 (7 +1)(2 1) or b a a , 12. 16a2 81b2 = (4a +9b)(4a 9b) 14. 2x2 288=2(x2 144)=2(x +12)(x 12) 16. 8z2 8z 16=8(z2 z 2)=8(z 2)(z +1) 18. 3 3 108 = 3 ( 2 36) 2b( 7a 1)(2a 1), or 2b(7a +1)( 2a +1) 42. 2x4 32 = 2(x4 16) a b ab ab a = 2( 2 2 = 3ab(a +6)(a 6) 20. 625 (t 10)2 = [25+(t 10)][25 (t 10)] = (25+ t 10)(25 t +10) =
22.
x
=
44.
= xy
2
2
= xy(x +5y
5
) =
46. 36
2
15x
25 = 16 5 2 x
4 = (2t
1)(4t2 2t
t2 +
t +1) 24. t2 +10t p2 +25 = 2 2 48. a3 ab2 + a2b b3 = a(a2 b2)+ b(a2 b2) t +10t +25 p = (a2 b2)(a + b) = (t +5)2 p2 = ( = (a + b)(a + b)(a b) t +5+ p)(t +5 p) 26. 27a3 343b3 = (3a 7b)(9a2 +21ab +49
(15+ t)(35 t)
64t6 1
+4)(x 4)
2(x2 +4)(x +2)(x 2)
x3y 25xy3
(x
25y
)
)(x
y
(4t3 +1)(4t3 1)
x
+
+
+
+
+1)(2t 1)(4
2
x = 3y 2 16 10 16
Copyright Ⓧ c 2017 Pearson Education, Inc. z x y xyz z = 3(x +2)(x +3)(x 3) Thesolutionis 7 , 7 ,sotheperimetersare5 · 7,or 38. 250a3 +54b3 =2(125a3 +27b3) 80 , and 8 10 , or 80 7 7 7 60. 3 2 2 2 3 x y z +25xyz +28z = 2(5a +3b)(25a2 15ab +9b2) = (3 2 2 +25 +28 2) = z(3xy +4z)(xy +7z)
Exercise Set 4.8
RC2. False,seeExample4onpage269inthe text. RC4. False; seepage 274in thetext.
Copyright Ⓧ c 2017 Pearson Education, Inc. 128 Chapter 4: Polynomials and Polynomial Functions 62. 9y3 9 1000 =9 y3 1 1000 6. y2 +10y +25 = 0 (y +5)(y +5) = 0 1 y 1 = 9 y 10 64. s6 729t6 y 2 + 10 + 100 y +5 = 0 or y +5 = 0 y = 5 or y = 5 = (s3 +27t3)(s3 27t3) = (s +3t)(s2 3st +9t2)(s 3t)(s2 +3st +9t2) 66. 27x6s +64y3t = (3x2s)3 +(4yt)3 = (3x2s +4yt)(9x4s 12x2syt +16y2t 68. c4d4 a16 = (c2d2 + a8)(c2d2 a8) = (c2d2 + a8)(cd + a4)(cd a4) 70. 24 2a 8. 8y + y2 +15 = 0 y2 +8y +15 = 0 (y +5)(y +3) = 0 y +5 = 0 or y +3 = 0 y = 5 or y = 3 10. t2 +9t = 0 t(t +9) = 0 t = 0 or t +9 = 0 t = 0 or t = 9 x 6 12. p2 49 = 0 = 6(4x2a 1) = 6(2xa +1)(2xa 1) 72. 8( 2 (p +7)(p 7)= 0 p +7 = 0 or p 7 = 0 a 3) 64(a 3)+128 = 8[(a 3)2 8(a 3)+16] = 8[(a 3) 4]2 p = 7 or p = 7 14. y2 = 64 2 = 8(a 7)2 y 64 = 0 74. 1 x27 = 1 x9 1+ x9 + x18 (y +8)(y 8) = 0 y +8 = 0 or y 8 = 0 1000 10 10 100 y = 8 or y = 8 76. (m 1)3 (m +1)3 = [m 1 (m +1)] [(m 1)2 +(m 1)(m +1)+(m +1)2] = (m 1 m 1) m2 2m +1+ m2 1+ m2 +2m +1) = 2(3m2 +1)
45 y2
16. a2 +3a = 40 a2 +3a 40= 0 (a +8)(a 5)= 0 a +8 = 0 or a 5 = 0 a = 8 or a = 5 18. 27+6t t2 = 0 (9 t)(3+ t) = 0 9 t = 0 or 3+ t = 0 9 = t or t = 3 20. 9y2 +15y +4 = 0 (3y +4)(3y +1)=0 3y +4 = 0 or 3y +1 = 0 4 1 (y 9)(y
y 9 = 0 or
5
y = 9 or y = 5 (
2. y2 4y =
4y 45 = 0
+5)= 0
y +
= 0
Copyright Ⓧ c 2017 Pearson Education, Inc. 4. r2 +4 = 4r y = 3 or y = 3 22. 4x2 +11x +6 = 0 (4x +3)(x +2) = 0 4x +3 = 0 or x +2 = 0 r2 4r +4 = 0 (r 2)(r 2) = 0 r 2 = 0 or r 2 = 0 3 x = 4 24. 8y y2 = 0 y(8 y)= 0 or x = 2 r = 2 or r = 2 y = 0 or 8 y = 0 y = 0 or 8 = y
46. x2 +14x +50= 5
x2 +14x +45= 0
(x +9)(x +5)= 0
x +9 = 0 or x +5 = 0
x = 9 or x = 5
The values of x for which f(x)=5 and 9 and 5.
