The AI Delusion Gary Smith
to
Visit
download the full and correct content document: https://ebookmass.com/product/the-ai-delusion-gary-smith/
TheAIDelusion
THEAIDELUSION
GarySmith
WhateverNonsenes
1
GreatClarendonStreet,Oxford,OX26DP, UnitedKingdom
OxfordUniversityPressisadepartmentoftheUniversityofOxford. ItfurtherstheUniversity’sobjectiveofexcellenceinresearch,scholarship, andeducationbypublishingworldwide.Oxfordisaregisteredtrademarkof
OxfordUniversityPressintheUKandincertainothercountries
©GarySmith2018
Themoralrightsoftheauthorhavebeenasserted
FirstEditionpublishedin2018
Impression:1
Allrightsreserved.Nopartofthispublicationmaybereproduced,storedin aretrievalsystem,ortransmitted,inanyformorbyanymeans,withoutthe priorpermissioninwritingofOxfordUniversityPress,orasexpresslypermitted bylaw,bylicenceorundertermsagreedwiththeappropriatereprographics rightsorganization.Enquiriesconcerningreproductionoutsidethescopeofthe aboveshouldbesenttotheRightsDepartment,OxfordUniversityPress,atthe addressabove
Youmustnotcirculatethisworkinanyotherform andyoumustimposethissameconditiononanyacquirer
PublishedintheUnitedStatesofAmericabyOxfordUniversityPress 198MadisonAvenue,NewYork,NY10016,UnitedStatesofAmerica
BritishLibraryCataloguinginPublication
Dataavailable
LibraryofCongressControlNumber:2018933899
ISBN978–0–19–882430–5
Printedandboundby CPIGroup(UK)Ltd,Croydon,CR04YY
LinkstothirdpartywebsitesareprovidedbyOxfordingoodfaithand forinformationonly.Oxforddisclaimsanyresponsibilityforthematerials containedinanythirdpartywebsitereferencedinthiswork.
3
CONTENTS Introduction1 1.Intelligentorobedient?7 2.Doingwithoutthinking21 3.Symbolswithoutcontext41 4.Baddata57 5.Patternsinrandomness73 6.Ifyoutorturethedatalongenough93 7.Thekitchensink119 8.Oldwineinnewbottles137 9.Taketwoaspirin149 10.BeatthemarketI163 11.BeatthemarketII183 12.We’rewatchingyou207 Conclusion235 Bibliography 239 Index 247 CONTENTS | v
Introduction
TheDemocraticParty’s2008presidentialnominationwassupposedtobetheinevitablecoronationofHillaryClinton.Shewas themostwell-knowncandidate;hadthemostsupportfromthe partyestablishment,andhad,byfar,themostfinancialresources.
Twobignames(AlGoreandJohnKerry)consideredrunning,butdecided theyhadnohopeofdefeatingtheClintonmachine.Thatleftanunlikely assortmentoflesser-knowns:aU.S.RepresentativefromOhio(Dennis Kucinich),theGovernorofNewMexico(BillRichardson),andseveral U.S.Senators:JoeBiden(Delaware),JohnEdwards(NorthCarolina), ChrisDodd(Connecticut),MikeGravel(Alaska),andBarackObama (Illinois).
Thenominationwentoffscript.Obamawasafirst-termsenator,a blackmanwithanunhelpfulname,butheexcitedvoters.Heraised enoughmoneytobecompetitiveintheIowacaucusesandhepersuaded OprahWinfreytocampaignforhim.ObamadefeatedClintonbyeight percentagepointsinIowaandtheracewason.
ObamawontheDemocraticnominationand,then,thepresidential electionagainstRepublicanJohnMcCainbecausetheObamacampaign hadalotmoregoingforitthanObama’seloquenceandcharisma: BigData.
TheObamacampaigntriedtoputeverypotentialvoterintoitsdata base,alongwithhundredsoftidbitsofpersonalinformation:age,gender,maritalstatus,race,religion,address,occupation,income,carregistrations,homevalue,donationhistory,magazinesubscriptions,leisure
INTRODUCTION | 1
activities,Facebookfriends,andanythingelsetheycouldfindthatseemed relevant.
Somedatawerecollectedfrompublicdatabases,somefrome-mail exchangesorcampaignworkersknockingonfrontdoors.Somedatawere purchasedfromprivatedatavendors.Layeredontopwereweeklytelephonesurveysofthousandsofpotentialvoterswhichnotonlygathered personaldata,butalsoattemptedtogaugeeachperson’slikelihoodof voting—andvotingforObama.
Thesevoterlikelihoodswerecorrelatedstatisticallywithpersonalcharacteristicsandextrapolatedtootherpotentialvotersbasedontheirpersonalcharacteristics.Thecampaign’scomputersoftwarepredictedhow likelyeachpersonitsdatabasewastovoteandtheprobabilitythatthe votewouldbeforObama.
Thisdata-drivenmodelallowedthecampaigntomicrotargetindividualsthroughe-mails,snailmail,personalvisits,andtelevisionadsasking fordonationsandvotes.Ifthecomputerprogrampredictedthatpeople withhuntinglicenseswerelikelytobeopposedtogun-controllegislation, thengun-controlwaslesslikelytobementionedinpitchestopeoplewith huntinglicenses.Thesoftwaresuggestedotherleversthatcouldbeused tosecuredonationsandvotes.
InthecrucialmonthofJanuary,2008,Obamaraised$36million,a recordforanypolitician,andnearlythreetimestheamountraisedbyClinton.AfterObamasecuredthenomination,thefund-raisingcontinued.
Forthefull2008electioncampaign,Obamaraised$780million,more thantwicetheamountraisedbyhisRepublicanopponent,JohnMcCain. McCaindidn’thavearealisticchanceofwinning,andhedidn’t—withonly 173electoralvotestoObama’s365.
Eightyearslater,HillaryClintonmadeanotherpresidentialrun,determinedtohaveBigDataonherside.
Thistime,BigDatafailed.
TheClintoncampaignhired60mathematiciansandstatisticians,severalfromtheObamacampaign,tocreateasoftwareprogramthatwas namedAdainhonorofa19th-centuryfemalemathematician,Ada, CountessofLovelace.AfterClintonbecamethefirstfemalepresident,she wouldrevealAdatobethesecretbehindhersuccess.Whatagreatstory!
Adawashousedonitsownserverwithaccessrestrictedtoahandfulof people.Someknewthattherewasa“model.”buttheyhadnoideahowit worked.Mostknewnothingatall.
2 | INTRODUCTION
OnSeptember16,2016,sevenweeksbeforetheelection,EricSiegel wroteanarticlein ScientificAmerican titled,“HowHillary’sCampaign Is(AlmostCertainly)UsingBigData.”Hearguedthat,“Theevidence suggestshercampaignisusingahighlytargetedtechniquethatworkedfor Obama.”Ayearandahalfintothecampaign,observerswerestillspeculatingonClinton’suseofBigData.That’showcarefullyAdahadbeenhidden.
TheClintoncampaignwasextremelysecretiveaboutAda—certainly becausetheydidnotwanttogiveClinton’sopponentsanyideas,and perhapsbecausetheydidn’twanttofuelthestereotypethattheClinton campaignwasmechanical,cautious,andscripted—withouttheinspirationalpassionthatBernieSandersandDonaldTrumpbroughttotheir campaigns.
