Page 1

Superbrass Music Score in C

Trumpet 1

Composed by Keiron Anderson Edited by Roger Argente

Brass Braziliana SAMBA



h = 98

Trumpet 2

  

Trumpet 3

  

Flugelhorn

  

Horn in F

  

       Trombone 1        

                    

   

              

                    

   

              

                    

   

                  

   

f

Trombone 2

f

Euphonium

f

Bass Trombone

Tuba

             f

    

  

f

     



  

  

 

                                                             Drums                       

Percussion Bongos or Congos

  

f

All Rights Reserved © 2014 Superbrass Music www.superbrass.co.uk


2

Tpt 1

5

Tpt 2

Tpt 3

Flug



Hrn

 

              Tbn 1 

                   

             

                     

           

                   

            

                  

p

Tbn 2

p

Euph

p

B Tbn

p

Tuba

   

  

p

Perc.

Drms

     

  

   

  

 

 

                                                       

p

    

  

samba whistle fill


3

Tpt 1

Tpt 2

9

 



 

mf

 

mf

     



   

 

 

  

 

 Hrn   

 

 

  

 

Flug

mf

mf

      

Tpt 3

 

       

  



  

       Tbn 1    

           

  

     

             

           

  

     

             

                

  

     

       B Tbn     

           

  

           

mf

Tbn 2

mf

Euph

mf

mf

Tuba

   

mf

Perc.

Drms

   

  

      

          

mf

              

    



     

   

          

                      

    

 

     

                      


4

Tpt 1

Tpt 2

Tpt 3

Flug

Hrn

14

                         

Euph

B Tbn

Tuba

   

      

   

              

     

        

     

  

     

  

  

      

  

f

f

 

Perc.

Drms

                 

     

  

 

    

 

    

                  

    

  

f

            

f

                  

f

  

      

  

      

f

  

  

                    

f

                  

f

            

                    

   

f

      

          

               Tbn 1 

Tbn 2

        

f

          

                                        


5

Tpt 1

19

 

Tpt 2







    

   

 

mp

                      

Tpt 3

  



 

Flug

  



 

              

   

Hrn

            

             

  

     

            

  

     

               

         

  

            

                  

  

    

    

    

      Tbn 1              

Tbn 2

Euph

B Tbn

Tuba

Perc.

Drms

mp

mp

mp

mp

    mp

  

  

  

 

   

     

 

              

    

mp

     

  

     

  

          

                       mp

    

   

                       


6

Tpt 1

Tpt 2

Tpt 3

Flug

Hrn

24

    

 

 

Euph

 

Perc.

Drms

   

   



            



         

mf

mf

mf

 

mf

   

mf

 

mf

         

        B Tbn   Tuba

            

 Tbn 1  Tbn 2

     

      

     

        

     

            

        

    

                 mf

        

     

          

     

mf

mf

 

     

 

                          

  

 

samba whistle fill

           

 

        

              

            


7

29





Tpt 3



Flug

 

Tpt 1

Tpt 2

Hrn

   

 Tbn 1 

Tbn 2

Euph



Perc.

Drms

            

mf

                               

                           

     

                      

            

     

     

   

      

          

    

     

   

       

             

   

        

      

       

        

             

      

          B Tbn     Tuba

 

       

             

      

 

                       

          

          

 



                 


8

34



Tpt 2



Tpt 3



    

 



 

Flug

 

          

 



 



 



 



 



  

Tpt 1

Hrn

    

      



      

        

  

         

        

   

        

         

                   

  Tbn 1   

Tbn 2

Euph

 

B Tbn

 

Tuba

Perc.

Drms

          



   

         

         

 

     

 

                           

 

      

             

        

         

       

        

             

             


9

Tpt 1

            

     



             

      

               

       

39

mf

Tpt 2

mf

Tpt 3

mf

Flug

Hrn

 

     

   

mf

 Tbn 1   

Tbn 2

 

Euph

 

mf

 

mf

 B Tbn  

Tuba





      

          

mf

  

   

  

     

  

 

      





     

  

 

      





       

  

      

  

      

  

       

  

   

  

  

mf

mf

   

                                                  mf

Perc.

Drms

 

f

 

             

  

  

             

 

             

  

  

             


10

          Tpt 1 

             

         

            

         

             

43

f

Tpt 2

f

Tpt 3

f

 Flug    f

Hrn

     f

              

    Tbn 1 

   

         

         

       

        

ff

ff

ff

ff

ff

        

          

              

         

      B Tbn       

              

f

                            

 Perc.  Drms

 

        

ff

                  

f

Tuba



            f

Euph

        

f

Tbn 2

        

 

 

ff

 

ff

 

       

             

    

ff

ff

 

                             

ad lib fill

              


11

Tpt 1

Tbn 1





 

  

 

 

Tbn 2

 

 

  

 

 

             

Euph

B Tbn

Tuba

Perc.

