Issuu on Google+

Superbrass Music

Funk

Score in C

Trumpet 1

Funk it up !   

Composed by Keiron Anderson Edited by Roger Argente

q = 88

Trumpet 2

  

Trumpet 3

  

Flugelhorn

   

Horn in F

     

 Trombone 1   Trombone 2

Euphonium

  



mp

mp

  



mp

         Bass Trombone          mp

        Tuba         

Drums

  

mp

          mp

   

       

   

   

        

   

                 

        

All Rights Reserved © 2014 Superbrass Music www.superbrass.co.uk

 

                 


2

Tpt 1

Tpt 2

Tpt 3

Flug

Hrn

3

  

  

  

  

    

Euph

f

       

f

       

f

 

 



  



 



 

     

 



 

 Tbn 1  Tbn 2

    

 

  B Tbn  

            

                    

 Tuba   

            

                    

 Drms  

     

                

                                               


Tpt 1

Tpt 2

Tpt 3

Flug

Hrn

6

   

Euph



  

    



    

  

  

         

3

 

      

  

    

 

 







    

 



 Tbn 1  Tbn 2

    

 

         B Tbn      

   

              

          Tuba     

   

              

 Drms  

       

 

                     

  

  

        


4

Tpt 1

Tpt 2

8

       

              

mf

              

mf

mf

mf

             

 Flug     

                  

Hrn

    

mf

mf

   

Tpt 3

         

      

mf

 

 

 

 

 Tbn 1 



  

 





 

Tbn 2

Euph

   



  B Tbn  

    

   

        

   

   

 Tuba   

    

   

        

   

   

 Drms  

       

 

  

                   

  

  

        


Tpt 1

10

    

  

Tpt 2



  

Tpt 3

         

   Hrn    



 Tbn 1  Tbn 2

Euph

 

    

       

Flug

   

    

3

3

 

 

 

 

      

 

5

3

3

3

3







    

 



 

    B Tbn  

     

   

              

  Tuba    

      

   

              

 Drms  

        

 

                       

  

  

        


6

Tpt 1

Tpt 2

12

       

mf

           

            

mf

   

           

 Flug     

                

Tpt 3

Hrn

     

 Tbn 1  Tbn 2



3

            

f

 

mf

      

mf

  

B Tbn

   

   



   

   



 

 

 

   

   

 

     

   

mf

   

 Drms  

3

f

mf

Euph

Tuba

            



mf

      

                        

   

mf

            mf

  

             

mf


Tpt 1

Tpt 2

Tpt 3

Flug

Hrn

       

       

14

   

        

Euph

B Tbn

Tuba

    

     

        

 Drms  

  

     f

               

f

3 3

              

     

  

     

     

 

3

           

           

   

 Tbn 1   Tbn 2

     

 

  

 

  

 

     

   

 

     

   

               

  

               

  

               

     

      

7


8

Tpt 1

Tpt 2

Tpt 3

Flug

Hrn

  

  

              

 

  

   

    

             

16

f

       

 Tbn 1 

 f

Tbn 2

  

Euph

   

B Tbn

    

Tuba

    

 Drms  

  

 



f

            3

   f

3

   





  

   

  

 

    f

             3

 



 

 

    

 

 



 

 

     

 

  

                 

  

  

                 

  

 

    

 

  

 

                 

     

  

  

 



 



         


Tpt 1

Tpt 2

Tpt 3

Flug

Hrn

9 18

  

       

Tbn 2

 

  

    

  

Euph

   

B Tbn

    

Tuba

       

     Tbn 1  

    

 Drms  

  

 

 

 

 

mf

   

       mf       

mf

       

mf

    

            

    

              

    

    

      

   

 

  

 

mf

mf

                

 

                

 

mf

mf

                      mf

  

  

        


   

     

Tpt 2

   

     



Tpt 3

  

10

Tpt 1

Flug

20

f

f

 

    

 

f

   

    

 Drms  

  

    

    

    

    

 

  



               

Euph

Tuba

 

                 

Tbn 2

mf

      

         

                             Tbn 1 

B Tbn



Hrn

 

    

 

         

 

  

  

  

   

  

   

                 

  

  

        


Tpt 1

       

22

Tpt 2

        

Tpt 3

  

Flug

   

     

Hrn

 Tbn 1  Tbn 2

Euph

B Tbn

Tuba

 