Adaran400,000simulationsadaypredictingtheelectionoutcome forscenariosthatitconsideredplausible.WhatiftheturnoutinFlorida wastwo-percentage-pointshigherandtheturnoutinNewMexicowas one-percentage-pointlower?Whatif ... ?Whatif ... ?Theresultswere summarized,mostimportantlybyidentifyinggeographicareaswhere resourcesshouldbedeployedandwhichresourcesshouldbeused.
Forexample,70percentofthecampaignbudgetwentfortelevision ads,andAdadeterminedvirtuallyeverydollarspentontheseads.The adviceofexperiencedmediaadvisorswasneithersoughtnorheeded. Ada’sdatabasecontaineddetailedsocioeconomicinformationonwhich peoplewatchedwhichtelevisionshowsinwhichcities,andAdaestimated howlikelytheyweretovoteforClinton.Adausedthesedatatocalculate thetheoreticalcostofeverypotentialvoteandtodeterminehowmuch moneytospendonadsondifferentshows,atdifferenttimes,andin differenttelevisionmarkets.
NoonereallyknewexactlyhowAdamadeherdecisions,buttheydid knowthatshewasapowerfulcomputerprogramanalyzinganunimaginableamountofdata.So,theytrustedher.Shewaslikeanomniscient goddess.Don’taskquestions,justlisten.
WestilldonotknowhowAdadeterminedwhatsheconsideredto beanoptimalstrategy,butitisclearthat,basedonhistoricaldata, Adatookblue-collarvotersforgranted,figuringthattheyreliablyvoted Democratic,mostrecentlyforObama,andtheywoulddosoagain.With blue-collarvotesasherunshakeablebase,Clintonwouldcoasttovictory byensuringthatminoritiesandliberalelitesturnedouttovoteforher.This presumptionwasexacerbatedbyAda’sdecisionthatthecampaigndidnot
INTRODUCTION | 3
needtospendmoneydoingpollinginsafestates—so,thecampaigndid notrealizethatsomesafestateswerenolongersafeuntilitwastoolate.
Adaisjustacomputerprogramand,likeallcomputerprograms,hasno commonsenseorwisdom.Anyhumanwhohadbeenpayingtheslightest bitofattentionnoticedClinton’svulnerabilityagainstBernieSanders,a virtuallyunknown74-year-oldSocialistsenatorfromVermont,whowas notevenaDemocratuntilhedecidedtochallengeClinton.Ahuman wouldhavetriedtofigureoutwhySanderswasdoingsowell;Adadidn’t.
WhenClintonsufferedashockdefeattoSandersintheMichigan primary,itwasobvioustopeoplewithcampaignexperiencethathis populistmessagehadtremendousappeal,andthattheblue-collarvote couldnotbetakenforgranted.Adadidn’tnotice.
Clintonwasfuriousatbeingblind-sidedinMichiganbutshewas stillconfidentthatAdaknewbest.Clintonblamedhershocklosson everythingbutAda.Adawas,afterall,apowerfulcomputer—freeof humanbiases,churningthroughgigabytesofdata,andproducingan unimaginable400,000simulationsaday.Nohumancouldcompetewith that.So,thecampaignkepttoitsdata-drivenplaybook,largelyignoring thepleasofseasonedpoliticalexpertsandcampaignworkerswhowereon thegroundtalkingtorealvoters.
Adadidnotcomparetheenthusiasmofthelargecrowdsthatturned out,firstforSanders,andlaterforTrump,totherelativelysubduedsmall crowdsthatlistenedtoClinton.Therewerenoenthusiasmnumbersfor Adatocrunch,soAdaignoredenergyandpassion,andClinton’sdatadrivencampaigndid,too.Toacomputer,ifitcan’tbemeasured,itisn’t important.
Mostglaringly,theClintoncampaign’sdatawonksshutoutBillClinton, perhapsthebestcampaigneranyofushaveeverseen.Thecenterpieceof hissuccessful1992electioncampaignagainsttheincumbentpresident, GeorgeH.W.Bush,was“It’stheeconomy,stupid.”Billinstinctivelyknew whatmatteredtovotersandhowtopersuadethemthathecared.
Inthe2016election,BillClintonsawtheexcitementgeneratedby BernieSandersandDonaldTrumpintheirappealtoworking-classvoters andhecounseledthat“It’stheeconomy,stupid”shouldbethedefining issueofHillary’scampaign—particularlyintheMidwesternrust-belt statesofOhio,Pennsylvania,Michigan,andWisconsin,theso-calledBlue
4 | INTRODUCTION
Wall,thefirewallofreliablybluestatesthatAdaassumedwouldbethe baseforClinton’svictoryoverDonaldTrump.
AnotherAdablindspotwasthatseasonedpoliticiansknowthattelevisionadsareokay,butruralvotersaremostimpressedifcandidatesprove theycarebytakingtimetoshowupattownhallmeetingsandcountyfairs.
Goingbythenumbers,Adadidnotknowthis.Wheninthewaningdays ofthecampaign,itwasdecidedthat one staffershouldspendtimeonrural outreach,thestafferwasfromBrooklyn—notapromisingbackgroundif you’relookingforsomeonewhocanrelatetofarmers.
BillwasoutragedthatHillarydidnotlistentohimduringthe campaign—literallyrefusingtotakehisphonecalls.Hecomplainedto Hillary’scampaignchairman,JohnPodestathat,“Thosesnotty-nosed kidsoverthereareblowingthisthingbecausenobodyislisteningtome.”
AdaconcludedthatvotersweremoreworriedaboutTrump’sunpresidentialbehaviorthantheywereaboutjobs;soHillaryfocusedhercampaignonanti-Trumpmessages:“Hey,Imaynotbeperfect,butTrumpis worse.”
FollowingAda’sadvice,theClintoncampaignalmostcompletely ignoredMichiganandWisconsin,eventhoughherprimary-campaign lossestoBernieSandersinbothstatesshouldhavebeenafire-alarmof awake-upcall.Instead,Clintonwastedtimeandresourcescampaigning inplaceslikeArizona—statessheprobablywouldnotwin(anddidnot win)—becauseAdadecidedthatClintoncouldsecurealandslidevictory withwinsinmarginallyimportantstates.
Intheaftermath,aDemocraticpollstersaidthat,“It’snothingshortof malpracticethathercampaigndidn’tlookattheelectoralcollegeandput substantialresourcesinstateslikeMichiganandWisconsin.”
Aftertheloss,Billpointedhismiddlefingeratthedatawonkswhoput alltheirfaithinacomputerprogramandignoredthemillionsofworkingclassvoterswhohadeitherlosttheirjobsorfearedtheymightlosetheir jobs.InonephonecallwithHillary,Billreportedlygotsoangrythathe threwhisphoneoutthewindowofhisArkansaspenthouse.
Wedon’tknowifitwasbaddataorabadmodel,butwedoknowthat BigDataisnotapanacea—particularlywhenBigDataishiddeninsidea computerandhumanswhoknowalotabouttherealworlddonotknow whatthecomputerisdoingwithallthatdata.
INTRODUCTION | 5
Computerscandosomethingsreally,reallywell.Weareempowered andenrichedbythemeverysingledayofourlives.However,Hillary ClintonisnottheonlyonewhohasbeenoverawedbyBigData,andshe willsurelynotbethelast.MyhopeisthatIcanpersuadeyounottojoin theirranks.
6 | INTRODUCTION
Intelligentorobedient?
