Volume 19th June 2014

Page 1

‫‪Not For Sale - New Vision - Volume 19 th June 2014‬‬

‫‪Petroleum Today‬‬ ‫أزمة الطاقة يف مصر بني األسباب واحللول‬

‫‪http://www.facebook.com/PetroleumTodayMagazine‬‬

‫م‪ /‬أسامة كمال ‪:‬‬

‫م‪ /‬خالد عبدالبديع ‪:‬‬

‫توصيات وإسرتاتيجيات اإلصالح‬ ‫فـى جمال الطاقة‬

‫شــحنات الغــاز املســال املقرر‬ ‫إســتريادها ستســاهم فى حل‬ ‫جزء من املشكلة‬

‫د‪ /‬تامر أبو بكر ‪:‬‬

‫د‪ /‬أحمد الصباغ ‪:‬‬

‫إســـتـــخـــدام الــفــحــم والــطــاقــة‬ ‫املــتــجــددة كــوقــود بــديــل أمــر‬ ‫حتمي‬

‫اإلســتثمار فــى الوقــود احليــوي‬ ‫املكمــل للوقــود البــرتويل ينهي‬ ‫مشاكل الطاقة فى مصر‬

‫م‪ /‬حممد اخلشن ‪:‬‬

‫م‪ /‬مدحت إسطفانوس ‪:‬‬

‫األفــضــــــــل لــشــركــــــــات األســمــــــــدة‬ ‫احلصــول على الغــاز بـ ‪ 7‬دوالرات‬ ‫بدون تخفيض احلصص املقررة لها‬

‫التحول إلستخدام الفحم وتوفري‬ ‫الغاز الطبيعي سيوفر سنويًا ‪5‬‬ ‫مليار جنيه للموازنة العامة‬

‫‪Experimental Investigation of Formation Damage Associated with Completion and‬‬ ‫‪Workover Fluids in Bahariya Formation, Western Desert, Egypt‬‬ ‫‪Controls losses in Depleted Reservoirs and high-permeability formations using‬‬ ‫‪Nanomaterial as a new mud product.‬‬





ATLAS COPCO’S “VSD FOR LIFE” CAMPAIGN Energy saving up to 50 % with Atlas Copco VSD environmentally friendly compressors www.atlascopco.com/gavsdplus





mydesign.com.eg

International Drilling Material Manufacturing Co. S.A.E

Head Office & Plant: Suez, Sokhna Road, Kilo 41 - Industrial Area Phone: 062 3710206 Fax: 062 3710207

Cairo Office: 6/10 El-Sefarat District In Front of Free Zone, Nasr City, Cairo -Egypt Phone: +202 22758933 Fax: +202 22758934

www.idm.com.eg


‫‪Petroleum Today‬‬ ‫‪http://www.facebook.com/PetroleumTodayMagazine‬‬

‫‪Contents‬‬ ‫‪Energy Crisis‬‬ ‫‪New Products‬‬ ‫‪Experimental Investigation of Formation Damage‬‬ ‫‪Associated with Completion and Workover Fluids in‬‬ ‫‪Bahariya Formation, Western Desert, Egypt‬‬ ‫‪Controls losses in Depleted Reservoirs and high‬‬‫‪permeability formations using Nanomaterial as a‬‬ ‫‪new mud product.‬‬

‫‪9‬‬

‫‪2‬‬ ‫‪3‬‬

‫‪09‬‬ ‫‪18‬‬ ‫‪22‬‬ ‫‪34‬‬

‫أزم���������ة ال�����ط�����اق�����ة ف������ي م����ص����ر ب����ي����ن األس�������ب�������اب وال����ح����ل����ول‬

‫البترول»‪ :‬نستهدف زيادة االستثمار االجنبي بالبحث‬ ‫الى ‪ 8.3‬مليار دوالر‬ ‫مصر تمدد مهلة تقديم العروض في مزاد عالمي‬ ‫للتنقيب عن النفط والغاز إلى ‪ 3‬يوليو‬

‫‪6‬‬

‫«أرامكو» تؤج���ل خططًا الس���تخراج الغاز الصخري‬ ‫الرتفاع التكلفة‬

‫‪10‬‬

‫توصيات واستراتيجيات اإلصالح ف�ى مجال الطاقة‬

‫‪18‬‬ ‫‪22‬‬

‫«إيفرجرو» تنتج كلوريد الكالس���يوم بجودة عالية‬ ‫وس���عر مناف���س لخدم���ة الش���ركات العاملة فى‬ ‫قطاع البترول‬ ‫مؤتم���ر ومعرض كايرو انرجى فرصه كبيره لدفع‬ ‫عجلة االستثمار فى مجاالت الطاقه المختلفه‬


‫تقديـر‬ ‫شـكر وو تقديـر‬ ‫شـكر‬ ‫‪ Petroleum Today‬تتقدم بخالص الشكر والتقدير اىل السادة التايل أسمائهم ملا قدموه وما زالو يقدموه‬ ‫من إسهامات قيمة للمجلة منذ خروجها للنور عرب كتابة املقاالت العلمية وطرح الرؤى الفنية اخلاصة بتطوير‬ ‫وحتديث قطاع البرتول املصري كما يسعدنا إستقبال املزيد من املقاالت والرؤى اخلاصة بقطاع البرتول‪.‬‬

‫الرئيس الشرفى للمجلة املهندس‪ /‬أسامة كمال وزير البرتول األسبق‬ ‫املهندس‬

‫الدكتور‬

‫طــاهر عبد الرحـيم‬

‫ماهر مصباح‬

‫رئيس شركة خالدة للبرتول‬

‫رئيس جامعة قناة السويس‬

‫اجليولوجى‬

‫الدكتور‬

‫مصطفى البحر‬

‫أحمد الصباغ‬

‫رئيس جملس إدارة عجبية للبرتول‬

‫رئيس معهد بحوث البرتول‬

‫املهندس‬

‫الدكتور‬

‫حممد بيضون‬

‫عطية حممد عطية‬

‫رئيس جملس إدارة السويس للزيت (سوكو)‬

‫رئيس قسم البرتول اجلامعة الربيطانية‬

‫املهندس‬

‫الدكتور‬

‫حممد حامد اجلوهري‬

‫عادل سامل‬

‫رئيس الشركة العاملية لتصنيع مهمات احلفر‬

‫أستاذ البرتول باجلامعة االمريكية‬

‫املهندس‬

‫الدكتور‬

‫حممد ابراهيم‬

‫جمال القليوبى‬

‫رئيس شركة غازتك‬

‫أستاذ البرتول باجلامعة االمريكية‬

‫املهندس‬

‫الدكتور‬

‫خــالد عبــود‬

‫إسماعيل عياد‬

‫املدير اإلقليمي (‪)LIN SCAN‬‬

‫معهد بحوث البرتول‬

‫املهندس‬

‫الدكتور‬

‫شريف حسب اهلل‬

‫إسماعيل حمجوب‬

‫مدير العمليات رشيد للبرتول‬

‫الرئيس االسبق لشركة عجيبة للبرتول‬

‫املهندس‬

‫املهندس‬

‫هانــى حــافظ‬

‫أحمد رضوان‬

‫الرئيس السابق ملبيعات شل مصر‬

‫رئيس شركة يوكس للخدمات البرتولية‬

‫اللـــــواء‬

‫املهندس‬

‫مصطفى قدرى‬

‫حممد ندى‬

‫رئيس جملس إدارة شركة مالتى ديلنج‬

‫رئيس جملس إدارة شركة (باسكو)‬



Petroleum Today Chairman Mohamed Bendary Vice-Chairman Mohamed Hamdy

Energy Crisis

Executive Editor-in-Chief Magdy Bendary General Manager Hany Ibrahim Article Scientific Adviser Consultant /Ahmed Shehab

P

rogression Governments failed during the previous period to reach a radical solution to the energy problem, which is compounded day after day, and influenced negatively on the Egyptian Economy which is already occupied and more it has contributed greatly to the increased severity of political unrest as well as its negative impact on the investment climate and many investors hesitance to have projects fearing of a lack of fuel to run these projects. The main reason for the failure of this government has resorted to temporary solutions to the problem, such as dependence on foreign aid without a clear plan features out of this crisis and even some attempts by some officials were not completed due to changes cascading fear that governments approach support system, which is of the most important causes of increasing the problem and its aggravation. We must all know that Egypt is facing a real problem increases day by day and that the solutions sedating will increase this problem so everyone should be contributing to the seriousness of the development and implementation of solutions based on several axes and in the end results in one solution which is to end the crisis. And because the problem is multi-faceted and relate to more than one ministry and government agency and is not limited responsibility on the oil sector, but from here should be created a coalition entity of those ministries and agencies and experts working to find a solution and show citizens the importance of contributing to the solution and that is to take procedures firm and fast, including short-term and other long-term solutions based on scientific and practical and also media contributes strongly to increase awareness and create a general culture to let Egyptian Citizen to be an integral part of solving the problems of the nation. Now that Egypt enters a new phase of its contemporary history, we hope that the new system is taking all measures and decisions that work on the speed of finding a solution and that the enacted legislation and laws that facilitate the work of the officials and increase investor’s confidence in general and in the energy sector in particular. And In the end, we salute you all and wish for Egypt pride and dignity.

Petroleum Today

Scientific Secretary Ali Ibrahim Editing Staff Shaimaa Eid Hany Khaled Mohamed Mousa Marketing Magdy Ahmed Mohamed Moussa Mohamed Attia Financial Management Omnia Alaa Art Director Walid Fathy Distribution Mahmoud Mabrouk Art Direction Mohamed Bendary Production Mohamed Salah Scientific Staff Dr. Attia M. Attia Dr. Adel Salem Dr. Ahmed Z. Nouh Dr. Ismail Aiad Dr. Gamal Gouda Eng. Mahmoud A. Gobran Eng. Mohamed nada Eng. Taher Abd El Rahim Eng. Mohamed Bydoun Eng.Samir Abady Dr. Lubna Abbas Saleh Special thanks to all the Society of Petroleum Engineers (SPE) Mr. Hany Hafez Eng. Mohamed Abdel Sattar Publisher The Egyptian Company For Marketing 8Th Kafafi Nasr St., Agouza Giza - Egypt Tel: +202 42191195 01006596350 - 01116251134 01000533201 E-mail: petroleum.mag@gmail.com E-mail:info@ petroleum-today.com www.petroleum-today.com Copyright Reserved Design and Print by:

Tel. : +202 37086263 info@mydesign.com.eg www.mydesign.com.eg


Egypt News Petroleum: ÂŤWe aim to increase foreign investment research to $8.3 billionÂť A report of the Ministry of Petroleum and Mineral Resources said that the ministry aimed at raising foreign investment for companies operating in Egypt in the search for oil and gas to $8.3 billion in 20152014/ compared with $8 billion the previous year. The report said that in Egypt 70 international Petroleum companies are working in the areas of research and exploration and production The total foreign investments carried out in the Petroleum sector in the field of research and exploration and development during the fiscal year 20132012/, about $7.5 billion. The report added that foreign investment for companies operating in Egypt in the search for oil and gas discoveries and development increased during the year 20142013/ and reached $8 billion a comprehensive research and exploration, development and operating expenses. The report pointed out that petroleum agreements are

one of the main axes of action pursued by the Petroleum sector to increase Egypt›s production of oil and gas and to compensate the natural attrition in the fields and invest in the most promising areas of the discovery of oil and gas, especially since there are new geological layers work is underway and after the rich materials and hydrocarbon wealth.

$800 million increase in government debt to foreign partners in 3 months Government debt in favor of foreign Petroleum companies increased worth 800 million U.S. dollars in the first quarter of this year to reach $5.7 billion versus $4.9 billion last December. Engineer Tarek Al-Mullah, Chief Executive of the General Authority for Petroleum said that dues for foreign Petroleum companies operating in Egypt to the government amounted to $5.7 billion dollars by the end of March The government had paid for foreign Petroleum companies to $1.5 billion at the end of last year. Al-Mullah said that the foreign companies that dues with the government amounted to $5.7 billion by the end of March The most prominent foreign energy companies operating in Egypt are the Italian ENI and EDISON and British BP and BG Group. Most of the Petroleum companies hopes to get their dues in full, but they acknowledge that it may take several years. Although these companies are still planning to invest in new projects in Egypt, the issue of debt remains a challenge.

14 Petroleum Today

- June 2014


Egypt Egypt extends extends deadline deadline forfor submission submission of offers of offers in the in the International International Auction Auction to explore to explore forfor OilOil andand Gas Gas to the to the 3rd3rd of July of July Egyptian Egyptian General General Petroleum Petroleum Corporation Corporation andand thethe Egyptian Egyptian Natural Natural GasGas Holding Holding Company Company (EGAS) (EGAS) announced announced forfor extension extension of of thethe deadline deadline to to bidbid in in an an international international tender tender to to explore explore forfor oil oil andand gasgas in in thethe concession concession area area of of 22 22 production-sharing production-sharing system system to the to the third third of of July. July. TheThe corporation corporation saidsaid at at thethe endend of of lastlast yearyear thatthat thethe lastlast datedate for for receipt receipt of offers of offers from from companies companies interested interested in exploration in exploration is May is May 19th 19th , 2014. , 2014. Located Located patches patches of of raised raised exploration exploration in the in the Gulf Gulf of Suez of Suez andand thethe Western Western Desert, Desert, thethe Mediterranean Mediterranean andand thethe Nile Nile Delta. Delta. EGPC EGPC andand EGAS EGAS company company diddid notnot mention mention thethe causes causes of of thethe delay delay in the in the announcement announcement published published by the by the local local newspapers. newspapers. ButBut an an official official source source at at the the EGAS EGAS saidsaid the the postponement postponement came came at at the the request request of of the the companies companies so so thatthat theythey cancan assess assess the the feasibility feasibility studies studies for for the the concession concession areas. areas. TheThesource, source,who whospoke spokeon oncondition condition of of anonymity, anonymity, «a «a group group of of companies companies hadhad applied applied for for EGAS EGAS andand thethe General General Petroleum Petroleum Authority Authority twotwo weeks weeks agoago to to postpone postpone thethe closing closing datedate of the of the bidbid so that so that they they cancan assess assess thethe feasibility feasibility studies studies for for areas areas to offer to offer thethe bestbest deals». deals».

Egyptian Egyptian Petroleum Petroleum sector sector builds builds a drilling a drilling offshore offshore device device in in deep deep water water with with investments investments of of $900 $900 million million TheThe Petroleum Petroleum sector sector is is currently currently implementing implementing a new a new project project with with an an investment investment of $900 of $900 million million to build, to build, andand thethe construction construction of of a offshore a offshore drilling drilling in deep in deep water water in cooperation in cooperation between between all all of of thethe Egyptian Egyptian Natural Natural GasGas Holding Holding Company Company (EGAS) (EGAS) andand thethe South South Valley Valley Holding Holding Company Company for for Petroleum Petroleum andand Toyota Toyota Tsusho Tsusho Corporation Corporation andand Drilling Drilling Company Company of ofJapan, Japan,through throughthetheEgyptian Egyptian Company Company for for drilling drilling andand a new a new returns andand implement implement programs programs funding fundingfrom fromthetheBank Bankof ofJapan Japan returns of of drilling drilling and and development development in the in the government. government. planned timings timings which which contributes contributes TheThe report, report, which which waswas received received by by planned to to speed speed the the development development of of new new Engineer Engineer Sherif Sherif Ismail, Ismail, Minister Minister of of discoveries discoveries on on the the map map production. production. Petroleum Petroleum andand Mineral Mineral Resources, Resources, reportpointed pointedoutoutthatthatit it andand Engineer EngineerKhalid Khalid Abd Abd Al-Al- TheThereport was was agreed agreed in inprinciple principleon onthethe Badie, Badie, head head of the of the Egyptian Egyptian Natural Natural preparation of the of the draft draft agreement agreement in in GasGas Holding Holding Company Company (EGAS), (EGAS), preparation principle principle to start to start the the implementation implementation announced announced today today thatthat thethe project project of the project project with with thethe Japanese Japanese sideside willwill enable enable thethe petroleum petroleum sector sector of the to launch to launch the the project, project, pointing pointing outout from from owning owning tools tools of of production production that that the the Egyptian Egyptian Company Company forfor represented represented in in thethe possession possession of of drilling , which , which waswas established established in in thethe fullfull device device offshore offshore drilling drilling in in drilling 2008, 2008, has has leased leased two two of the of the drilling drilling deep deep water water used used in secure in secure software software (Alkaher -1)-1) andand (Alkaher-2 (Alkaher-2 ) since ) since development development andand exploratory exploratory (Alkaher 2010 2010 and and are are currently currently working working in in drilling drilling forfor thethe development development the the programs programs of exploratory of exploratory drilling drilling of ofmarine marinereserves reservesandandthethe development development of of thethe Egyptian Egyptian development development of of new new sources sources of of oil oil andand Petroleum Petroleum companies. companies. andand gasgas while while maximizing maximizing economic economic

Egypt Egypt will will pay pay about about oneone billion billion dollars dollars of of dues dues byby Foreign Foreign Petroleum Petroleum Companies Companies in in Two Two months months dollars dollars of ofdues dues owed owed to to Foreign Foreign Egypt Egypt hashas said said in the in the past past thatthat it will it will Petroleum Petroleum Companies Companies in in thethe next next paypay another another $3 $3 billion billion in in premiums premiums twotwo months. months. monthly monthly until until 2017 2017 as as an an incentive incentive Egypt Egypt paid paid lastlast year year $1.5 $1.5 billion billion of of to toencourage encourageforeign foreignPetroleum Petroleum thethemoney moneyowed owedto tointernational international companies companies to increase to increase their their operations operations companies companies as as partpart of of a program a program to to forfor exploration exploration andand production. production. repay repay seeks seeks to to revive revive confidence confidence in in Egypt Egypt hashas been been trying trying hard hard to to meet meet thethe economy economy after after years years of unrest. of unrest. thethe high high energy energy bills bills resulting resulting from from TheThe agency agency quoted quoted as as thethe minister minister significant significant support support forfor fuelfuel products products saying saying «during «during thethe next next twotwo months months to its to its population population of 85 of 85 million million people, people, MENA MENA news news agency agency announced announced thatthat willwill make make a new a new payment payment of of dues dues most most of them of them poor. poor. Minister Minister of of Petroleum Petroleum andand Mineral Mineral to to foreign foreign companies companies operating operating in in Ismail Ismailsaid saidthatthatEgypt Egyptgets getsfrom from Resources Resources Sherif Sherif Ismail Ismail as as saying saying thethe oil oil field field is estimated is estimated at around at around a a Arabic ArabicCountries Countries«Oil «OilSubsidies» Subsidies» thatthat Egypt Egypt willwill paypay about about oneone billion billion billion billion dollars». dollars». worth worth about about $700 $700 million million perper month. month.

