Batteries100th Issue - 25years in the industry

Page 67

100TH ISSUE BATTERY PIONEERS: STANLEY WHITTINGHAM The creation of the lithium ion battery cell was the work — often collaborative but equally often on a competitive basis — of a handful of scientists around the world. Stanley Whittingham is one of that elite handful that can claim to be one of the lithium battery’s founding fathers.

Reaching into the depths to unleash lithium’s power

It was so 1970s. Diversification was the new name of the corporate game. In 1972 it seemed a no-brainer for Exxon Research and Engineering to look at alternative energy production and storage. And so, with the deepest pockets of perhaps the most profitable oil giant in the world, it set about seeking the best scientists in the world for the project. Among this elite was a 31-year-old graduate, then a more than up-andcoming researcher at Stanford University, by the name of Stanley Whittingham. Exxon’s investment in Whittingham and this scientific elite paid off. Following his investigations of the properties of tantalum disulfide, Whittingham and his colleagues made a remarkable discovery. Their breakthrough? Understanding the role of

www.batteriesinternational.com

intercalation electrodes in battery reactions. And this would eventually result in the first commercial lithium rechargeable batteries. The batteries were based on a titanium disulfide cathode and a lithium-aluminum anode. Although other entities including General Motors, Sohio and the US Argonne National Laboratory were developing lithium-based batteries at the same time, only Whittingham’s invention worked at room temperature.

Lost opportunities

The implications for the oil major — and the rest of the world — could have been tremendous. In 1976, Forbes magazine declared that “the electric car’s rebirth is as sure as the need to end our dependence on imported oil”. However, such enthusiasm had died out by the end of the decade. Profiting

from Whittingham’s pioneering breakthrough, Japan later turned lithium ion batteries into a highly profitable industry. Michael Whittingham’s career really took off after leaving Oxford with his DPhil in 1967. After a short spell doing research work for the Gas Council, he realised that to obtain an academic or an industrial job, he had to go the US, and where better than the warmth of California? In February 1968 he became a post-doctoral fellow, investigating solid-state electrochemistry under professor Robert Huggins at Stanford University. It was quite a switch. “In the UK, France and Germany, solid-state chemistry was a respectable subject,” he recalls. “Chemistry departments did solid-state chemistry. In the US you could count the number of solid-state chemists on the fingers of one hand. So I went to a materials science department, not to a chemistry department.” But the turning point of his career was fast approaching. In 1971, his published findings on fast-ion transport, particularly in the conductivity of the solid electrolyte beta-alumina, won Whittingham the Young Author Award of the Electrochemical Society. And this was the springboard to greater things. “Soon after the award, I was approached by Ted Geballe, professor of applied physics, who had been asked to find people to go to Exxon which was starting up a new corporate research lab in Linden, New Jersey,” he says. Their mission? They wanted to be prepared for the company to survive when oil ran out — a major theme of corporate thinking in the 1970s. Although he was torn between the conflicting offer of a job in the material science department at Cornell University, Exxon made Whittingham an offer he could not refuse. They included him in a six-strong interdisciplinary group, led by physical chemist Fred

Batteries International • 100th Edition • 2016 • 65


Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.