Jeopardy! isapopulargameshowthat,invariousincarnations,has beenontelevisionformorethan50years.Theshowisatestof generalknowledgewiththetwistthatthecluesareanswersandthe contestantsrespondwithquestionsthatfittheanswers.Forexample,the clue,“16thPresidentoftheUnitedStates,”wouldbeansweredcorrectly with“WhoisAbrahamLincoln?”Therearethreecontestants,andthe firstpersontopushhisorherbuttonisgiventhefirstchancetoanswer thequestionorally(withtheexceptionoftheFinalJeopardyclue,when allthreecontestantsaregiven30secondstowritedowntheiranswers).
SINKITAND YOU'VESCRATCHED
Inmanyways,theshowisideallysuitedforcomputersbecausecomputerscanstoreandretrievevastamountsofinformationwithouterror. (AtateenJeopardytournament,aboylostthechampionshipbecausehe wrote“WhoisAnnieFrank?”insteadof“WhoisAnneFrank.”Acomputer wouldnotmakesuchanerror.)
Ontheotherhand,thecluesarenotalwaysstraightforward,andsometimesobscure.Onecluewas“Sinkitandyou’vescratched.”Itisdifficult foracomputerthatisnothingmorethananencyclopediaoffactstocome upwiththecorrectanswer:“Whatisthecueball?”
CHAPTER1
INTELLIGENTOROBEDIENT? | 7
Anotherchallengingcluewas,“Whentranslated,thefullnameofthis majorleaguebaseballteamgetsyouadoubleredundancy.”(Answer: “WhatistheLosAngelesAngels?”)
In2005ateamof15IBMengineerssetouttodesignacomputerthat couldcompetewiththebestJeopardyplayers.TheynameditWatson, afterIBM’sfirstCEO,ThomasJ.Watson,whoexpandedIBMfrom1,300 employeesandlessthan$5millioninrevenuein1914to72,500employees and$900millioninrevenuewhenhediedin1956.
TheWatsonprogramstoredtheequivalentof200millionpagesof informationandcouldprocesstheequivalentofamillionbooksper second.Beyonditsmassivememoryandprocessingspeed,Watsoncan understandnaturalspokenlanguageandusesynthesizedspeechtocommunicate.Unlikesearchenginesthatprovidealistofrelevantdocuments orwebsites,Watsonwasprogrammedtofindspecificanswerstoclues.
Watsonusedhundredsofsoftwareprogramstoidentifythekeywords andphrasesinaclue,matchthesetokeywordsandphrasesinitsmassive database,andthenformulatepossibleresponses.Iftheresponseisa name,likeAbrahamLincoln,Watsonwasprogrammedtostateaquestion startingwith“Whois.”Forathing,Watsonstartswith“Whatis.”Themore theindividualsoftwareprogramsagreeonananswer,themorecertainthe Watsonprogramisthatthisisthecorrectanswer.
Watsoncananswerstraightforwardclueslike“The16thPresident” easily,butstruggleswithwordsthathavemultiplemeanings,like“Sink itandyou’vescratched.”Ontheotherhand,Watsondoesnotgetnervous andneverforgetsanything.
WatsonwasreadytotakeonJeopardyin2008,buttherewereissues tobenegotiated.TheIBMteamwasafraidthattheJeopardystaffwould writeclueswithpunsanddoublemeaningsthatcouldtrickWatson.That, inandofitself,revealsonebigdifferencebetweenhumansandcomputers. Humanscanappreciatepuns,jokes,riddles,andsarcasmbecausewe understandwordsincontext.Thebestthatcurrentcomputerscandois checkwhetherthepun,joke,riddle,orsarcasticcommenthasbeenstored initsdatabase.
TheJeopardystaffagreedtoselectcluesrandomlyfromastockpileof cluesthathadbeenwritteninthepast,butneverused.Ontheother hand,theJeopardystaffwereafraidthatifWatsonemittedanelectronic signalwhenithadananswer,itwouldhaveanadvantageoverhuman contestantswhomustpressbuttons.TheIBMteamagreedtogiveWatson
8 | INTELLIGENTOROBEDIENT?
anelectronicfingertopushabutton,butitwasstillfasterthanhumans, andgaveWatsonadecisiveadvantage.Isafasttriggerfingerintelligence? HowwouldthematchhaveturnedoutifWatson’sreactiontimehadbeen slowedtomatchthatofhumans?
Intheman-versus-machinechallengein2011,WatsonplayedatworoundmatchagainsttwopopularformerJeopardychampions,Ken JenningsandBradRutter.Inthefirstround,theFinalJeopardycluewas:
ItslargestairportisnamedforaWorldWarIIhero; itssecondlargest,foraWorldWarIIbattle
Thetwohumancontestantsgavethecorrectanswer,“WhatisChicago?” Watsonanswered“WhatisToronto?????,”Watsonevidentlypickedout thephrases largestairport, WorldWarIIhero,and WorldWarIIbattle, andsearchedforcommonthemesinitsdatabase,notunderstanding thatthesecondpartoftheclue(“itssecondlargest ”)referredtothecity’s secondlargestairport.Watsonaddedthemultiplequestionmarksbecause itcalculatedtheprobabilityofbeingcorrectatonly14percent.
Nonetheless,Watsonwoneasilywith$77,147,comparedto$24,000for Jenningsand$21,600forRutter.Watsonreceiveda$1millionprizefor firstplace(whichIBMdonatedtocharity).JenningsandRutterdonated halfoftheirrespectiveprizesof$300,000and$200,000tocharity.
Watson’sJeopardytriumphwasapublicitybonanzathatwasworthmillions.Afteritsstunningvictory,IBMannouncedthatWatson’squestionansweringskillswouldbeusedformoreimportantthingsthanjousting withAlexTrebek,hostofJeopardy.IBMhasbeendeployingWatsonin health-care,banking,techsupport,andotherfieldswheremassivedata basescanbeusedtoprovidespecificanswerstospecificquestions.
Formanypeople,Watson’sdefeatofthesetwogreatJeopardychampionswasproofbeyonddoubtthatcomputersaresmarterthanhumans. ThemightyWatsonknowsall!Ifcomputersarenowsmarterthanus,we shouldrelyonthemandtrusttheirdecisions.Maybeweshouldfearthat theywillsoonenslaveorexterminateus.
IsWatsonreallysmarterthanus?Watson’svictoryillustratesboth thestrengthsandweaknessesofcurrentcomputers.Watsonisanastonishinglypowerfulsearchenginecapableoffindingwordsandphrases quicklyinitsmassivedatabase(andithasafastelectronictriggerfinger). However,Iavoidedusingtheword read becauseWatsondoesnotknow whatwordsandphrasesmean,like WorldWarII and Toronto,nordoes
INTELLIGENTOROBEDIENT? | 9
itunderstandwordsincontext,like“itssecondlargest ”.Watson’sprowess iswildlyexaggerated.Likemanycomputerprograms,Watson’sseeming intelligenceisjustanillusion.
Watson’sperformanceisinmanywaysadeceptiondesignedtomakea verynarrowlydefinedsetofskillsseemsuperhuman.Imagineamassive librarywith200millionpagesofEnglishwordsandphrasesandahuman whodoesnotunderstandEnglish,buthasaninfiniteamountoftime tobrowsethroughthislibrarylookingformatchingwordsandphrases. Wouldwesaythatthispersonissmart?Arecomputerssupersmart becausetheysearchformatchesfasterthanhumanscan?
EvenDaveFerrucci,theheadofIBM’sWatsonteam,admitted,“Did wesitdownwhenwebuiltWatsonandtrytomodelhumancognition? Absolutelynot.Wejusttriedtocreateamachinethatcouldwinat Jeopardy.”
