2022 Swanson School Summary of Faculty Research

Page 131

MECHANICAL ENGINEERING & MATERIALS SCIENCE

Jörg M.K. Wiezorek, PhD

538i Benedum Hall | 3700 O’Hara Street | Pittsburgh, PA 15261

Professor

P: 412-624-0122 wiezorek@pitt.edu

Professor Wiezorek’s research expertise and interest center on the study of processing-structureproperty relationships in advanced materials systems. Transmission electron microscopy (TEM) based imaging, quantitative diffraction and analytical spectroscopic methods, and other modern micro-characterization techniques feature prominently in his research. Combining the principles and practice of physical metallurgy and metal physics with electron microscopy observation and measurements with appropriate computer simulations, the research leads to the discovery of novel materials and materials behaviors, explanations of the mechanical, magnetic and other physical properties of modern materials, with an emphasis on intermetallic and metallic systems. Current research thrusts include: (1) Determination of the electron density of transition metals and intermetallics by quantitative electron diffraction and DFT; (2) Surface modification for enhanced performance of structural materials for harsh environments; (3) Ultrafast (nano-scale spatio-temporal resolution) in-situ TEM of pulsed laser induced transformations (e.g. rapid solidification) in metals and alloys; (4) Innovative manufacturing processes for the sustainable preparation of high performance permanent magnet materials.

Unique New Capabilities – Quantitative TEM Orientation imaging microscopy (OIM) enables effective quantification of microstructural metrics (e.g. grain size, texture, grain boundary character) for polycrystalline materials and is popularly implemented with SEM instruments. Using precession electron diffraction (PED) patterns obtained with 2nm spatial resolution a new TEM-OIM method facilitates automated phase mapping, grain size and texture determination at length scales not accessible by SEM-OIM, permitting study of many previously inaccessible problems in nanoscaled crystalline materials. Texture and grain scale evolution in pulsed laser processed nano-sale metal and alloy thin films (e.g. Figure top) and the origin of the extraordinary strengthening in severe plastic deformation processed steels were determined successfully by TEM-OIM [McKewon et al. (2014) Acta Mat. 65, p56; Idell et al 2013) Scripta Mat. 68, p667]. Validation of density functional theory (DFT) calculated materials properties is often hampered by lack of suitable experimental data for the material of interest. Comparisons of the electronic charge density distribution obtained from quantitative convergent beam electron diffraction (CBED) can provide a new experimental metric for rapid DFT validation protocols. Our CBED method for simultaneous measurements of Debye-Waller factors and structure factors is broadly applicable to crystalline materials. It has been used to determine the nature of bonding (e.g. metallic ‘bonds’ visualized in magenta between blue-green electron charge depleted atoms in FePd, Figure bottom) in transition metals (e.g. Cr, Fe, Ni, Cu) and intermetallics (e.g. NiAl, TiAl, FePd, Ni2MnGa). Comparison with DFT calculated results indicate need for improved theoretical treatments [Sang et al. (2013) J. Chem. Phys 138, 084504].

Research Themes and Expertise • Processing-Structure-Properties in Advanced Metals & Alloys

• Property measurements (mechanical, magnetic, thermal/calorimetric).

• Physical Metallurgy & metal physics

• Processing of metals and alloys by… e.g. Conventional & Severe Plastic Deformation (e.g. ECAP), Heat treatments (T≤1200˚C, in air-, controlled atmosphere, vacuum), Melting & Solidification, Laser Irradiation (surface melting, annealing, shocking, sintering), Physical Vapor Deposition (E-beam evaporation, pulsed-laser deposition, sputtering).

• Electron Microscopy/Diffraction/Spectroscopy by SEM & TEM/STEM, structure & composition (HREM, EDS/EELS, CBED, PED OIM, EBSD OIM, in-situ TEM). • X-ray diffraction (phase ID & fractions, texture, stress/strain, crystallite size). DEPARTMENT OF MECHANICAL ENGINEERING AND MATERIALS SCIENCE

131


Turn static files into dynamic content formats.

