2022 Swanson School Summary of Faculty Research

Page 89

ELECTRICAL & COMPUTER ENGINEERING

Guangyong Li, PhD

506 Benedum Hall | 3700 O’Hara Street | Pittsburgh, PA 15261

Associate Professor

P: 412-624-9663 gul6@pitt.edu www.pitt.edu/~gul6

Dr. Guagyong Li is an Associate Professor in the Department of Electrical and Computer Engineering. Li’s major research interests include micro/nano robotics; nanoscale characterization; thin film solar cells; biocellular mechanics.

Particularly, Li is interested in developing nanorobotic systems to manipulate materials at nanoscale; developing nanoscale metrological instruments and technologies to study fundamental physics of nanodevices and to characterize

biomaterials at cellar and molecular levels; studying fundamental physics of organic/inorganic thin film solar cells through multiscale modeling and simulation as well as nanoscale characterization.

Multiscale Modeling, Simulation and Optimization for Designing Organic Solar Cells Organic solar cells hold the potential of being a low-cost, highly flexible renewable energy harvesting technology. But organic solar cells have not yet proven to be a viable alternative to silicon-based ones due to the limited understanding of charge transport behaviors across length scales of organic solar cells, yet such transport is crucial for device efficiency. The objective of this research is thus to develop a multiscale simulation and optimization methodology for organic solar cells that directly links the basic materials properties(electronic and optical), nanoscale morphology and their dependency on processing conditions (e.g. temperature and time), bulk material properties (e.g. bulk mobility), and device designs, to device efficiency. We aim to merge simulation tools across multiple time and length scales using successive integration steps. The resulting tools would enable a holistic design approach where the design space will be systematically explored to dramatically improve the performance of organic solar cell devices.

Fabrication

Multi-Scale Characterization

Design

Multiscale Modeling and Simulation

Efficiency

Optimization

Development of Kelvin Probe Force Microscopy for In Situ Characterization of thin Film Solar Cells Kelvin probe force microscopy is able to differentiate work function of surfaces at nanoscale. It has evolved into an effective tool to study electrical properties of materials such as semiconductors, organic materials, biomolecules, and nanoscale materials. For example, it can directly observe the charge transfer at interface between two materials. The right figure shows the direct observation of hole transfer between a carbon nanotube and organic semiconductor polymer revealed by Kelvin probe force microscopy. Our

objectives in this research area include (1) the fundamental study on Kelvin probe force microscopy with aim to improve the resolution and accuracy; (2) investigation of charge transfer among interfaces by Kevin probe force microscopy with aim to reveal the fundamental physics of organic/inorganic thin film solar cells; (3) Characterization of junctions in organic/ inorganic thin film solar cells with aim to locate any barriers that deteriorate the performance of the cells.

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

89


Turn static files into dynamic content formats.