48. 2x2 15x = 7 2x2 15x +7 = 0
(2x 1)(x 7) = 0
2x 1 = 0 or x 7 = 0
x = 1 or x = 7
x = 2 or x = 7 1
Thevaluesof x forwhich g(x)= 7are and7.
50. 4x x2 = 32 0 = x2 4x 32
0 = (x 8)(x +4)
x 8 = 0 or x +4 = 0
x = 8 or x = 4
The values of x for which h(x)= 32 are 8 and 4.
52. f(x)= 2 x2 7x +6
To find the excluded values, solve:
x2 7x +6 = 0
0 = 3y(y2 49) 0 = 3y(y +7)(y 7) (x 6)(x 1) = 0
(x2 4)(x2 9) = 0(x
3y = 0 or y +7 = 0 or y 7 = 0
y = 0 or y = 7 or y = 7
40. x4 13x2 +36 = 0
+2)(x 2)(x +3)(x 3) = 0
x+2 = 0 or x 2= 0 or x+3 = 0 or x 3= 0
x = 2 or x = 2 or x = 3 or x = 3
Copyright Ⓧ c 2017 Pearson Education, Inc. 2 Exercise Set 4.8 129 26. 6x2 7x = 10 6x2 7x 10 = 0 (6x +5)(x 2) = 0 6x +5 = 0 or x 2 = 0 42. (t 6)(t +6) = 45 t2 36 = 45 t2 81 = 0 (t +9)(t 9) = 0 5 x = 6 or x = 2 t +9 = 0 or t 9 = 0 t = 9 or t = 9 28. 4y2 36 = 0 4(y2 9)= 0 4(y +3)(y 3)= 0 y +3 = 0 or y 3 = 0 y = 3 or y = 3 44. a(1+21a)= 10 a +21a2 =10 21a2 + a 10= 0 (3a 2)(7a +5)= 0 3a 2 = 0 or 7a +5 = 0 30. 12a2 5a 28 = 0 (4a 7)(3a +4) = 0 2 a = 3 5 or a = 7 4a 7 = 0 or 3a +4 = 0 7 4 a = 4 or a = 3 32. 18x2 = 9x 18x2 9x = 0 9x(2x 1) = 0 9x = 0 or 2x 1 = 0 1 x = 0 or x = 2 34. x(x 5) = 24 x2 5x = 24 x2 5x 24 = 0 (x 8)(x +3) = 0 x 8 = 0 or x +3 = 0 x = 8 or x = 3 36. 50y +5y3 = 35y2 5y3 35y2 +50y = 0 5y
y2 7y +10)= 0 5y
y 5)(y 2) = 0 5
0
5
0
y
y = 0
y = 5
2 38. 147y = 3y3 0 = 3
3
y
(
(
y =
or y
=
or
2 = 0
or
or y =
y
147
1
2
Copyright Ⓧ c 2017 Pearson Education, Inc. x 6 = 0 or x 1 = 0 x = 6 or x = 1 Thedomainof f is {x|x isarealnumber andx /=6 and x /=1}
To
Thedomainof f is 5
x|x isareal number and
68. Let x =thelengthofasideoftheoriginalsquare.
Solve (x +4)2 =49.
x = 11 or x =3
Length cannot be negative.
The length is 3 m.
70. Let x, x +2, and x +4 represent the integers.
Solve x2 +(x +4)2 =136.
x = 10 or x =6
Theintegersare 10, 8,and 6or6,8,and10.
72. Let w =thewidth. Then w +3=thelength.
Solve w(w +3)=108.
w = 12 or w =9
The width cannot be negative.
The width is 9 m, and the length is 9+3, or 12 m.
74. Let x =thewidthoftheframe.
x =2 or x = 15
The width of the frame cannot be 15 cm.
The width of the frame is 2 cm.
76. Let w = the width. Then w +50= the length.
Solve w2 +(w +50)2 =2502
w = 200 or w =150
The width cannot be negative.
The width is 150 ft, and the length is 150+50, or 200 ft.
78. Solve 52 + x2 =(x +1)2
x = 12, so the length of the longer leg is 12 cm and the length of the hypotenuse is 12+1, or13, cm.
80. Let x =thelengthofoneleg.Then x +2=thelengthofthe hypotenuse, and (x + 2) 9, or x 7 = the length of the other leg.
60. From the graph we see that the x-intercepts are ( 8, 0)and (5, 0).Thesolutionsoftheequationarethefirstcoordinates of the x-intercepts, 8 and5.
62. From the graph we see that the x-intercepts are (0, 0) and (4, 0).Thesolutionsoftheequationarethe first coordi-nates of the x-intercepts, 0 and 4.