Boardgames
ComputershavenotonlybeatenhumansatJeopardy,theyhavedefeated thebestcheckers,chess,andGoplayers,fuelingthepopularperception thatcomputersaresmarterthanthesmartesthumans.Thesestrategic boardgamesrequiremuch,muchmorethanapowerfulsearchengine thatmatcheswordsandphrases.Thehumanswhoexcelatthesegames analyzeboardpositions,formulatecreativestrategies,andplanahead.Isn’t thatrealintelligence?
Let’ssee.We’llstartwithaverysimplechildhoodgame.
Tic-tac-toe
Intic-tac-toe,twoopponentstaketurnsputting X sand Osona3-by-3 grid.Aplayerwhogetsthreesquaresinarow—horizontally,vertically,or diagonally—hasatic-tac-toeandwinsthegame.
Asoftwareengineercouldwriteabrute-forcecomputerprogramto mastertic-tac-toebyanalyzingallpossiblesequencesofmoves.Thefirst playerhasninepossiblesquarestochoosefrom.Foreachofthesepossible firstmoves,thesecondplayerhaseightchoices,giving72first/second pairs.Foreachofthese72pairs,thefirstplayernowhassevenpossible squaresleft.Overall,acompletegamehas9
×
×
× 6 × 5 ××3 × 2 × 1 = 10 | INTELLIGENTOROBEDIENT?
8
7
362,880possiblesequencesofchoicesthatmustbeconsideredbythe computerprogram.
Therearemoreelegantwaystoanalyzeallpossiblesequences,butthe pointisthattic-tac-toeprogramsdonotlookatthegamethewayhumans do.Humanslookatthe3-by-3gridandthinkaboutwhichsquares openuptic-tac-toepossibilitiesandwhichsquaresblocktheopponent’s possibletic-tac-toes.Acomputerprogramdoesnotvisualizethesquares. Instead,theprogrammerassignseachsquareanumber,1through9,and identifiesthewinningcombinations(suchas1,2,3and1,5,9). 123 456
789
Thecomputerprogramconsidersthepossiblesequencesofthenumbers1through9andidentifieswhichstrategiesareoptimalforeachplayer, assumingthattheopponentchoosesoptimalstrategies.Oncethesoftware hasbeenwrittenanddebugged,thebeststrategiesarerevealedinstantly.
Assumingoptimalplaybythesecondplayer,thefirstplayershould beginwiththecentersquareoranyofthefourcornersquares,andthe secondplayershoulddotheopposite,choosingacornerifthefirstplayer chosethecenter,andchoosingthecenterifthefirstplayerchoseacorner. Withoptimalplay,thegamealwaysendsinatie.
BOARDGAMES | 11
Thisisbruteforcecomputinginthatnologicalreasoningisinvolved, justamindlessenumerationofthepermutationsofthenumbers1through 9andtheidentificationofthewinningpermutations.
Intic-tac-toeandothergames,humansgenerallyavoidbruteforce calculationsofallpossiblemovesequencesbecausethenumberofpossibilitiesexplodesveryquickly.Instead,weuselogicalreasoningtofocus ourattentiononmovesthatmakesense.Unlikeabrute-forcecomputer program,wedon’twastetimethinkingthroughtheimplicationsofobviouslywrongsteps.Computersanalyzestupidstrategiesbecausetheydo nothavelogicorcommonsense.
Ahumanplayingtic-tac-toeforthefirsttimemightstudythe3-by3grid.Whileacomputerplaysaroundwiththenumbers1through9,a humanvisualizesmoves.Shemightimmediatelybeattractedtothecenter square,recognizingthatthissquareallowsforfourpossiblewinning positions,comparedtothreeforeachofthecornersquares,andtwofor eachofthesidesquares.
Thecentersquareisalsoagreatdefensivemove,inthatanysquare chosenbythesecondplayerhas,atmost,onlytwopossiblewinning positions.Afirstmoveinthecornerorside,incontrast,allowsthe secondplayertoseizethemiddlesquare,blockingoneofthefirstplayer’s winningpositionswhilecreatingthreepossiblewinningpositionsforthe secondplayer.
Logically,themiddlesquareseemstobethebestopeningmoveanda sidesquareappearstobetheleastattractive.Thishumanvisualizationof theboardandidentificationofthestrategicvalueofthecentersquareis completelydifferentfromasoftwareprogram’smindlessconsiderationof allpossiblepermutationsofthenumbers1through9.
Ahumanwouldalsoimmediatelyrecognizethesymmetryofthe game—eachofthefourcornersquaresisequallyattractive(orunattractive)foranopeningmove.So,thehumanonlyhastothinkthroughthe consequencesofchoosingoneofthecorners,andthesamelogicwillapply totheotherthreecorners.Ateverystep,thesymmetryofthegameallows thehumantoreducethenumberofpossiblemovesbeingconsidered. Finally,thehumanwillrecognizethatsomemovesareattractivebecause theyforcetheopponenttochooseabadsquareinordertoblockan immediatetic-tac-toe.
Withstrategicthinking,ahumancanfigureouttheoptimalstrategy andrecognizethatoptimallyplayedgamesalwaysendindraws.With
12 | INTELLIGENTOROBEDIENT?
experience,ahumanwilllearnthatgamesplayedagainstchildrencan sometimesbewonbyplayingunconventionally;forexample,opening withacornersquareorevenasidesquare.
Ironically,eventhoughhumansmightuselogictofigureouttheoptimal strategies,acomputersoftwareprogramwrittenbyhumansmightdefeat humansbecausecomputersdo not havetothinkabouttheirmoves.
Acomputertic-tac-toeprogramsimplyobeystherulesprogrammedinto it.Incontrast,humansmustthinkbeforemovingandwilleventuallyget tiredandmakemistakes.
Theadvantagethatcomputershaveoverhumanshasnothingtodowith intelligence inthewaythewordisnormallyused.Itishumanswhowrite thesoftwarethatidentifiestheoptimalstrategiesandstoresthesestrategies inthecomputer’smemorysothatthecomputerhasrulestoobey.
Eventhoughtic-tac-toeisachildren’sgamethatisultimatelyboring, itisaniceexamplebecauseithighlightsthepowerandlimitations ofcomputersoftware.Computerprogramsareveryusefulfortedious computations.Well-writtensoftwaregivesthesameanswereverytime andnevertiresofdoingwhatithasbeenprogrammedtodo.Computers processfasterandremembermorethanhumans.
Howcanahumaneverhopetocompetewithacomputer?Certainly notinactivitieswherememoryandprocessingspeedareallthatmatter. Perhapstherealmiracleisnotthatcomputersaresopowerful,butthat therearestillmanythingsthathumansdobetterthancomputers.Followingrulesisverydifferentfromtheinstinctiveintelligencethathumans acquireduringtheirlifetimes.
Humanintelligenceallowsustorecognizecrypticlanguageanddistortedimages,tounderstandwhythingshappen,toreacttounusual events,andsomuchmorethatwouldbebeyondourgraspifweweremere rules-followers.
Checkers
Checkersismuchmorecomplicatedthantic-tac-toe,indeedsocomplicatedthatabrute-forceanalysisofallpossiblesequencesofmovesisnot practical.So,youmightthinkthatcomputerswouldhavetomimichuman thinkinginordertoplaywell.Nope.
