2022 Swanson School Summary of Faculty Research

Page 93

ELECTRICAL & COMPUTER ENGINEERING

Feng Xiong, PhD

1202 Benedum Hall | 3700 O’Hara Street | Pittsburgh, PA 15261

Assistant Professsor

P: 412-383-5306 f.xiong@pitt.edu xionglab.pitt.edu

Tunable Two-Dimensional (2D) Electronics Biography Dr. Feng Xiong is an Assistant Professor in the Electrical and Computer Engineering (ECE) Department at University of Pittsburgh (Pitt) since 2016. He received his PhD (2014) and M.S. (2010) in ECE from the University of Illinois at UrbanaChampaign (UIUC) and his B. Eng. in ECE (2008) from the National University of Singapore (NUS). Prior to joining Pitt, Xiong was at Stanford University as a postdoc fellow. His research interests are in energy-efficient electronics, next-generation memory devices, novel 1D and 2D materials, flexible electronics, nanoscale thermal transport and renewable energy harvesting. He received several awards including the Nano- and Quantum Science and Engineering Postdoctoral Fellowship, MRS Graduate Student Gold award, and TSMC Outstanding Student Research Gold Award. He is a member of IEEE and MRS.

2D Transition metal dichalcogenides (TMDs) are widely considered to be promising candidates for beyond-Si computing due to their two-dimensional nature with no dangling bonds and unique material properties. They are studied for a range of applications such as transistors, optoelectronics, sensors, and electro-catalysis, which often have different material properties requirements. While researchers are actively looking for methods such as doping, strain, and nano-structuring to engineer the material properties of 2D films and optimize their performances for various applications, there has yet to be an effective way to manipulate their properties. We adopt a novel approach using electrochemical intercalation to engineer electrical, optical, and thermal properties in 2D materials and achieve “materials by design” for tunable electronics.

Low-Power Emerging Memories In today’s big-data era, trillions of sensors will connect every aspect of our lives to the Internet, constantly producing an overwhelming amount of data. Traditional memory technologies such as DRAM and flash are approaching their fundamental limit and cannot satisfy the required throughput and energy efficiency. The Xiong group is working on alternative memory technologies such as phase change memory PCM and resistive memory (RRAM), which are highly scalable, energy-efficient with high-speed switching and excellent endurance.

Research Interests • • • • • •

Energy-efficient electronics Device physics Flexible, wearable electronics Novel 1D/2D materials Electrochemical intercalation Tunable electronics

• Next-generation memory devices (PCM and RRAM) • Neuromorphic computing • Electro-thermal transport • Thermoelectric energy harvesting

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Electronics

Energy Efficient

Tunable Electronics

Flexible Electronics

Energy Harvesting

Materials Innovation

93


Turn static files into dynamic content formats.