  

      

  

  

    

  

  

    

  

mf

mf

     

  

 

  

    

    

 

 

   

    

   

 

  

  

    



  

    



  

  

    

 

11

      

           

 Drms  



  





  

  

                 

  

  

        


12

Tpt 1

24

  



 

  

Tpt 2

    

Tpt 3

                        mf

 

           

           Flug      ���        mf   

          

    

 Tbn 1 

Hrn

Tbn 2

Euph

B Tbn

Tuba

 

    

 

           

 

    

    

 

 

   

    

   

 

 

 



     

    



     

  

    

 Drms  



 

    

 



  





  

  

                 

  

  

        


Tpt 1

Tpt 2

Tpt 3

Flug

Hrn

26

   

   

Euph

B Tbn

Tuba

  







  





mf

mf

  

  

              

     

     

 Tbn 1   Tbn 2

mf

             

13

 

mf

    

 

           

 

 

 

    

    

  

 

    

    

 

mf

    



     

  





  



    



     

  





  



  

    

 Drms  

 

  

                 

  

  

        


   

    

              

  

   

            

  

   

 Flug     

    

   

 

  

14

Tpt 1

Tpt 2

28



 

p

    

p

p

 Tbn 1  

Euph

Tuba

    

  

          

 

Tbn 2

B Tbn

p

Tpt 3

Hrn

  

   

    

 Drms  

  

f

f

  

  

 

   

  

      

        

f

 

    

f

  

 

                            


Tpt 1

Tpt 2

Tpt 3

Flug

Hrn

 

                 

   

                

30

f

3 3

f

  

          mf

 

mf

 

           

 

 

   

   

  

 

     

   

Tbn 2

Euph

B Tbn

Tuba

 

       

  

  

f

  

f

      

       

 

       

 

               

   

 Drms  

   

 Tbn 1  

   

15

  

 

   

                   


16

Tpt 1

            3

                          



   

           

     

                



Tpt 3

Hrn

  

  

Tpt 2

Flug

32

3 3

           

          Tbn 1   Tbn 2

  

Euph

   

 

  

 

  

 

 

     

   

 

     

   

                

 

     

 

 

     

 

B Tbn

               

  



Tuba

                

  



 Drms  

             

      

  

   

  

   

                  


Tpt 1

Tpt 2

Tpt 3

Flug

Hrn

34

   

17

    



   



                3

   

            

Tbn 2

  

Euph

   

3

         

 Tbn 1 

  

 

 

 



   



              

                      

3

 



 



 

 

 

 

 

 

 

 

 

 

Tuba

                

   

 Drms  

   

 

        

 



   

 

   

  

 



               

  

B Tbn

       

  

  

  

      

  

         


18

Tpt 1

Tpt 2

Tpt 3

Flug

Hrn

36

  

Euph

     

      

      



   

      

   

mf



mf

                   

 Tbn 1  Tbn 2

      f

f

 

         

 

                         

mf

            

mf

              

               mf

            

                mf

B Tbn

               

   

Tuba

                

   

 Drms  

       

  

  

f

        

  

    

    

    

 

  

 

 

         


Tpt 1

38

   

Tpt 2

    

Tpt 3

  

  

Flug

Hrn

f

Tbn 2

Euph

B Tbn

Tuba

 

        

mf

      



      

    

         

 

 

       

  

    

        

 

 

    

  

 

    

   

 

  

 

   

  



  

  

    



  

  

 

    

  

     

     

  

mf

              

 Drms  

      

mf

     

 Tbn 1 



19

        

  

    

 

  

          


20





Tpt 2

    



Tpt 3

     

 Flug       

                     

Tpt 1

Hrn

40



        

 Tbn 1  Tbn 2

Euph

B Tbn

Tuba

 

      

   

 

      

   

  

                       

     

    

                        

 Drms  

 

  

  

       

  

  

 

 

    

 

 

    

   

 

 

 

   

   



     

   



     

        

  

    

 

  

         


Tpt 1

21 42

  

Tpt 2

   

Tpt 3

  

Flug

   

Hrn

Tbn 2

Euph

B Tbn

Tuba

          

 

    

                        

 Drms  

 

  

  

       

  

  

 



     

        





      



mf

      

          

      

    

 Tbn 1 

 

    

 

 

 

 

    

   

  

 

  