Americancheckers(alsocalledEnglishdraughts)isplayedonan8-by-8 checkerboard,withalternatingdarkandlightsquares.Onlythedark
BOARDGAMES | 13
squaresareused,whichreducesthenumberofplayablesquaresfrom 64to32.Eachplayerbeginswith12pieces,traditionallyflatandcylindrical,likehockeypucks,placedonthedarksquaresinfrontofthem,withthe 8middledarksquaresleftopen.Thepiecesaremoveddiagonallyalongthe darksquaresandcaptureanopponent’spiecebyjumpingoverit.
Intheory,brute-forcesoftwarecouldworkthoughallthepossible sequencesforanunlimitednumberofmovesaheadandidentifythe optimalstrategies,justasintic-tac-toe.However,therearetoomany possiblesequencesforcurrentcomputerstoanalyzethemallinareasonableamountoftime.So,humanshavedevelopedsimplifyingstrategies forharnessingthepowerofcomputers.Aswithtic-tac-toe,computer checkersprogramsdonottrytoformulatelogicallyappealingstrategies. Instead,theyexploitacomputer’sstrengths:fastprocessingandperfect memories.
Atic-tac-toegameisoverafterninemoves.Checkersdoesnothavea limitednumberofmovessinceplayerscanmovetheirpiecesbackand forthendlesslywithouteithersidewinning.Inpractice,back-and-forth gamesareboring,soplayersagreetoadrawwhenitisclearthat,barringan idioticblunder,neitherplayerwilleverwin.(Aruthlesscheckersprogram wouldneveragreetoadraw,playingonuntilthehumanopponentistoo tiredtothinkclearlyandmakesamistake.)
Althoughacheckersgamehasanunlimitednumberofmoves,thereare afixednumberofpossibleboardpositions.Insteadofworkingoutallpossiblesequencesofmoves,amorepromisingrouteforacheckers-playing computeristolookatallpossibleboardpositionsanddeterminewhich movesfromthesepositionsareimprovementsandwhicharesetbacks.
14 | INTELLIGENTOROBEDIENT?
Openingmoves
Endgame
Thetaskisstilldaunting.Thereare500billionbillionpossible boardpositionsandonecannottrulydeterminewhetheramoveisan improvementwithoutlookingatallpossiblesequencesofpositionsthat mightfollow.
Thehumaninsightistobreakthegameintothreeparts(openingmoves, middleplay,andendgame),analyzeeachseparately,andthenlinkthem.
Forthebeginninggame,therearewell-established“playbooks”that showthebestpossibleopeningmoves,thebestresponsestoeveryopeningmove,andsoon,forseveralmovesintothegame.Theseplaybooks arethecollectivewisdomthatcheckersplayershaveaccumulatedover centuriesofplay.Everyseriousplayerstudiestheseplaybooks.Asoftware engineerwritingthecodeforacheckersprogramloadsaplaybookinto thecomputer’smemory,andthecomputerobeystheserulesintheopeninggame.
Fortheendgame,therearearelativelylimitednumberofpositionsif thereareonlytwopiecesleftontheboard,alargerbutstillmanageable numberofpositionsforthreepieces,andsoon.Foreachofthesepossible positions,experthumancheckersplayerscanworkouttheoptimalplay anddeterminewhetheroptimalplayleadstoadraworawinforeither player.Asthenumberofremainingcheckerspiecesincreases,thenumber ofpossiblepositionsincreasesrapidly,butmanyareeasilysolvedandthe
Figure1 Modelingcheckersasdecisiontrees
BOARDGAMES | 15
symmetryoftheboardreducesthenumberofpositionsthatmustbe analyzed.Afterhumanshaveanalyzedallpossibleendingsforallpossible boardpositionsinvolving,sayfewerthansixpieces,theoptimalend-game playforeachpositionisloadedintothecomputer’smemory.
Whenacheckersgamereachesoneofthesepre-loadedend-game positions,thecomputerobeystherulesbymakingthemovethathumans haveidentifiedasbest.Afterthehumanmakesamoveintheendgame ofacomputer-versus-humancheckersgame,thecomputermatches thenewboardpositiontoonestoredinitsdatabaseandmakesthepredeterminedoptimalmove.Thiscontinuesuntilthegamesends,usually byonesideconcedingorbothsidesagreeingtoadraw.
Acomputer’smiddlegameattemptstolinktheopening-moveplaybook withtheend-gamepositions.If,afterseveralopeningmoves,theplay leadstoastoredend-gameposition,theoutcomeofthegameisknown (assumingoptimalplay).
Therearefartoomanypossiblemiddle-gamepositionsforabrute forceanalysistoidentifyoptimalsequences,soprogrammerscombine humanwisdomaboutcheckerswiththecomputer’spowertoenumerate sequences.Ifthecomputerhasthepowerandtimetolookfourmoves ahead,thenthecomputerlooksatallpossiblefour-movesequencesand usesahuman-specifiedlossfunctiontocompareallpossiblepositions afterfourmoves.Thelossfunction,againbasedoncenturiesofhuman experience,takesintoaccountfactorsthatarethoughttobeimportant, likethenumberofpieceseachplayerhasandcontrolofthecenterofthe board.Thehumanexpertsadvisingtheprogrammerassignweightstothe differentfactorstoreflecttheperceivedimportanceofeach.
Thecomputeristypicallyprogrammedtochoosethemovethatis minmax,inthatitminimizesthepossibleloss(that’sthe min)inaworstcasescenario(that’sthe max).Theprogramselectsthemovethathasthe smallestloss(orlargestgain)iftheotherplayerfollowsanoptimalstrategy.
Afterseveralmiddle-gamemoves,thenumberofpiecesshrinksto alevelwherethelook-aheadcalculationsleadtotheknownend-game outcomes.Assumingoptimalplay,thegameisessentiallyover.Ifahuman playermakesamistake,thegamemayendsoonerbutitwillnotendbetter forthehumanplayer.
Noticehowlittle“intelligence”isinvolvedincomputercheckers programs.Thecomputersoftwareobedientlyfollowsitsopening-move instructionsinthebeginninganditsend-gameinstructionsattheend.
16 | INTELLIGENTOROBEDIENT?
Forthemiddlegame,thecomputersoftwaredeterminesthelook-ahead sequencesandusesthehuman-specifiedlossfunctiontodetermineits move,whichitobedientlymakes.
Computerprogramsthataredesignedtoplaycheckers,chess,Go, andothercomplexgamesdonotattempttomimichumanthinking, whichinvolvesacreativerecognitionoftheunderlyingprinciplesthat leadtovictory.Instead,computerprogramsarebuilttoexploitacomputer’sstrengths—thatithasaninfalliblememoryandcanobeyrules flawlessly.
Acheckers-playingcomputerprogramhasseveralimportantadvantagesoverhumanplayers.Itnevermakesamistakeinitsopeningor endingmoves.Humanplayersmayhavestudiedacheckersplaybook,but humanmemoryisimperfectandhumansmayblunder.Nohumanhas considered,letalongmemorized,allpossibleend-gamesequences,some ofwhichrequiredozensofprecisemovestoreachtheoptimaloutcome. Acomputerhastheoptimalsequencesloadedintoitsdatabase;humans mustfigureouttheoptimalplayontheflyandmayerr.
Ahuman’sonlyrealchancetobeatacomputercheckersprogramis inthemiddlegame.Humansmaynotbeabletothinkasfaraheadas acomputer,analyzingasmanypossiblesequencesofmoves,butsome humansmayhaveabettergraspofthestrategicvalueofcertainpositions. Forexample,ahumanmightrecognizethatcontrollingthecenterof theboardismoreimportantthantheweightsgivenbycomputer’sloss function.Orthecomputer’snumericalmeasureofthecontrolofthecenter maybeflawed.Orahumanplayermayrecognizethattheultimatecontrol ofthecenterdependsonmorethancanbemeasuredbylookingatthe currentposition.