Petroleum Today

- June 2014

15


Arab News Kuwait to import Qatari Gas for 15 years Managing director of Global Marketing at KPC Nasser AlMudaf detected details of agreement to import gas from Qatar which was signed between Kuwait and Qatar Gas for the latter providing them with natural gas (LNG) until the end of the current year. Al-Mudaf said that Kuwait is proud of its relationship to the promotion of trade with the countries of the Gulf Cooperation Council, revealing for the first time that the institution is in advanced stages of signing an agreement to import a 15-year-old with Qatar. Al-Mudaf predicted to reach a final agreement with Qatar «very soon» where they discussed all the items related to them. He added that the contract is intended to cover the needs of gas from Kuwait after 2019 as it would amount to import gas from Kuwait to 6 million tons per year.

He said that these quantities are related to Kuwait in the future need to establish internal projects, and that it all depends on the implementation of these projects.

Iraq is working on the development of the Gas industry in Basra Basra Gas Company announced on Wednesday the start of the design phase of a new facility for the production of natural gas liquids in Al-Artawey area north of Basra, and that would add about 500 million standard cubic feet of gas to the productive capacity of the company every day. Gasser Hanter, Director General of Basra Gas Company, said in a press statement that the contract which was awarded under the program double engineering design basic Unions authors of ‹Technip - Huancayo ‹ Chinese Engineering & Construction on one hand and ‹Chiyoda - Saipem› on the other hand will ensure not only competitive bidding with respect to the project engineering and procurement procedures and processes relating to its needs to built and test readiness such as operating, but also a world-class design and implementation plan based on the experiences of international and local. He said ‹This project is a clear testimony to our efforts and our determination focused on the conversion of gas flared in Iraq reliable energy to serve the interests of this country and its people›. It is expected to begin work on creating Al-Artawey project for natural gas liquids next year. When completed construction operations become established and ready to run fully appreciates that you provide enough dry gas to generate the equivalent of 3 Giga watts of electricity, enough to supply power for about 3.5 million Iraqi house.

16 Petroleum Today

- June 2014



International News Gas Project supports Moscow›s strategy to shift eastward In the Arctic tundra and the great distance to the north of Moscow, Russia is planning a path to move away from the West and the trend to Asia. In Yamal, which in the local language means «End of The Earth», the project has gained an investment of $27 billion for the liquefaction of natural gas, a major political importance as well as economic importance. The project fits perfectly with the more aggressive strategy pursued by Moscow to shift eastward since the United States imposed sanctions and Europe due to the annexation of the Crimea from Ukraine to its territory, last month. Rather than move the gas through the pipeline to the old customers in the European Union, Russia aims to LNG shipping by sea from the remote Yamal Peninsula to buyers in Asia such as China, which avoided a stand in the face of Moscow since Russian troops seized the Crimea. The project includes the drilling of more than 200 wells in the layer of ice that covers the earth›s crust in the Arctic Circle and establish facilities to convert the gas into a liquid. Work is already in the port of Sabetta at a distance exceeding 2,000 kilometers north of Moscow.

Shale Gas Companies might pump 33 billion English Pounds in Britain A report prepared by Ernst & Young said that the development of shale gas in Britain may provide more than 64 thousand jobs and pump 33 billion English pounds ($55.37 billion) in local companies. The study said that companies drilling for shale gas will spend such sums on the supply chains of the excavation work over 18 years. Britain in the early stages of exploration for shale gas to tackle its growing dependence on imports and geologists estimated that shale gas resources to meet the demand for several hundred years. Several companies announced plans to explore for shale gas in Britain, which is opposed by the protesters and groups interested in preserving the environment, claiming that the process used to increase the use of fossil fuels and the risk of water contamination can cause earthquakes. The study, funded by the Union for exploration and production company in Britain said that land oilfield services companies and manufacturers of equipment necessary for the process of extracting shale gas may get 17 billion English Pounds of drilling operations.

18 Petroleum Today

- June 2014

China wins to produce and export Oil from Abu Dhabi

China National Petroleum Corporation (CNPC) won the right to produce and export oil from Abu Dhabi, which helps China to manage more fuel for its rapid economic growth. Emirates News Agency said that under the deal granted by the President of the United Arab Emirates a giant Chinese Energy Company got a chance to develop several oil fields onshore and offshore in Abu Dhabi and get a share of the production. A senior source at CNPC Said: «It›s a traditional franchise – means you pay a franchise fee and then get a share of production from the joint venture.» The UAE›s concessions system allows oil producers to own shares in the contribution of oil and gas resources in the country member of OPEC, and often Abu Dhabi National Oil Company (ADNOC) controlled a stake of 60 percent in each joint venture while foreign partners are taking the remaining 40 percent. The Giant Chinese Energy Company is the only foreign partner in a new joint venture company named YASAT Oil Operations Ltd. With a share of 40 percent, while ADNOC holds a controlling stake amounting to 60 percent.



Corporation News German RWE succeed in starting production of a new gas field in Desouk RWE German Company working in Egypt succeeded in the development of the well on the developmental map production, and went through the well, which is located north-west of which aim to first productive of Desouk Natural Gas field in the Delta region. It is expected a significant increase in production after the entry of several additional wells on the map production and start the central station for processing later this year. The company said in a statement that it began production stage in the well developmental northwest which has been drilled successfully in March, and thereby determine the northwestern border of a field northwest through it, has reached the flow rate when you test 17 million standard cubic feet of gas per day This is the fourth well of the company›s natural gas project in the area Desouk. Maximilian Fellner, General Manager of the company said that the field north-west which has now reached its goal of productive 60 million cubic feet of gas per day, thus achieving our primary predictions. Desouk’s project, which RWE Company RWE is running, includes seven on the development of gas fields in the Nile Delta, and is a field northwest through the first field in the production process where it was put on the map production in the month of September.

«Capital Gas» pumped $70 million in the Egyptian market

«GAPCO» adds 4.5 million barrels to its reserves of Crude Oil

Head of the Board of Directors of Capital Gas Antonio Daniel revealed that the Company would pump investment up to $70 million in the Egyptian market during the next two years, the duration of the project to be constructed in Ras Gharib, Eastern Desert on an area of 90 thousand square meters. Daniel said in a press statement that the project includes the construction of refining gas station to bad, to contribute to the provision of 4 types of gas for the domestic market include the Egyptian butane, and sulfur and condensate and propylene through the use of 15 million cubic feet per day of bad gas. Daniel said that it will extract the products previous four than two feet only, to be supplied gas remaining «13 million feet» which will be refunded to the Egyptian General Petroleum in the form of gas clean pollution where zero, so instead of burning it and causing contamination and disease, noting that this process will be the first of its kind in the Egyptian market. The project also includes the creation station to store the products resulting from refinery gases, the bad, and the filling station for tankers to carry the material produced.

Engineer Abed Ezz Elregal, Chairman of the Gulf of Suez Petroleum Company Petroleum «GAPCO», said that the company succeeded in adding 4.5 million barrels of oil to its reserves of crude oil. He added that «GAPCO» succeeded in the development of about 3.3 million barrels of non development reserves is of crude oil. «GAPCO» is currently producing about 70 thousand barrels of crude per day, and the cumulative total production of the company since January 1967 and so far, about 4.7 billion barrels. Engineer Abed Ezz Elregal, said that this achievement is achieved as a result of engineering studies and implementation of developmental drilling programs and review the performance of the producing fields. The number of fields of the company 41 nautical field produced through 70 wells located on the 9 main stations, and linking a large number of pipelines.

20 Petroleum Today

- June 2014


«MIDOR» poses an International tender for the purchase of 500 thousand barrels of Crude Oil next month Dr Muhammad Abd Al-Aziz, head of the Middle East Oil Refinery «MIDOR» Egyptian governmental, said that «the company will launch an international tender for the purchase of 500 thousand barrels of crude oil for refining». The capacity of the refinery, «MIDOR» in Alexandria, 100 thousand barrels per day, and the best specifications for the raw specifications are repeat of Basra (Iraq) heavy raw. Abd Al-Aziz added that the company would finance the tender through loans obtained from local banks to be reimbursed from the sale of petroleum products. «MIDOR» Company contribute to the Egyptian General Petroleum Corporation (government) by 78%, and the company Engineering Industries Petroleum and Chemical «INPE» (government) increased by 10%, and the firm Petroleum Projects and Technical Consultations «PETROJET» (government) increased by 10%, and the Suez Canal Bank 2%.

The head of the Middle East Oil Refinery «MIDOR» the Egyptian, said that «These quantities will being refined over the next month, for the sale of diesel and gasoline resulting from the refining process of the Egyptian General Petroleum Corporation, and the export of products in excess of the rest of the corporation’s need».

«BG» has Profit down of its oil production 3% due to lower production in Egypt British Gas «BG» has unveiled for the decline in profits during the first quarter of the year increased by 3% on the back of lower production in Egypt. Profit fell the third-largest oil company British from $1.18 billion last year, compared to $1.15 billion currently, according to Bloomberg News. Chris Finlayson, Managing Director

of the company, has resigned recently after more than 12 months he spent at the head of the company, on the back of non-productive to achieve the target. Andrew Gold, I nterim President of «BG» Company, said that the Company is proceeding Chris implemented strategy to accelerate

the achievement of revenue for the company›s shareholders. «BG» forecasts that production will reach 590 thousand barrels per day of oil equivalent during the current year. Production fell from Egyptian fields by 35% in the first quarter to 66 thousand barrels per day, in spite of the increase of local needs.

«ARAMCO» postpone plans to extract shale gas due to the high cost According to «Med» magazine, Saudi ARAMCO has already started at the stage of studies and engineering front and design work in order to extract shale gas in Saudi Arabia, but it has not yet been awarded any of these contracts, with the possibility to postpone the start of the extraction of shale gas for a period of 5 years . U.S. Baker Hughes estimated Kingdom reserves of shale gas to 645 trillion cubic feet compared with 285 trillion cubic feet of gas reserves normal. The main concern in the extraction of shale gas in Saudi Arabia is the need to use large amounts of water for the implementation of hydraulic fracturing, as these are the main way through the extraction of shale gas. It is estimated that the cost of drilling the well one to extract shale gas in Saudi Arabia up to $10 million because it must drill even deeper levels than those at similar levels in the United States,

where it is drilling in America at depths of up to 67- thousand feet, while up in Empty Quarter to the level of 12 thousand feet, which means necessarily spend more to extract shale gas.

Petroleum Today

- June 2014

21


New Products Cut-and-Pull Spear

Fig (1) The Harpoon spear from Baker Hughes allows multiple cut-and-pull attempts in a single trip. With many aging wells approaching the decommissioning stage, operators are looking for effective options to plug and abandon (P&A) their wells, particularly in offshore environments. Baker Hughes has introduced the Harpoon cut-and-pull spear, designed for P&A and slot recovery operations (Fig. 1). The spear can be set and reset several times through simple mechanical manipulation, allowing multiple cutand-pull attempts in a single trip for reduced nonproductive time. This is

22 Petroleum Today

- June 2014

especially advantageous in situations where cement bond and scale buildup are unknown, improving the probability of success. The Harpoon is run in with a cutting assembly and does not require a stop ring, allowing the robust spear to engage the casing directly above the cut, ensuring maximum force is distributed at the cut point. Specially designed slips distribute loads evenly across the entire casing diameter to prevent casing deformation, and the tool applies tension during cutting for improved cutting performance.

A built-in filter helps control debris for increased reliability. The spear’s design also supports loads in both directions so it can accommodate the use of fishing jars. For added safety, the spear features a packoff device to control the circulation of annular fluids from the well or in the event that a pressurized zone is exposed during the cutting operation. Ó For additional information, visit www.bakerhughes.com wellabandonment


Subsea Subsea Hydraulic-Connection Hydraulic-Connection System System Prone Prone to to deterioration, deterioration, multiple multiple quick quick connections connections have have been been known known to cause to cause problems problems during during mating mating andand demating demating in in terms terms of of final final alignment alignment andand engagement engagement of of subseasubseadistribution distribution systems. systems. TheThe fault fault is often is often notnot detected detected until until thethe connection connection must must be be activated, activated, when when thethe cost cost of of failure failure is at is its at its highest. highest. In In order order to to overcome overcome thisthis challenge, challenge, GEGE OilOil && GasGas developed developed thethe FLX360 FLX360 hydraulic-connection hydraulic-connection system, system, designed designed to to improve improve connection connection reliability reliability andand corrosion corrosion resistance resistance over over multiple multiple make-and-break make-and-break cycles cycles while while speeding speeding up up connection connection time time (Fig. (Fig. 2).2). Advantages Advantages of of thethe FLX360 FLX360 include include thethe removal removal of screw of screw threads threads thatthat cancan easily easily be be damaged damaged during during installation installation andand workover. workover. Other Other vulnerable vulnerable moving moving parts parts have have been been removed removed from from thethe subsea subsea component component andand instead instead located located in in thethe installation installation tool. tool.This Thissimplified simplifiedsystem systemincorporates incorporatesa remotely a remotely operated operated vehicle-mounted vehicle-mounted tooltool thatthat activates activates a bayonet a bayonet latch latch to hold to hold thethe twotwo plates plates together. together. With With only only oneone moving moving partpart required required in in thethe connection connection plate, plate, as as opposed opposed to to a a conventional conventional product product of of thisthis type type thatthat cancan leave leave up up to to 16 16 moving moving parts parts subsea subsea forfor thethe lifelife of the of the field, field, thethe likelihood likelihood FigFig (2)(2) The The GEGE OilOil & Gas & Gas FLX360 FLX360 subsea subsea hydraulichydraulicof seizure of seizure andand inoperability inoperability is reduced is reduced significantly. significantly. connection connection system system features features a streamlined a streamlined andand simplified simplified Ó For Ó For additional additional information, information, visit visit www.ge-energy.com www.ge-energy.com design design to ensure to ensure connectivity. connectivity.

Fracturing Fracturing Technique Technique

FigFig (3)(3) Schlumberger’s Schlumberger’s BroadBand BroadBand Sequence Sequence fracturing fracturing technique technique

Schlumberger’s Schlumberger’s BroadBand BroadBand Sequence Sequence fracturing fracturing technique technique enables enables sequential sequential stimulation stimulation of of perforation perforation clusters clusters in in wells wells drilled drilled in in unconventional unconventional reservoirs. reservoirs. This This new new technique technique sequentially sequentially isolates isolates fractures fractures at at thethe wellbore wellbore to to ensure ensure every every cluster cluster in in each each zone zone is is fractured, fractured, resulting resulting in greater in greater production production andand completion completion efficiency efficiency when when compared compared with with conventional conventional methods methods (Fig. (Fig. 3). 3). Developed Developed using using a composite a composite fluid fluid comprising comprising a proprietary a proprietary blend blend of degradable of degradable fibers fibers andand multimodal multimodal particles, particles, thethe BroadBand BroadBand Sequence Sequence technique technique is suited is suited forfor useuse in new in new wells wells andand in recompletions. in recompletions. This This technique technique is particularly is particularly suitable suitable forfor refracturing refracturing operations, operations, given given its its ability ability to to promote promote temporary temporary cluster cluster isolation isolation without without thethe aidaid of of mechanical mechanical devices devices such such as as bridge bridge plugs. plugs. BroadBand BroadBand hashas delivered delivered robust robust andand consistent consistent performance performance in in more more than than 500500 operations operations conducted conducted to to date date in in several several unconventional unconventional plays plays including including thethe Eagle Eagle Ford, Ford, Haynesville, Haynesville, Woodford, Woodford, Spraberry, Spraberry, andand Bakken Bakken shales. shales. In In south south Texas, Texas, BroadBand BroadBand hashas enabled enabled users users to to increase increase production production from from new new completions completions in in unconventional unconventional reservoirs reservoirs by by more more than than 20%. 20%. It has It has alsoalso reduced reduced well well completion completion time time by by up up to 46% to 46% in plug-and– in plug-and– perforation perforation operations operations by by stimulating stimulating longer longer intervals intervals compared compared with with conventional conventional methods. methods. In addition, In addition, thisthis technology technology waswas applied applied to ato a well well in in south south Texas Texas forfor a refracturing a refracturing operation, operation, which which resulted resulted in in double double thethe production production with with a fourfold a fourfold increase increase in flowing in flowing pressure. pressure. Ó ÓForFor additional additional information, information, visit visit www.slb.com/BroadBand www.slb.com/BroadBand

Petroleum Today

- June 2014

23


Subsurface Safety Valve Weatherford’s Renaissance damaged-control-line (DCL) wireline-retrievable subsurface safety valve (SSSV) makes it possible to restore safety-valve functionality and surface control in a simple retrofit procedure, restoring safe operations and bringing the well back on line without a workover (Fig. 4). The DCL safety valve has a unique, modified packing mandrel and wet connection. The valve-and-lock assembly is installed in an existing tubing-mounted safety valve or safety-valve landing nipple. Then, a new capillary line is run from the surface inside the tubing for valve control. In one successful installation of the Renaissance system, an operator of an oil field off the coast of Indonesia needed a new safety-valve system to help restore full surface-controlled SSSV functionality in a well where the safety-valve control line had become blocked. The operator wanted to eliminate the need to produce the well through a storm-choke valve while maintaining the original production rate. In addition, the desired solution had to be implemented without a rig or workover unit and had to maintain the existing surface wellhead geometry without additional spools or changes in flowline height. The Renaissance system was deployed, providing a new insert valve and a conduit to restore surfacecontrolled SSSV functionality. Once the well was opened, production returned to preinstallation levels. Ó For additional information, visit www.weatherford.com

Fig (4) The Renaissance DCL system from Weatherford is a safety system designed to retrofit a well that has been shut in as a consequence of a damaged SSSV or a blocked or damaged control line to the SSSV.

