Sesion 1- 2° secundaria

Page 1

SESIÓN 01: RESOLVEMOS DIVERSAS SITUCIONES EMPLEANDO UNIDADES DE LONGITUD

Estudiante: ……………………………………………………………………… Fecha: ……………………...………….

I. SITUACIÓN SIGNIFICATIVA: Miguel tiene un Picantería en la ciudad de Arequipa, el ha notado que muchas personas tienen dificultades físicas y utilizan sillas de ruedas o utilizan muletas, por ello ha decidido instalar una rampa de acceso en la entrada principal de su restaurante con la finalidad de darle mejor accesibilidad y seguridad a las personas que utilizan sillas de ruedas. Las dimensiones de la rampa que va a construir se muestran en la imagen, si el costo de la construcción de la rampa va depender de cuantos metros cuadrados tenga la cara superior. Frente a esta situación, responde:

a) Determina el área de la cara superior de la rampa (región roja)

b) ¿Qué opinión te merece la construcción de la rampa de acceso para las personas con discapacidad física?

El propósito en esta sesión es: “Emplear diversas estrategias de cálculo para resolver diversas situaciones utilizando diferentes unidades de longitud.”

II. RECORDEMOS:

UNIDADES DE LONGITUD: Las unidades de longitud son útiles para hacer estimaciones y resolver problemas de contexto real. Conocerlas te permitirá elegir cuál es la más adecuada para calcular, por ejemplo, longitudes muy grandes, como la distancia aproximada de la Tierra a la Luna, o longitudes muy pequeñas, como el diámetro de un glóbulo rojo. El metro es la principal unidad de longitud. Su símbolo es “m” Múltiplos

Ejemplo: Rocío vive a 3,5 km con 6,4 hm y 20 dam de la plaza de armas de Ica. Si ella se dirige a dicha ciudad, y está a mitad de camino, ¿A cuántos metros de la plaza se encuentra?

Solución:

- Para resolver el problema, debemos expresar las distancias en metros.

- Para convertir unidades de longitud, multiplicamos o dividimos por potencias de 10 (Observar la imagen)

- Convertimos 3,5 km con 6,4 hm y 20 dam a metros y, luego, sumamos:

3,5 km a metros → 3,5x10x10x10 = 3 500 m

6,4 hm a metros → 6,4x10x10 = 640 m

20 dam a metros → 20x1010 = 200 m

- Total: 3500 m + 640 m + 200 m = 4340 m (Distancia de donde Roció vive hasta la plaza)

- Hallamos a cuántos metros de la plaza se encuentra Rocío: 4340 ÷ 2 = 2 170 m

Respuesta: Rocío se encuentra a 2 170 m de la plaza de armas de Ica.

III. COMPRENDEMOS LA SITUACIÓN SIGNIFICATIVA:

a) ¿Qué significa “mm”? _____________________________________________________

b) ¿Qué significa “dam”? ____________________________________________________

c) ¿Qué significa “dm”? _____________________________________________________

Submúltiplos del metro 103 m Kilómetro (km) 102 m Hectómetro (hm) 101 m Decámetro (dam) metro (m) 10 –1 m Decímetro (dm) 10 –2 m Centímetro (cm) 10 –3 m Milímetro (mm)
del metro Unidad principal

IV. RESOLVEMOS LA SITUACIÓN SIGNIFICATIVA:

a) Convierte las dimensiones de la rampa, a metros.

Parte Medida Medida en metros

Base horizontal 0,36 dam

Altura 4 dm

Ancho 1 200 mm

b) En la imagen, coloca las nuevas medidas de rampa en metros.

c) Determina la medida del largo “x” de la rampa. (Utiliza el teorema de Pitagoras)

d) Determina el área de la cara superior de la rampa (región roja)

Área = Ancho x Largo

e) ¿Qué opinión te merece la construcción delas rampas de acceso paralas personas con discapacidad física?

V. REFORZAMOS NUESTROS APRENDIZAJES:

1) Un rollo de tela mide 3 dam y 200 cm. Si se venden 18 m, ¿Cuántos metros quedan?

Resolver:

3) La pista de un hipódromo mide 1800 m. Si un caballo da 3 vueltas, ¿cuántos decámetros habrá recorrido?

Resolver:

2) Las ruedas de una bicicleta tienen una circunferencia de 150 cm. ¿Cuántas vueltas dará cada rueda si la bicicleta recorre una distancia de 4 hm con 3 dam y 6 m?

Resolver:

4) Calcule el área en m2 de un triángulo, cuya base mide 0,25 Dam y su altura 800 cm. Resolver:

VI. TAREA:

1) En un estante de 1m de largo se colocan 15 libros iguales, uno al lado del otro. Si cada libro tiene un grosor de 38 mm, ¿Cuántos centímetros quedan libres en el estante?

3) Las ruedas de un carro tienen una circunferencia de 300 cm. ¿Cuántas vueltas dará cada rueda si el automóvil recorre una distancia de 3 km, 8 hm y 10 dam?

2) Se quiere pavimentar una sala rectangular de 6 dam de largo por 15 m de ancho con losas de 25 cm por 18 dm. ¿Cuántas losas se necesitarán?

4) Se realizó una prueba de salto alto de varones y se registraron las tres mejores marcas: Álvaro 1 824mm, Renzo 183 cmyMauricio 1,94m. Identifica el orden de mérito. ¿Quién ganó la competencia?

5) Un carpintero utiliza 267 cm de un zócalo de madera que mide 68 dm de largo. ¿Cuántos centímetros de zócalo quedan?

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.