Page 1

Superbrass Music

The Green Hornet

Score in C

Drive on

Composed by Billy May Arranged by Jock McKenzie Edited by Roger Argente

 

Trumpet 2

 

Trumpet 3

                                       

Trumpet 1

f

Trumpet 4

 

          Horn in F                                

 Trombone 1

f



Trombone 2

                               

Euphonium

f

   Bass Trombone   f

   Tuba   

f

Drum Kit   

toms

    f

 

 

 

 

 

 

 

 



 

 

 

 



 

 

  

  

f

Percussion: Tambourine

All Rights Reserved © 2014 Superbrass Music www.superbrass.co.uk

 


2

Tpt 1

Tpt 2

 



            

Solo

f



Tbn 2

                    

Euph

  B Tbn     Tuba  

Drms

Perc

  

 

 

 

    

         

 



 

 

 

 

mp

        Hrn                    Tbn 1

 

                        

Tpt 3

Tpt 4

3

 

mp



mp

 

mp

 

mp

  

mp

 

 


Tpt 1

A

5

3

  

Tpt 2



 

Tpt 3

 

                               Tpt 4     Hrn   

   Tbn 1

  

Euph

Perc

 

 

 

 

 

 

 









 

 





 

 

 

 

 

 

mp

mp

 

  

 

 

 

 

 

 

 

 

 

 



 

  Tuba   Drms

 

  

Tbn 2

B Tbn

 


4

Tpt 1

7

  

  

Tpt 2

 

Tpt 3

 

                               Tpt 4     Hrn   

   Tbn 1

  

Euph

Perc

 

 

  Tuba   Drms

 

 

  

Tbn 2

B Tbn

 

 

 

 









 

 

 

 









 

 

 

  

 

 

 


Tpt 1

5

9

   

Tpt 2

Tpt 3

Tpt 4



Tbn 2

  

Euph

 

Perc

 

 

 

 

  Tuba   Drms

 

 

 

                                           

   Tbn 1

 

  Hrn   

B Tbn

3

   

3

   

 

 









 

 

 

 

 

 

3

      3

   

  

 

 

 


6

Tpt 1

Tpt 2

Tpt 3

Tpt 4

11

   



B Tbn

 

 

Euph

Drms

Perc

 

 

  

 

 

  Tuba   

  

sub. f

  

                  

                       

  

Tbn 2

 

sub. f

  Hrn   

 Tbn 1

3

     

 



 3

   

 



                  

sub. f

 

 

  

 

  

sub. f

sub. f

                 

sub. f

  

  

  

  

  

 

 

 

 

sub. f

sub. f

   

 

sub. f

  

  


Tpt 1

 

Tpt 2

B

  mp

 



Tbn 2

mp

 

 

 

 

mp

 







  







mp

  B Tbn  

 

 

 

 

 

  



 

Perc   

mp

mp

Drms



f



    



Tuba

  

Euph



7

                                

  Hrn   

 Tbn 1



mp

 

Tpt 3

Tpt 4

13

mp ride bell

mp

mp

 

 

  



 

 

 

 

 

 

   





  

  

 

 

 

 

 

 

 



 

 

 

 


8

Tpt 1

15

Tpt 2

Tpt 3

Tpt 4



 







 







                                

  Hrn   

 Tbn 1 

Tbn 2

 

 

 





  B Tbn  

 

 

 

 

  Tuba  

Drms

Perc

 

 

  

Euph

 









 

 

  

 

 

 

 

   

  

 

 

 

 

 



 

 



  

 

 


Tpt 1

17

Tpt 2

Tpt 3

Tpt 4



 







 







Tbn 2

 

 

 





  B Tbn  

 

 

 

 

  Tuba  

Drms

Perc

3

   

 

  

Euph

                                                

  Hrn   

 Tbn 1

9

 

 

  









 

 

 

 

 

 

 

 

 

3

   



3

 

 

 

  3

 


10

Tpt 1

19

 

Tpt 2

 

 



 

  

 

  

 

sub. f

sub. f

                  

Tpt 3



sub. f

                             Tpt 4     Hrn   

 Tbn 1 

Tbn 2

Euph

B Tbn

 