Hydraulic Catwalk

Fig (5) Tesco’s Hercules drilling-rig hydraulic catwalk system

24 Petroleum Today

- June 2014

Tesco’s Hercules hydraulic catwalk offers increased safety and adaptability with the capability of presenting tubulars to any rig floor from 4 to 32 ft by use of scissor-lift arms (Fig. 5). The Hercules’ trough-extension capability allows tubular placement close to the well center, thereby eliminating the danger of tubular swing weight. The Hercules, with a total length of 60 ft and a telescoping trough of 20 ft, has a lifting capacity of 10,000 lbm. Shorter hydraulic gull wings than those featured in other designs result in reduced weight, while the skeleton frame provides ease of access. The catwalk comes equipped with both a traditional control panel and an explosion-proof wireless programmable-logic– controller (PLC) system that controls key functions (front and back arms, trough extension, and skate) and eliminates the damage sustained by non-PLC systems, resulting in extended catwalk life. Hot and cold temperature-control systems, emergency stop buttons, light-emitting-diode illumination, and a tubular skate head that can retrieve tubulars provide enhanced efficiency and safety. Numerous optional features are available, including custom paint and builds and specialized doors and power units. Ó For additional information, visit www.tescocorp.com


Autostrad Road, Mokattam, Cairo P.O.Box 33 El Kalaa

Tel. : +202 25061600/ 1/ 2/ 3 Ext. 181 Dir : +202 25090034 Fax : +202 25065620

Mob. : +2 012 23163266 E-mail: azanaty.cum@eim-eg.com E-mail: manany.cum@eim-eg.com


Experimental Investigation of Formation Damage Associated with Completion and Workover Fluids in Bahariya Formation, Western Desert, Egypt By

Adel M. Salem Ragab, Ph. D. American University in Cairo (AUC) and Suez University Petroleum Engineering Department

A

bstract

Formation damage (FD) is considered one of the headache problem for production and reservoir engineering. The kind of damage occur during all operations performed for drilling the wells starting from drilling operations to the enhanced oil recovery processes. Declining the productivity is the main consequences of formation damage. Formation damage is the result of adverse fluid/fluid and/or rock/fluid interactions. Because of the complex nature of these interactions, effective resolution of damage problems requires the combined efforts of engineers, geologists, and technician. The ultimate measure of the petroleum industry›s success is the ability to maximize productivity and ultimate recovery. Completion fluids are being considered widely both for their impact on well productivity and for their efficiency in accomplishing a defined objective in a well. Thus, control of formation damage requires proper design for all fluids that come in contact with the hydrocarbon pay zones.

26 Petroleum Today

- June 2014

This work presents an experimental investigation for studying the effect of completion and workover fluids on the permeability of Bahariya pay zone, western desert, Egypt. Several core samples cut from different wells drilled through the Bahariya formation were used in this study to ensure proper representation. Different concentrations and compositions of killing and workover fluids have been investigated for their damage effects on the core plug. The concentration of KCl used in this study ranges from 1% to 15% wt. Hassler core holder was used for the flooding process with turbine oil as a non-wetting phase. The clay concentrations were measured using X-ray Diffraction XRD in order to relate the damage effect with the clay content. Moreover, XRD helped to choose candidate core plugs of different clay content. The effective oil permeability is measured to be as a base run. Then, the permeability after damaging is measured and the ratio of this one to the former permeability is considered as permeability damage ratio (PDR). To study permeability changes induced when flooding the

core plugs of Bahariya with KCl brine, the concentration of brine was incrementally increased from 0 to 15 wt% (1, 3, 5, 7, 10 and 15 wt%). Results revealed that the concentration of potassium chloride (KCl) has a drastic effect on permeability alteration. Meanwhile, this effect is reduced by increasing the concentrations of KCl. It is also found that the permeability reduction induced by completion/workover fluids may reach 50%. Three damage mechanisms were found to be most influential for permeability alteration. These mechanisms are the formation of stable emulsions inside the porous media, water blockage, and clay swelling. All of these mechanisms have led to abnormal decline in the permeability of the Bahariya cores.

1. Introduction

It is well proved that all operations in the oil field, starting from drilling, completion, workover, production, and stimulation are potential sources of damage to well productivity. This damage had proven either by field or laboratory experiments 1]. During the first years of the oil industry, where the cost of oil was extremely


low, low, formation formation damage damage waswas largely largely ignored ignored andand emphasis emphasis waswas placed placed on on minimizing minimizing costs costs rather rather than thanmaximizing maximizingproductivity productivityby by minimizing minimizing thethe formation formation damage. damage. Usually, Usually,completion completionoperations operations areare performed performed under under an an overbalanced overbalanced pressure. pressure. This This operation operation leads leads to to an an excessive excessive invasions invasions of of some some of of thethe wellbore wellbore fluids fluids intointo thethe formation formation pore pore space. space. These These fluids fluids areare foreign foreign liquids, liquids, salts, salts, chemicals, chemicals, andand some some solids. solids.Economides Economides[2][2]indicated indicated thatthat thethe depth depth of of filtrate filtrate invasion invasion either either while while completion completion or workover or workover operations operations may may reach reach to to about about 15-15ft and ft and return return oil oil permeability permeability may may decrease decrease to to anyany value value between between 0%0% andand100% 100%of ofits itsoriginal originalvalue. value. However, However, Krueger Krueger [3][3] observed observed in in hishis study study thatthat such such damage damage usually usually reaches reaches to atodepth a depth from from 0.30.3 to 1.0 to 1.0 ft ft depending depending on on thethe type type of filtrate of filtrate andand rock rock materials. materials. Some Some portion portion of the of the permeability permeability cancanbe berestored restoredwhen whenproduction production resumes. resumes.Based Basedon onAzari Azariandand Leimkukler[ Leimkukler[ 4] 4] study, study, about about 6083%6083%of of permeability permeability may may be be restored restored in in damaged damaged cores cores thatthat have have lostlost 98% 98% of of their their permeability permeability owing owing to fresh to fresh water water dispersion dispersion by by re-exposure re-exposure to to NaCl NaCl brines. brines. Nearly Nearly all all formations formations of of interest interest to tothetheoil oilindustry industrycontains containsclay clay minerals. minerals. LiuLiu andand Civan Civan [5][5] defined defined four four major major types types of of clay clay minerals; minerals; kaolinite, kaolinite, smectite smectite (montmorillinite), (montmorillinite), illite, illite, andand chlorite. chlorite. Each Each type type exhibits exhibits particular particular problem problem concerning concerning formation formation damage. damage. Serious Serious permeability permeability reductions reductions cancan occur occur when when clays clays obstruct obstruct flow flow by by either either expanding expanding “swelling» “swelling» to to fill fill pore pore spaces spaces or or entraining entraining with with thethe flow flow streams streams andand blocking blocking thethe pore pore throats. throats. Serious Serious permeability permeability reductions reductions cancan occur occur duedue to to those those twotwo factors. factors. In In details, details, Kaolinite Kaolinite exhibits exhibits little little or no or no

swelling swellingcharacteristics. characteristics.However, However, Zaiton Zaiton andand Berton Berton [10] [10]proved proved smectite smectite andand mixed-layer mixed-layer clays clays have have experimentally experimentally thatthat montmorillonite montmorillonite high high potentials potentials forfor swelling. swelling. Illite Illite cancan clay clay of of 5%5% dispersed dispersed in in a sandpack a sandpack swell swell when when it co-exists it co-exists with with smectite. smectite. is more is more stable stable in the in the presence presence of KCl of KCl than than NaCl NaCl brines. brines. They They alsoalso measured measured Allen Allen et et al. al. [1][1] andand Reed Reed [6][6] thethe critical critical saltsalt concentration concentration (CSC) (CSC) showed showedthatthatstructural structuralexpansion expansion values values forfor KCl KCl andand NaCl NaCl andand found found as as occurs occurs when when additional additional water water is is 5000 5000 andand 27,500 27,500 PPM PPM respectively. respectively. adsorbed adsorbed between between clay clay layers. layers. Montmorillinite Montmorillinite under under reservoir reservoir Apparent Apparent formation formation damage damage salinity salinity conditions conditions hashas twotwo or or three three cancan alsoalso be be duedue to to an an increase increase in in layers layers of of water water between between interlayer interlayer thethewater watersaturation saturationaround aroundthethe surfaces. surfaces. This This gives gives basal basal spacing spacing wellbore, wellbore, resulting resulting in ainreduction a reduction of of o o of of15 15to to18 18 permeability permeability to oil to oil or or gas.gas.This This A. A.If Ifthetheformation formation thethe effect called called a “water a “water block” block” [1, [11], 1, 11], brine brine is diluted is diluted with with fresh fresh or or brine, brine, effect or named as “water as “water sensitivity” sensitivity” based based additional additional water water is adsorbed is adsorbed between between or named vaidya vaidya andand Fogler Fogler [12] [12] study. study. these these layers layers until until thethe basal basal spacing spacing on on is perhaps is perhaps becomes becomes 30 30 oAoA or or more. more. Several Several authors authors [5, [5, 10,10, 13,13, 14]14] Therefore, Therefore, thethe increased increased clay clay volume volume indicatedthatthatformation formationdamage damage may mayconsume consumea avery verysignificant significant indicated could could be be caused caused by by changes changes in in thethe fraction fraction of the of the flow flow channel. channel. fluids fluids themselves themselves rather rather than than a change a change in the permeability permeability of of thethe rock. rock. TheThe Based Based on on experimental experimental works works of of in the damage caused caused by by fluids fluids is due is due to ato a Mongenthaler Mongenthaler [7],[7], which which indicated indicated damage change in in thethe apparent apparent viscosity viscosity of of thatthatunfavorable unfavorableinteractions interactionswith with change oil oil phase phase and/or and/or to atochange a change in its in its formation formationwaters watersarearethethemajor major thethe relative permeability. permeability. These These types types of of potential potential cause cause of formation of formation damage damage relative damage areare considered considered as temporary as temporary with with heavy heavy brines brines in in thethe sandstone sandstone damage damage, damage, andand cancan be reomoved be reomoved by back by back cores. cores. flow flow while while production production theoretically. theoretically. However, such such removal removal is sometimes is sometimes Nowak Nowak andand Krueger Krueger [8][proved 8] proved thatthat However, difficult. TheThe formation formation of of waterwaterthethe saline saline filtrates filtrates causes causes lessless trouble trouble difficult. in-oilemulsion emulsionin inthethereservoir reservoir andand may, may, in fact, in fact, reduce reduce particle particle sizesize in-oil rock around around thethe wellbore wellbore cancan cause cause andand increase increase oil oil permeability permeability in some in some rock damage as well, as well, because because thethe apparent apparent cases. cases. In In addition, addition, it was it was shown shown in in damage viscosity of of thethe emulsion emulsion may may be be their their tests tests thatthat polyvalent polyvalent salts, salts, such such viscosity more than than an an order order or or magnitude magnitude as CaCl2 as CaCl2 andand Al2Cl3 Al2Cl3 diddid notnot damage damage more higher than than thatthat of the of the oil.oil. permeability permeabilityas asmuch muchas asNaCl NaCl higher solutions. solutions.To Toexplain explainthetheoverall overall increase increase of permeability of permeability gained gained after after 2. 2. Experimental Experimental Setup Setup flooding flooding with with some some killing killing fluids. fluids. Laboratory Laboratory tests tests were were designed designed Gatlin Gatlin [9][attributed 9] attributed thisthis phenomenon phenomenon to tosimulate simulatefluid fluidflow flowconditions conditions to ionic to ionic exchanges. exchanges. Sodium Sodium ions ions areare near nearthethewellbore wellborein inorder orderto to initially initiallypresent presentto toneutralize neutralizethethe study studythetheeffect effectof ofkilling killingfluid fluid surface surface charge charge of the of the individual individual clay clay compositions compositions on on formation formation damage. damage. particles. particles. When When brought brought intointo contact contact TheThe permeameter permeameter used used in this in this study study 2 2 + + with with thethe CaCl CaCl filtrate, filtrate, some some of Na of Na hashas thethe ability ability to work to work as as a constant a constant ++ were were replaced replaced by by Ca++ Cain the in the ratio ratio of of differential differential pressure pressure or or a constant a constant twotwo sodium sodium ions ions forfor oneone calcium calcium ion;ion; flow flow raterate instrument. instrument. Even Even though though thisthis exchange exchange results results in shrinkage in shrinkage of of constant constant differential differential pressure pressure clay clay particle, particle, leading leading to to restore restore or or simulate simulate thethe realreal well well conditions, conditions, may may increase increase oil oil permeability. permeability. therefore, therefore, it was it was decided decided to to useuse thethe

Petroleum Today

- June 2014

27


constant flow rate mode during this study to maximize the precision of the data. This technique was adopted by Potter[15] and Eieri and Ursin [16] in their studies. The types of this permeameter is Hassler type core holder, Figure 1 illustrates the schematic diagram of the apparatus used in this work. Because of the highly corrosive brines being used, all the components in contact with the fluids were stainless steel, Teflon, or plastic. Moreover, to eliminate plugging problems within the porous media, all fluids were filtered by a Millipore™ 0.22 µm filter to remove suspended solids. To ensure a constant flow rate conditions, all fluids were injected into the core sample using a positive displacement pump with a pulsation dampener quipped with dual filtration systems.

2.1. Core Plugs

Several core samples cut from different wells drilled through the Bahariya formation were used in this study to be more represented to the formation. Cores porosities are measured and their values vary from 17.3% to 17.8%. The permeabilities of those cores are measured as well and their values range from 30 md and 120 md. Depths of these core samples ranged from 8858 ft to 8876 ft. The core dimensions are one-inch diameter and one and half inch in length. All cores were cleaned by refluxing in a Dean-Stark or Soxhlet extractors, which is a slow but gentle process. Drying is accomplished using an oven at approximately 145 °F (64°C) to prevent changing of clays within the plugs. The plugs were dried very well by measuring their weights and we stopped the drying when their weights become constant.

2.2. Procedures

All core plugs were evacuated

28 Petroleum Today

- June 2014

and then saturated with 13 wt% NaCl, which represent the formation brine salinity of Bahariya formation. The plugs were mounted in Hassler core Holder, flushed with Turbine oil of 1.287-cp viscosity. The oil permeability (Keo) is measured at stabilized flooding conditions. It is noticed that the stabilization occurs after injecting several pore volume. The measured oil permeability is considered initial undamaged or “base Permeability”. Oil permeability was calculated using Darcy›s equation as follows:

Where, k is the permeability, q is the flow rate, µo is the oil viscosity, L is the core length, A is the cross sectional area, and ΔP is the pressure difference between the inlet and outlet. Once the stabilization achieved and the effective oil permeability (Keo) is measured, KCl solution is injected in the core until no more oil is recovering and the residual oil saturation is reached. Considering that the core plug represents a small volume of rock adjacent to the well, and the KCl solution was injected in the reverse direction to the oil flooding, thus this situation simulates the invasion process while completion operations. Oil is then injected back, i. e. through the original direction and continued till a stable return oil ] was established. permeability [ During this step, oil permeability versus injected pore volume was recorded. The final oil permeability attained is taken as final stabilized backflow permeability. This value is compared to initial (base) oil permeability as permeability damage ratio (PDR). PDR is calculated by dividing the equilibrium oil ) by permeability after damage (

the stabilized oil permeability ( before damage as follows:

)

It is worth mentioning that, injection fluids velocity is kept as small as possible. This is because of two reasons, firstly: to achieve Darcy›s law assumption for calculating the core permeability secondly: to decrease the possibility of fine migrations, i.e. less than critical velocity [11, 13, 17, 19, 20].

3. Effect of KCl Concentration

It has been shown in the literature that the concentration of KCl in completion fluids together with clay content within the rock are the main and prime factors to be considered for formation damage. In this research work, it was decided to conduct a series of flooding tests to investigate the effect of different KCl concentrations on the permeability of Bahariya formation that is one of the main producers in Egypt that contains a unique clay mineralogy. The KCl concentrations were varied in these experiments based on the standard killing fluid used in the oil industry, which is as follows: Polymer ( Poly Pac R) : 1000 PPM Diesel Oil : 5 wt % KCl : 1 - 15 wt%. The permeability data are expressed in term of permeability damage ratio keo′/keo, where keo is the initial permeability to oil established at the start of each core flood and k›eo is the return oil permeability after injection of killing fluids. Tiab and Donaldson1[17] and Muecke [21] showed that when micaeous sands are leached with neutral NaCl or CaCl2 solutions, mica is altered by exchange of interlayer K+



by Na+ or Ca+ ions. They mentioned also that the smectite and vermiculite have the highest potential for adverse chemical reactions as shown in Table 2.

3.1. Effect of 1% KCl Brine

After oil permeability was measured, a killing fluid with 1 wt% KCl is injected into the core plugs till no oil appears. Afterward, oil is injected into the cores in the reverse direction and its permeability was monitored. Figure 2 represents the permeability ratio versus the pore volume injected for three Bahariya cores flooded with 1% KCl brine. In all the Bahariya core plugs, permeability increased as pore volume injected increased until stabilization is achieved Figure 2 shows that the stabilized oil permeability for core #1H is greater than those of core #2H and that of core #3H. Table 1 details the XRD clay minerals analysis of the core plugs under investigation, and found that clay content in core #1H is less than those of core #2H and of core #3H. In general, it can be concluded that 1 wt% KCl killing fluid causes permanent damage that varies according to the clay content in each core sample. This permanent damage is about 27.4%, 34.3, and 46.7% for cores #1H, 2H, and 3H respectively. The main mechanisms of the impairment in all cores are emulsions, clay swelling, and water blockage. Emulsion damage decreases gradually as the injected volume increases. When all emulsified fluid was displaced out of the core, return oil permeability reached its maximum at stabilized flowing conditions. The permanent damage depicted in Figure 2 for the three core plugs is believed to be due to montmorillonite

30 Petroleum Today

- June 2014

swelling when it was subjected to low salinity solution. These results come in agreement with previous work by Tiab and Donaldson[17] who indicated that the smectite group of minerals has the greatest water sensitivity. This group has a crystal structure that favors absorption of water and some organic molecules, such as polymers, between the layers. They also reported that the smectite group would not swell unless they are contacted by a drilling or completion fluid of different salinity and chemical composition other than the formation water. The smectite minerals can swell up to 1000% (10 times) of their original volume if the invading fluid is appreciably incompatible with the formation water.

3.2. Effect of 3% KCl Brine:

Figure 3 shows the permeability ratio after injecting a killing fluid of 3 wt% KCl concentration. As shown in Figure 2, return oil permeability increased as injected oil volume increased until stabilized conditions were reached at a constant permeability for each core. For all the three cores (core #1H, #2H, and #3H), after injecting of 3 wt % KCl killing fluid, oil permeabilities were damaged to about 12%, 30%, and 45% from its original values respectively. The initial oil permeability of core #3H is greater than that of core #2H and that of core #1H. During this set of runs, it was noticed that, during the first 50 pore volume of injected oil, emulsion damage was the dominant mechanism. This mechanism starts to diminish as injected oil continues. Afterwards, the effect of swellable clay (montmorillinite) increased and became the dominant mechanism to cause permanent damage.

