INTRO TO INSTRUMENTATION SYSTEMS & CONTROLS by GLOBALAUTOMATION

Page 168

152

Temperature and Heat Table 10.2

Conversions Related to Heat Energy

1 Btu = 252 cal 1 Btu = 1,055J 1 Btu = 778 ft·lb 1 cal = 4.19J 1 ft·lb = 0.324 cal 1 ft·lb = 1.355J

1 cal = 0.0039 Btu 1J = 0.000948 Btu 1 ft·lb = 0.001285 Btu 1J = 0.239 cal 1J = 0.738 ft·lb 1W = 1 J/s

W TH =

3 kT 2

(10.5) −23

where k = Boltzmann’s constant = 1.38 × 10 J/K. The above also can be used to determine the average velocity vTH of a gas molecule from the kinetic energy equation: W TH =

1 3 2 mν TH = kT 2 2

from which ν TH =

3kT m

(10.6)

where m is the mass of the molecule in kilograms. Example 10.4

What is the average thermal speed of an oxygen atom at 320°R? The molecular mass of oxygen is 26.7 × 10−27 kg. 320°R = 320 × 5/9K = 177.8K ν TH =

ν TH =

3kT m

3 × 138 . × 10 −23 J K × 177.8K × 267 . × 10 −27 kg

kg × m 2 s2 × J

ν TH = 525 m s

The specific heat of a material is the quantity of heat energy required to raise the temperature of a given weight of the material 1°. For example, as already defined, 1 Btu is the heat required to raise 1 lb of pure water 1°F, and 1 cal is the heat required to raise 1g of pure water 1°C. Thus, if a material has a specific heat of 0.7 cal/g °C, then it would require 0.7 cal to raise the temperature of a gram of the material 1°C, or 2.93J to raise the temperature of the material 1K. Table 10.3 gives the specific heat of some common materials, in which the values are the same in either system.


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.