5
(b) S abemos q ue t res caras del cubo q uedaron intactas. En c ada cubo original. Si llamamos a a una arista del cubo, tenemos que a3 = 8 = 23, así 2 = 24 m2. que a = 2 Tomado del libro Matemáticas Preolímpicas de la autora María Luisa Pérez Seguí, d e Cuadernos d e Olimpiadas M atemáticas. Instituto de Matemáticas de la UNAM. p.24 y p. 118.
(e) imposible de determinar. (a) 18 m2
(b) 24m2
(c) 26 m2
(d) 28 m2
de la pieza? Problema. (Olim 16/02) Haciendo cortes paralelosa lasc aras de un cubo de madera se obtieneu na piezac omol aq ue se muestra. Si el Solución al problema de la página 7. (C) La suma de los perímetros de todos los cuadrados es igual a 4 veces la suma de todos los segmentos que están sobre AB, es decir, 4×24=96. Tomado del libro: Matemáticas Preolímpicas. De la autora: María Luisa Pérez Seguí. De Cuadernos de Olimpiadas de Matemáticas. Instituto de Matemáticas de la UNAM p. 23 y p.118.