64. Let w =thewidth.Then w +4=the length.
Solve (w +4)w =96
w = 12 or w =8
The width cannot be negative.
The width is 8 cm and the length is 8+4, or 12 cm.
66. Let b represent the length of the base.
Solve x2 +(x 7)2 =(x +2)2
x =3 or x = 15
Since37isnegative,3cannotbeasolution.If x =15,then x +2=15+2=17and x 7 =15 7 =8. Thelengthsof thelegsare8ftand15ft,andthelengthofthehypotenuse is 17 ft.
82. Solve h(t)=0, or 16t2 +80t +224=0.
t =7 or t = 2
Thetimecannotbenegative. Theflarereachedtheground after 7 sec.
84. |0 ( 1023)| = |1023| = 1023
Copyright Ⓧ c 2017 Pearson Education, Inc. 130 Chapter 4: Polynomials and Polynomial
x)= 2x 5x2
Functions 54. f(
20
0
x2 4)
0 5(x +2)(
2) = 0 x +2 = 0 or x 2 = 0 x = 2 or x = 2
of
findtheexcludedvalues,wesolve: 5x2 20 =
5(
=
x
Thedomain
f is {x|x isarealnumber and
x 2 and x /=2} 56. f(x)= 1+ x 9x2 +30x +25
findtheexcludedvalues,we
9x2 +30x +25 = 0 (3x +5)(3x +5)= 0 3x +5 = 0 or 3x +5 = 0 3x = 5 or 3x = 5
To
solve:
5 x = 5 or x = Solve (20 2x)(14 2x) = 160. 3 3
x /= 3 58. f(x)= 3 2x3 2x2 12x Tofindtheexcludedvalues,solve: 2x3 2x2 12x = 0 2x(x2 x 6) = 0 2x(x 3)(x +2) = 0 2x = 0 or x 3 = 0 or x +2 = 0 x = 0 or x = 3 or x = 2
x
x
0 and x /=3 and x /= 2}.
Thedomainof f is {
|
isarealnumber and x /=
1
Solve2b(b +9)=56.
b = 16or b =7
The lengthof the base cannot be negative. Thus, the length of the base is 7 m and the height is 7+9, or 16 m.
Copyright Ⓧ c 2017 Pearson Education, Inc. 3 . . 2 .19 19 86. 5 3 = 15 = 15
. . . .
The equation is y = 26 x + 934
31 31
92. Thefirstcoordinatesofthe x-interceptsare0and3. Then the solution set of x4 3x3 =0 is {0, 3}.
The graph lies on or below the x-axis for
x|0 ≤ x ≤ 3}, or [0, 3]. This is the solution set of x4 3x3 ≤ 0.
The graph lies above the x-axis for {x|x < 0 or x > 3},or(−∞ , 0) ∪ (3, ∞).Thisisthe solution set of x4 3x3 > 0.
94. a) (8x +11)(12x2 5x 2) = 0
(8x +11)(3x 2)(4x +1) = 0
8x+11 = 0 or 3x 2 = 0 or 4x+1=0
8x = 11 or 3x = 2 or 4x = 1 11 2 1 x = or x = or x =
Chapter 4 Vocabulary Reinforcement
1. Whenthetermsofa polynomial are written such thatthe exponents increase from left to right, we say that the polynomial is written in ascending order.
2. To factor a polynomial is to express it as a product.
3. A factor of a polynomial P is a polynomial that can be used to express P as a product.
4. Afactorizationofapolynomialisanexpressionthatnames that polynomial as a product.
5. Whenfactoringapolynomialwithfourterms,tryfactoring by grouping
6. A trinomial square is the square of a binomial. 8 11
Thesolutionsare 8 ,
3 4 2 1 3, and 4
b)(3x2 7x 20)(x 5) = 0 (3x +5)(x 4)(x 5)= 0
3x +5 = 0 or x 4 = 0 or x 5 = 0 3x = 5 or x = 4 or x = 5 5 x = 3 or x = 4 or x = 5
7. Theprinciple ofzeroproductsstatesthatif ab =0, then a =0 or b =0.
8. The factorization of a difference of squares is the product of the sum and difference of two terms.
Thesolutionsare 5 , 4, and 5. 3
Copyright Ⓧ c 2017 Pearson Education, Inc. 10 b y x b Chapter 4 Summary and Review: Concept Reinforcement 131 88. m = 4 7 8 ( 2) = 11 10 c) 3x3 +6x2 27x 54 = 0 3(x3 +2x2 9x 18)= 0 Substitutetofind b y = mx + b 7 = 11 ( 2)+ b 7 = 11 + b 5 24 = 3[x2(x +2) 9(x +2)]= 0 3(x +2)(x2 9)= 0 3(x +2)(x +3)(x 3)= 0 x +2 = 0 or x +3 = 0 or x 3 = 0 x = 2 or x = 3 or x = 3 5 b Thesolutionsare 2, 3,and3. Theequationis = 11 + 24 . 10 5 d) 2x3 +6x2 = 8x +24 2x3 +6x2 8x 24= 0 90. m = 42 10 = 52 = 26 2(x3 +3x2 4x 12)= 0 86 ( 24) Substitutetofind b y = mx + b 62 31 2[x2(x +3) 4(x +3)]= 0 2(x +3)(x2 4)= 0 10 = 26 ( 24)+ 31 10 = 624 + 31 934 = b 31 2(x +3)(x +2)(x 2)= 0 x +3 = 0 or x +2 = 0 or x 2 = 0 x = 3 or x = 2 or x = 2 Thesolutionsare 3, 2,and
2.