     

  

  



     

  

        

  

    

 

  

         


22

44

   





Tpt 2

   





Tpt 3

   

  

Flug

    

Tpt 1

Hrn

      

  Tbn 1   

Tbn 2

Tuba

 

p

 

p

 

p

          

 

 

 

 

    

 

     



  

  

    



  

  

 Drms  

       

  

  



  

   

 

p

     

��� 

 

    

 

 

               

Euph

B Tbn

      

        

  

 

 

 

   

      

      

    

 

  

         


 46       Tpt 1   

      

      

     Flug     

         

f

Tpt 2

f

Tpt 3

f

f

Hrn

      Tbn 1   

Tbn 2

23

                    mp

                

                                           

Euph

mp

B Tbn

     mp

      mp      Drms    Tuba

mp

    

 

 

  

 

  

         

  

  

    

  

     

 

     

  

    


24

48

  

Tpt 2

  

Tpt 3

  

Flug

  

Tpt 1

Hrn

                                               mp

                                  Tbn 1   mp

 

 

 

 

 

  

 

    

  

Tbn 2

   

Euph

B Tbn

 

 

  

 

                                               Drms       Tuba

 

 

 

 

  

  

 

  

 

 

  

 

 

 

   

                                    


Tpt 1

  

Tpt 3

Hrn

  

mf

    

Tpt 2

Flug

50

mf

 Tbn 1  

 

3





  



   

   

  

  

 

  

  

  

  

f

    

     

 

    

    

 

f

  

f

 

  

f

  

mf

f

   

mf

    

f

                                           

Tbn 2

mf

f

mf

f

                                          

Euph

B Tbn

3

        



   

25

     mf

 

        mf             Drms    Tuba

mf

 

 

 

  

 

  

f

   

 

 

 f                                       f


26

Tpt 1

52

  

    

Tpt 2

    

Tpt 3

 Flug       Hrn

        3

    

3

          

        

     



  

        

3

3

 

 

       

                                              

                                  Tbn 1     

Tbn 2

   

Euph

B Tbn

   

 

  

   

  

  

    

 

 

                                   Drms       Tuba

    

    

 

    

    

 

 

 

  

  

   

                       


54



Tpt 2

  

Tpt 3

    

Tpt 1

 

mf

 Flug      

 

mf

Hrn

     

 Tbn 1  

  

  

   



  

  

3

    

  

  

   

f

f

  

   

  

  

 

    

     

 

    

    

 

f

f

                                     

Tbn 2

mf

f

mf

f

                                          

Euph

B Tbn

f

  

mf

f

 

  

3

   

mf

 

27

     mf

 

 

           mf                         Drms       Tuba

mf

   f

  

f

   

 

 

                       

f


28

Tpt 1

56

  

    

Tpt 2

    

Tpt 3

 Flug       Hrn

       

3

    

3

          

     

      

        

3

      

 

3

       

                                              

                                  Tbn 1     

Tbn 2

   

Euph

B Tbn

   

 

  

   

  

  

    

 

 

                                   Drms       Tuba

    

    

 

    

    

 

 

 

  

  

   

                       


29 58

  

Tpt 2

  

Tpt 3

  

Flug

  

    

 Tbn 1 

 

Tpt 1

Hrn

Tbn 2

Euph

B Tbn

     

                  

    

    

  

          

     

     

      

                 Drms      Tuba

       

      

                     

          

      

              


30

60

  

Tpt 2

  

Tpt 3

  

Flug

  

Tpt 1

Hrn

       mf

 Tbn 1  

   

  

mf

Tbn 2

     

Euph

     

B Tbn

    

  

              Drms     Tuba

 

                                        

  

           

                    

    

      

  

     

  

      

                      

          

   

              


Tpt 1



   

Tpt 2

   

Tpt 3

Flug

62

 3

3

3

      

  

3

3

mf

  Hrn                  Tbn 1   Tbn 2

      

Euph

      

B Tbn

     

              Drms     Tuba

3

3

    

 

    

 

               

3

3

3

ff

ff

       3 ff

                  

3

3

                      

3

      

                  

   

mf

               3

3

3

       

     3

       

mf

31

3

      

3

3

      ff  

     

      

      

   

                                               

   


32

64

  

Tpt 2

  

Tpt 3

  

Tpt 1

Flug

      mf

   

  