Thefinaladvantageforacomputeristhatitdoesnotgettired.Ahighlevelcheckersgamecanlastformorethantwohours.Becausemost gamesendindraws,alargenumberofgamesareplayedincheckers tournaments,perhapsfourgamesadayformorethanaweek.Human playerswhomustthinkabouttheirmovesforeight-to-tenhoursaday, dayafterday,becomefatiguedandarepronetomistakes.Computersdo notgettired,becausetheydonotthink.Theyobey.
ThebestcheckersplayerinhistorywasthelegendaryMarionTinsley. Hehadbeenaprecociouschild,skippingfourofhisfirsteightyearsof schoolandbecomingamathematicsprofessorspecializingincombinatorialanalysis.Asachild,hestudiedcheckerseighthoursaday,fivedaysa
BOARDGAMES | 17
week.Ingraduateschool,heclaimedtohavespent10,000hoursstudying checkers.Inhistwenties,hewasvirtuallyunbeatable.
Tinsleyretiredfromtournamentplayfor12years,reportedlybecause hewasboredbyopponentswhoplayedveryconservatively,figuring thatthebesttheycouldhopeforwasadraw.Afterreturningtothe game,heretiredagainin1991,atage63,butwasluredbackintothe gamebyJonathanSchaeffer,amathematicsprofessorwholedateam thatcreatedChinook,acomputercheckersprogram.Schaefferhadthree peopleonhisresearchteam—onespecializingintheopening-movedata base,onespecializingintheend-gamedatabase,andoneresponsiblefor theintermediate-gamelossfunction.
Intheir40-gamematchin1992,mostofthegamesweredraws.Tinsley wongame5whenChinookfollowedalineofplayprogrammedintoits playbookthatwas,infact,suboptimal.Tinsleylostgame8,andattributed ittofatigue.Tinsleyalsolostgame14whenChinookfollowedasequence ofmovesinitsdatabasethatTinsleyhadusedyearsearlier,butforgotten.Game18wenttoTinsleywhenChinookmalfunctioned(computer fatigue?).Tinsleythenwongames25and39andwasdeclaredthewinner, 4gamesto2with33draws.
Itwasavictoryformanovermachine,butitwasalsoonlythe6thand 7thgamesthatTinsleyhadlostinthethousandsoftournamentgameshe hadplayedovera45-yearcareer.
SchaefferenlargedChinook’sopeningandend-gamedatabases enormouslyandincreaseditslook-aheadcapacityinthemiddlegame from17movesto19.Heaskedforarematchin1994.Thefirstsixgames weredrawsandTinsleyrecognizedChinook’simprovedperformance. Hesaidthatheonlyhad10–12movestogainanadvantageoverChinook beforeitgotcloseenoughtoitsenormousend-gamedatabasesothat itwouldnotmakeanymistakes.Tragically,Tinsleyhadtoabandonthe matchwhenitwasdiscoveredthathehadpancreaticcancer.Hedied sevenmonthslater.
Tinsleyhadanincrediblememory.Afterthefirstgameofthe1992 match,hetalkedtoSchaefferaboutagamehehadplayedmorethan 40yearsago,rememberingeverymoveperfectly.Still,hismemorywas nomatchforapowerfulcomputer.WhatTinsleydidhavewasafeelfor thegamedevelopedovermanyyearsofstudyingandplayingcheckers. ThereisnowaythatChinookcouldhavethesameintuitivegraspofthe strengthsandweaknessofpositions.
18 | INTELLIGENTOROBEDIENT?
In14exhibitiongamesbeforetheirscheduledshowdown,Tinsleyand Chinooktied13games,withTinsleysecuringthelonevictory,ingame 10.Schaefferlaterwroteaboutthatdecisivegame:
IreachedouttoplayChinook’s10thmove.InosoonerreleasedthepiecewhenTinsley lookedupinsurpriseandsaid“You’regoingtoregretthat.”Beinginexperiencedinthe waysofthegreatTinsley,Isattheresilentlythinking“Whatdoyouknow?Myprogramis searching20movesdeepandsaysithasanadvantage.”Severalmoveslater,Chinook’s assessmentdroppedtoequality.Afewmoveslater,itsaidTinsleywasbetter.Later Chinooksaiditwasintrouble.Finally,thingsbecamesobadweresigned.Inhisnotesto thegame,Tinsleyrevealedthathehadseentotheendofthegameandknewhewas goingtowinonmove11,onemoveafterourmistake.Chinookneededtolookahead 60movestoknowthatits10thmovewasaloser.
AfterTinsley’sdeath,Chinookplayeda32-gamematchagainstDon Lafferty,thesecondbestplayerintheworld,andwon1–0with31draws. In1996,Chinookwasretiredfromtournamentplay,althoughyoucan playanonlinegameagainstaweakenedversionofChinook.Afterits retirement,Chinookjoineddozensofothercomputersthathadbeen runningmoreorlesscontinuouslyfor18yearstodeterminewhethera checkersplayermovingfirstandmakingoptimalmovescouldguarantee avictory.
In2007,Schaefferannouncedthat,liketic-tac-toe,checkersisaperfectlybalancedgameinthatifeachplayerplaysoptimally,adrawis guaranteed.Thiswasagreatcomputationalfeat,butIwouldn’tcallit intelligence.
Thenextgenerationofgame-playingcomputerprogramshastaken adifferentroute—atrial-and-errorprocessinwhichacomputerplays millionsofgamesagainstitselfandrecordswhatworks.Usingthis approach,aprogramnamedAlphaGodefeatedtheworld’sbestGo playersandaprogramcalledAlphaZerodefeatedthebestchesscomputer programs.Theseprogramsperformnarrowlydefinedtaskswithclear goals(checkmatetheopponent)spectacularlywell,buttheprograms don’tanalyzeboardgamesthewayhumansdo,thinkingaboutwhycertain strategiestendtobesuccessfulorunsuccessful.Eventhepeoplewhowrite thecomputercodedonotunderstandwhytheirprogramschoosespecific movesthataresometimesunusual,evenbizarre.
DemisHassabis,theCEOofDeepMind,thecompanythatcreated AlphaGoandAlphaZero,gaveafewexamples.Inonechessgame,
BOARDGAMES | 19
AlphaZeromoveditsqueentoacorneroftheboard,contradictingthe humanwisdomthatthequeen,themostpowerfulchesspiece,becomes morepowerfulinthecenteroftheboard.Inanothergame,AlphaZero sacrificeditsqueenandabishop,whichhumanswouldalmostnever dounlesstherewasanimmediatepayoff.HassabissaidthatAlphaZero “doesn’tplaylikeahuman,anditdoesn’tplaylikeaprogram.Itplaysina third,almostalien,way.”
Despitetheirfreakish,superhumanskillatboardgames,computerprogramsdonotpossessanythingresemblinghumanwisdomandcommon sense.Theseprogramsdonothavethegeneralintelligenceneededtodeal withunfamiliarcircumstances,ill-definedconditions,vaguerules,and ambiguous,evencontradictory,goals.Decidingwheretogofordinner, whethertoacceptajoboffer,orwhotomarryisverydifferentfrom movingabishopthreespacestocheckmateanopponent—whichiswhyit isperiloustotrustcomputerprogramstomakedecisionsforus,nomatter howwelltheydoatboardgames.