Drms

Perc

 

 

 

  





 

 

 

 

  Tuba   

 

3

 

   

 

 

  3

 

                  

sub. f

 

 

  

  

 

  

 

sub. f

sub. f

                  

sub. f

  

  

 

  

  

 







 

sub. f

 

 

sub. f

sub. f

 

 


Tpt 1

 

Tpt 2

   

C   

    

 





11

 

       

Tpt 3

Tpt 4

21



                              

  Hrn                                                                 Tbn 1 

Tbn 2

 

  Tuba   Drms

Perc





                                                

Euph

B Tbn

   

 

 

 

        

 

        

 

       

 

       

     

     

ride bell

                 

   

                 


12

Tpt 1

Tpt 2

24

   

     



 

 

 

 

       

              

Tpt 3

   

                        

                                 Tpt 4      Hrn                

Tbn 1

 

Tbn 2

   

 

  Tuba   Drms

Perc

 

    

Euph

B Tbn

   

                 

                          

  

 

 

   

                           

                 

 

      

 

           toms                


D    Tpt 1 

  

  

13

27

sfz

Tpt 2

sfz

Tpt 3

sfz

Tpt 4

 

                       

mp

  Hrn      Tbn 1

Tbn 2

Euph



sfz

 

     sfz

  B Tbn   sfz

  Tuba   

  

sfz

   Drms     Perc

 

  mp



mp



mp

 mp



mp

   mp

choke

sfz

     

   

choke

 


14

30

Tpt 2

Tpt 3

Tpt 1

Tpt 4

                                 

 Hrn   Tbn 1

 

Tbn 2

  

Euph

   

B Tbn

  

  

  

   Tuba  

Drms

Perc

  

choke

 

     

   

choke

 


Tpt 1

Tpt 2

Tpt 3

15

32

              

f

                  Tpt 4         Hrn  

Tbn 1

 

Tbn 2

   

  

Euph

B Tbn

sfz

  

Perc

Drms

  

   Tuba  

 

choke

 

         

choke

 

              

f

             

f

   

 


16

Tpt 1

34

Tpt 2

    

Tpt 3

  

sfz

 

sfz

f

          sfz

   

Tbn 1



Tbn 2

Euph

B Tbn

 Tuba  Drms

Perc

      

    

    

 choke    

 

 

sfz

     

  

   

sfz

f

sfz

f

  

    

sfz

    f

    

                                Tpt 4      Hrn     

Lead - Quasi Swing

f


Tpt 1

Tbn 1

 

    

Euph

Tuba

Drms

  f

  

   

     

f



Tbn 2

B Tbn

  

 

 

Tpt 3

Hrn

E

 

Tpt 2

Tpt 4

37

 

 

 

   

 

   

      

 

   

 

   

 

   

  f

 

f

       

 

 

   

 

   

 

    

     

   

 

   

 

                               

 

   

 

 

 

f



Perc   

 

  

 

   

 

   

      

 

    

17


18

Tpt 1

41



 

 

Tpt 2

Tpt 3

Tpt 4

 

                                              f

Hrn

                                              

Tbn 1



Tbn 2

 

Euph

B Tbn

Tuba

Drms

Perc

  

f

                       f

 

 

 

 

 


Tpt 1

Tbn 1

 

         

          

         

         

                          

 Tuba 

Perc



                            

Euph

Drms



                           

Tbn 2

B Tbn

Tpt 3

Hrn

  

Tpt 2

Tpt 4

19

43

 

 

          

        

               

 


20

Tpt 1

       

Tpt 2

Hrn

Tbn 1

  

   

Tbn 2

B Tbn

Tuba

Drms

    

         

         

         

   

 

   

  

 

   

   

 

 

   

 

   

 

     

         

  

 

   

   

     

      

     

      

     

ride bell

              

      

      

        

 

     

 

Euph

          

Tpt 3

Tpt 4

F       

45

          

 

         Perc  


Tpt 1

49

  



Tpt 2

Tpt 3

Tpt 4

Hrn

                                                                                            

Tbn 1



Tbn 2

                                              