{
Chapter 4 Concept Reinforcement
1. False; if ab =0 then a =0 or b =0.
2. True; 27 t3 =33 t3
3. False;the expression is not a binomial because y has anegative exponent.
Copyright Ⓧ c 2017 Pearson Education, Inc.
= 3x2 +5x +4
2
f(a+h) f(a)=3(a + h)2 (a + h)+2 (3a2 a +
x = 3 or x = 2
The solutions are 7 and 2. 3
Chapter 4 Review Exercises
1. 3x6y 7x8y3 +2x3 3x2
a) The degrees of the terms are 6+1, or 7; 8+3, or 11; 3; and 2. The degree of the polynomial is 11.
b) The leading term is the term of highest degree, 7x8y3 . The leading coefficient is 7. c) 3x
8)
8. 3x2 +19x 72
There is no common factor (other than 1 or 1).The factorization will be of the form
x+ )(x+ )
Look for a pair of factors of middle term. We have 72 that yield the desired
9. 10x2 33x 7
Thereisnocommonfactor(otherthan1or 1).Multiply the leading coefficient and the constant: 10( 7) = 70.
Lookfora pairoffactors of 70 whose sumis 33. The
Copyright Ⓧ c 2017 Pearson Education, Inc. 132 Chapter 4: Polynomials and Polynomial Functions
4 Study Guide 1. 6x4 +5x3 x2 +10x 1 11. 100t2 1 = (10t)2 1 = (10t +1)(10t 1) 12. 216x3 +1 = (6x)3 +13 = (6x +1)(36x2 6x +1) 13. 1000y3 27=(10y)3 33 =(10y 3)(100y2 +30y +9) 14. 3 2 Terms: 6x4 ,5x3 , x2 ,10x, 1 x x = 14 Degree of each term: 4, 3, 2,1, 0 Degree of the polynomial: 4 3x2 x 14 = 0 (3x 7)(x +2) = 0 3x 7 = 0 or x +2 = 0 Leading term: 6x4 Leadingcoefficient: 6 3x = 7 7 or x = 2 Constant term: 1 2. (3y2 6y3 +7y) (y2 10y 8y3 +8) = 3y2 6y3 +7y y2 +10y +8y3 8 = 2y3 +2y2 +17y 8 3. (3x 5y)(x +2y)= 3x2 +6xy 5xy 10y2 = 3x2 +
Chapter
xy 10y2
2
2 2
2 = 4
2
4. (2y +7)2 = (2y)
+
y 7+7
y
+28y +49
2
2
5. (5d +10)(5d 10) = (5d)
10
= 25d2 100
=
= 3
2
6
6. f(x)= 3x2 x +2 f(x +1) = 3(x +1)2 (x +1)+2
3(x2 +2x +1) (x +1)+2
x
+
x +3 x 1+
2)
2
3
3
6y
8y3 d) 7x8y3 +3x6y +2x3 3x2 , or 7x8y3 +3x6y 3x2 +2x3 2. P ( 3 2 = 3(a2+2ah+h2) (a+h)+2 (3a2 a+2) x) = x x +4x =3a2 +6ah +3h2 a h +2 3a2 + a 2 P (0)= 03 02 +4 · 0 =0 =6ah +3h2 h P ( 1) = ( 1)3 ( 1)2 +4( 1) = 1 1 4 7. y3 +3y2 8y 24 = y2(y +3) 8(y +3) = (y +3)(y2
2 +
x
+
x
7x
(3
= 6 3. P (x)=4 2x x2 P ( 2) = 4 2( 2) ( 2)2 = 4+4 4 = 4
P (5)= 4 2 · 5 52 = 4 10 25 3x2 +19x 72 = (3x
8)(x +9)
14) numbers we need are 35 and 2.Split the middle term and factor by grouping.
6. In 2010, t =2010 2008 =2. Locate 2 on the t-axis,and then move up to the graph. Now move horizontallyto the f (t)-axis. This locates a value of about 4.9, so we estimate that the number of children participating in football in 2010 was about 4.9 million.