Hrn

         mf

   

  

  Tbn 1    

Tbn 2

     

Euph

     

B Tbn

    

 

              Drms     Tuba

                                      ���                     

  

           

                    

     

  

      

  

     

  

      

                      

          

   

              


Tpt 1

66



        





mf

Tpt 2

   

  

       





Tpt 3

          

 

 

mf

mf

Flug

     

   

  

Hrn

        

   

  

 Tbn 1  Tbn 2

     

Euph

     

B Tbn

    

   

              Drms     Tuba

                                         

33

  

           

                    

      

  

     

  

      

                      

          

   

              


34

Tpt 1

Tpt 2

 

                 

   

                

68

f

3 3

f

Tpt 3

Flug

Hrn

  

                     

 Tbn 1   Tbn 2

Euph

B Tbn

Tuba

    

   

 

   

        

   

  

  

       

  

      

       

 

       

 

                

   

 Drms  

   

   

 

   

  

 

   

                   


Tpt 1

            3

                          



   

           

     

                



Tpt 3

Hrn

  

  

Tpt 2

Flug

70

3

          Tbn 1   Tbn 2

  

Euph

   

3

           

 

  

 

  

 

 

     

   

 

     

   

                

 

     

 

 

     

 

B Tbn

               

  



Tuba

                

  



 Drms  

             

35

      

  

   

  

   

                  


36

Tpt 1

Tpt 2

Tpt 3

Flug

Hrn

72

   

    



   



                3

   

            

Tbn 2

  

Euph

   

3

         

 Tbn 1 

  

 

 

 



   



              

                      

3

 



 



 

 

 

 

 

 

 

 

 

 

Tuba

                

   

 Drms  

   

 

        

 



   

 

   

  

 



               

  

B Tbn

       

  

  

  

      

  

         


Tpt 1

Tpt 2

Tpt 3

Flug

Hrn

74

  

Euph

     

      

      



   

      



   

                   

 Tbn 1  Tbn 2

      f

f

 

         

 

            

mf

              

               mf

            

                mf

B Tbn

               

   

Tuba

                

   

 Drms  

  

  

f

                         

mf

       

37

        

  

    

    

    

 

  

 

 

         


38

Tpt 1

Tpt 2

Tpt 3

Flug

Hrn

76

        

Euph

B Tbn

Tuba



  

        

mf



      

    

         

 

 

       

  

    

        

 

 

    

  

 

    

   

 

  

 

   

  



  

  

    



  

  

 

    

  

     

     

  

mf

              

 Drms  

mf

     

 

       mf

      

  

 Tbn 1  Tbn 2

        

  

    

 

  

          


Tpt 1

Tpt 2

78







f

     f



39

      

   

 

      

   

  

                       

     

 Flug       

                     

Tpt 3

Hrn

        

 Tbn 1  Tbn 2

Euph

B Tbn

Tuba

 

     

    

                        

 Drms  

 

  

  

       

  

  

 

 

    

 

 

    

   

 

 

 

   

   



     

   



     

        

  

    

 

  

         


40

Tpt 1

Tpt 2

Tpt 3

Flug

Hrn

80

  

   

          

  

    

  Tbn 1  Tbn 2

Euph

B Tbn

Tuba

    

    











    

 Drms  

 

  

  

       

  

  

 

mf

mf

        



              



      

     

mf

      

          

      

   

 

mf

 mf

 

    

 

 

 

 

    

   

  

 

  



     

  

  



     

  

        

  

    

 

  

         


Tpt 1

Tpt 2

           

Tpt 3

Flug

82





  

p

 

 

 

     

               

Euph

 

  

 

p

    

      

 

p

      

Tbn 2

Tuba

 

    Tbn 1 

B Tbn



    

mf

Hrn



p

 

 

    

 

 

     

   



  

  

    



  

  

 Drms  

       

  

  

41

        

  

 

 

 

   

      

      

    

 

  

         


42

Tpt 1

84



 

     

 

    

 

    

 

    

         

    



f

    

Tpt 2

f

    

Tpt 3

f

  Flug     f

  Hrn        Tbn 1 

Euph

B Tbn

Tuba

 

    

     3

 

          

 

   

    

3

   

 

Tbn 2



 

 Drms  

  

   

   

   

   

    

 

       

       

      

 

  

    

                          

  


Sb46 funkfullscore