Euph

B Tbn

Tuba

Drms

Perc



21

   

 

 

 

 

 

 

 


22

Tpt 1

Tpt 3

Hrn

Tbn 2

 

        

 Tuba   

        

         

        

                          

Euph

Perc

                               

Drms



                                   

Tbn 1

B Tbn

 

Tpt 2

Tpt 4

51

 

 

 

        

        

               

 


Tpt 1

53

G

Quasi Improv

           

  

   

    

  

   

   Tpt 4   

   

   

più f

Tpt 3

più f

più f

 Hrn  

      Tbn 1

  

    

    

  

   

più f

Tbn 2

più f

Euph

       B Tbn       più f

 



 



 



               

 

più f

 

               

più f

 

   

 

 

   

 

 

 

   

         Perc  

 

       Tuba       più f

Drms

           più f

più f

3

più f

    

Tpt 2

23

 

 

 

 

 



 



 

                 

 

 


24

Tpt 1

56

     

                 

  

  

    

  

  

    Tpt 4  

  

   

              

  

Tpt 2

Tpt 3

 Hrn   

Tbn 1



 

Euph

 

  Tuba   Drms

Perc

    

Tbn 2

B Tbn

    

                

 

 

 

 

 

  

   

  

  

  

   

 

    

 

 

    

 

 

 

 


Tpt 1

58

  

Tpt 2

   

         

25

  



   



       



       

    

 

    Tpt 4  

 

Tpt 3

 Hrn   

Tbn 1



 

Euph

 

  Tuba   Drms

Perc

                  

    

Tbn 2

B Tbn

    

 

 

 

 

 

 

 

 

    

 

    

        

 

        

 

 

                   

    

   

              

   

 toms               


26

Tpt 1

61

H

 

            

3

3

3

3

                  

     

    

 Tpt 4      

Tpt 2

Tpt 3

  Hrn       

Tbn 1



Tbn 2

         

       

        

     

Euph

B Tbn

   Tuba    

Drms

Perc

     

 

3


Tpt 1

65

I

27

 

Tpt 2

Tpt 3

                                         f

Tpt 4



         Hrn                                    Tbn 1



Tbn 2

f

                              

Euph

f

  B Tbn   f

  Tuba  

Drms

Perc

f

 

 

 

 

 

 

 

 

 

 

toms



 

 

 

 



 

 

 

 

 

f

f


28

Tpt 1

Tpt 2

 



             

Solo

f



Tbn 2

                    

Euph

  B Tbn     Tuba  

Drms

Perc

  

 

 

 

    

         

 



 

 

 

 

mp

        Hrn                    Tbn 1

 

                        

Tpt 3

Tpt 4

67

 

mp



mp

 

mp

 

mp

  

mp

 

 


Tpt 1

69

29

J

  

Tpt 2



 

Tpt 3

 

                               Tpt 4     Hrn   

   Tbn 1

  

Euph

Perc

 

 

 

 

 

 

 









 

 





 

 

 

 

 

 

mp

mp

 

  

 

 

 

 

 

 

 

 

 

 



 

  Tuba   Drms

 

  

Tbn 2

B Tbn

 


30

Tpt 1

71

  

  

Tpt 2

 

Tpt 3

 

                               Tpt 4     Hrn   

   Tbn 1

  

Euph

Perc

 

 

  Tuba   Drms

 

 

  

Tbn 2

B Tbn

 

 

 

 









 

 

 

 









 

 

 

  

 

 

 


Tpt 1

31

73

   

Tpt 2

Tpt 3

Tpt 4



Tbn 2

  

Euph

 

Perc

 

 

 

 

  Tuba   Drms

 

 

 

                                           

   Tbn 1

 

  Hrn   

B Tbn

3

   

3

   

 

 









 

 

 

 

 

 

3

      3

   

  

 

 

 


32

Tpt 1

Tpt 2

Tpt 3

Tpt 4

75

   



B Tbn

 

 

Euph

Drms

Perc

 

 

  

 

 

  Tuba   

  

sub. f

  

                  

                       

  

Tbn 2

 

sub. f

  Hrn   

 Tbn 1

3

     

 



 3

   

 