20 | INTELLIGENTOROBEDIENT?
Doingwithoutthinking
NigelRichardsisaNewZealand–MalaysianprofessionalScrabbleplayer(yes,thereareprofessionalScrabbleplayers).His motherrecalledthat,“Whenhewaslearningtotalk,hewasnot interestedinwords,justnumbers.Herelatedeverythingtonumbers.” Whenhewas28,shechallengedhimtoplayScrabble:“Iknowagame you’renotgoingtobeverygoodat,becauseyoucan’tspellverywelland youweren’tverygoodatEnglishatschool.”Fouryearslater,Richards wontheThailandInternational(King’sCup),theworld’slargestScrabbletournament.
HewentontowintheU.S.,U.K.,Singapore,andThailandchampionships multipletimes.HewontheScrabbleWorldChampionshipin2007,2011, and2013.(Thetournamentisheldeverytwoyearsandhewasrunner-up in2009).
InMay2015,Richardsdecidedtomemorizethe386,000wordsthat areallowedinFrenchScrabble.(Thereare187,000allowablewordsin NorthAmericanScrabble.)Hedoesn’tspeakFrenchbeyond bonjour andthenumbersheusestorecordhisscoreeachturn.Beyondthat, RichardspaidnoattentiontowhattheFrenchwordsmean.Hesimply memorizedthem.
Nineweekslater,hewontheFrench-languageScrabbleWorldChampionshipwitharesoundingscoreof565–434inthechampionshipmatch. Ifhehadstudied16hoursadayfor9weeks,hewouldhaveanaverageof 9secondsperwordtomemorizeall386,000wordsintheFrenchScrabble book.However,Richardsreportedlydoesn’tmemorizewordsonebyone; instead,hegoespagebypage,withthelettersabsorbedintohismemory, readytoberecalledasneededwhenheplaysScrabble.
CHAPTER2
DOINGWITHOUTTHINKING | 21
RichardsplayedasquicklyandincisivelyintheFrenchtournamentas hedoesinEnglish-languagetournaments,givingnocluethathecannot actuallycommunicateinFrench.ForexpertslikeRichards,Scrabbleis essentiallyamathematicalgameofcombiningtilestoaccumulatepoints whilelimitingtheopponent’sopportunitiestodothesameandholding ontolettersthatmaybeusefulinthefuture.Theimportantskillsarean abilitytorecognizepatternsandcalculateprobabilities.Thereisnoneed toknowwhatanyofthewordsmean.
RichardsisthegreatestScrabbleplayerofalltime,thoughheisvery quietandhumble,likeacomputergoingaboutitsbusiness.
OrshouldIsaythatcomputersarelikeRichards?Computersdonot knowwhatwordsmeaninanyrealsense.Theyjustprocesslettercombinationsstoredintheirmemories.Computermemoriesarelargeand theirprocessingisfast,buttheabilitytoprocesslettercombinationsis averynarrowlydefinedtaskthatisonlyusefulinspecific,well-defined situations—suchassortingwords,countingwords,orsearchingforwords. Thesameistrueofmanycomputerfeats.Theyareimpressive,buttheir scopeislimitedseverely.
Word,image,andsoundrecognitionsoftwareisconstrainedbyits granularapproach—tryingtomatchindividualletters,pixels,andsound waves—insteadofrecognizingandthinkingaboutthingsincontextthe wayhumansdo.
Thefuelandfireofthinking
In1979,whenhewasjust34yearsold,DouglasHofstadterwonaPulitzer Prizeforhisbook, Gödel,Escher,Bach:AnEternalGoldenBraid,exploring howourbrainsworkandhowcomputersmightsomedaymimichuman thought.Hehasspenthislifetryingtosolvethisincrediblydifficult puzzle.Howdohumanslearnfromexperience?Howdoweunderstand theworldwelivein?Wheredoemotionscomefrom?Howdowemake decisions?Howcanwewriteinflexiblecomputercodethatwillmimicthe mysteriouslyflexiblehumanmind?
Hofstadterhasconcludedthatanalogyis“thefuelandfireofthinking.” Whenhumansseeanactivity,readapassage,orhearaconversation, weareabletofocusonthemostsalientfeatures,the“skeletalessence.” Trueintelligenceistheabilitytorecognizeandassesstheessenceof asituation.Humansunderstandthisessencebydrawinganalogiesto
22 | DOINGWITHOUTTHINKING
otherexperiencesandtheyusethisessencetoaddtotheircollectionof experiences.Hofstadterarguesthathumanintelligenceisfundamentally aboutcollectingandcategorizinghumanexperiences,whichcanthenbe compared,contrasted,andcombined.
ToHofstadter’sdismay,computersciencehasgoneoffinanotherdirection.Computersoftwarebecameuseful(andprofitable)whencomputer scientistsstoppedtryingtoimitatethehumanbrainand,instead,focused ontheabilityofcomputerstostore,retrieve,andprocessinformation. Softwareengineersdonottrytounderstandhowourmindswork.They developproducts.
Limitingthescopeofcomputerscienceresearchhaslimiteditspotential.Computerswillneverbetrulyintelligentinthewayhumanmindsare intelligentifprogrammersdon’teventry.Hofstadterlamentedthat,“To me,asafledgling[artificialintelligence]person,itwasself-evidentthat Ididnotwanttogetinvolvedinthattrickery.Itwasobvious:Idon’twantto beinvolvedinpassingoffsomefancyprogram’sbehaviorforintelligence whenIknowthatithasnothingtodowithintelligence.”
Thereisanicemetaphorforthedetourartificialintelligencetook. Humanshavealwaysdreamedofflying,ofliftingthemselvesoffthe ground,soaringthroughthesky,andperhapstravelingtothemoon.
Thatisverydifficultandearlyattemptswerefailures,suchasthelegend ofIcaruswearingwingsmadeofwaxandfeathers.Analternativeway ofgettingoffthegroundistoclimbatree.Ittakesstrength,skill,and determination,andmightyieldfruit,butnomatterhowtallthetree,it willneverletussoarthroughtheskyorreachthemoon.
Inthesameway,theartificialintelligencedetourawayfromtryingto designcomputersthatthinkthewayhumansthinkhastakenskilland determinationandhasbeenproductiveanduseful,butreachingthetops oftrees(andsomethinkthatwemaybeclose)willnotgetuscloserto makingcomputersthathaverealhuman-likeintelligence.
SomeofHofstadter’scompellingexamplesareassimpleastheuppercaseletter A,whichcanbewrittenindifferentfontsandstyles,yethumans recognizeitinstantlybecausewedrawanalogiestovariationsoftheletter A thatwehaveseenandremember.Hofstadtercallsthis“thefluidnature ofmentalcategories.”
Softwareprogramsarequitedifferent.Theyareprogrammedto associatetheletter A withpixelsarrangedinveryspecificways.If thereisaclosematchtoapixelpatterninitsmemory,acomputerwill
THEFUELANDFIREOFTHINKING | 23
recognizetheletter.Ifthereareslightvariationsfromwhatacomputer hasinitsmemory,thecomputerwillnotrecognizeit.Thisfragilityis thebasisforthoselittleweb-pageaccessboxeswithweirdcharacters calledCAPTCHAs(CompletelyAutomatedPublicTuringteststo tellComputersandHumansApart).Humanscandeciphercharacter variationseasily.Computerscannot.