Copyright Ⓧ c 2017 Pearson Education, Inc. =
=
5. 3ab 10+5ab2 2ab +7ab2 +14 = (3 2)ab +
+7)ab2
10x2 33x 7 = 10x2 35x +2x 7 = 5x(2x 7)+(2x 7) = (2x 7)(5x +1) 10. 81x2 72x +16=(9x)2 2 9x 4+42 =(9x 4)2 =
+
2 +
31 4. 8x +13y 15x +10y = 8x 15x +13y +10y
7x2 +23y
(5
+( 10+
ab
12ab
4
11. (4a b +3c) (6a 7b 4c)
(4a b +3c)+( 6a +7b +4c)
2a +6b +7c 12. (9p2 4p +4) ( 7p2 +4p +4)
16p2 8p 13. (6x2 4xy + y2) (2x2 +3xy 2y2)
x
4xy + y2)+( 2x2 3xy +2y2)
= 4x2 7xy +3y
16. (4ab +3c)(2ab c)
f
(a 1) = (a 1)2 2(a 1) 7
a2 4a 4 f(a + h) f(a)
a2 +2ah + h2 2a 2h
=
x8 x6 +5x2 3
(5x +2)2 29. 4y2 16
4(y2 4)
23. f(x)= x2 2x 7 x x x x 32. 27x3 8 = (3x)3 23 Differenceofcubes = (3x 2)(9x2 +6x +4) 33. 0064b3 0125c3 = (04b)3 (05c)3 Differenceofcubes 20x4 28x3 + 12x2 = (04 05 )(016 2 +02 +025 2)
ofsquares = 4(y +2)(y 2) 30. ax +2bx ay 2by
Copyright Ⓧ c 2017 Pearson Education, Inc. Chapter 4 Summary and Review: Review Exercises 133 7. ( 6x3 4x2 +3x +1)+(5x3 +2x +6x2 +1) = ( 6+5)x3 +( 4+6)x2 +(3+2)x +(1+1) = x3 +2x2 +5x +2 8. (4x3 2x2 7x +5)+(8x2 3x3 9+6x) 21. (x 5)(x2 +5x +25) = (x 5)(x2)+(x 5)(5x)+(x 5)(25) = x3 5x2 +5x2 25x +25x 125 = x3 125 = (4 3)x3 +( 2+8)x2 +( 7+6)x +(5 9) 1 1 = x3 +6x2 x 4 22. x 3 x 6 1 1 1 9. 9xy2 xy + 6x2y = x2 6x 3x + 18 FOIL 4xy2 xy 5x2y 1 1 3 + 6 + 12 = x2 2x + 18 xy2 xy x2y 8xy2 +4xy +13x2y 10. (3x 5) ( 6x +2) = (3x 5)+(6x 2) =
9x 7
=
=
=
= (9p2 4p +4)+(7p2 4p 4)
= (6
2
2
3
3y4
4 2x2 + 3 x4
2 1 x4
2
2 3 x6 2x4 + 3x2
8 2
6
3
4
14. (3x2y)( 6xy3) = [3( 6)](x2 x)(y y
) = 18x
15. x
+ x
+
x
x
x
+
x
=
=
=
7 a2 +2a +7 = 2ah + h2 2h 24. 9y4 3y2 = 3y2 · 3y2 3y2 · 1 = 3y2(3y2 1) 25. 15x4 18x3 +21x2 9x = 3x(5x3 6x2 +7x 3) 26. a2 12a +27 = (a 3)(a 9) Trialand error 27. 3m2 +14m +8 = (3m +2)(m +4) FOIL or ac-method 28. 25x
=
=
=
= 8a2b2 4abc +6abc 3c2 FOIL = 8a2b2 +2abc 3c2 17. (2 +5 )(2 2 2 2 2 = (a +2b)(x y) x y x 5y)=(2x) (5y) = 4x 25y 31. 4 4 +4 2 +20=4( 4 + 2 +5) 18. (2x 5y)2 =(2x)2 2 2x 5y +(5y)2 = 4x2 20xy +25y2 19. 5x2 7x + 3 4x2 + 2x 9 45x2 +63x 27 10x3 14x2 + 6x
a2 2a +1 2a +2 7
(a + h)2 2(a + h) 7 (a2 2a 7)
2 +20x +4 = (5x)2 +2 5x 2+22 Trinomialsquare
Difference
x(a +2b) y(a +2b) Factoringbygrouping
Copyright Ⓧ c 2017 Pearson Education, Inc. 20x4 18x3 47x2 +69x 27 20. (x2 +4y3)2 = (x2)2+2 x2 4y3+(4y3)2 = x4+8x2y3+16y6 b c b bc c 34. y5 y = y(y4 1) = y(y2 +1)(y2 1) = y(y2 +1)(y +1)(y 1)
35. 2z8 16z6
= 2z6(z2 8)
36. 54x6y 2y
= 2y(27z6 1) Differenceofcubes
= 2y(3x2 1)(9x4 +3x2 +1)
37. 1+ a3 Sum of cubes
= (1+ a)(1 a + a2)
38. 36x2 120x +100
= 4(9x2 30x +25) Trinomialsquare
= 4(3x 5)2
39. 6t2 +17pt +5p2
= (3t + p)(2t +5p) FOIL or ac-method
40. x3 +2x2 9x 18
= x2(x +2) 9(x +2) = (x +2)(x2 9)
Thesolutionsare 3 2
44. 8y2 =14y
8y2 14y = 0
2y(4y 7) = 0
3 and 2 3
2y = 0 or 4y 7 = 0
y = 0 or 4y = 7 7 y = 0 or y = 4
The solutions are 0 and 7 4
46. We set f(x) equal to 4.
x2 7x 40 = 4
x2 7x 44 = 0
(
x +4)(x 11) = 0
x +4 = 0 or x 11= 0
x = 4 or x = 11
The values of x for which f(x)=4 are 4 and 11.