                  

sub. f

 

 

  

 

  

sub. f

sub. f

                 

sub. f

  

  

  

  

  

 

 

 

 

sub. f

sub. f

   

 

sub. f

  

 


Tpt 1

 

Tpt 2

K

  mp

 



Tbn 2

mp

 

 

 

 

 









  







mp

  B Tbn  

 

 

 

 

 

  



 

Perc   

mp

mp

Drms

mp



    



Tuba

  

Euph



33

                                

  Hrn   

 Tbn 1



mp

 

Tpt 3

Tpt 4

77

mp ride bell

mp

mp

 

 

  



 

 

 

 

 

 

   





  

  

 

 

 

 

 

 

 



 

 

 

 


34

Tpt 1

79

Tpt 2

Tpt 3

Tpt 4



 







 







                                

  Hrn   

 Tbn 1 

Tbn 2

 

 

 





  B Tbn  

 

 

 

 

  Tuba  

Drms

Perc

 

 

  

Euph

 









 

 

  

 

 

 

 

   

  

 

 

 

 

 



 

 



  

 

 


Tpt 1

81

Tpt 2

Tpt 3

Tpt 4



 







 







Tbn 2

 

 

 





  B Tbn  

 

 

 

 

  Tuba  

Drms

Perc

3

   

 

  

Euph

                                                

  Hrn   

 Tbn 1

35

 

 

  









 

 

 

 

 

 

 

 

 

3

   



3

 

 

 

  3

 


36

Tpt 1

83

 

Tpt 2

 

 



 

  

 

  

 

sub. f

sub. f

                  

Tpt 3



sub. f

                             Tpt 4     Hrn   

 Tbn 1 

Tbn 2

Euph

B Tbn

 

Drms

Perc

 

 

 

  





 

 

 

 

  Tuba   

 

3

 

   

 

 

  3

 

                  

sub. f

 

 

  

  

 

  

 

sub. f

sub. f

                  

sub. f

  

  

 

  

  

 







 

sub. f

 

 

sub. f

sub. f

 

 


Tpt 1

85

 

Tpt 2

   

L  mf

    

 

mf

 

 





37

 

       

Tpt 3

mf

Tpt 4



                              

  Hrn                                                   mf               Tbn 1 mf

Tbn 2

   

 

mf





                                                

Euph

mf

B Tbn

        

 

mf

        

 

 

       

 

       

     

     

 

mf

  Tuba   Drms

Perc

 

ride bell

mf

mf

                 

   

                 


38

Tpt 1

Tpt 2

88

   

     



 

 

 

 

       

              

Tpt 3

   

                        

                                 Tpt 4      Hrn                

Tbn 1

 

Tbn 2

   

 

  Tuba   Drms

Perc

 

    

Euph

B Tbn

   

                 

                          

  

 

 

   

                           

                 

 

      

 

                          


M    Tpt 1 

     

        

          

           

91

sfz

Tpt 2

sfz

Tpt 3

sfz

                  Tpt 4      Hrn    

 Tbn 1

sfz

   

Euph

sfz

  B Tbn  

f

  Tuba   

f

        

        

        

       

        

 

 

      

      

        

      

f

f

 

 ride bell    

Perc   

              

      

Tbn 2

Drms

39

     

     

             

 


40

Tpt 1

94

   

Tpt 2

 

Tpt 3

  Tpt 4    Hrn   













  

  Tbn 1





Tbn 2

 





Euph

 



  B Tbn  

Drms

Perc

 

 

 

 

 

 

 

  













 

  Tuba  

  

 

  

 

 

 

  



 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

  

  

 

 

    









 

 

 

 

 

 

 

 

 

 



 

 


Tpt 1

Tpt 2

Tpt 3

41

96

        

  

               

               

ff

           Tpt 4      Hrn       Tbn 1

Tbn 2

Euph

ff

    

ff

  

   

  B Tbn      Tuba  

    Drms     Perc   

       

   

  

sfz

  

sfz

  

sfz

  

sfz



sfz

      sfz    sfz


Sb40 greenhornetfullscore  
Advertisement
Read more
Read more
Similar to
Popular now
Just for you