Insteadofnumbersandletters,someCAPTCHAsasktheusertoclick onboxesthatincludeimagesofthingslikeflowers,chairs,androads, becauseinnumerablevariationsarerecognizedimmediatelybyhumans
24 | DOINGWITHOUTTHINKING
butbafflecomputerprograms.Thepointisnotthatcomputerswillnever beabletorecognizeobjectsaswellashumansdo.Visual-recognition programsareimprovingallthetimeandwillsomedaybeextremely reliable.Thepointisthattheseprogramsdonotworklikethehuman mind,anditisconsequentlymisleadingtocallthem intelligent intheways humanmindsareintelligent.
Weseparatethingsintotheirskeletalessenceandrecognizehowtheyfit together.WhenweseethesimpledrawinginFigure1,weinstantlygrasp itsessence(abox,ahandle,twowheels,andtext)andunderstandhowthe box,handle,wheels,andtextarerelated.Weperceivethatitissomekind ofwagon,thatitcanroll,thatitcancarrythings,andthatitcanbepulled. Wedon’tknowthisbymatchingpixels.Weknowitbecausewehaveseen boxes,handles,andwheelsandweknowtheircapabilities,individually andcollectively.Weseethetext RedDevil ontheboxandreaditinstantly, butweknowthatitisanunimportantdecoration.
Computersdonothingofthesort.Theyareshownmillionsorbillionsof picturesofwagonsandcreatemathematicalrepresentationsofthepixels. Then,whenshownapictureofawagon,theycreateamathematical representationofthepixelsandlookforclosematchesintheirdata base.Theprocessisbrittle—sometimesyieldingimpressivematches,other timesgivinghilariousmismatches.
WhenIaskedaprominentcomputerscientisttouseastate-of-the-art computerprogramtoidentifytheimageinFigure1,theprogramwas98 percentcertainthattheimagewasabusiness—perhapsbecausethetext ontherectangleresembledastorefrontsign.
Humansdonothavetobeshownamillionwagonstoknowwhata wagonis.Onewagonmightbeenoughforustounderstandthecritical featuresand,notonlythat,toknowwhatwagonscanandcannotdo.They
Red Devil
THEFUELANDFIREOFTHINKING | 25
Figure1 Whatisthis?
canbelifted.Theycanbedropped.Theycanbefilled.Theycanberolled. Theycannotflyordosomersaults.
Ahumanmind’sabilitytograsptheessentialfeaturesandunderstand theimplicationsistrulyastonishing.WeknowthatthethinginFigure1 isaboxbecauseofitssimilaritytootherboxeswehaveseen,eventhough theseboxeshavebeenofvastlydifferentsizesandmaynothavehadwheels andahandle.Virtuallysimultaneously,werecognizethatthecircleswe seeherearewheelsbecausetheygobelowthebottomofthebox,which weknowwillallowtheboxtoberolledonitswheels,andwerecallseeing boxesrolledonwheels.Wealsoreasonthatthereareprobablytwomore wheelsontheothersideofthebox,eventhoughwedonotseethem, becauseweknowthattheboxwouldn’tbestableotherwise.
Wehavelearnedfromexperiencethatboxeswithwheelsareoftenused tocarrythings—so,thisboxisprobablyhollowwithaspacetocarrystuff. Eventhoughwecannotseeinsidethebox,wemightspeculatethatthere issomethinginthere—perhapssometoys.Wemightalsorecallusing wagonsourselvestocarrytoys,rocks,orkittens.
Eventhoughitisdrawnwithjusttwolines,weknowthehandleisa handlebecauseboxeswithwheelsusuallyhaveahandleoramotor,and thisthingprotrudingoutoftheboxresemblesotherhandleswehaveseen attachedtothingsthatarepushedorpulled.WethinkthatthetextRed Devilismostlikelyunimportantdecorationbecausewordswrittenon boxesareusuallyjustdecorative.
Wemightbesurprised,andwesometimesare,butweknowthatthis lookslikeawagonwithwheelsandahandleandRedDevilwrittenonthe side.Wedidnotcometothisconclusionbyransackingourmemoryfor somethingthatlooksexactlylikethisspecificobject(thewayacomputer programwouldprocesspixelslookingformatches).Instead,ourfantastic mindsareabletograsptheessentialcomponentsandunderstandthe implicationsofcombiningthesecomponents.
Ourmindsarecontinuouslyprocessingfleetingthoughtsthatcomeand goinaceaselessfloodofanalogies.WemightcomparetheRedDevilfont tootherfontsandcomparethecolortosimilarcolors.Wemightthinkof asled,amoviewithasled,asledride.Wemightthinkofacarorahorse thatcanberiddenorusedtocarrythings.Thoughtscomeandgosofast thatwecannotconsciouslykeepup.Thefloodisinvoluntaryandwould beoverwhelmingwereourmindsnotsoremarkable.Wecaneventhink aboutourthinkingwhilewearethinking.
26 | DOINGWITHOUTTHINKING
Docomputershavethisself-awareness?Cancomputersdoanything remotelyresemblingourconsciousnessaswesiftthroughdozens,ifnot hundreds,ofthoughts—holdingontosome,lettingsomego,combining others—andhavingsomethoughtsleadtootherthoughtsandthenother thoughtsthatareoftenonlydimlyrelatedtoouroriginalthoughts?
Computersdonotunderstandinformation—text,images,sounds—the wayhumansdo.Softwareprogramstrytomatchspecificinputstospecific thingsstoredinthecomputer’smemoryinordertogenerateoutputsthat thesoftwareengineersinstructedthecomputertoproduce.Deviationsin specificdetailscancausethesoftwareprogramstofail.TheRed-Deviltext mightconfusethecomputersothatitdoesnotrecognizetheboxasabox. Thecrudedepictionofthehandlemightbemistakenforabaseballbator atelephonepole.Thecirclesmightbemistakenforpiesorbowlingballs.
Notonlymightasoftwareprogrammatchingpixelsindigitalimages notrecognizeawagon,itmightmisidentifyapicturecontainingamishmashofredandblackcolorsasawagon,eventhoughtherearenowheels orhandleinthepicture.
Ourmind’sflexibilityallowsustohandleambiguityeasilyandtogo backandforthbetweenthespecificandthegeneral.Werecognizeaspecificwagonbecauseweknowwhatwagonsgenerallylooklike.Weknow whatwagonsgenerallylooklikebecausewehaveseenspecificwagons.
Humansunderstandtext,images,andsoundsincomplexwaysthat allowustospeculateonthepastandanticipatethehypotheticalconsequencesofmodifyingormergingthings.Inourwagonexample,wemight surmisefromawagon’scrudeconstructionthatitwashandmadeandwe mightconcludefromtheabsenceofdentsandscratchesthatitisnew or,atleast,welltakencareof.Wemightpredictthatthewagonwillfill withwaterifitrains,thatitcanbeliftedbythehandle,thatitwillrollif givenapush.Wemightimaginethatiftwochildrenplaywiththewagon, onechildwillclimbinsideandtheotherwillpulltheit.Wemightexpect theownertobenearby.Wecanestimatehowmuchitwouldcosttobuy thewagon.Wecanimaginewhatitwouldbeliketorideinitevenifwe haveneverriddeninawagoninourlives.
Evenifitweredecoratedtolooklikeahorseorspaceship,wewould knowitisawagonfromthewheelsandhandle.Wearealsoabletorecognizethingswehaveneverseenbefore,suchasatomatoplantgrowingin awagon,awagontiedtoakangaroo’sback,anelephantswingingawagon withitstrunk.Humanscanusethefamiliartorecognizetheunfamiliar.
THEFUELANDFIREOFTHINKING | 27