3.3. Effect of 5% KCl Brine

Permeability Ratio resulting to the exposure to 5 wt% KCl brines is depicted in Figure 4. As a general trend, PDR increases as injected oil increases and the permeabilities are stabilized at lower values than the original ones. It can be concluded from Figure 4 that as KCl concentration increases in killing fluids, the return oil permeability increases. The damage value here, are 4%, 15%, 33.5% for cores #IH, #2H, and #3H respectively. This damage reduction as KCl concentration increase is attributed to ionic exchanges between the ions of clay particle and those of the fluid. Azari and Leimkuhler[4] show that the replacement order of one monovalent cation for another to be Li+ < Na+ < K+ < H+. For example, in pore fluids with equal equivalent fractions of K+ and N+, more K+ will occupy the exchange sites than Na+. Not all the Na+ will be removed from the system. This ion exchange causes changes in the size of clay particle, and consequently changes pore volume and rock permeability as concluded from Figure 4.

3.4. Effect of 7% KCl Brine

The completion fluid of 7% KCl was tested using the three cores used before. The effective permeabilities and return permeabilities were measured and recorded. These data is plotted in Figure 5. The oil permeability increases as the volume of injected oil increases for the three core plugs as shown in Figure 5. It is observed that the 7% KCl killing fluid enhanced the return oil permeability of core #1H to even higher than the reference permeability. For core plugs #2H and #3H, the effect of the 7% KCl killing fluid was not improve the permeability.


3.5. Effect of 10 and 15 KCl Brine

The same procedures performed for 10 and 15% wt KCl killing fluid, and the results are monitored and plotted. Figures 6 and 7 show the behavior of the three core plugs upon injection with 10% and 15 wt % KCl killing fluid. A slight increase in permeability ratio was gained for cores # 2H and #3H relative to the 7 wt % runs. The damage here is about 10 % and 30% for cores #2H and #3H respectively. Regarding to core #1H, the permeability ratio is increased as the injected pore volume increased as noticed in Figure 7. The return permeability reaches to its original value. By injecting oil more than 100 pore volume, the permeability increased than the original one. This run proves that the damage is minimized in case of using a killing fluid having KCl concentration more than 10% wt.

3.6. Effect of Clay Content

It is previously proved that the clay volume in the reservoir rock affect the degree of formation damage. During a fresh water shock of a core initially saturated with brine (NaCl), there is an exchange between adsorbed Na+ and H+ ions in solution. Where Na+ cation is replaced by Hydrogen cation, H+. This exchange results in an increased OH- ions in the bulk solution (i.e., pH increase) as indicated by the analysis of the effluent [10, 12]. It was observed that the permeability of the brine-saturated core declines drastically when the brine flow through the core abruptly switched to fresh (deionized) or lowsalinity water. The abrupt change in salinity that leads to this drastic decline in permeability is called “water shock” and the phenomenon is called “water sensitivity”.

Increasing salt concentrations in water tends to prevent clay blocking. In addition, it is well recognized, although perhaps not as widely known, that the nature of the dissolved solids is also important. If, for instance, formation clays are exposed to CaCl2 solution and then exposed to weaker solutions of CaCl2, or distilled water, considerably less permeability damage results than if the clays had been exposed instead to NaCl solutions The excessive fluid loss associated with clear fluids can damage productivity when mixing with interstitial water. Clay present in the reservoir aggravates the problem. Figure 8, 9, and 10 show the final PDR versus KCl concentrations for three the Bahariya cores. In all Bahariya cores, permeability increases as KCl concentration increases. For core # 1H, Figure 8, return oil permeability increases as KCl concentration is increased till it reached its maximum at 10 wt% KCl where permeability has exceeded the original permeability before the damage. Figure 9 and 10 are illustrating the final PDR versus KCl concentration for cores #2H and #3H respectively. The oil permeability increases as KCl concentration increases from 0 to 10 wt %. Whereas, the permeability increases insignificantly afterwards. This repeatability of the results assures the obtained results for the Bahariya formation, and the return oil permeability has a strong function with KCl concentration. Figure 11 combined the previous results that plotted on Figure 8, 9, and 10 and showed the effect of KCl concentrations for the three Bahariya core plugs. The relationships/curves

for the three core are approximately parallel and reach to the flat/ constant values at about 10% wt KCl concentration, which means there is no need for using a higher KCl concentration for economic factor.

Conclusions

This research presents an experimental investigation for the effect of completion and workover fluids on the permeability of Bahariya pay zone, western desert, Egypt. 1. Three core plugs of different clay contents were XRD-analyzed and flooded with a different completion/workover fluids with different KCl concentrations. 2. The concentration of potassium chloride (KCl) and the other salts have a drastic effect on permeability alteration of Bahariya formation. 3. For Bahariya cores, as clay content increases, the permeability recovery decreases as a result of clay/fluid interactions. 4. Experimental results indicated that return oil permeability increases as KCl concentration increases from 0 to 10 wt%. Afterwards, the permeability increases insignificantly. Consequently, the optimum KCl concentration in the killing fluids is 10 % wt for Bahariya formation. 5. Finally, the possibility that optimum KCl concentration in the killing and workover fluids might enhance the permeabilityrather than damage it-is proven. 6. Using higher KCl concentration than 10% could restore and in the same time enhance the rock permeability.

Petroleum Today

- June 2014

31


Dr. Adel Moh. Salem Ragab is currently an Asst. Prof. of Petroleum Engineering at American University in Cairo (AUC), Petroleum and Energy Department. Dr. Adel got his Ph.D. from Leoben University 2008, Austria, and got both of his BSc and MSc from Suez Canal University, Egypt, all in Petroleum Engineering. After receiving his Ph. D., he worked as an Asst. prof. of Petroleum Engineering at Department of Petroleum Engineering – Suez Canal University (SCU). In 19951996-, he worked as a field Petroleum Production Engineer at Qarun Petroleum Company Western Desert – Egypt. His research areas include; simulation of multiphase flow under steady and transient conditions, characterization of formation damage fluids, Enhanced Oil recovery, and Nanotechnology applications in upstream and downstream in oil field industry, Oil shale, and Well Testing. During his studies, Dr. Adel gained international experience at Bologna University, Italy on the advances use of NMR, and at Leoben University on simulation.

References 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23.

Allen, T. O., and Roberts, A. P.: “Production Operation, wells completions, workover and stimulation,” Oil and Gas Consultants Intl., Inc., Oklahoma (1982). Economides, M. S. and Nolte, K. G.: “Reservoir Stimulation,” Schlumberger educational services, Houston, TX, (1987). Krueger, R F.: “An Overview of Formation Damage and Well Productivity in Oilfield Operations,” JPT (1986) 7-28. Azari, M., and Leimkuhler, J. M. : “Formation Permeability Damage Induced By Completion Brines ,” JPT ( April 1990 ) , 486-493. Liu, X. and Faruk Civan : “Formation Damage by Fine Migration Including Effects of Filter Cake, Pore Compressibility, and Non Darcy Flow-A modeling Approach To Scaling From Core To Field,” SPE paper 28980 presented at the SPE 1995 international symposium on oilfield chemistry held in Sa. Antonio. TX. USA,14-17 February. Reed, M. G.: “Stabilization of Formation Clays with Hydroxyl-Aluminum Solutions,” JPT (July 1972) 860-64. Morgenthaler, L. N.: “Formation Damage Tests of High - Density Brine Completion Fluids,” SPEPE (Nov. 1986) 432-437. Nowak, T. J., and Krueger, R. F.: “The Effect of Mud Filtrates and Mud Particles Upon the Permeability of Cores,” Presented by T. J. Nowak at the spring meeting of the pacific coast District, Division of production, Los Angeles, May 1951. Gatlin, C.: “Petroleum Engineering – Drilling and Well Completion,” Prentice-Hall, Inc., Englewood cliffs. N. J. (1960). 238. Zaitoun, A., and Berton, N.: “Stabilization of Montmorillonite Clay in Porous Media by High - Molecular-Weight Polymers,” SPEPE (May 1992) 160-66. Economides, M. J., Hill, D. A., and Ehtigon - Economides, C. : “Petroleum Production Systems,” Prentice-Hall, Inc., Englewood cliffs, New Jersey, (1994). Vaidya, R. N., and Fogler, H. S.: “Fine Migration and Formation Damage: Influence of pH and Ion Exchange,” SPEPE (Nov.. 1992). 325 - 30. Bennion, D. B., Thomas, F. B., Bennion, D. W., and Bietz, R. F.: “Mechanisms of Formation Damage and Permeability Impairment Associated with the Drilling, Completion and Production of Low API Gravity Oil Reservoirs,” SPE 30320. Presented at the SPE l995 at the international Heavy oil symposium, Calgary, Alberta, CA., June 19-21. Ventresca, M. L. Betancout, J., Castillo, J., Ciguela, S., and Azuaje, C.: “Chemical System for Treating Formation Damage Induced by Inverted Oil Muds,” Presented at the European Formation Damage conference, Hague, Netherlands, 15-16 May. Potter, G. F.: “Formation Damage of Brine Corrosion Inhibitors,” SPE 12495 presented at the Formation Damage Control Symposium, Baker Field, Ca, Feb. 13-14, 1215-24. Eler, O. O., and Ursin, J. R.: “Physical Aspects of Formation Damage in Linear Flooding Experiments,” SPE 23784, symposium on formation damage control held in Lafayette, Louisiana, Feb. 26-27, 1992. Tiab, D., and Donaldson, E. C.: “Petrophysics, Theory and Practice of Measuring Reservoir Rock and Transport Properties,” Gulf Publishing Co., Houston, TX. 1996. Kerig, P. D., and Watson, A. T.: “Pulse Dampener for Core Flood Experiment,” JPT (Sep. 1989), 986-89. Gruesbeck, C., and Collins, R. E.: “Entrainment and Deposition of Fine Particles in porous Media,” SPE (1982). 103-12. Marx, C., and Rahman, S. S.: “Evaluation of Formation Damage Caused by Drilling Fluids, Specifically in Pressure - Reduced Formations,” JPT (Nov. 1987) 1449-52. Muecke, T. W.: “Formation Fines and Factors Controlling their Movement in Porous Media,” JPT (February 1979) 96-102. Jones, F. O. Jr.: “Influence of Chemical Composition of Water on Clay Blocking of Permeability,” Presented at SPE 1963, Annual Fall Meeting, New Orleans, Oct. 6-9. Patton, J. T., and Phelan, P. F.: “Well Damage Hazards Associated with Conventional Completion Fluids,” SPE 13800 Presented at the SPE 1985 Production Operation Symposium, Held in Oklahoma, March 10-12.

Figure 1: Schematic diagram of experimental apparatus used to Figure 4: Permeability ratio vs. injected pore volume for 5 wt% KCl investigate the damage mechanisms of completion and workover fluids. completeion fluid.

32 Petroleum Today

- June 2014


we cover from head to toe

safety & security sector. mechanical tools co.

37086263

Available in each sector all range with it s different models and sizes. Hand Tools, Power Tools, Electric Chain Hoist, Manual Chain Block, Generators, Welding Machine, Welding Equipment, Measuring Equipment, PPE-Safety Equipments, and Fire Fighting.

62, Gomhuria St., Cairo - Egypt Tel. : (+2) 25915955 (+2) 25919971 Fax : (+2) 25919934 Mob. E-mail E-mail E-mail

: (+2) 01003449872 : mtsheid@link.net : info@mechanicaltoolsco.com : safety @mechanicaltoolsco.com

www.mechanicaltoolsco.com


Figure 2: Permeability ratio vs. injected pore volume for 1 wt% KCl completeion fluid.

Figure 5: Permeability ratio vs. injected pore volume for 7 wt% KCl completeion fluid.

Figure 3: Permeability ratio vs. injected pore volume for 3 wt% KCl completeion fluid.

Figure 6: Permeability ratio vs. injected pore volume for 10 wt% KCl completeion fluid.

Figure 7: Permeability ratio vs. injected pore volume for 15 wt% KCl completeion fluid.

34 Petroleum Today

- June 2014

Figure 10: Permeability ratio vs. KCl concentrations for Core #3H.


Figure 8: Permeability ratio vs. KCl concentrations for Core #1H.

Figure 11: Permeability ratio vs. KCl concentrations for the three Cores.

Figure 9: Permeability ratio vs. KCl concentrations for Core #2H. Table 1: XRD results for the Bahariya cores. No #

Quartz,

Kaolinite,

Smectite,

Dolomite,

Siderite,

Microcline,

Albit,

Anatase,

Calcite,

%

%

%

%

%

%

%

%

%

1H

76.05

7.455

3.195

3.04

1.14

4.18

1.90

3.04

Nil

2H

67.34

10.367

4.443

12.79

0.02

1.68

0.67

2.69

Nil

3H

64.52

15.048

10.032

4.30

2.15

1.79

2.15

0.01

Nil

4H

80.29

7.665

3.285

2.19

0.04

4.34

1.46

0.73

Nil

Table 2: Surface Area of Clay Minerals [17] Clay Smectite Vermiculite Chlorite Kaolinite Illite Quartz

Surface Area, m2/g Internal

External

750 750

50 Less than 1 15 15 25 3

0 5 0

Total 800 15 15 30 3

Petroleum Today

- June 2014

35


Accelerate your cash flow SIGMA is one of the biggest stockiest specialized in stocking and supplying materials used in many fields for oil and gas, refineries, petrochemicals industries and power plants …etc For more than five decades Sigma delivers and supplies its clients with their ever specific needs always in time. Our Supplies Division We supply high quality products including:

,, - Seamless carbon steel line pipes and fittings size up to 24 ,, - Welded carbon steel line pipes and fittings sizes up to 48 - Seamless casing and tubing materials - Stainless steel pipes and fittings - Valves: cast, forget carbon steel up to # 900 - Different types of pumps - Stainless steel sheets and plates 304, 304L, 316, 316L, 310 310S - Marine Equipment such as: Ó Johnson& Suzuki outboard motors Ó Zodiac Inflatable boats - Chemicals such as: Ó Mono & Di Ethylene Glycol

Ó Methylene chloride

Ó Methanol

Ó Calcium Hypochlorite

Ó Potassium chloride

Ó EDTA

Ó Ammonium chloride

Ó Xylene

Ó Caustic soda

Ó Soda Ash

Ó Paraffin Wax

Ó Calcium Chloride

Ó Potassium Carbonate

Ó Potassium Hydroxide

SIGMA is operating in Egypt and re-exporting to Middle East & African Countries

Head Office: 5 St., Catherine Square, Manshia, Alexandria, Egypt. Tel.: + 203 48 77 504 Fax: + 203 48 47 319

Cairo Office: 37 Talat Harb St., 4th floor Tel. : + 202 23 92 23 60 Fax : + 202 23 39 17 09


Accelerate your cash flow

Our Services Division Our main target is to put new discovery well on production in a very short time span form 7to 10 days. Sigma has designed & installed modular, fit for purpose EPF’s for more than 10years. We offer fast, cost – effective solutions that bridge the gap between discovery & production. Our comprehensive portfolio of services is designed to save your time and accelerate your cash flow. We provide a core group of oil & gas services as follows: - Production Enhancement Solutions. - Early Production Facilities. - Well Testing. - Gas Dehydration. - Oil dehydration & desalting.

- High Water Cut Solutions.

- Pulling unit service. We also provide equipment for rental and sales : - Heater treaters. - Separators - Tanks. - Indirect heaters - Production units. - Gas boots. - Pulling units. - Dehydration units. - Chemical injection skids. - Manifolds. - Pumps &..etc. SIGMA modular design offer these time and cost saving advantages : - Generate cash flow. - Flexible process design to meet changing conditions. - Shorter design cycle. - Faster mobilization. - Light weight. - Simplified transportation requirements. SIGMA Petroleum Services Co. (The General Free Zone, Amerya, Alexandria, Egypt) Head Office: 3 St., Saint Catharine Sq., Mansheya, Alexandria, Egypt Tel. : +203 48 12 620 / 23 Fax : +203 48 12 591

Cairo office : 40 Palestine St., Extension-New Maadi Tel. : +202 25176177 Fax : +202 251761 78

URL : www.sigmaegypt.com

Oman Branch : Al Iskan St., office 52 Ruwi, Sultante of Oman P.O. Box : 676 Postal Code : 117 Tel. : +69824780071

E-mail: sigma@sigmaegypt.com


Controls losses in Depleted Reservoirs and high-permeability formations using Nanomaterial as a new mud product. By

A. Z. NOAH Faculty of Science and Engineering, The American University in Cairo, Egypt. E-mail: ahmednoah@aucegypt.edu

A

bstract

Losses of whole mud to subsurface formations is called lost circulation or lost returns. Lost circulation has historically been one of the primary contributors to high mud costs. Other hole problems such as wellbore instability, stuck pipe and even blowouts have been the result of lost circulation. Besides the obvious benefits of maintaining circulation, preventing or curing mud losses is important to other drilling objectives such as obtaining good quality formation evaluation and achieving an effective primary cement bond on casing. The severity of losses ranges from minor seepage to complete losses with no returns regardless of the technique utilized to cure the problem. Underbalanced drilling1 with aerated fluids, foams or density-reducing beads has been successful in many areas. Injection of compressed air or nitrogen is usually necessary to accomplish the density reduction needed to achieve under-balanced conditions. Besides minimizing or preventing lost circulation, these techniques are also used to provide enhanced penetration rates and reduce

38 Petroleum Today

- June 2014

formation damage due to invasion of drilling fluids or filtrate. In this study, novel fluids as Aphron drilling Nanofluid have three chief attributes that serve to minimize fluid invasion and damage of producing formations. First, the base fluid is very shear thinning and not very thixotropic, exhibiting an extraordinarily high low-shear-rate viscosity (LSRV) and flat gels; the unique viscosity profile is thought to reduce the flow rate of the fluid dramatically upon entering a loss zone. Second, various components in the mud interact to produce microgels that help to reduce spurt loss. Finally, very tough and flexible microbubbles, called “Aphrons,â€? create a soft seal within the permeable or fractured formation to reduce losses further. Aphron drilling fluids, which are highly shearthinning water-based fluids containing stabilized air-filled bubbles (Aphrons), have been applied successfully worldwide to drill depleted reservoirs and other highpermeability formations as well as fracture Granite formations. Based on laboratory determinations, the smallest size for a gas-core Aphron is 25 Îźm. The bubbles smaller than this size are not able to maintain the surfactantbased boundary separating them from

the bulk water and thus get dispersed in the continuous water phase. From field study, Aphron ICS mud was used to drill KHA 403 and 404 wells (Yamen) compared to previous wells drilled with a polymer mud. The total volume of Aphron drilling fluid built to drill the reservoir interval was 696m3, and losses incurred totaled 265 m3 into formation fractures. A subsequent well, KHA 404, was drilled in the same area with the APHRON ICS mud, and it experienced no losses of the APHRON ICS mud and even greater production. Hydraulics relative to offset wells drilled with simple waterbased polymer muds, it is reported that hole cleaning was substantially improved, even during periods when pump rate had to be reduced in an effort to mitigate downhole losses, indicating minimal invasion of drilled solids into the fractures drilled. A.Z.NOAH. Controls losses in Depleted Reservoirs and highpermeability formations using Nanomaterial as a new mud product. Life Sci J 2012;9(2s):161170-]. (ISSN: 10978135-). http://www. lifesciencesite.com. 30 Keywords: Nano-fluid, mud, losses, drilling fluid, surfactant, Aphron, permeability, fracture.