Create a flipbook

Articles inside

Xiayun (Sharon) Zhao, PhD

37min
pages 133-154

Jörg M.K. Wiezorek, PhD

2min
page 131

Wei Xiong, PhD, D.Eng

1min
page 132

Guofeng Wang, PhD

2min
page 130

Jeffrey Vipperman, PhD

2min
page 129

Albert C. To, PhD

1min
page 128

Patrick Smolinski, PhD

1min
page 127

Inanc Senocak, PhD

1min
page 126

David Schmidt, PhD

2min
page 125

Ian Nettleship, PhD

2min
page 124

Scott X. Mao, PhD

2min
page 123

Jung-Kun Lee, PhD

3min
page 122

Tevis D. B. Jacobs, PhD

1min
page 121

William W. Clark, PhD

2min
page 118

Daniel G. Cole, PhD, PE

2min
page 119

Katherine Hornbostel, PhD

1min
page 120

Minking K. Chyu, PhD

2min
page 117

Heng Ban, PhD, PE

2min
page 115

Hessam Babaee, PhD

2min
page 114

Michael D. Sherwin, PhD, P.E

2min
pages 111-113

Markus Chmielus, PhD

1min
page 116

M. Ravi Shankar, PhD

2min
page 110

Amin Rahimian, PhD

1min
page 108

Jayant Rajgopal, PhD, P.E

2min
page 109

Lisa M. Maillart, PhD

2min
page 107

Paul W. Leu, PhD

1min
page 106

Daniel R. Jiang, PhD

1min
page 105

Oliver Hinder, PhD

2min
page 104

Joel M. Haight, PhD, P.E., CIH, CSP

2min
page 103

Renee M. Clark, PhD

2min
page 102

Karen M. Bursic, PhD

1min
page 100

Youngjae Chun, PhD

3min
page 101

Mary Besterfield-Sacre, PhD

2min
page 99

Minhee Yun, PhD

2min
pages 96-97

Mostafa Bedewy, PhD

1min
page 98

Nathan Youngblood, PhD

2min
page 95

Jun Yang, PhD

3min
page 94

Gregory F. Reed, PhD

3min
page 91

Feng Xiong, PhD

2min
page 93

Inhee Lee, PhD

2min
page 88

Guangyong Li, PhD

2min
page 89

Alexis Kwasinski, PhD

2min
page 87

Hong Koo Kim, PhD

2min
page 86

Alex K. Jones, PhD

3min
page 85

Brandon M. Grainger, PhD

2min
page 83

Alan D. George, PhD, FIEEE

2min
page 82

Masoud Barati, PhD

2min
page 81

Mai Abdelhakim, PhD

1min
page 80

Meng Wang, PhD

1min
pages 78-79

Radisav Vidic, PhD

2min
page 77

Julie M. Vandenbossche, PhD, PE

2min
page 76

Aleksandar Stevanovic, PhD, P.E., FASCE

2min
page 75

Piervincenzo Rizzo, PhD

2min
page 74

Xu Liang, PhD

2min
page 71

Jeen-Shang Lin, PhD, P.E

2min
page 72

Carla Ng, PhD

2min
page 73

Sarah Haig, PhD

2min
page 69

Lei Fang, PhD

3min
page 66

Andrew P. Bunger, PhD

2min
page 65

Alessandro Fascetti, PhD

2min
page 67

Melissa Bilec, PhD

2min
page 64

Judith C. Yang, PhD

2min
pages 61-63

Götz Veser, PhD

2min
page 59

Christopher E. Wilmer, PhD

1min
page 60

Sachin S. Velankar, PhD

2min
page 58

Tagbo Niepa, PhD

2min
page 55

Jason E. Shoemaker, PhD

1min
page 57

Giannis Mpourmpakis, PhD

2min
page 54

Badie Morsi, PhD

3min
page 53

James R. McKone, PhD

1min
page 52

Lei Li, PhD

1min
page 50

Steve R. Little, PhD

2min
page 51

John A. Keith, PhD

2min
page 49

J. Karl Johnson, PhD

2min
page 48

Susan Fullerton, PhD

2min
page 47

Robert M. Enick, PhD

2min
page 46

Eric J. Beckman, PhD

2min
page 45

Ipsita Banerjee, PhD

2min
page 44

Ioannis Zervantonakis, PhD

2min
pages 41-43

Savio L-Y. Woo, PhD, D.Sc., D.Eng

2min
page 40

Justin S. Weinbaum, PhD

1min
page 39

Jonathan Vande Geest, PhD

1min
page 37

David A. Vorp, PhD

2min
page 38

Sanjeev G. Shroff, PhD

2min
page 34

Gelsy Torres-Oviedo, PhD

3min
page 36

George Stetten, MD, PhD

2min
page 35

Joseph Thomas Samosky, PhD

2min
page 33

Warren C. Ruder, PhD

1min
page 32

Partha Roy, PhD

2min
page 31

Prashant N. Kumta, PhD

2min
page 27

Spandan Maiti, PhD

2min
page 29

Mark Redfern, PhD

2min
page 30

Patrick J. Loughlin, PhD

2min
page 28

Mangesh Kulkarni, PhD

1min
page 26

Takashi “TK” Kozai, PhD

2min
page 25

Katrina M. Knight, PhD

2min
page 24

Bistra Iordanova, PhD

1min
page 23

Alan D. Hirschman, PhD

1min
page 21

Mark Gartner, PhD

1min
page 20

William Federspiel, PhD

2min
page 18

Neeraj J. Gandhi, PhD

2min
page 19

Tamer S. Ibrahim, PhD

5min
page 22

Richard E. Debski, PhD

1min
page 17

Lance A. Davidson, PhD

2min
page 16

Rakié Cham, PhD

2min
page 13

Steven Abramowitch, PhD

2min
page 8

Moni Kanchan Datta, PhD

2min
page 15

Bryan N. Brown, PhD

1min
page 12

Kurt E. Beschorner, PhD

2min
page 10

Harvey Borovetz, PhD

1min
page 11

Aaron Batista, PhD

4min
page 9

Tracy Cui, PhD

2min
page 14
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
2022 Swanson School Summary of Faculty Research by PITT | SWANSON School of Engineering - Issuu