2022 Swanson School Summary of Faculty Research

Page 125

MECHANICAL ENGINEERING & MATERIALS SCIENCE 509 Benedum Hall | 3700 O’Hara Street | Pittsburgh, PA 15261 P: 412-625-9755 C: 412-445-2185

David Schmidt, PhD Associate Professor

des53@pitt.edu

David Schmidt received his PhD in 2009 from Carnegie Mellon University in the area of computational mechanics. His dissertation research developed predictive simulation approaches tailored to the soft tissue biomechanics of cardiovascular systems. Prior to his doctoral studies, Dr. Schmidt developed a career in industry focused on the integration of engineering design, manufacturing and computational modeling. His industry experience includes aerospace, defense, automotive, biomedical and manufacturing. The experience based developed in these industrial environments serves as a core component in his approach to research. A central aim of among his research projects is to bridge the gap between traditional engineering techniques and the evolving state simulationbased technologies. His recent research activity has been in the area of middle ear gas exchange mechanisms, multi-scale tissue biomechanics, robotic assisted surgery, biodegradable magnesium alloys and powder metal materials processing.

Middle Ear Gas Exchange and Pressure Regulation Gas exchange within the middle ear mucosa is a dominant mechanism associated with middle ear pressure regulation. Diseased states associated with middle ear inflammation can be attributed to complex structure-function relationships linking mucosa-scale gas exchange and aggregate pressure regulation. Dr. Schmidt’s research has developed a computational model to explore the inter-related roles of constituent tissue mechanisms driving gas conductance. The adopted meso-scale approach has been used to quantity gas exchange as a function of mucosa thickness, capillary morphology, gas media and blood flow characteristics. Physiologically consistent models of capillary microstructure have been derived from multi-photon fluorescence imaging. A primary objective of this research is to establish exchange rate-limiting mechanisms under pathologic conditions associated with middle ear pressure dysregulation, Eustachian tube function and the disease state of otitis media.

Soft Tissue Biomechanics Motivated by the study of pathology and tissue engineering, researchers have leveraged computational-based predictive models to gain insight into the complex biomechanical response of soft tissues. Simulation approaches have become an essential component in cardiovascular research. Computational models have been used to advance basic science, develop engineered tissue alternatives and guide medical device development. Dr. Schmidt’s research has developed a constitutive model based on the characterization of the collagen microstructure as is morphology governs load-bearing tissue response. A primary objective of this research has been to guide the design of engineered tissue scaffolds associated with aortic heart valve replacement.

Near Net Shape Materials

Hot isostatic processing is an industrial metal powder forming process aimed at the manufacturing of high performance mechanical parts. The processing involves the densification of a metal powder preform under elevated pressure and temperature conditions. Central to the process is the ability to achieve final part dimensions or “near-net-shape,” as minimization of traditional machining is a primary objective of the processing strategy. Research has developed a constitutive material tailored to the densification of high performance alloys. The simulation tool provides a foundation to explore the complex relationships linking preform geometry and processing parameters with final part shape. This generalized approach can be leveraged to explore densification behavior of preforms developed using additive manufacturing techniques. DEPARTMENT OF MECHANICAL ENGINEERING AND MATERIALS SCIENCE

125


Turn static files into dynamic content formats.