Introduction: Introduction: Properties Properties of of Aphron Aphron

2 2 Aphron Aphron were were firstfirst described described by by Sebba Sebba as as unique unique microspheres microspheres with with unusual unusual properties. properties. Aphrons Aphrons areare comprised comprised of of a spherical a spherical core coreof ofair airandanda protective a protectiveouter outer shell. shell. In In contrast contrast to to a conventional a conventional air air bubble, bubble, which which is is stabilized stabilized by by a a surfactant surfactant monolayer, monolayer, thethe outer outer shell shell of of thethe Aphron Aphron is is thought thought to to consist consist of of a much a much more more robust robust surfactant surfactant tri-trilayer.4 layer.4This Thistri-layer tri-layeris isenvisioned envisioned as as consisting consisting of of an an inner inner surfactant surfactant filmfilm enveloped enveloped by by a viscous a viscous water water layer; layer; overlaying overlaying thisthis is ais bi-layer a bi-layer of of surfactants surfactants thatthat provides provides rigidity rigidity andand lowlow permeability permeability to the to the structure structure while while imparting imparting some some hydrophilic hydrophilic character character to it. to Although it. Although thisthis water-wet water-wet nature nature of of thethe shell shell makes makes it compatible it compatible with with thethe aqueous aqueous bulk bulk fluid, fluid, Aphron Aphron appear appear to to have have little little affinity affinity forfor each each other other or for or for thethe mineral mineral suq`1rfaces suq`1rfaces in the in the pores pores of of permeable permeable rocks. rocks. Aphron Aphron cancan actact as aasunique a unique bridging bridging material, material, forming forming a micro-environment a micro-environment in in a pore a pore network network or or fracture fracture thatthat behaves behaves in in some some ways ways likelike foam foam andand in other in other ways ways likelike a solid, a solid, yetyet flexible, flexible, bridging bridging material. material. AsAs is the is the case case with with anyany bridging bridging material, material, concentration concentration andand sizesize of of thethe Aphron Aphron areare critical critical to to thethe ability ability of the of the drilling drilling fluid fluid to seal to seal thief thief zones. zones. Drilling Drilling fluid fluid Aphron Aphron areare constructed constructed by by entraining entraining air air in the in the bulk bulk fluid fluid with with standard standard drilling drilling fluid fluid mixing mixing equipment, equipment, thus thus reducing reducing thethe safety safety concerns concerns andand costs costs associated associated with with highpressure highpressure hoses hoses andand compressors compressors commonly commonly utilized utilized in in underbalanced underbalanced air air or or foam foam drilling.6 drilling.6 Although Although each each application applicationis iscustomized customizedto tothethe individual individual operator’s operator’s needs, needs, thethe drilling drilling fluid fluid system system generally generally is designed is designed to to contain contain between between 12 12 volume volume %% andand 15 15 volume volume %% air air at ambient at ambient temperature temperature andand pressure. pressure. In In contrast contrast to to conventional conventional bubbles, bubbles, which which do do notnot survive survive long long pastpast a few a few hundred hundredpsi,psi,Aphrons Aphronscancansurvive survive

compression compression to at to least at least 27 27 MPa MPa (4,000 (4,000 psig) psig) forfor significant significant periods. periods. When When bubbles bubblesarearesubjected subjectedto toa sudden a sudden increase increasein inpressure pressureabove abovea afewfew hundred hundred psi,psi, they they initially initially shrink shrink as as 3 3 predicted predicted by by Boyle’s Boyle’s Law Law . Aphron . Aphron areare no no exception. exception. However, However, conventional conventional bubbles bubblesbegin beginto toloseloseair airrapidly rapidly viaviadiffusion diffusionthrough throughthethebubble bubble membrane, membrane, andand thethe air air dissolves dissolves in the in the surrounding surrounding aqueous aqueous medium. medium. Aphrons Aphrons alsoalso loselose air,air, butbut they they do do so so much much more more slowly, slowly, shrinking shrinking at aatrate a rate thatthatdepends dependson onfluid fluidcomposition, composition, bubble bubble size, size, andand raterate of pressurization of pressurization andand depressurization. depressurization. One One other other factor factor results results in in a slight a slight reduction reductionin insizesizeof ofthetheAphrons Aphrons shortly shortly after after they they areare created. created. Several Several components componentsin inthethedrilling drillingfluid fluid scavenge scavenge dissolved dissolved oxygen oxygen andand oxygen oxygen within within thethe bubbles, bubbles, leaving leaving each eachof ofthem themwith witha core a corethatthatis is mainly mainly nitrogen. nitrogen. This This reduces reduces Aphron Aphron diameter diameter by by about about 7%,7%, butbut eliminates eliminates anyanyconcern concernabout aboutcorrosion corrosionof of tubulars tubulars andand other other hardware. hardware. Fluid Fluid Dynamics Dynamics TheThe base base fluid fluid in Aphron in Aphron drilling drilling fluids fluids yields yields a significantly a significantly larger larger pressure pressure lossloss (or(or lower lower flow flow raterate forfor a fixed a fixed pressure pressure drop) drop) in in long long conduits conduits than than anyanyconventional conventionalhigh highviscosity viscosity drilling drilling fluid. fluid. Similarly, Similarly,if ifflow flowis isrestricted restrictedor or stopped, stopped, Aphron Aphron drilling drilling fluids fluids generate generate significantly significantly lower lower downstream downstream pressures pressures than than other other drilling drilling fluids. fluids. In In permeable permeable sands, sands, thethe same same phenomena phenomena areare evident. evident. Furthermore, Furthermore,at atlowlowto tomoderate moderate pressures, pressures, Aphrons Aphrons themselves themselves slow slow thethe raterate of of fluid fluid invasion invasion andand increase increase thethe pressure pressure drop drop across across thethe sands. sands. Lastly, Lastly, andand most most importantly, importantly, Aphrons Aphrons move move more more rapidly rapidly through through thethe sands sands than than thethe base base fluid. fluid. When When an an Aphron Aphron drilling drilling fluid fluid is exposed is exposed to atopressure a pressure gradient, gradient, a phenomenon a phenomenon called called “bubbly “bubbly flow” flow”causes causesthetheaphrons aphronsto tomove move more more rapidly rapidly than than thethe base base fluid. fluid. JustJust

as high-density as high-density particles particles likelike barite barite or ordrilled drilledcuttings cuttingsIn Ina loss a losszone, zone, Aphron Aphron thatthat survive survive thethe triptrip down down hole hole cancan migrate migrate faster faster than than thethe base base liquid liquid andandconcentrate concentrateat atthethefluid fluidfront, front, thereby thereby building building an an internal internal sealseal in the in the pore pore network network of of thethe rock. rock. A micro-A micro-el el network network formed formed by by particulates particulates in in thethe drilling drilling fluid fluid aidsaids thethe Aphron Aphron in in slowing slowing thethe raterate of of invasion, invasion, as as does, does, of course, of course, thethe radial radial flow flow pattern pattern of the of the invasion. invasion. AsAs thethe fluid fluid slows, slows, thethe very very high high LSRV LSRV (low-shear-rate (low-shear-rate viscosity) viscosity) of the of the base base fluid fluid becomes becomes increasingly increasingly important; important; thisthis high high LSRV, LSRV, coupled coupled with with lowlow thixotropy, thixotropy, enables enables thethe fluid fluid to togenerate generatehigh highviscosity viscosityrapidly. rapidly. Bridging Bridgingandandformation formationof ofa lowa lowpermeability permeability external external filter filter cake cake alsoalso occur occur during during thethe latter latter partpart of of thisthis period, period, ultimately ultimately reducing reducing thethe raterate of of invasion invasion to that to that of ordinary of ordinary fluid fluid loss. loss. Another Another keykey finding finding is that is that Aphrons Aphrons have have very very little little attraction attraction forfor each each other other or for or for mineral mineral surfaces. surfaces. Consequently, Consequently, they they do do notnot readily readily coalesce coalesce nornor do do they they stick stick easily easily to the to the pore pore walls, walls, resulting resulting in easy in easy displacement displacement by by thethe produced produced fluids. fluids. In In addition, addition, thethe drilling drilling fluid fluid itself itself is very is very compatible compatible with with produced produced fluids fluidsandandgenerates generateslowlowcapillary capillary forces, forces, thereby thereby facilitating facilitating back-flow back-flow of produced of produced fluids. fluids. TheThe combination combination of of these these twotwo effects effects is expected is expected to result to result in low in low formation formation damage damage andand minimal minimal requirements requirements forfor cleanup. cleanup. Aphron Aphron Drilling Drilling Fluids Fluids technique technique TheThe most most dominant dominant characteristics characteristics of of Aphron Aphrondrilling drillingfluids fluidsarearetheir their rheology rheology andand thethe presence presence of bubbles. of bubbles. TheThe base base fluid fluid is highly is highly shearthinning shearthinning andand exhibits exhibits an an extra extra ordinarily ordinarily high high LSRV LSRV(Low-Shear-Rate (Low-Shear-RateViscosity) Viscosity) with with lowlow thixotropy thixotropy (flat(flatgels). gels). TheThe bubbles bubbles of of air air thatthat areare dispersed dispersed in in thethe base base fluid fluid areare a dramatic a dramatic departure departure from fromconventional conventionalfluids, fluids,because because concerns concernsover overcorrosion corrosionandandwell well control controlhave havetraditionally traditionallyledledto to attempts attempts to minimize to minimize air air entrainment. entrainment.

Petroleum Today

- June 2014

39


Indeed, the air in Aphron drilling fluids is purposely incorporated into the bulk fluid, but at a very low concentration. This occurs naturally during the course of product addition using conventional drilling fluid mixing equipment, and there is no need for high pressure hoses and compressors such as those utilized in underbalanced air or foam drilling. The surfactants in the fluid convert the entrained air into highly stabilized bubbles, or “Aphrons.” However, in contrast to a conventional air bubble, which is stabilized by a surfactant monolayer, the outer shell of an Aphron is thought to consist of a much more robust surfactant trilayer. 5 This tri-layer is envisioned as consisting of an inner surfactant film enveloped by a viscous water layer; overlaying this is a bilayer of surfactants that provides rigidity and low permeability to the structure while imparting some hydrophilic character. It has been claimed that Aphron form a micro-environment in a pore network or fracture that behaves like a solid, yet flexible, bridging material. As is the case with any bridging material, concentration and size of the Aphron are critical to the drilling fluid’s ability to seal thief zones. Although each application is customized to the individual operator’s needs, the drilling fluid system is generally designed to contain 1215- volume % air under ambient conditions, and the Aphrons so generated are thought to be sized or polished at the drill bit to achieve a diameter of less than 200μm, which is typical of many bridging materials. Much of the scenario described above about the role of Aphron in reducing fluid losses down hole is conjecture that has not been confirmed under stringent laboratory conditions. Furthermore, the manner in which Aphron drilling fluids reduce losses down hole is still not well understood. Aphron-fluid losses relation

40 Petroleum Today

- June 2014

The system has a natural fluid loss depending on the system makeup. When additional fluid loss reduction is desired, additional Activator I is used. This is a polymer with synergistic characteristics to support the LSRV and Aphron stability. Other filtrate-control materials are not recommended since they are generally detrimental to the system rheology. Natural filtrate values are adequate for this system and extra additions of Activator I are not recommended in most cases. The API filtrate test measures the ability of a fluid to control invasion due to the plugging capability of the wall cake. The Aphron ICS system does not use a wall cake to control invasion, but rather uses the down hole bridging capability of the Aphrons and the resistance to movement for invasion control. The filter press does not measure these features, but actual filtrate in a properly maintained system is generally less than 5.0 ml. Preparation of Nano fluid ( Aphron) at Lab Based on laboratory determinations, the smallest size for a gas-core Aphron is 25 μm. The bubbles smaller than this size are not able to maintain the surfactant-based boundary separating them from the bulk water and thus get dispersed in the continuous water phase. To obtain a lower density, a combination of LSRV, shear, and pressure drop are required. In the lab, this can usually be achieved with a Hamilton Beach mixer. Some problems have been seen with the ability of the mixers to agitate the mud sufficiently. Therefore, shear is provided, but vigorous agitation is required to produce a pressure drop in the mixer. Better results are seen after hot rolling overnight @ 180°F. The temperature and shear create a simulated down hole condition. After hot rolling, treat with Blue Streak, agitate, and measure the density. Air can also be introduced by blowing

through a tube inserted into the mud sample while it is mixing. In the lab a positive displacement pump, (Gaulin homogenizer), is used to simulate down hole conditions such as high shear, pressure drop, and temperature. A microscope and camera with a TV screen are attached so that Aphrons can be measured on a grid. After being circulated through the Galen with a 1,000 psi pressure drop, samples have remained stable two weeks or more. In field applications, stable Aphron are created with mud pumps, pressure drop, shear, and temperature. The high properties are not necessarily excessive. The high properties are only for desirable low-shear-rate ranges, while 600 & 300 rpm values are comparatively low. One sample, for instance, had a 69 (600 rpm), 60 (300 rpm) with a 32 (6 rpm) and 28 (3 rpm). This produces a very flat viscosity profile and indicates a highly shear-thinning fluid. Since the system is pseudo-plastic, it pumps very easily. These rheological properties seem high compared to conventional muds which exhibit different characteristics. Viscosifiers are made of long-chain, branched polymers, which exhibit excellent hole cleaning and suspension properties. These viscosifiers are also friction reducers with low “n” values and are easily pumped. The mud at rest has suspension due to the random entanglement of the polymer chains, but since the electrostatic forces are repulsive, the gel structures do not increase. This is true of a pseudoplastic fluid, which has no true yield point, but moves readily upon the application of force. The high rheological and gel strength readings are descriptive of the high stress as the mud is sheared with an instrument. The important thing to realize is that this shear is not required to start or push the mud. The mud moves as a mass before enough shear is applied to be exerted against the formation. In other words, shearing


the mud requires catching up with it. To reduce the density, and to increase and stabilize the Aphron concentration requires additional Blue Streak and air. Stabilizing the Aphrons requires adequate LSRV (50,000+ cP). To increase density, it is possible to destroy the Aphrons using a specific defoamer to reduce or eliminate the concentration of Aphrons in the system. This will restore the system to its native density where it can be increased using conventional weighting techniques if required. It is also possible, however, to increase the density with the Aphron in place. This is helpful in cases where highpressured and low-pressured zones coexist. Because the Aphron are a stable phase, increased density can be achieved by the addition of salts or conventional weighting materials such as CaCO3, barite, or hematite. Compatibility Testing Compatibility testing should be designed based on the region of interest. For instance, the author runs lab tests to evaluate an Aphron ICS fluid formulation prior to recommending it for use in the field: Hot rolling for 16 hours at expected formation temperature PPT, which target local field permeability’s. Return perm analysis on core samples at expected formation temperature/ pressure Go Devil II: a blend of non-ionic polymers that provide low-shear-rate viscosity (LSRV) in the APHRON ICS system. The LSRV created by Go Devil II promotes hole cleaning, solids suspension, formation invasion control and lost circulation prevention. The recommended initial concentration for optimum performance is 4.0 lb/bbl. Activator I: a filtrate reducer and thermal stabilizer for the Aphron ICS system as well as other low shearrate viscosity fluids. Activtor I can be added as a dry powder through a mud hopper or through a chemical

barrel by dissolving in fresh water. Thermal stabilization is measured by determining the low shear-rate viscosity at less than one rpm after hot rolling at a given temperature. The recommended initial concentration for optimum performance is 5.0 lb/bbl. Activator II: a pH buffer and thermal stabilizer for the APHRON ICS system. Activator II is more effective if dissolved in fresh water and added through a chemical barrel. Thermal stabilization can be evaluated by determining the low-shear-rate viscosity after hot rolling at a specific temperature. Typical concentrations are 1.0 to 3.0 lb/bbl but it has been used in the field at concentrations up to 6.0 lb/bbl. Acti-Guard: a blend of surfactants and vegetable oils that inhibit water absorption and swelling of reactive clays. Typical concentrations for optimum performance are 0.1% to 0.5% by volume. Acti- Guard is usually not added unless shale control problems are expected. It can be added on an asneeded basis. Blue Streak: a blend of anionic and nonionic surfactants and co-surfactants in an aqueous solution. Blue Streak encapsulates air in drilling fluids creating micro-bubbles that significantly enhance the lowshearrate viscosity (LSRV) of the system. The elevated LSRV and the bridging effect of the micro bubbles significantly reduce or eliminate formation losses. The initial application is usually 0.75 lb/bbl. Daily maintenance treatments are typically 0.1 to 0.25 lb/bbl. Blue Streak can be added through the hopper. Blue Streak should be added last in the mixing order and not before a stable LSRV of 50,000 cP is obtained. Passivator I: a water-base mud antifoamer specifically formulated for use in Aphron containing water-base fluids. Passivator I can be used to treat surface foams without removing the Aphrons from the system. However,

surface foam is an indication that the system’s LSRV may not be sufficient to prevent foam. Before adding Passivator I, refer to the next section, “Building the Aphron ICS System”, for remediation guidelines. Building the Aphron ICS system Preparation and Mixing Order Prior to mixing, add 0.25 to 0.50-lb/ bbl soda ash to the make-up water. Soda ash provides a synergistic benefit to the Activator II pH buffer as well as aiding in the stability of the LSRV. The system should always be maintained with a pH around 10.0 for optimum performance. Make all additions of the initial bactericide concentration to the makeup water. This will ensure an even blend of the material and minimize the chance of an isolated pocket of bacteria developing within the system. Go Devil II polymer can be mixed very rapidly without worry of “fish-eyes” developing or polymer loss across the shaker screens. One to two minutes per 25-lb bucket through a standard rig hopper is possible without problems. Activator I filtrate reducer and thermal stabilizer should be mixed through a standard rig hopper at four to five minutes per 50-lb sack. Activator I does not exhibit any tendencies to plug the hopper nor is material lost via the solids-control equipment. Activator II pH buffer and thermal stabilizer should be mixed slowly enough to ensure even blending and consistent pH and can be presolubilized with water in a chemical barrel. Acti-Guard shale stabilizer can be mixed anytime in the process but preferably after the completion of the Go Devil II additions. It should be mixed slowly enough to ensure even blending. Blue Streak surfactant is designed to assist in the development and stabilization of the Aphron. The