47. ( )= x 3
f x
3x2 +19x 14
f (x) cannot be calculated for any x-value for which the denominator, 3x2 + 19x 14, is 0. To find the excluded values, we solve:
+19x 14
.
48. Familiarize Usingthelabelsonthedrawinginthetext, we let w =the widthof thephotographand w +3 =the length, in inches. Then the dimensions with the border added are w +2+2 and w +3+2+ 2, or w +4 and w +7.
Translate Weusetheformulafortheareaofarectangle, A = lw.
(w +7)(w +4)=108
Solve. Wesolve theequation.
(w +7)(w +4)=108
w2 +11w +28=108
w2 +11w 80 = 0
(w +16)(w 5) = 0
w +16 = 0 or w 5 = 0
w = 16 or w = 5
Check The width cannot be negative, so we check only 5. If the width of the photograph is 5 in., then the length
45. r2 = 16
r2 16 = 0
(r +4)(r 4) = 0
r +4 = 0 or r 4 = 0
r = 4 or r = 4
Thesolutionsare 4and4.
Copyright Ⓧ c 2017 Pearson Education, Inc.
134
Chapter 4: Polynomials and Polynomial Functions
= (x +2)(x +3)(x 3) 2 x = or x = 7 41. a2 2ab + b2 4t2 3 . = (a b)2 4t2 Thedomainof f is . x x isarealnumber and x 2 3 and = (a b +2t)(a b 2t) 42. x2 20x = 100
x2 20x +100= 0 (x 10)(x 10)= 0 x 10= 0 or x 10= 0 x = 10 or x = 10 Thesolution is 10. 43. 6b2 13b +6 = 0 (2b 3)(3b 2) = 0 2b 3 = 0 or 3b 2 = 0 2b = 3 or 3b = 2 3 2 b = or b =
3x2
= 0 (3x 2)(x +7) = 0 3x 2 = 0 or x +7 = 0 3x = 2 or x = 7
x /= 7
2
is 5+3, or 8 in. With the border added, the dimensionsare 5+2+2 and 8+2+2, or 9 in. and 12 in. The area is 9 · 12, or 108 in2 . The answer checks.
State.The length of the photograph is8 in., and thewidth is 5 in.
49. Familiarize Let x, x+2,and x+4representthe integers.
Translate The sum of the squares of the integers is 83,so we have x2 +(x +2)2 +(x +4)2 =83.
Copyright Ⓧ c 2017 Pearson Education, Inc.
Solve Wesolve the equation.
55. [a (b 1)][(b 1)2 + a(b 1)+ a2]=
x = 0 or 8x +1 = 0 or 8x 1 = 0 x = 0 or 8x = 1 or 8x = 1
or 7.
Check. 7, 5,and 3areconsecutive oddintegersand x = 0 or x = 8 or x =
( 7)2 +( 5)2 +( 3)2 = 49+25+9 = 83. Also,
9+25+49=83. Bothanswerscheck.
State Theintegersare 7, 5,and 3or3,5,and7.
50. Familiarize Let s = the length of a side of the square. Then the area is s · s, or s2
Translate
The solutions are 0, 8, and 8
1 1 and 7 are consecutive odd integers and 3
57. Asumoftwosquarescanbefactoredwhenthereisacommonfactorthatisaperfectsquare. Forexample,consider
six times
Area is 7 more thelength of a side.
s2 = 7 + 6 s
Solve. Wesolve the equation.
s2 = 7+6s
s2 6s 7 = 0 (s 7)(s +1) = 0
s 7 = 0 or s +1 = 0
s = 7 or s = 1
Check Thelengthofasidecannotbenegative,so wecheck only7.Theareais72,or49,and7morethansixtimes 7 is 7+6 · 7, or 7+42, or 49. The answer checks.
State The length of a side of the square is 7.
51. t3 64 = t3 43 =(t 4)(t2 +4t +16)
ThecorrectchoiceisA.
52. hm +5hn gm 5gn = h(m +5n) g(m +5n)
= (m +5n)(h g)
ThecorrectchoiceisC.
53. 128x6 2y6
= 2(64x6 y6) Differenceofsquares
= 2(8x3 + y3)(8x3 y3) Sumofcubesand differenceofcubes
= 2(2x+ y)(4x2 2xy + y2)(2x y)(4x2+2xy + y2)
54. (x +1)3 (x 1)3 Differenceofcubes
= [(x + 1) (x 1)][(x + 1)2 + (x + 1)(x 1) + (x 1)2]
58. See the procedure on page 359 of the text.
59. Add the opposite of the polynomial being subtracted.
60. To solve P (x) = 0, find the first coordinate(s) of the xintercept(s) of y = P (x).
Tosolve P (x)=4,findthefirstcoordinate(s)ofthepoints of intersection of the graphs of y1 = P (x) and y2 = 4.
