CHAPTER 5
TORSION OF NON-CIRCULAR AND THIN-WALLED SECTIONS Summary For torsion of rectangular sections the maximum shear stress are given by tmax
e L
=
-
tmax and
angle of twist 0
T kldb2
~
T k2db3G
kl and k2 being two constants, their values depending on the ratio d l b and being given in Table 5.1. For narrow rectangular sections, kl = k2 = Thin-walled open sections may be considered as combinations of narrow rectangular sections so that
i.
rmax
T 3T = _ _ _- Ckldb2
Cdb2
T 3T 0 L Xk2db’G GCdb’ -
The relevant formulae for other non-rectangular, non-tubular solid shafts are given in Table 5.2. For thin-walled closed sections the stress at any point is given by T r=2At
where A is the area enclosed by the median line or mean perimeter and t is the thickness. The maximum stress occurs at the point where t is a minimum. The angle of twist is then given by e = - - -T-L/ d s 4A2G t
which, for tubes of constant thickness, reduces to
e L
-
Ts rs 4A2Gt 2AG
where s is the length or perimeter of the median line. 141