Drms

           

Tpt 3

Hrn

 



Tpt 2

Flug

48

mf

 

  

mf

 



  

mf

           

  

        

  

  mp

 mp

   

      



mp

     

      



 

  

   

   

  

   

   

  

   

  

   

  

 

 

   

 



                                          

mp


12

Tpt 1

Tpt 2

Tpt 3

52

 

 

3       

 

3       

       

Flug   

Hrn

 

Tbn 2

Tuba

Perc.

Drms

 

          

Euph

B Tbn

3

3

            

 Tbn 1 

 

 

   

 

          

   

   

   

   

   

        

   





 

         





 

mf

mf

   

    

 mf

      

  

        

     

      

                           

 

    

     

     

                                    


13

Tpt 1

   

          

       

              

          

57

f

Tpt 2

f

Flug

Hrn

Tbn 1

    



Tpt 3

f

 

          

mf

                                                       f mf    

Tbn 2

                                    

Euph

        

mf

          mf

f

B Tbn

Tuba

Perc.

Drms

 

    

  f

   

 



            



     

 mf

    



    

mf

       

             

       

                           



                          


14

Tpt 1

Tpt 2

Tpt 3

Flug

Hrn

62







   



    



   Tbn 1 



    



Tbn 2

 

Euph

B Tbn

Tuba

Perc.

Drms

 

  

 



ff

 

ff

G‹7

C7

              

   ff

 

ff

ff

ff

ff

Solo ad.lib

  



 

ff



 

ff

 

     

 

             

             

mp



               

mp



mp

              







     

 

mp



     

        

                         

             


15

67



Tpt 2



Tpt 3



Tpt 1

FŒ„Š7

        Flug     Hrn

Tbn 1

            

Tbn 2

Euph

B Tbn

Tuba

Perc.

Drms

          

     

 

 

 

  

           

          

     



 

 

             

        

D‹

         





 

          





 

mf

mf

 mf

 

A7

                

     

D‹/A

 

    



        

                           

        

 

     

                   


16

72



Tpt 2



Tpt 3



Tpt 1

C7 FŒ„Š7             

G‹7

         Flug     Hrn

  

 Tbn 1 

 

 

Euph

B Tbn

 

Tuba

Perc.

Drms

                           

  

      

Tbn 2

 

 



                                

         

     

 

    

 

          

                 

 



       

        

     

 



     

        

                           

             


17

Tpt 1

77





Tpt 2



Tpt 3

  f

   

    

f

    

f

E¨    D‹/A         Flug  

Hrn

Tbn 2

             

Tuba

Drms

   

  

    

 

   

     

 

end solo here !            

 

   

ff

ff

ff

   

f

f

 

 

f

  f

               

ff

f

 

                 

  

     

      

 

  

      

mf

 

f



    

   

    

mf



f

mf

Perc.

 

               

mf

Euph

 

     

ff

                        mf f

 Tbn 1 

B Tbn

A7



    f       f   

 

      

         f

      

ff

f

        

ff

 

 

                                          f

f

ff

      

 

f

ff

   

 

        

ff

f

  

ff

         

ff

    

 

               f


18

Tpt 1

82

Tpt 2

Tpt 3

Flug



         

        

       

         

 

   

        

         Hrn    

             Tbn 1 

                

 

   

   

  

  

    

   

  

  

        B Tbn 

         

      

  

        

       

      

 

     

 

 

    

Tbn 2

Euph

Tuba

Perc.

Drms

 

   

       

 

   

        

                      

    

  

   

                  

   

                  

     

   


19

Tpt 1

87

         

Tpt 2

Tpt 3

Flug

           

Hrn

          

          Tbn 1         

Tbn 2

       B Tbn 

Perc.

Drms

 

          

Euph

Tuba

 

             

 

 

                     

 



            

 



       



 



        



 



     

        

  

       

        

   

       

          

          

      

          

     

      

                                         

    

        

        



             


20

Tpt 1

     

      

     

           

        

f

f

     

     

   

    

 

      

  

 

      





      

  

 

      





     Tbn 1  

Tbn 2

  

   B Tbn 

Euph

Tuba

      

   

Tpt 3

Hrn

 

Tpt 2

Flug

92

f

f

f

 

f

 

      

          

    



  

     

 

        

    

 

       

                                                         f

Perc.

Drms

 

      

 



                          

     

             

             

 



                    


21

         Tpt 1 

             

         

            

         

           

97

f

Tpt 2

f

Tpt 3

f

Flug

                  

                  Hrn    Tbn 1

Tbn 2

Euph



 

Drms

         

         

          

         

ff

ff

ff

ff

ff

              

ff

f

ff

f

ff

f

                 

              

         

                 

               

               

                            

 

ff

 

ff

Perc.

         

           B Tbn  Tuba



   

   

         

 

         

 

             

    





                 

f

  

f

     

    

      

   

                 f


22

Tpt 1

102

Tpt 2

Tpt 3

Flug



Hrn

Tbn 1

Tbn 2

Euph

 

    

           

   

 

           

  

  B Tbn  Tuba

Perc.