Petroleum Today

- June 2014

41


preferred method of mixing Blue Streak is through the mud hopper. However, it can be mixed by pouring it directly into the mud pits over the agitators. It should be mixed slowly enough to ensure even blending throughout the system. Under no circumstances should the blue streak surfactant be mixed until a system LSRV of 50,000 cP is obtained. If an LSRV of 50,000 has not been reached, pilot test with Go devil II to find the optimum treatment level and add to the system. As the mud nears this viscosity threshold, foaming will decrease and the entrained air bubbles will get smaller. If foaming does persist, small additions of Passivator I may be added to control surface foam. Drilling with the Aphron ICS System (Testing & Monitoring) Rheological Parameters In addition to stabilizing the Aphron, the drilling fluid must produce hole cleaning, cuttings suspension, and invasion control necessary for optimum performance while drilling high-angle or horizontal boreholes. The ability of high-LSRV systems to produce this performance has been well documented. LSRV should be measured by viscometers such as the Brookfield and maintained in the system at no less than 50,000 cP. A #2L (cylindrical) spindle at 0.3 rpm is normally used for ranges up to 100,000 cP. If a Brookfield viscometer is not available, a relaxation method (RM) can be used to evaluate the critical polymer concentration (CPC). The most effective way to determine LSRV rheology with a Fann 35A is to evaluate the 6- and 3-rpm readings and gel strengths. The 6- and 3-rpm readings should be elevated and almost identical. The initial gel should be elevated, with the 10-minute gel no more than 112/ times the initial gel. The 30-minute gel should approximate the 10-minute gel reading. Using

42 Petroleum Today

- June 2014

this method the 3-rpmand initial gel should be no less than 20 (based on field experience) and the RM after 3 minutes should be at least 13/ of the initial gel. Note: However, in field applications, the 6-speed Fan readings and gels have been relatively stable, while the LSRV can vary widely, especially when solids are introduced. Because of this, a Brookfield should be mandatory. Do not rely entirely on a 6-speed rheometer. Experience with running PWD and RFT tools has shown that the equivalent density in the hole is about equal to the base mud weight without Aphron. Virtual Hydraulics can be run to evaluate rheological conditions down hole as long as the density input is measured with a pressurized balance. Fluid Loss Control Filtrate control in the Aphron ICS system is a combination of LSRV, the Aphron bridging mechanism, and the filtration control thermal stabilizer, Activator I. Typical API fluid losses will usually run <10.0 mL with no problems. Aphron Concentration Aphron concentration in the system is dependent on the LSRV properties of the fluid and the surfactant concentration. Maintaining the LSRV at a minimum of 50,000 cP is critical as this helps to stabilize the Aphron. A field method to gauge Aphron concentration would be to record the weight differences between a pressurized mud balance and a conventional mud balance. Typical density differences run at least 0.5 lb/ gal less on a conventional balance than a pressurized balance when the system is functioning properly. This equates to approximately a 6.0% reduction in weight as measured at the surface (ambient pressure). Depending on the application and objectives, density reductions of 8.012.0%- are normally sufficient.

Anything less usually indicates a need to increase the Aphron concentration to maintain optimum system performance. The logical procedure would then be to evaluate the system’s LSRV, surfactant (Blue Streak) concentration, and air introduction at the surface, pilot test and correct as needed. Mixing hoppers, solids control equipment, and air pumps have been used to introduce more air into the system. Note: Percent density reductions (air/ gas) range from 6.0 to 15.0%. Above 15.0% at the suction, pump problems may be encountered and down hole tool signal telemetry may be affected. Equipment needed for the test: Pressurized mud balance Conventional 20 cm3 oven-type retort Analytical balance accurate to 0.01 gm. Measurements: Mud density with pressurized balance Weight of retort including steel wool and empty cup Weight of retort with whole mud before retorting Weight of retort with dry mud solids after retorting. Calculations: SG mud = mud weight (lb/gal) / 8.34 Grams of mud in retort = Value c – Value b Grams or cm3 water distilled = Value c – Value d % Solids v/v = (cb) – [SG mud x (c-d) x 100 c-b Lost Circulation Control Measures If losses occur while circulating and drilling with a stable volume, micro-fractures have probably been encountered and a drop in the pit volume may be observed. Most of the time this will be temporary and will stop as the losses are controlled by establishing the micro-environment bridge provided that the fractures are fairly small (size & volume). When whole mud losses are observed, mud engineer suggests that the drill string be temporarily pulled above the loss zone and circulation stopped. Allowing the annular fluid column to find its balance point respective to pressure differentials between the hydrostatic



head and the formation pressures will allow the mechanical establishment of the microenvironment bridge in freshly exposed microfractures. Care should be taken to keep the top of the annular fluid visible by topping off. After allowing the microenvironment bridge to set up (observed by a stable annular fluid level) gradually increase the circulating rate to the drilling rate and rotate to bottom, resuming the drilling process. This procedure has proven very effective in previous experiences of similar parameters. If lost circulation is experienced while drilling highly porous sands, sandstones, and micro fractures, it is recommended to increasing the Aphron percentage in the circulating system after making sure that the present APHRON ICS system has sufficient LSRV thus ensuring Aphron stability. A sufficient quantity of stabilized Aphron relative to the instantaneous penetration rate and the volume of porous or micro-fractured formation being drilled will stop the losses. If the LSRV is not adequate, Aphron are not effective, so the LSRV must be reestablished as previously discussed. Note: Always be careful not to pump away the APHRON ICS fluid since it can be very costly. Instances will occur where conventional lostcirculation materials will have to be added to the system to create additional bridging. Most of these materials are compatible with the system but caution should be exercised when adding these materials in or near a production zone. Only calcium carbonate and other acidsoluble materials should be used for additional plugging in a pay zone (refer to the M-I “Prevention & Control of Lost Circulation” manual. Contingency plans should be built into the mud program for reference. 3. Results of Field Operations The initial and predominant type of Aphron drilling fluid used in the field has been a polymeric waterbased system, though a clay water-based

44 Petroleum Today

- June 2014

alternative and a nonaqueousbased Aphron drilling fluid have also been developed4. A solids -free Aphron drilling fluid was used to drill successfully into the oilbearing, fractured granite basement of the KHA 403 well for TOTAL in central Yemen. KHA 403 is the third of several planned development wells into the fractured basement. This well, which reached TD on Jan 17, 2005, tested at 6, 088 BOPD with negligible clean up. The production interval was successfully drilled through fractured basement rock at an initial inclination of 36º and increasing to 55º at total depth. The well was conventionally logged on wire-line without problems prior to running open hole completion The Kharir basement reservoir structure essentially is a hydrocarbonbearing fractured granitic gneiss formation5, with reservoir pressure equivalent to approximately 0.90 sg. Historically, an 8½-in. hole was drilled into the reservoir rock with a simple water-based polymer drilling fluid, which typically resulted in substantial mud losses into the fractures until TD is reached. This type of reservoir only produces through the fracture network; therefore, occurrence of mud losses is systemic, and the extent of the losses is indicative of the future production capability of the well. Since the reservoir rock has good integrity, simple open hole completions have been the obvious choice. However, after displacing out the polymer drilling fluid, long clean up has been required before achieving acceptable productivity. Any stimulation work like acid washes was shown to be detrimental to productivity. Logistically, heavy loss of drilling fluid posed problems with supply and mixing of new mud chemicals, along with providing sufficient make-up water to keep up with the loss rates. The logistical benefits of using a fluid

system that does not require supplying a large replacement volume under high dynamic loss rates are simple to appreciate. More significant, however, are the reduction in time and the elimination of equipment and personnel involved in conventional clean-up procedures to facilitate full production. The final and most rewarding aspect of this application of Aphron drilling fluid technology was a substantial improvement in productivity. Table 1 shows the reduced mud losses and enhanced production experienced with the Aphron ICS mud on the KHA 403 well, compared to previous wells drilled with a polymer mud. The total volume of Aphron drilling fluid built to drill the reservoir interval was 696m3, and losses incurred totaled 265 m3 into formation fractures. A subsequent well, KHA 404, was drilled in the same area with the Aphron ICS mud, and it experienced no losses of the Aphron ICS mud and even greater production. Hydraulics relative to offset wells drilled with simple water-based polymer muds, it is reported that hole cleaning was substantially improved, even during periods when pump rate had to be reduced in an effort to mitigate down hole losses, indicating minimal invasion of drilled solids into the fractures drilled. The LSRV was initially established at a level of 70,000 – 90,000 cP, which proved to be less suitable for maintaining stability of the system than would a more elevated LSRV in the range 100,000 – 125,000 cP. A higher LSRV of 150,000 cP was attempted, in an endeavour to address increased formation losses of up to 30 m3/hr, which resulted in difficulties maintaining Aphron content, the further mixing of products, and reduced performance of solids control equipment. Ultimately, LSRV in the range 100,000 –120,000 cP was found to be optimal for maintaining stable Aphron


concentration and correct functioning of solids control equipment and rig pumps. Typically, pump pressures were around 10 – 15 % less than would normally be reported with conventional drilling fluids. Variations in pump pressure were linked to the LSRV and Aphron content. However, a direct relationship between LSRV, Aphron content, flow rate and pump pressure could not be established. LSRV depletion was observed after the second day of drilling. This was recognized as a natural phenomenon, since the fluid polymers are continuously sheared, and gradual LSRV reduction is normal. Maintenance of LSRV was typically accomplished by using0.5 lb/bbl of viscosifier per day. No product biodegradation was encountered. When the most serious losses of up to 40 m3/hr after were encountered after drilling at3198 m, the Aphron system successfully addressed these losses. Dynamic loss rate was reduced to 0.4 – 0.5 m3/hr and static losses became zero. The drilling site for well # KHA 403 was located on a plateau in the mountainous region of Hadramawt in central Yemen, at a ground elevation of 941 m above sea level and 950m to rotary table. The objective was to drill an 812-/ in.hole into a fractured crystalline basement formation, with minimum invasion of drilling fluid into hydrocarbon-bearing fractures having a predicted pressure gradient equivalent to approximately 0.90 SG, and to address logistical concerns with the supply of drill water. The interval commenced by drilling with a simple freshwater xanthan polymer fluid. The first bit run drilled out the shoe and new formation from 2790 m MD (2685 m TVD) to2930 m MD, 2796 m TVD. At this depth the bit exhibited signs of wear and was pulled.

On the trip out of the hole, losses were reported at the shoe of 1.2 m3/ hr, prompting the decision to proceed with mixing the Aphron system for displacement in the hole, and drill ahead. During the trip, 225 m3 Aphron drilling fluid was prepared, and after reaming back to bottom with the existing polymer mud, an open hole displacement was made to the Aphron drilling fluid. During the trip into the hole, some further losses were reported with the polymer mud, but ceased immediately when the xanthan polymer fluid was displaced to the Aphron system. Adequate volume to displace the well was built during the tripping period, without any additional use of rig time. Drilling proceeded with the Aphron system with no losses to the formation. The Aphron concentration was initially around 8 – 9 volume % with LSRV at 80,000 cP. Sodium bicarbonate was added at a concentration of 0.5 lb/bbl to reduce pH and elevate the Aphron level. The Aphrons increased to 15.5 volume %, and combined with some reactive foaming, resulted in a significant reduction in pump pressure. Drilling proceeded with stable parameters and losses to the hole only while tripping to a depth of 3198 m. The LSRV was gradually increased to 100,000 cP and the Aphrons content maintained in the range 12 – 14%, with circulation rate of 1800 L/min while drilling and circulating. The bit trip at 3039 m resulted in losses of 7 m3 to the hole and15.1 m3 at 3145m. At 3198 m a significant drilling break was experienced to 3213 m, with ROP up to 40 m/hr. A rapid loss of 19 m3 of mud was reported. Drilling continued with varying degrees of losses until 3250 m where another drilling break was experienced, and this time resulting in increased and sustained losses of 30 m3/hr to the formation, with 1800 L/min circulation rate. Drilling continued from 3250 m to 3261

m, circulating at 1800 L/min and with formation losses of 30 m3/hr. Drilling was halted at 3261 m and circulation rates reduced to observe changes in losses. It was found that losses reduced to zero at a circulation rate of 500L/ min, with LSRV of 107,000 cP, and 12 volume % Aphrons concentration. This was the only occasion where it was necessary to control circulation rate at a reduced level of 1020L/min to minimize losses. From 3330 m, the mud parameters were adjusted. The LSRV was reduced to the range110,000 – 120,000 cP, making it much easier to elevate the Aphron concentration to 15– 17 volume % without compromising pump performance. The increased Aphron concentration contributed to a reduction in down hole losses from 3 m3/hr to between 0.4– 0.5 m3/ hr losses. These parameters were maintained through to interval and well TD of3383 m. At TD of the reservoir interval, formation losses were controlled at under 1.0 m3/hr while circulating at 1000 L/min, and zero losses were observed under static conditions. The interval was logged successfully on wireline, even with inclination increasing from 36° to55°. The FMI log (figure.2) showed an excellent correlation of drilling breaks, associated losses and gas peaks with the presence of fractures of various size and intensity. At the well total depth, a bit was run back in the hole and circulated to condition it for logging then running the completion assembly. The unique nature of the Aphron bridging mechanism facilitates rapid and simple clean-up, enabling production to be established without additional time and costs. Summary and Conclusion The Aphron ICS system should not be considered a cure for all types of losses since it is not applicable in many cases. Applying the Aphron ICS

Petroleum Today

- June 2014

45


system to the wrong situation when a more appropriate alternative should have been considered can be costly and ineffective. The APHRON ICS system design criteria should be evaluated thoroughly and should match the well objectives and drilling parameters of the particular well under consideration. From field study, the Aphron system has been effective in: High-porosity, permeable sands and micro-fractured carbonate zones where it has the capacity to conform to openings of different sizes and shapes. Solids-free bridging with fluid weights of 8.410.0- lb/gal and equivalent formation pressures less than 2.0 lb/ gal. Formations where normal pressure and lowpressure zones are drilled in the same interval Wells where underbalanced drilling (UBD) creates problems with borehole stability or well control. Conventional lost circulation materials are usually more appropriate in these types of formations with seepage losses and should be considered first. If the formation is a production zone and clean up procedures or formation damage are a concern, the Aphron ICS system may be a candidate for drilling this well and specific design parameters are made to accommodate such applications Cavernous – Vugular. Usually low-pressure carbonate (limestone and dolomite) or volcanic formations. Loses can be sudden and complete and dependent on the degree to which the vugs are interconnected. Mainly shallow and consist of sands or gravel, but can occur in shell beds or reef deposits. Coarse unconsolidated formations can have permeabilities of 10 to 100 Darcies. Losses are gradual but can become complete as drilling continues. Seepage losses can continue even when not circulating. These losses are usually confined to shallow wells or

46 Petroleum Today

- June 2014

surface hole where the economics of employing the Aphron ICS system will need to be justified. Highly Permeable / Low-Pressure (Depleted Zones) range from seepage to severe The Aphron ICS system is a very good candidate for these zones. However, as a matter of practice, permeability testing should be performed if the formation is a production zone. Also from the field study, Aphron ICS mud was used to drill KHA 403 well at Hadr amout area, Yamen compared to previous wells drilled with a polymer mud. The total volume of Aphron drilling fluid built to drill the reservoir interval was 696m3, and losses incurred totaled 265 m3 into formation fractures. A subsequent well, KHA 404, was drilled in the same area with the Aphron ICS mud, and it experienced no losses of the Aphron ICS mud and even greater production. A solids-free Aphron drilling fluid was used to drill successfully into the oilbearing, fractured granite basement of the KHA 403 well in central Yemen. The production interval was drilled at an initial inclination of 36º, reaching 55º at total depth. Conventional logging on wire-line was carried out without problems prior to completing the well open hole. Drilling through fractures tends to produce mud losses, which was made evident on this well by the correlation of drilling breaks of up to 40 m/h with gas shows. Losses were halted by increasing the fluid LSRV and concentration of Aphron. As shown by FMI logs, the Aphron drilling fluid system drilled fractures, a fault, and breccia while limiting losses and preventing deep damage by mud or entrained drilled solids. This allowed the KHA 403 to clean up quickly and become a high-volume oil producer. Based on laboratory determinations, the smallest size for a gas-core Aphron is 25 μm. The bubbles smaller than this size are not able to maintain the surfactant-based boundary separating

them from the bulk water and thus get dispersed in the continuous water phase. Filtrate control in the APHRON ICS system is a combination of LSRV, the Aphron bridging mechanism, and the filtration control thermal stabilizer, Activator I. Typical API fluid losses will usually run <10.0 mL with no problems. Aphron concentration in the system is dependent on the LSRV properties of the fluid and the surfactant concentration. Maintaining the LSRV at a minimum of 50,000 cP is critical as this helps to stabilize the Aphrons. Depending on the application and objectives, density reductions of 8.012.0%- are normally sufficient. Anything less usually indicates a need to increase the Aphron concentration to maintain optimum system performance. References 1.Brookey, T., Rea, A. and Roe, T.: “UBD and Beyond: Aphron Drilling Fluids for Depleted Zones,” presented at IADC World Drilling Conference, Vienna, Austria, Jun. 25 - 26,2003. 2.Felix Sebba, “Foams & Biliquid Foams – Aphrons”, 1987 :M-I Prevention & Control of Lost Circulation Best Practices Reference Manual. November 2000. 3.Perry, R. H. and Green, D.: Perry’s Chemical Engineers’ Handbook, 6th Edition, McGrawHill, 1984. 4.Growcock, F.B., et al.: “Alternative AphronBased Drilling Fluid,” IADC/SPE 87134, presented at the 2004 IADC/SPE Drilling Conference, Dallas, Mar. 2 - 4, 2004. 5. M. Gregoire., et al.: Drilling Fractured Granite in Yemen with Solids-Free Aphron Fluid, IADC World Drilling 2005.