Create a flipbook

Articles inside

Xiayun (Sharon) Zhao, PhD

37min
pages 133-154

Jörg M.K. Wiezorek, PhD

2min
page 131

Wei Xiong, PhD, D.Eng

1min
page 132

Guofeng Wang, PhD

2min
page 130

Jeffrey Vipperman, PhD

2min
page 129

Albert C. To, PhD

1min
page 128

Patrick Smolinski, PhD

1min
page 127

Inanc Senocak, PhD

1min
page 126

David Schmidt, PhD

2min
page 125

Ian Nettleship, PhD

2min
page 124

Scott X. Mao, PhD

2min
page 123

Jung-Kun Lee, PhD

3min
page 122

Tevis D. B. Jacobs, PhD

1min
page 121

William W. Clark, PhD

2min
page 118

Daniel G. Cole, PhD, PE

2min
page 119

Katherine Hornbostel, PhD

1min
page 120

Minking K. Chyu, PhD

2min
page 117

Heng Ban, PhD, PE

2min
page 115

Hessam Babaee, PhD

2min
page 114

Michael D. Sherwin, PhD, P.E

2min
pages 111-113

Markus Chmielus, PhD

1min
page 116

M. Ravi Shankar, PhD

2min
page 110

Amin Rahimian, PhD

1min
page 108

Jayant Rajgopal, PhD, P.E

2min
page 109

Lisa M. Maillart, PhD

2min
page 107

Paul W. Leu, PhD

1min
page 106

Daniel R. Jiang, PhD

1min
page 105

Oliver Hinder, PhD

2min
page 104

Joel M. Haight, PhD, P.E., CIH, CSP

2min
page 103

Renee M. Clark, PhD

2min
page 102

Karen M. Bursic, PhD

1min
page 100

Youngjae Chun, PhD

3min
page 101

Mary Besterfield-Sacre, PhD

2min
page 99

Minhee Yun, PhD

2min
pages 96-97

Mostafa Bedewy, PhD

1min
page 98

Nathan Youngblood, PhD

2min
page 95

Jun Yang, PhD

3min
page 94

Gregory F. Reed, PhD

3min
page 91

Feng Xiong, PhD

2min
page 93

Inhee Lee, PhD

2min
page 88

Guangyong Li, PhD

2min
page 89

Alexis Kwasinski, PhD

2min
page 87

Hong Koo Kim, PhD

2min
page 86

Alex K. Jones, PhD

3min
page 85

Brandon M. Grainger, PhD

2min
page 83

Alan D. George, PhD, FIEEE

2min
page 82

Masoud Barati, PhD

2min
page 81

Mai Abdelhakim, PhD

1min
page 80

Meng Wang, PhD

1min
pages 78-79

Radisav Vidic, PhD

2min
page 77

Julie M. Vandenbossche, PhD, PE

2min
page 76

Aleksandar Stevanovic, PhD, P.E., FASCE

2min
page 75

Piervincenzo Rizzo, PhD

2min
page 74

Xu Liang, PhD

2min
page 71

Jeen-Shang Lin, PhD, P.E

2min
page 72

Carla Ng, PhD

2min
page 73

Sarah Haig, PhD

2min
page 69

Lei Fang, PhD

3min
page 66

Andrew P. Bunger, PhD

2min
page 65

Alessandro Fascetti, PhD

2min
page 67

Melissa Bilec, PhD

2min
page 64

Judith C. Yang, PhD

2min
pages 61-63

Götz Veser, PhD

2min
page 59

Christopher E. Wilmer, PhD

1min
page 60

Sachin S. Velankar, PhD

2min
page 58

Tagbo Niepa, PhD

2min
page 55

Jason E. Shoemaker, PhD

1min
page 57

Giannis Mpourmpakis, PhD

2min
page 54

Badie Morsi, PhD

3min
page 53

James R. McKone, PhD

1min
page 52

Lei Li, PhD

1min
page 50

Steve R. Little, PhD

2min
page 51

John A. Keith, PhD

2min
page 49

J. Karl Johnson, PhD

2min
page 48

Susan Fullerton, PhD

2min
page 47

Robert M. Enick, PhD

2min
page 46

Eric J. Beckman, PhD

2min
page 45

Ipsita Banerjee, PhD

2min
page 44

Ioannis Zervantonakis, PhD

2min
pages 41-43

Savio L-Y. Woo, PhD, D.Sc., D.Eng

2min
page 40

Justin S. Weinbaum, PhD

1min
page 39

Jonathan Vande Geest, PhD

1min
page 37

David A. Vorp, PhD

2min
page 38

Sanjeev G. Shroff, PhD

2min
page 34

Gelsy Torres-Oviedo, PhD

3min
page 36

George Stetten, MD, PhD

2min
page 35

Joseph Thomas Samosky, PhD

2min
page 33

Warren C. Ruder, PhD

1min
page 32

Partha Roy, PhD

2min
page 31

Prashant N. Kumta, PhD

2min
page 27

Spandan Maiti, PhD

2min
page 29

Mark Redfern, PhD

2min
page 30

Patrick J. Loughlin, PhD

2min
page 28

Mangesh Kulkarni, PhD

1min
page 26

Takashi “TK” Kozai, PhD

2min
page 25

Katrina M. Knight, PhD

2min
page 24

Bistra Iordanova, PhD

1min
page 23

Alan D. Hirschman, PhD

1min
page 21

Mark Gartner, PhD

1min
page 20

William Federspiel, PhD

2min
page 18

Neeraj J. Gandhi, PhD

2min
page 19

Tamer S. Ibrahim, PhD

5min
page 22

Richard E. Debski, PhD

1min
page 17

Lance A. Davidson, PhD

2min
page 16

Rakié Cham, PhD

2min
page 13

Steven Abramowitch, PhD

2min
page 8

Moni Kanchan Datta, PhD

2min
page 15

Bryan N. Brown, PhD

1min
page 12

Kurt E. Beschorner, PhD

2min
page 10

Harvey Borovetz, PhD

1min
page 11

Aaron Batista, PhD

4min
page 9

Tracy Cui, PhD

2min
page 14
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
2022 Swanson School Summary of Faculty Research by PITT | SWANSON School of Engineering - Issuu