Drms

     

     

   

     

      

                

   

     

     

            

   

            

      

          



 

          

 

          

     

                      

    

p

p

p

p

   p

  

    

          

                       p

    

       


23

Tpt 1

107

 

Tpt 2

Tpt 3

Flug



Hrn

   

 

           

 

 

  

 

mf

Perc.

Drms

 

 

  

   

              

         

          

     

          

     

               

     

           

mf

mf

mf

    

     

mf

          B Tbn    

  

   

  

  

            

Tuba

mf

 

            

Euph

 

 

      Tbn 1 

Tbn 2



mf

  

             mf

 



mf

    

      

      

                

    

 

      



                      


24

Tpt 1

  

112

 

Tpt 2

                    

   

   

Tpt 3

                

   

     

Flug

Hrn

     



  

     

  



  

      

  

 

     Tbn 1 

                    

     

                      

     

                       

     

                               

Tbn 2

Euph

B Tbn

Tuba

Perc.

Drms

    

 

   

  

     

     

     

                           

    

    

    

  

  

       

                  

            


25

         

       



        

       

                     

117

 

    

   

      

     



 

      



 

               

               

   

           

        Tbn 1 

          

  

    

             

          

  

    

           

           

  

           



Tpt 1

Tpt 2

ff

ff

Tpt 3

ff

Flug

ff

Hrn

ff

ff

Tbn 2

ff

Euph

ff

B Tbn

Tuba

 

  

      

   

  

      

ff

ff

Perc.

Drms



         

 

          

 

                                          

   

   

  

  

  

          

   

                      


26

Tpt 1

Tpt 3



 

 

                  

Tpt 2

Flug

122

f

          

  f

  f

   

          

  

       

  

             

  Tbn 1 

              

Tbn 2

 

                

Euph

 

                  

Hrn

B Tbn

Tuba

Perc.

Drms

 mf

    

mf

  

      

   

      

 

  

 

     

 

    



mf

  

          

                       

      

           

     





  

mf

          

    

                          

    

   

             


27

Tpt 1

Tpt 3

Hrn

Tbn 1



Perc.

Drms

    

    

3      

  

 

 

Euph

Tuba

 

mf



                 

  

       

3      

         

mf

 

 

             

        

3

      

 

   

         

   

mf

         



 

 





  

mf

        



mf

 mf

 

3



            

     

                    

Tbn 2

B Tbn

 

Tpt 2

Flug

127

 

      

                           

     

  

     

                       


28

Tpt 1

  

    

    

Tbn 2

Euph

Tuba

Perc.

Drms

           

f

     

 

f

 Tbn 1 

B Tbn

Tpt 3

Hrn

   

Tpt 2

Flug

132

  

f

   

           

    

  

        

  

   mf

      

                      

 

 



 

            mf



    

         

mf

 

     

 

 

                           mf



                            

    

   

       

 

     

        

                            

             


29

Tpt 1

137

Tpt 2

                          

      

Tpt 3

                                 

Flug

    

  

  

     

 



     Tbn 1 

  

Hrn

Tbn 2



Euph



 

  B Tbn   Tuba

Perc.

Drms

   

  

  

  



 

             

    



 

 





 

 

     

 

   

     

 

  

      

          

     

 





 



  

 

 



   

     

                      

    

     

                      


30

Tpt 1

 

Tpt 2

Tpt 3

Flug

142

  

    

 Hrn     

   

 

 



   

   

Euph

B Tbn

Tuba

Perc.

Drms

   

      

         

       

 

           

        

     

 

 

      

  

 

     

  

     

  

mf

 

       

 

mf

mf



mf

 

mf

 

 

  

mf

 

    Tbn 1 

Tbn 2

 

 

mf

        

     

       

     

mf

mf

                  

mf

     

   

     

                           



                           

     

             


31

Tpt 1

Tpt 2

147

   

      

  

        

   

      

  

mf

   Flug        mf

Hrn

     

    Tbn 1 

      

   

      

Tbn 2

f

            

f







f



   

         B Tbn  

   

        

  

Tuba

              

      

      

mf

       

f

f

  

mf

                 

           

         

Euph

       

     

          

      

                   

f

         mf

Tpt 3

       

  



        

               

        

             

        

             

f

f

f

                                          f

Perc.

Drms

 

 

             

 

  

  

             

    

  

                           


32

Tpt 1

Drms



 

         



 

   

 

          ff



 

   

 

         

 

 

        



Euph

Perc.



Tbn 2

Tuba

ff

        

   Tbn 1 

B Tbn

 

Tpt 3

Hrn

        

Tpt 2

Flug

151

 

   

  

 

  

   

 

ff

 

ff

 

 

        

 

ff

ff

ff

   ff

        

         

   ff

ff

 

   

 

     



 

 

 

 

                              ff

Sb48 brassbrasilianafullscore  
Read more
Read more
Similar to
Popular now
Just for you