61. Tousefactoring,write x3 8 =(x 2)(x2 +2x +4)and(x 2)3 =(x 2)(x 2)(x 2).Since(x 2)(x2 +2x+4)=(x 2)(x 2)(x 2),then x3 8=(x 2)3.Tousegraphing,enter y1 = x3 8 and y2 = (x 2)3, and show that the graphs are different.
62. Both are correct. The factorizations are equivalent: (a b)(x y)
= 1(b a)( 1)(y x)
= ( 1)( 1)(b a)(y x)
= (b a)(y x)
63. x = 5 or x = 3
x 5 = 0 or x +3=0
(x 5)(x +3)= 0
x2 2x 15 = 0
There cannot be more than two solutions of a quadratic equation. This is because a quadratic equation is factorable into at most two different linear factors. Each of these has one solution when set equal to zero asrequired by the principle of zero products.
64. Thediscussioncouldincludethefollowingpoints:a)
Copyright Ⓧ c 2017 Pearson Education, Inc. than / / Chapter 4 Summary and Review: Review Exercises 135
x2
x2 + x2 +4x
+ x2
3x2
x
0 3(x
0 3(x
= 0 x +7 = 0 or x 3 = 0 x = 7 or x = 3
3.
+(x +2)2 +(x +4)2 = 83
+4
+8x +16 = 83
+12x +20= 83 3
2 +12x 63=
2 +4x 21)=
+7)(x 3)
If x = 7,then x+2= 7+2,or 5,and x+4= 7+4=
If x =3, then x +2=3+2, or 5, and x +4=3+4,
[
A
64x3 x = 0 x(64x2 1) = 0 x(8x +1)(8x 1)=0
a (b 1)][a2 + a(b 1)+(b 1)2] Thisproductisoftheform(A B)(A2 + AB + B2)where
= a and B = b 1. We know that this product is the factorization of A3 B3 , so we have a3 (b 1)3 . 56. 64x3 = x
1 1
5,
2
52
72 =
8
3,
+
+
4+4x2: 4+4x2 = 22 +(2x)2 ,
4+4x2 = 4(1+ x2)
and
` ˛ ¸ x
˛
`
¸ x
We cannowsolvecertainpolynomial equations.
Copyright Ⓧ c 2017 Pearson Education, Inc. = (x +1 x +1)(x2+2x +1+ x2 1+ x2 2x +1) = 2(3x2 +1)
b) Whereasmostlinearequationshaveexactlyonesolution, non-linear polynomial equations can have more than one solution.
c) Weusedfactoringandtheprincipleofzeroproducts to solve polynomial equations.
Chapter 4 Test
3. In 2010, t =2010 1980 =30. Locate 30 on the t-axisand then move up to the graph. Now move horizontallytothe m(t)-axis. This locates a value of about 250, so we estimate that about 250 million tons of municipal solid waste was generated in 2010.
2) (x y)(xy) (x y)(y2)
= x · x2 y · x2 x · xy ( y)(xy) x · y2 ( y)(y2)
= x3 x2y x2y + xy2 xy2 + y3
= x3 2x2y + y3
14. 3m2 + 4m 2 m2 3m + 5 15m2 +20m 10
9m3 12m2 + 6m
3m4 4m3 + 2m2
3m4 13m3 + 5m2 + 26m 10
15. (4y 9)2
= (4y)2 2 · 4y · 9+92
(A B)2 = A2 2AB + B2
= 16y2 72y +81
16. (x 2y)(x +2y)
= x2 (2y)2 (A + B)(A B)= A2 B2
= x2 4y2
17. f(x)= x2 5x
f(a +10) = (a +10)2 5(a +10)
= a2 +
Copyright Ⓧ c 2017 Pearson Education, Inc. 136 Chapter 4: Polynomials and Polynomial Functions
8. (9a 4b) (3a +4b)= (9a 4b)+ ( 3a 4b) = 6a 8b 9. (4x2 3x +7) ( 3x2 +4x 6) = (4x2 3x +7)+(3x2 4x +6) = 7x2 7x +13 10. (6y2 2y 5y3) (4y2 7y 6y3) = (6y2 2y 5y3)+( 4y2 +7y +6y3) 1. 3 3 4 2 +5 5 4 2 4 = 2y2 +5y + y3 xy x y x y x y a), b) c) 3xy3 4x2y 2x4y +5x5y4 d) 5x5y4 +3xy3 4x2y 2x4y or 5x5y4 +3xy3 2x4y 4x2y 2. P (x)= 2x3 +3x2 x +4 P (0)= 2 03 +3 02 0+4 = 0+0 0+4 = 4 P ( 2) = 2( 2)3 +3( 2)2 ( 2)+4 = 2( 8)+3(4) ( 2)+4 = 16+12+2+4 = 2
5xy 2xy2 2xy +5xy2 = (5 2)xy +( 2+5)xy2 = 3xy +3xy2 5. ( 6x3 +3x2 4y)+(3x3 2y 7y2) = ( 6+3)x3 +3x2 +( 4 2)y 7y2 = 3x3 +3x2 6y 7y2 6. (4a3 2a2 +6a 5)+(3a3 3a +2 4a2) = (4+3)a3 +( 2 4)a2 +(6 3)a +( 5+2) 11. ( 4x2y)( 16xy2) = [ 4( 16)](x2 · x)(y · y2) = 64x3y3 12. (6a 5b)(2a + b) = 12a2 +6ab 10ab 5b2 FOIL = 12a2 4ab 5b2 13. (x y)(x2 xy y2) = (x y)(x
4.