Create a flipbook

Articles inside

Xiayun (Sharon) Zhao, PhD

37min
pages 133-154

Jörg M.K. Wiezorek, PhD

2min
page 131

Wei Xiong, PhD, D.Eng

1min
page 132

Guofeng Wang, PhD

2min
page 130

Jeffrey Vipperman, PhD

2min
page 129

Albert C. To, PhD

1min
page 128

Patrick Smolinski, PhD

1min
page 127

Inanc Senocak, PhD

1min
page 126

David Schmidt, PhD

2min
page 125

Ian Nettleship, PhD

2min
page 124

Scott X. Mao, PhD

2min
page 123

Jung-Kun Lee, PhD

3min
page 122

Tevis D. B. Jacobs, PhD

1min
page 121

William W. Clark, PhD

2min
page 118

Daniel G. Cole, PhD, PE

2min
page 119

Katherine Hornbostel, PhD

1min
page 120

Minking K. Chyu, PhD

2min
page 117

Heng Ban, PhD, PE

2min
page 115

Hessam Babaee, PhD

2min
page 114

Michael D. Sherwin, PhD, P.E

2min
pages 111-113

Markus Chmielus, PhD

1min
page 116

M. Ravi Shankar, PhD

2min
page 110

Amin Rahimian, PhD

1min
page 108

Jayant Rajgopal, PhD, P.E

2min
page 109

Lisa M. Maillart, PhD

2min
page 107

Paul W. Leu, PhD

1min
page 106

Daniel R. Jiang, PhD

1min
page 105

Oliver Hinder, PhD

2min
page 104

Joel M. Haight, PhD, P.E., CIH, CSP

2min
page 103

Renee M. Clark, PhD

2min
page 102

Karen M. Bursic, PhD

1min
page 100

Youngjae Chun, PhD

3min
page 101

Mary Besterfield-Sacre, PhD

2min
page 99

Minhee Yun, PhD

2min
pages 96-97

Mostafa Bedewy, PhD

1min
page 98

Nathan Youngblood, PhD

2min
page 95

Jun Yang, PhD

3min
page 94

Gregory F. Reed, PhD

3min
page 91

Feng Xiong, PhD

2min
page 93

Inhee Lee, PhD

2min
page 88

Guangyong Li, PhD

2min
page 89

Alexis Kwasinski, PhD

2min
page 87

Hong Koo Kim, PhD

2min
page 86

Alex K. Jones, PhD

3min
page 85

Brandon M. Grainger, PhD

2min
page 83

Alan D. George, PhD, FIEEE

2min
page 82

Masoud Barati, PhD

2min
page 81

Mai Abdelhakim, PhD

1min
page 80

Meng Wang, PhD

1min
pages 78-79

Radisav Vidic, PhD

2min
page 77

Julie M. Vandenbossche, PhD, PE

2min
page 76

Aleksandar Stevanovic, PhD, P.E., FASCE

2min
page 75

Piervincenzo Rizzo, PhD

2min
page 74

Xu Liang, PhD

2min
page 71

Jeen-Shang Lin, PhD, P.E

2min
page 72

Carla Ng, PhD

2min
page 73

Sarah Haig, PhD

2min
page 69

Lei Fang, PhD

3min
page 66

Andrew P. Bunger, PhD

2min
page 65

Alessandro Fascetti, PhD

2min
page 67

Melissa Bilec, PhD

2min
page 64

Judith C. Yang, PhD

2min
pages 61-63

Götz Veser, PhD

2min
page 59

Christopher E. Wilmer, PhD

1min
page 60

Sachin S. Velankar, PhD

2min
page 58

Tagbo Niepa, PhD

2min
page 55

Jason E. Shoemaker, PhD

1min
page 57

Giannis Mpourmpakis, PhD

2min
page 54

Badie Morsi, PhD

3min
page 53

James R. McKone, PhD

1min
page 52

Lei Li, PhD

1min
page 50

Steve R. Little, PhD

2min
page 51

John A. Keith, PhD

2min
page 49

J. Karl Johnson, PhD

2min
page 48

Susan Fullerton, PhD

2min
page 47

Robert M. Enick, PhD

2min
page 46

Eric J. Beckman, PhD

2min
page 45

Ipsita Banerjee, PhD

2min
page 44

Ioannis Zervantonakis, PhD

2min
pages 41-43

Savio L-Y. Woo, PhD, D.Sc., D.Eng

2min
page 40

Justin S. Weinbaum, PhD

1min
page 39

Jonathan Vande Geest, PhD

1min
page 37

David A. Vorp, PhD

2min
page 38

Sanjeev G. Shroff, PhD

2min
page 34

Gelsy Torres-Oviedo, PhD

3min
page 36

George Stetten, MD, PhD

2min
page 35

Joseph Thomas Samosky, PhD

2min
page 33

Warren C. Ruder, PhD

1min
page 32

Partha Roy, PhD

2min
page 31

Prashant N. Kumta, PhD

2min
page 27

Spandan Maiti, PhD

2min
page 29

Mark Redfern, PhD

2min
page 30

Patrick J. Loughlin, PhD

2min
page 28

Mangesh Kulkarni, PhD

1min
page 26

Takashi “TK” Kozai, PhD

2min
page 25

Katrina M. Knight, PhD

2min
page 24

Bistra Iordanova, PhD

1min
page 23

Alan D. Hirschman, PhD

1min
page 21

Mark Gartner, PhD

1min
page 20

William Federspiel, PhD

2min
page 18

Neeraj J. Gandhi, PhD

2min
page 19

Tamer S. Ibrahim, PhD

5min
page 22

Richard E. Debski, PhD

1min
page 17

Lance A. Davidson, PhD

2min
page 16

Rakié Cham, PhD

2min
page 13

Steven Abramowitch, PhD

2min
page 8

Moni Kanchan Datta, PhD

2min
page 15

Bryan N. Brown, PhD

1min
page 12

Kurt E. Beschorner, PhD

2min
page 10

Harvey Borovetz, PhD

1min
page 11

Aaron Batista, PhD

4min
page 9

Tracy Cui, PhD

2min
page 14
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.