NAME: AHMED ZAKARIA NOAH EDUCATION: Associate.Prof at TheAmerican University in cairo PhD.

Level: Oil well drilling, Advanced drilling Engineering, Horizontal

in Petrophysics.Waseda and Menofia University, 2003.

drilling, Drilling fluids, Principles of Petroleum Geology, Well logging,

ACADEMIC EXPERIENCE: Faculty of Science and Engineering,

core analysis, Development Geology, Completion and workover, Reservoir

The AmericanUniversity in Cairo (12010/9/ – Now, full time Ass.Prof of

Rock properties, Reservoir Engineering.

drilling, completion and workover).

-Petroleum Research Institute, Cairo (Full time Researcher : (12005/12/

-Faculty of Petroleum Engineering, The BritishUniversity in Egypt

2008/12/-21) Faculty of Science, Menofia University, Egypt : (2003-

(212010/9/1 – 2008/12/, full time lecturer and Ass. prof), Undergraduate

2008), Graduate Level:Method of Prospecting. And Well Logging

Figure. 1 Caliper, Dipmeter and Density log showing sand fracture formation for KHA 403 well, Yamen.

Figure.2 LSRV, Gas Shows, % Aphrons, Flow Rate and Losses at KHA 403 well.

Table 1: Product Selection and Description System Components. Product

Purpose

Go Devil II

Viscosifier

Activator I

Filtration Control

Activator II

pH Buffer

Acti-Guard

Shale Inhibitor

Blue Streak

Surfactant

Table 2: Lost Circulation Decision Tree Rate of Loss

Action

Losses < 10 bbl/hr

Ensure high LSRV, then increase Aphron concentration to 1214- % by volume.

Losses 10 - 50 bbl/hr

Cause is probably exposed large fractures Pull above fractures, stop circulation and observe as above If unsuccessful proceed to next step

Losses 50 - 100 bbl/hr

Cause is probably exposed large fractures of minimal tortuosity Pull above fractures, stop circulation and pump high LSRV Go Devil II/Blue Streak/CaCO3 50-bbl pill. If unsuccessful proceed to next step

Losses > 100 bbl/hrs

Pump a high LSRV Go Devil II 50-bbl pill containing: 15 lb/bbl M-I-X II Fine 30 lb/bbl CaCO3 (50 micron) 20 lb/bbl CaCO3 (150 micron) 5.0 lb/bbl Blue Streak If unsuccessful proceed to next step Set a FORM-A-SET AK bridge

When the most serious losses of up to 40 m3/hr after were encountered after drilling at 3198 m, the Aphron system successfully addressed these losses. Dynamic loss rate was reduced to 0.4 – 0.5 m3/hr and static losses became zero.

Table 3 – Comparison of KHA wells Table 1 – Comparison of KHA wells Mud Type

Well #

Production (BOPD)

Drain Length (m)

Mud Losses (bbl)

Polymer

KHA 101

1003

442

1780

Polymer

KHA 201

1497

247

11400

Polymer

KHA 106

1449

634

4300

Polymer

KHA 402

822

680

1550

Polymer

KHA 401

0

1034

No losses, attributed to the absence of fracturation, dry well)

APHRON ICS

KHA 403

3632

593

1500 Polymer Mud 1200 APHRON ICS

APHRON ICS

KHA 404

5620

839

1500 Polymer Mud 0 APHRON ICS

Petroleum Today

- June 2014

47



Atlas Copco plants600 acres of forestin Burkina Faso For further information please contact : Emad Fawzy Regional Business Line Manager – Industrial Air Division Emad.Fawzy@eg.atlascopco.com Mob:+20 0122408866 Ahmed Helmy Product Marketing Manager - Industrial Air Division Ahmed.Helmy@eg.atlascopco.com Mob:+2 0100 1011105 April 2014, Cairo, Egypt –Atlas Copco’s “VSD for Life” campaign has resulted in a forest of 250 000 trees, covering an area of 600 acres. During this worldwide sales campaign, Atlas Copco donated trees to WeForest, a non-profit association, and to their reforestation project in Burkina Faso. The campaign encouraged the sales of Variable Speed Drive compressors, a particularly energy-efficient type of compressor. The results of the campaign far exceeded the expectations, prompting Atlas Copco to extend the campaign until the end of the year. With the VSD for Life campaign Atlas Copco is not only encouraging the sales of its most energy-efficient type of compressor, it also wants to send out a clear signal that sustainability is in the company’s DNA. Bert Derom, Vice-president Marketing from the Industrial Air Division comments: “With this campaign, we don’t only want to preserve nature, we want to create it. Our donations to WeForest support reforestation in Burkina Faso, while our sales of Variable Speed Drive machines enforces greener, more sustainable factories for our customers worldwide.” Egypt has a great share in the “VSD for Life” campaign achievements by contributing to the nature by more than “1500” trees which in return has its positive impact on the environment. Emad Fawzy, Regional Business Line Manager from the Industrial Air Division comments: “Atlas Copco, being a responsible, sustainable industrial supplier, doesn’t only help customers to save energy, but also contribute to a more sustainable industry”

Campaign until end of the year

Atlas Copco decided to prolong this successful campaign until the end of 2014. The same product ranges will participate: all GA VSD (+) ranges up to 90 kW and by selling VSDs Atlas Copco donates trees to WeForest. Customers receive an electronic certificate of their contribution and every participating machine is marked with a decal.

Customers save energy, Burkina Faso wins trees

The 250 000 trees, and all successive donations, will be part of the “Great Green Wall”, the replanting of the native forest that will reverse the decline of biodiversity by pushing back the desert. Moreover, the new forest will promote sustainable, local economy and empower local farmers and their families. WeForest is an international, apolitical nonprofit organization with activities in over 12 countries

Atlas Copco Equipment Egypt

Atlas Copco Equipment Egypt P.O. Box 520 El Obour market Cairo, Egypt

Visitors Adress : El Obour city 1st Ind. zone- part 7 block 13024 Cairo, Egypt

Phone: +202 46100337 / 8 - 46101770 /1 +202 46140800 Fax:+202 46100341

Reg. No.: 10411 Reg. Office: Nasr City

www.atlascopco.com.eg

Petroleum Today

- June 2014

49


Industry At A Glance by Ali Ibrahim Table (1) World Crude oil Supply.* Supply (million barrels per day)

U.S (50states)

OECD(1)

North sea(2)

OPEC(3)

OPEC (4)

world

11.56 11.70 11.60 12.07 12.07 12.09 12.40 12.55 12.86 12.83 12.88 12.92 12.90 12.99 13.13

22.69 22.86 22.74 23.80 23.57 23.60 23.88 23.86 24.22 24.56 24.71 24.91 24.44 24.62 24.84

2.79 2.74 2.72 2.95 2.90 2.84 2.79 2.67 2.53 2.82 2.86 2.98 2.76 2.85 2.86

35.59 35.72 35.68 36.30 36.34 36.14 36.31 36.31 35.50 35.44 34.80 34.70 35.80 36.35 35.85

33.84 34.02 33.93 34.54 34.63 34.64 34.61 34.63 33.78 33.73 33.10 32.98 34.20 34.70 34.33

88.26 88.41 88.38 90.12 90.54 90.50 90.82 90.64 90.49 90.63 90.26 89.86 90.35 91.10 90.36

Jan.2013 February March April May June July August September October November December Jan.2014 February March Source EIA

* «Oil Supply» is defined as the production of crude oil (including lease condensate) Natural gas plant liquids, and other liquids, and refinery processing gain. NA = no data available (1) OECD = Organization for Economic Cooperation and Development: Australia, Austria, Belgium, Canada, the Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Japan, Luxembourg, Mexico, the Netherlands, New Zealand, Norway, Poland, Portugal, Slovakia,South Korea, Spain, Sweden, Switzerland, Turkey, the United Kingdom, and the United States. (2) North Sea includes offshore supply from Denmark, Germany, the Netherlands, Norway, and the United Kingdom (3) OPEC = Organization of Petroleum Exporting Countries: Algeria, Angola, Ecuador, Iran, Iraq, Kuwait, Libya, Nigeria, Qatar, Saudi Arabia, the United Arab Emirates, and Venezuela. (4) OPEC = Organization of Petroleum Exporting Countries doesn’t include Angola.

50 Petroleum Today

- June 2014


Table (2) World Proved Crude Oil Reserves, January 1, 2007 - January 1, 2012 Estimates (Billion Barrels)

Region

2007

2008

2009

2010

2011

2012

North America

212.534

211.559

209.910

206.3

208.901

210.5283

Central & South America

102.80

109.86

122.69

124.64

237.11

238.82

Europe

15.80

14.27

13.66

13.31

12.08

11.88

Eurasia

98.89

98.89

98.89

98.89

98.89

98.89

Middle East

739.20

748.29

746.00

753.36

752.92

799.61

Africa

114.07

114.84

117.06

119.11

123.61

124.21

Asia & Oceania World Total

33.37 1,316.66

34.35 1,332.04

34.01 1,342.21

40.14 1355.74

40.25 1473.76

45.36 1525.96

Source EIA

Table (3) World crude oil production. ( Million Barrels Per day )

Sep.2013 October November December Jan.2013 February March April May June July August September October November December Jan.2014 February March

Libya

Sudan

Egypt

OPEC(1)

1.50 1.50 1.45 1.40 1.35 1.40 1.35 1.45 1.42 1.13 1.00 0.59 0.36 0.55 0.22 0.22 0.51 0.38 0.23

0.10 0.10 0.10 0.11 0.11 0.11 0.11 0.12 0.25 0.34 0.30 0.28 0.32 0.35 0.37 0.36 0.26 0.26 0.27

0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.71 0.71 0.71 0.71 0.71 0.71 0.70 0.70 0.70 0.68 0.67 0.67

31.01 30.54 30.36 30.13 30.03 29.99 29.93 30.49 30.60 30.32 30.52 30.44 29.75 29.73 28.98 28.88 29.76 30.04 29.53

Persian Gulf(2) 23.1 23.2 23.1 23.00 22.90 22.69 23.27 23.1 22.85 22.59 22.93 22.28 21.73 21.58 21.38 21.03 21.84 22.09 21.89

North Sea(3) 3.85 3.73 3.87 3.88 2.98 2.90 3.09 2.95 2.90 2.84 2.79 2.67 2.53 2.82 2.86 2.98 2.76 2.85 2.86

World 74.950 74.893 74.843 74.862 74.558 74.868 75.004 75.235 75.230 75.346 75.234 71.626 70.056 70.39 69.166 68.83 68.59 69.09 69.10

Source EIA 1 OPEC: Organization of the Petroleum Exporting Countries: Algeria, Angola, Ecuador, Indonesia, Iran, Iraq, Kuwait, Libya, Nigeria, Qatar, Saudi Arabia, the United Arab Emirates, and Venezuela. 2 The Persian Gulf countries are Bahrain, Iran, Iraq, Kuwait, Qatar, Saudi Arabia, and the United Arab Emirates. Production from the Kuwait-Saudi Arabia Neutral Zone is included in Persian Gulf production. 3 North Sea includes the United Kingdom Offshore, Norway, Denmark, Netherlands Offshore, and Germany Offshore.

Petroleum Today

- June 2014

51


Table (4) International petroleum consumption Million Barrels Per Day

Jan.2013

OECD(1)

U.S (50 States)

Canada

Europe

Japan

NonOECD

China

45.54

18.65

2.23

13.49

5.20

43.57

10.73

Other Non World -OECD 17.01

89.11

February

46.63

18.66

2.33

14.26

5.25

43.66

10.54

17.99

90.29

March

45.52

18.29

2.30

13.89

4.91

43.80

10.58

17.32

89.32

April

45.87

18.55

2.31

14.01

4.32

44.29

10.71

17.04

90.15

May

45..20

18.55

2.30

13.66

4.10

44.44

10.54

17.41

89.64

June

45.28

18.72

2.28

13.70

3.87

44.73

10.68

17.65

90.02

July

45.96

19.05

2.29

13.76

4.23

44.94

10.55

18.00

90.90

August

46.36

19.09

2.29

13.84

4.41

45.65

10.45

17.96

91.01

September

46.21

19.12

2.27

13.90

4.26

45.06

10.72

18.02

91.28

October

46.36

19.27

2.24

13.85

4.32

44.83

10.88

17.45

91.28

November

46.56

19.19

2.43

13.37

4.68

44.89

11.10

17.17

91.45

December

46.85

19.14

2.40

13.01

5.21

44.30

10.78

16.88

91.16

Jan.2014

45.77

18.92

2.27

13.05

4.56

44.58

10.77

17.21

90.34

February

46.53

18.54

2.32

13.81

5.07

44.53

10.57

17.29

91.06

March

46.30

18.68

2.30

13.71

4.75

44.52

10.60

17.27

90.82

Source EIA (1) OECD = Organization for Economic Cooperation and Development: Australia, Austria, Belgium, Canada, the Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Japan, Luxembourg, Mexico, the Netherlands, New Zealand, Norway, Poland, Portugal, Slovakia, South Korea, Spain, Sweden, Switzerland, Turkey, the United Kingdom, and the United States. Table (5) World Natural Gas Plant Liquid Production , Thousand Barrels Per Day

Saudi

United

Persian

Gulf 2 OAPEC3 OPEC4 World

Algeria

Canada

Mexico

Arabia

Russia

States1

November.13

345

690

322

1,625

434

23.41.53

2,695

3,412

3,355

8,390

December

345

710

321

1,625

447

2,342

2,695

3,440

3,385

8,294

January.13

345

730

325

1,625

448

2,351

2,696

3,244

3,404

8,326

February

345

700

326

1,625

448

2,376

2,696

3,212

3,409

8,512

March

355

760

330

1,625

448

2,388

2,696

3,121

3,414

8,395

April

350

712

320

1,620

445

2,390

2,690

3,014

3,420

8,395

May

354

719

318

1,619

444

2,385

2,692

3,111

3,415

8,394

June

352

720

321

1,624

446

2,385

2,685

3,120

3,421

8,387

July

352

716

328

1,626

438

2,395

2,680

3,126

3,415

8,395

August

352

707

331

1,641

452

2,412

2,723

3,152

3,449

8,479

September

348

768

330

1,636

449

2,414

2,717

3,044

3,454

8,479

October

348

719

325

1,635

448

2,409

2,719

3,142

3,449

8,478

November

359

726

324

1,640

450

2,409

2,712

3,151

3,455

8,471

December

354

720

329

1,642

442

2,419

2,707

3,157

3,449

8,479

January.14

356

643

354

1,519

444

2,038

2,544

3,058

3,280

8,326

February

352

620

328

1,601

439

2,175

2,670

3,112

3,275

8,519

March

355

688

329

1,606

452

2,395

2,695

3,249

3,335

8,386

Source EIA 1 U.S. geographic coverage is the 50 states and the District of Columbia. Excludes fuel ethanol blended into finished motor gasoline. 2 The Persian Gulf countries are Bahrain, Iran, Iraq, Kuwait, Qatar, Saudi Arabia, and the United Arab Emirates. 3 OAPEC: Organization of Arab Petroleum Exporting Countries: Algeria, Bahrain, Egypt, Iraq, Kuwait, Libya, Qatar, Saudi Arabi Arabia Syria, Tunisia, and the United Arab Emerates Emirates 4 OPEC: Organization of the Petroleum Exporting Countries: Algeria, Angola, Ecuador, Indonesia, Iran, Iraq, Kuwait, Libya, Nigeria, Qatar, Saudi Arabia, the United Arab Emirates, and Venezuela.