20a +100 5a 50 = a2 +15a +50 f(a + h) f(a)= (a + h)2 5(a + h) (a2 5a) = a2 +2ah + h2 5a 5h a2 +5a = 2ah + h2 5h 18. 9x2 +7x = x 9x + x 7 = x(9x +7) 19. 24 3 +16 2 =8 2 3 +8 2 2=8 2(3 +2) = 7a3 6a2 +3a 3 y y y · y y y y 20. y3 +5y2 4y 20 = y2(y +5) 4(y +5) 7. (5m3 4m2n 6mn2 3n3)+ (9mn2 4n3 +2m3 +6m2n) = (y +5)(y2 4) Term 3xy3 4x2y 5x5y4 2x4y Degree 4 3 9 5 Degreeof polynomial 9 Leading term 5x5y4 Leading coefficient 5
Copyright Ⓧ c 2017 Pearson Education, Inc. = (5+2)m3+( 4+6)m2n+( 6+9)mn2+( 3 4)n3 = 7m3 +2m2n +3mn2 7n3 = (y +5)(y +2)(y 2)
21. p2 12p 28
We look for a pair of factors of 28 whose sum is 12. The numbers we need are 14 and 2.
p2 12p 28=(p 14)(p +2)
22. 12m2 +20m +3
We will use the FOIL method.
1) Therearenocommonfactors(otherthan1or 1).
2) Factor the first term, 12m2 . The possibilities are (12m+ )(m+ ) and (6m+ )(2m+ ) and(4m+ )(3m+ ).
3) Factor the last term, 3. We need to consider only positive factors because both the middle term and the last term are positive. The factors are 3 and 1.
4) Lookforfactorsinsteps(2)and(3)suchthatthesum of the products is the middle term, 20m. Trial and error leads us to the correct factorization:
5) Factor by grouping.
Wemustincludethecommonfactortogetafactorization of the original trinomial.
24x2 46x +10=2(3x 5)(4x 1)
31. 16a7b +54ab7
= 2ab(8a6 +27b6)
= 2ab[(2a2)3 +(3b2)3]
= 2ab(2a2 +3b2)[(2a2)2 2a2 3b2 +(3b2)2] A3 + B3 = (A + B)(A2 AB + B2)
= 2ab(2a2 +3b2)(4a4 6a2b2 +9b4)
32. x2 18= 3x
x2 3x 18 = 0
(x 6)(x +3) = 0
x 6 = 0 or x +3 = 0
x = 6 or x = 3
Thesolutionsare6and 3.
33. 5y2 125 = 0
5(y2 25) = 0
5(y +5)(y 5) = 0
y +5 = 0 or y 5 = 0
y = 5 or y = 5
Thesolutionsare 5and5.
34. 2x2 +21 = 17x 2x2 +17x +21= 0 (2x +3)(x +7) = 0 2x +3 = 0 or x +7=0
3 x = 2 or x = 7
= (y +4+10t)(y +4 10t) 29. 20a
) = 5(2a + b)(2a b)
The solutions are 3 and 7.
35. We set f(x) equal to 11. 30. 24x2 46x +10 3
We will use the ac-method.
1) We factor out the common factor, 2. x 15x +11 = 11 3
5) = 0 2(12x2 23x +5)
2) Nowwefactorthetrinomial12
23 +5. Multiply
theleadingcoefficient,12, x x t,5. 12 5=60
3) Look for a factorization of 60 in which the sum of thefactorsisthecoefficientofthemiddleterm, 23. The factors we need are 20and 3.
4) Split the middle term as follows: 23x
Copyright Ⓧ c 2017 Pearson Education, Inc. 2
constan Chapter 4 Test 137
andthe
(6m +1)(2m +3). 23. 9y2 25=(3y)2 52 =(3y +5)(3y 5) 24. 3r3 3 = 3(r3 1) = 3(r 1)(r2 + r +1) A3 B3 = (A B)(A2 + AB + B2) 25. 9x2 +25 30x = 9x2 30x +25 = (3x)2 2 3x 5+52 = (3x 5)2 26. (z +1)2 b2 =(z +1+ b)(z +1 b) 27. x8 y8 = (x4)2 (y4)2 = (x4 + y4)(x4 y4) = (x4 + y4)[(x2)2 (y2)2] = (x4 + y4)(x2 + y2)(x2 y2) = (x4 + y4)(x2 + y2)(x + y)(x y)
y2 +8y +16 100t2
28.
=
12x2 23x +5 = 12x2 20x 3x +5
4x(3x 5) (3x 5) = (3x 5)(4x 1)
2
=
2
2
x = 3 or x = 7
(y +4)
(10t)
2
2
2
5b
= 5(4a2 b
x
x2 15x = 0 3
(x
2
3x = 0 or x 5 = 0
3
= 20x
x 2