Create a flipbook

Articles inside

Xiayun (Sharon) Zhao, PhD

37min
pages 133-154

Jörg M.K. Wiezorek, PhD

2min
page 131

Wei Xiong, PhD, D.Eng

1min
page 132

Guofeng Wang, PhD

2min
page 130

Jeffrey Vipperman, PhD

2min
page 129

Albert C. To, PhD

1min
page 128

Patrick Smolinski, PhD

1min
page 127

Inanc Senocak, PhD

1min
page 126

David Schmidt, PhD

2min
page 125

Ian Nettleship, PhD

2min
page 124

Scott X. Mao, PhD

2min
page 123

Jung-Kun Lee, PhD

3min
page 122

Tevis D. B. Jacobs, PhD

1min
page 121

William W. Clark, PhD

2min
page 118

Daniel G. Cole, PhD, PE

2min
page 119

Katherine Hornbostel, PhD

1min
page 120

Minking K. Chyu, PhD

2min
page 117

Heng Ban, PhD, PE

2min
page 115

Hessam Babaee, PhD

2min
page 114

Michael D. Sherwin, PhD, P.E

2min
pages 111-113

Markus Chmielus, PhD

1min
page 116

M. Ravi Shankar, PhD

2min
page 110

Amin Rahimian, PhD

1min
page 108

Jayant Rajgopal, PhD, P.E

2min
page 109

Lisa M. Maillart, PhD

2min
page 107

Paul W. Leu, PhD

1min
page 106

Daniel R. Jiang, PhD

1min
page 105

Oliver Hinder, PhD

2min
page 104

Joel M. Haight, PhD, P.E., CIH, CSP

2min
page 103

Renee M. Clark, PhD

2min
page 102

Karen M. Bursic, PhD

1min
page 100

Youngjae Chun, PhD

3min
page 101

Mary Besterfield-Sacre, PhD

2min
page 99

Minhee Yun, PhD

2min
pages 96-97

Mostafa Bedewy, PhD

1min
page 98

Nathan Youngblood, PhD

2min
page 95

Jun Yang, PhD

3min
page 94

Gregory F. Reed, PhD

3min
page 91

Feng Xiong, PhD

2min
page 93

Inhee Lee, PhD

2min
page 88

Guangyong Li, PhD

2min
page 89

Alexis Kwasinski, PhD

2min
page 87

Hong Koo Kim, PhD

2min
page 86

Alex K. Jones, PhD

3min
page 85

Brandon M. Grainger, PhD

2min
page 83

Alan D. George, PhD, FIEEE

2min
page 82

Masoud Barati, PhD

2min
page 81

Mai Abdelhakim, PhD

1min
page 80

Meng Wang, PhD

1min
pages 78-79

Radisav Vidic, PhD

2min
page 77

Julie M. Vandenbossche, PhD, PE

2min
page 76

Aleksandar Stevanovic, PhD, P.E., FASCE

2min
page 75

Piervincenzo Rizzo, PhD

2min
page 74

Xu Liang, PhD

2min
page 71

Jeen-Shang Lin, PhD, P.E

2min
page 72

Carla Ng, PhD

2min
page 73

Sarah Haig, PhD

2min
page 69

Lei Fang, PhD

3min
page 66

Andrew P. Bunger, PhD

2min
page 65

Alessandro Fascetti, PhD

2min
page 67

Melissa Bilec, PhD

2min
page 64

Judith C. Yang, PhD

2min
pages 61-63

Götz Veser, PhD

2min
page 59

Christopher E. Wilmer, PhD

1min
page 60

Sachin S. Velankar, PhD

2min
page 58

Tagbo Niepa, PhD

2min
page 55

Jason E. Shoemaker, PhD

1min
page 57

Giannis Mpourmpakis, PhD

2min
page 54

Badie Morsi, PhD

3min
page 53

James R. McKone, PhD

1min
page 52

Lei Li, PhD

1min
page 50

Steve R. Little, PhD

2min
page 51

John A. Keith, PhD

2min
page 49

J. Karl Johnson, PhD

2min
page 48

Susan Fullerton, PhD

2min
page 47

Robert M. Enick, PhD

2min
page 46

Eric J. Beckman, PhD

2min
page 45

Ipsita Banerjee, PhD

2min
page 44

Ioannis Zervantonakis, PhD

2min
pages 41-43

Savio L-Y. Woo, PhD, D.Sc., D.Eng

2min
page 40

Justin S. Weinbaum, PhD

1min
page 39

Jonathan Vande Geest, PhD

1min
page 37

David A. Vorp, PhD

2min
page 38

Sanjeev G. Shroff, PhD

2min
page 34

Gelsy Torres-Oviedo, PhD

3min
page 36

George Stetten, MD, PhD

2min
page 35

Joseph Thomas Samosky, PhD

2min
page 33

Warren C. Ruder, PhD

1min
page 32

Partha Roy, PhD

2min
page 31

Prashant N. Kumta, PhD

2min
page 27

Spandan Maiti, PhD

2min
page 29

Mark Redfern, PhD

2min
page 30

Patrick J. Loughlin, PhD

2min
page 28

Mangesh Kulkarni, PhD

1min
page 26

Takashi “TK” Kozai, PhD

2min
page 25

Katrina M. Knight, PhD

2min
page 24

Bistra Iordanova, PhD

1min
page 23

Alan D. Hirschman, PhD

1min
page 21

Mark Gartner, PhD

1min
page 20

William Federspiel, PhD

2min
page 18

Neeraj J. Gandhi, PhD

2min
page 19

Tamer S. Ibrahim, PhD

5min
page 22

Richard E. Debski, PhD

1min
page 17

Lance A. Davidson, PhD

2min
page 16

Rakié Cham, PhD

2min
page 13

Steven Abramowitch, PhD

2min
page 8

Moni Kanchan Datta, PhD

2min
page 15

Bryan N. Brown, PhD

1min
page 12

Kurt E. Beschorner, PhD

2min
page 10

Harvey Borovetz, PhD

1min
page 11

Aaron Batista, PhD

4min
page 9

Tracy Cui, PhD

2min
page 14
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
2022 Swanson School Summary of Faculty Research by PITT | SWANSON School of Engineering - Issuu