52 Petroleum Today

- June 2014


Source EIA

Fig. ( 1 ) World Crude Oil Prices US $ per BBL Table (7) Egypt Rig Count per Area Oct-13 Nov-13 Dec-13 Jan-14 Feb-14

Fig. ( 2 ) Natural Gas Prices US $ Per MCF

Source EIA

10 Gulf of Suez Mediterranean 8 Sea Western 80 Desert Sinai 8 Eastern Desert 6 Delta 3 Total 115

10

10

11

11

9

9

8

7

81

81

83

84

9 6 3 118

9 6 3 118

9 5 2 118

8 6 3 119

Source Petroleum Today

Fig. ( 3 ) Egypt Suez Blend Price (Dollars per Barrel) based on 33O API

Petroleum Today

- June 2014

53


‫لها اأهميه كبريه فى قطاع البرتول والطاقه و�شيحظى بقدر كبري‬ ‫من االهتمام من قبل املهتمني بقطاع الطاقه ملا ميثله من فر�شه‬ ‫كبرية لدفع عجله اال�ش���تثمار فى الطاقه ومعرفه كل ما هو جديد‬ ‫ع���ن هذا القطاع احليوى اما عن منا�ش���به اأختي���ار هذا التوقيت‬ ‫فذل���ك الن م�ش���ر حتت���اج االن ملعر����ض ف���ى الطاقه‬ ‫يجم���ع قوه املنظ���م والعار�ض فى وق���ت مهم حتتاج‬ ‫اليه البالد لتعزيز مناخ اال�ش���تثمار فى الطاقه‬ ‫مبختلف اأنواعها ‪.‬‬ ‫‪ Ó‬هل تدعم وزارة البرتول و الرثوة املعدنية امل�شريه احلدث وكيف؟‬ ‫بالفع���ل تدع���م وزارة الب���رتول وهيئ���ة البرتول احل���دث فهو يتم‬ ‫تنظيم���ه حت���ت رعاي���ة وزارة الب���رتول كم���ا ي�ش���ارك باملعر����ض‬ ‫ال�ش���ركات والهيئ���ات التابعه للوزارة على �ش���بيل املث���ال " الهيئة‬ ‫امل�ش���رية العام���ه للب���رتول – الهيئة العام���ه لل���روة املعدنية ‪-‬‬ ‫ال�ش���ركة القاب�ش���ة للبرتوكيماويات (ايكم) ‪ -‬ال�شركة القاب�شة‬ ‫للغازات الطبيعية (ايجا�ض) – ال�شركة القاب�شة جلنوب الوادى‬ ‫و�شركات اأخرى ‪.‬‬ ‫‪ Ó‬م��ا هو حجم اأقبال �شركات الطاقه والبرتول للم�شاركه‬ ‫فى هذا احلدث فى الوقت الراهن ؟‬ ‫حجم ال�ش ��ركات امل�ش ��اركة يعترب ممت ��از من حيث حجم م�ش ��توى هذه‬ ‫ال�ش ��ركات ال�شخمه وال�شركات املهتمه بالتواجد باحلدث واأهتماما منا‬ ‫بالطاقة اجلديدة واملتجددة تقرر تخ�شي�ض جناح خا�ض لهم مدعوما‬ ‫ب�ش ��عر خا� ��ض الأهمي ��ة جناحها والتعرف عل ��ى املزيد من ن�ش ��اطها فى‬ ‫م�شر وزيادة تواجدها ب�شكل اأكرب الهميتها بامل�شتقبل ‪.‬‬

‫‪ Ó‬هل تنوى ال�شركه تنظيم املزيد من املعار�س فى جماالت‬ ‫خمتلفه فى الفرتة القادمه ؟‬ ‫بالفع���ل تن���وى �ش���ركة بريامي���دز اأنرتنا�ش���يونال ج���روب تنظيم‬ ‫�شل�ش���له من املعار�ض القوية و الهامه التى حتتاجها م�ش���رخالل‬ ‫الف���رتة القادمه والتى �ش���تعمل على تعزيز التعاون امل�ش���رتك بني‬ ‫العديد من الدول امل�شاركة وال�شركات امل�شرية وتزيد من فر�ض‬ ‫اال�شتثمار الناجح ‪.‬‬ ‫‪ Ó‬م��ا ه��ى روؤي��ة �شيادتك��م للو�ش��ع االقت�ش��ادى مل�ش��ر خالل‬ ‫الفرتة القادمه؟‬ ‫اأرى ان م�ش���ر ق���ادرة عل���ى ا�ش���تعاده قوتها االقت�ش���اديه خالل‬ ‫املرحل���ه القادم���ه ويجب ان يتكاتف اجلميع �ش���واء م�ش���ئولني او‬ ‫رجال اأعمال وم�ش���تثمرين من اأجل حتقيق التنمية االقت�ش���ادية‬ ‫فى كافه املجاالت الن م�شر دائما ت�شتحق االف�شل ‪.‬‬ ‫‪- June 2014‬‬

‫‪23 Petroleum Today‬‬


‫حتت رعاية وزارة البرتول والرثوة املعدنية يقام م�ؤمتر ومعر�ض كايرو انرجى‬ ‫خالل الفرتة من ‪ 6‬اىل ‪� 9‬سبتمرب ‪ 2014‬مبركز القاهرة الدوىل للم�ؤمترات‬ ‫اال�ستاذ حممد ال�سريف رئي�ض جمل�ض ادارة �سركة برياميدز اأنرتنا�سي�نال لتنظيم املعار�ض وامل�ؤمترات الدوليه‬

‫م�ؤمتر ومعر�ض كايرو انرجى فر�سه كبريه لدفع عجلة اال�ستثمار‬ ‫فى جماالت الطاقه املختلفه‬ ‫اأكد اال�شت��اذ حممد ال�شريف رئي�س جمل���س ادارة �شركة‬ ‫بريامي��دز اأنرتنا�شيون��ال ج��روب واحلا�شه عل��ى ع�شوية‬ ‫املنظم��ه العاملية ل�شناعه املعار���س ‪ UFI‬واملنظمه ملوؤمتر‬ ‫ومعر���س كايرو انرجى املق��رر اقامته خالل الفرته من ‪6‬‬ ‫اىل ‪� 9‬شبتم��ر ‪ 2014‬مبركز القاهرة الدوىل للموؤمترات‬ ‫عل��ى اأن املوؤمت��رو املعر���س ال��دوىل للطاق��ه والب��رتول‬ ‫"كايرو انرجى" ميثل فر�شه كبريه لدفع عجله اال�شتثمار‬ ‫والتنميه ف��ى قطاع الطاقه حيث �شيك��ون اول حدث يتم‬ ‫تنظيم��ه بجمهوري��ة م�ش��ر العربي��ه ي�ش��م كل قطاع��ات‬ ‫الطاقة اجلديده واملتج��دده والطاقه النظيفه والطاقه‬ ‫البديل��ه والكهرباء باال�شافه للنف��ط والغاز على م�شتوى‬ ‫عامل��ى كما انه �شيحظى باأهتمام كبري خا�شه واأنه يحظى‬ ‫برعايه وزارة البرتول والرثوه املعدنية امل�شريه ‪.‬‬ ‫واأ�ش��اف ان موؤمت��رو معر���س القاهرة للطاق��ة والبرتول‬ ‫"كاي��رو اإنرج��ى " �شي�شم �ش��ركات كرى من داخل م�شر‬ ‫وخارجه��ا وذلك على نهج موؤمتر ومعر�س الب�شرة الدوىل‬ ‫للنفط والغاز والذى قامت ال�شركة بتنظيمة بنجاح على‬ ‫م��دار ارب��ع دورات متتالي��ة وال��ذى �ش��م ك��رى ال�شركات‬ ‫العاملة فى هذا القطاع من خمتلف دول العامل ‪.‬‬ ‫واأن ه��ذا احل��دث �شي�شاه��م فى دع��م اأقت�ش��اد جمهورية‬ ‫م�ش��ر العربي��ة وزي��ادة التب��ادل التج��ارى ب��ن ال��دول‬ ‫امل�شارك��ة واالرتق��اء به��ذا القط��اع وال��ذى �شي�شه��م ف��ى‬ ‫رف��ع ا�ش��م م�شر عاملي��ا وهو ما ن�شع��ى اىل حتقيقه فى ظل‬ ‫الظروف الراهنه‪.‬‬ ‫واأو�ش��ح ال�شري��ف فى حوار ملجل��ه "برتوليم ت��وداى " اأن‬ ‫�شرك��ة بريامي��دز اأنرتنا�شيونال جروب لتنظي��م املعار�س‬ ‫�شتنظم �شل�شله معار�س هامه فى قطاعات خمتلفه حتتاج‬ ‫‪22‬‬

‫‪- June 2014‬‬

‫‪Petroleum Today‬‬

‫اليه��ا م�شر فى الف��رتة القادمه وذلك اميان�� ًا منه باأهميه‬ ‫دور املعار���س الدولي��ه ف��ى تعزي��ز من��اخ اال�شتثم��ار ف��ى‬ ‫م�ش��ر معربا عن تفاوؤله للو�شع االقت�شادى امل�شرى خالل‬ ‫الفرتة القادمه ‪.‬‬ ‫واليكم ن�س احلوار ‪.‬‬ ‫‪ Ó‬ف��ى البداي��ه ن��ود األق��اء ال�شوء عل��ى �شرك��ه برياميدز‬ ‫لتنظي��م املعار�س وتاريخها الطويل فى تنظيم املعار�س‬ ‫واملوؤمترات الدوليه ؟‬ ‫�ش����ركة برياميدز اأنرتنا�شيونال هى �شركة رائده فى جمال تنظيم‬ ‫املعار�����ض واملوؤمت����رات الدولي����ة ‪ .‬مت تاأ�شي�ش����ها بجمهورية م�ش����ر‬ ‫العربي����ة عام ‪ 1993‬ولدينا ف����روع برتكيا (اأنقره – اأ�ش����طنبول )‬ ‫والعراق ( بغداد – الب�ش����ره – اأربيل ) و هولندا (اأم�ش����رتدام )‬ ‫وايطالي����ا ووكالء باأك����ر من ‪ 20‬دوله حول العامل ‪ .‬وتقوم بتنظيم‬ ‫العديد من املعار�ض فى جماالت خمتلفة منها ( النفط والغاز ‪–-‬‬ ‫ال�شيارات وقطع غيارها – البناء والت�شييد – املعدات واملاكينات‬ ‫– ال�ش����حه – الزراعة ‪ -‬املالب�ض واملن�ش����وجات – م�شتلزمات‬ ‫املن����زل و االثاث ‪ -‬التج����ارة العامه وقطاعات اأخرى ) مب�ش����اركة‬ ‫اأكر من ‪ 2500‬عار�ض و اأكر من ‪ 200,000‬زائر متخ�ش�����ض كل‬ ‫عام ‪ .‬العديد من معار�ش����نا معتمد من الرابطه العاملية ل�شناعة‬ ‫املعار�����ض ‪ UFI‬والذى يعد دليل كاف عل����ى اأن هذه املعار�ض يتم‬ ‫تنظيمها على م�ش����توى عاملى من حيث التنظيم – عدد العار�شني‬ ‫املتخ�ش�شني ‪ -‬م�شتوى الزيارة املحلى والدوىل ‪.‬‬ ‫ما هو ه��دف ال�شركه من تنظيم موؤمت��ر ومعر�س كايرو‬ ‫انرجى وما هى اأهميه تنظيمه فى هذا التوقيت ؟‬ ‫موؤمت���ر ومعر�ض كاي���رو انرجى يعترب من املعار�ض التى �ش���يكون‬



‫�إىل �أنه ميكن لل�ش ��ركات �مل�شتخدمة له �أو �شركات‬ ‫�خلدم ��ات �لبرتولية �ل�شر�ء م ��ن �شركتنا باجلنيه‬ ‫�مل�شرى �أو بالدولر �أو �ليورو‪ ،‬كما �أنه لدى �ل�شركة‬ ‫مرونة عالي ��ة يف توفري حجم �لعبو�ت �لتى تنا�شب‬ ‫�لعمي ��ل‪ ،‬حيث يوجد لدينا عب ��و�ت خمتلفة‪ ،‬ثاين‬ ‫�ملي ��ز�ت �لتناف�شية لدينا ه ��ى �ملرونة و�ل�شرعة يف‬ ‫تو�شي ��ل �لطلبيات و�لكمي ��ات �ملطلوبة‪ ،‬كما ميكن‬ ‫للعمي ��ل �أن يج ��دول �إحتياجات ��ه على م ��دى زمنى‬ ‫معن وعدم حاجته لالإ�شتري�د من �خلارج بكميات‬ ‫كبرية وتوفري تكالي ��ف �ل�شحن و�لتخزين وجتنيبه‬ ‫ما قد يتعر�ش له من خ�شارة ب�شبب �لتلف �لذى قد‬ ‫يحدث للعب ��و�ت نتيجة لطول ف ��رتة �لتخزين عند‬ ‫�إ�شتري�ده لكميات كبرية وتخزينها لفرت�ت طويلة ‪.‬‬ ‫‪ Ó‬م��ا ه��ي �ش��ركات �لب��رتول �لت��ي ت�شته��دف‬ ‫�شركتكم �لتعامل معها؟‬ ‫يف �ملقام �لأول ت�شته ��دف �ل�شركة �لتعامل مع كري‬ ‫�ش ��ركات �خلدم ��ات �لت ��ى تعم ��ل يف جم ��ال توف ��ري‬ ‫م�شتلزم ��ات �حلف ��ر و�لإنت ��اج لل�ش ��ركات �لعاملة يف‬ ‫جمالت �حلفر و�لتنقيب و�لإنتاج فى قطاع �لبرتول‪.‬‬ ‫و ن ��ود �أن نو�ش ��ح �أننا نقدم ذلك �ملنت ��ج لل�شركات‬ ‫�مل�شتهلك ��ة له بج ��ودة و�شع ��ر منا�ش ��ب �أف�شل من‬ ‫�إ�شتري�ده ��ا م ��ن �خل ��ارج ‪ ،‬و �أنن ��ا عل ��ى �إ�شتعد�د‬ ‫ملو�ف ��اة قط ��اع �لب ��رتول باإحتياجات ��ه �لكاملة من‬ ‫كلوري ��د �لكال�شيوم �لتي تبلغ ح ��و�يل ‪� 25‬ألف طن‬ ‫�شنويا ح�شب علمن ��ا ‪ ،‬حيث �أننا ننتج ‪� 30‬ألف طن‬ ‫�شنويا ف ��ى �لوقت �حلاىل و�شرتتف ��ع طاقة �لإنتاج‬ ‫لدين ��ا �ىل ‪� 60‬ألف طن بنهاية هذ� �لعام ‪� ،‬أي �أننا‬ ‫ميك ��ن �أن نوفر كامل �إحتياج ��ات �شركات �لبرتول‬ ‫�لعاملة فى م�شر من هذه �ملادة �لهامة‪ ،‬و�أنى �أوؤكد‬ ‫على �أن �لأولوية �لأوىل لبيع كلوريد �لكال�شيوم هى‬ ‫لل�ش ��وق �مل�شرى‪ ،‬ثم بعد ذل ��ك نعمل على ت�شدير‬ ‫باق ��ى �لإنت ��اج للخ ��ارج لن�شاهم فى توف ��ري �لعملة‬ ‫�ل�شعبة و�إنعا�ش �لإقت�شاد �مل�شرى‪.‬‬ ‫‪ Ó‬ف��ى ظ��ل ظ��روف �ملناف�ش��ة �ل�شر�ش��ة م��ع‬ ‫�ل�ش��ركات �لعاملي��ة ‪ ...‬كيف تتحقق �شركة‬ ‫�يفرجرو من جودة منتجاتها ؟‬ ‫يوجد لدى �شركة �يفرجرو معملن ‪� :‬لأول مب�شانع‬ ‫�أبو رو��ش و�لثانى مب�شانع �ل�شاد�ت ‪ ،‬وهي معامل‬ ‫جمهزة بكامل �ملعد�ت و�أحدثها ويقوم على �إد�رتها‬ ‫فريق موؤهل ومدرب وعلى م�شتوى عاىل من �لأد�ء‪،‬‬ ‫وتعم ��ل �ملعامل عل ��ي مدي ‪�24‬شاع ��ة لعمل حتاليل‬ ‫دوري ��ة جلمي ��ع �خلام ��ات للتاأك ��د م ��ن مطابقتها‬ ‫للمو��شفات وم ��دى �لتز�م �ملوردين وكذلك حتليل‬ ‫‪20‬‬

‫‪- June 2014‬‬

‫‪Petroleum Today‬‬

‫�ملنتجات خالل جميع مر�حل �لت�شنيع للتاأكد من‬ ‫مطابقتها للمو��شفات �ملحلية و�لعاملية �ملطبقة فى‬ ‫هذ� �ملجال‪ ،‬ومعامل �ل�شركة معتمدة من �لإيجاك‬ ‫"‪ "EGAC‬وحا�شل ��ة على �شهادة �لأيزو �خلا�شة‬ ‫باملعامل "‪ "ISO 1725‬ولذ� فهى تعتر �لأوىل فى‬ ‫منطقة �ل�شرق �لأو�ش ��ط و�شمال �إفريقيا ونتائجها‬ ‫معتمدة حمليا وعامليا ‪.‬‬ ‫ً‬ ‫ً‬ ‫‪ Ó‬متتل��ك �ل�شرك��ة ق�شم��ا متمي��ز� للبح��وث‬ ‫و�لتطوير و�لإبد�ع نريد �إلقاء �ل�شوء على‬ ‫هذ� �لق�شم ؟‬ ‫يعتر ق�شم �لبح ��وث و�لتطوير و�لإبد�ع هو قاطرة‬ ‫�لتنمية ف ��ى �أى موؤ�ش�شة ‪ ،‬ويق ��وم �لق�شم بال�شركة‬ ‫بعم ��ل �لدر��ش ��ات و�لبح ��وث �لالأزم ��ة لتطوي ��ر‬ ‫�ملنتج ��ات �أو �أ�شالي ��ب �لإنتاج بغية رف ��ع �جلودة �أو‬ ‫تقليل �لتكاليف لزيادة ق ��درة �ل�شركة �لتناف�شية ‪،‬‬ ‫كما �أن �لق�شم يقرتح �أفكار ً� �إ�شتثمارية جديدة �إما‬ ‫بغر� ��ش �إ�شتكمال منظومة �لإنت ��اج �حلالية �أو فتح‬ ‫�أفاق �إ�شتثمارية جديدة‪.‬‬ ‫يعم ��ل يف ق�ش ��م �لبح ��وث و�لتطوي ��ر و�لإب ��د�ع‬ ‫جمموعة من �أف�شل �خلر�ء �مل�شرين يف خمتلف‬ ‫�لتخ�ش�شات (�لكيماوية – �مليكانيكية – �لإد�رية‬ ‫ �لتجاري ��ة – �لزر�عي ��ة) وب�شف ��ه عام ��ه يقوم‬‫�لق�شم بعمل حتليل وبح ��وث �شوق ب�شفة م�شتمرة‬ ‫للتعرف على متطلبات �لأ�شو�ق حيث تعتمد عملية‬ ‫�لتطوي ��ر بال�شركة عل ��ى �إحتياجات �ل�ش ��وق �شو�ء‬ ‫على �مل�شتوى �ملحلى �أو على �مل�شتوى �لعاملي ‪ ،‬وهذ�‬ ‫ي�شاع ��د د�ئما يف �حل�شول عل ��ى منتجات جديدة‬ ‫متطورة وعالية �جلودة و�لكفاءة‪.‬‬ ‫‪ Ó‬نري��د �لتع��رف عل��ى روؤي��ة �ملهند���س حممد‬ ‫�خل�شن لالإقت�شاد �مل�شري يف �لفرتة �لقادمة‬ ‫�أن ��ا متفائ ��ل بالن�شبة للمرحل ��ة �لقادم ��ة وخا�شة‬ ‫بع ��د ثورت ��ي ‪ 25‬يناي ��ر و‪ 30‬يوني ��و و �لت ��ي �أ�شفت ��ا‬ ‫عل ��ى �ل�شخ�شي ��ة �مل�شرية وخا�ش ��ة �ل�شباب نوع ًا‬ ‫من �لإيجابي ��ة و�لتحدي جعلت �ل�شب ��اب ي�شعرون‬ ‫بامل�شوؤولي ��ة جتاه بن ��اء بلدهم وجعلته ��م ي�شاركون‬ ‫يف �لعملية �لإنتاجية بكل فاعلية كما يجب �لإ�شارة‬ ‫هن ��ا �ىل �أن بع�ش �مل�ش ��اكل �لتي تتعل ��ق بالإرهاب‬ ‫�شتزول لأنها عملي ��ات يائ�شة وتوؤدي �ىل مزيد من‬ ‫�لكر�هية للذين يرتكبونها‪.‬‬ ‫و�أرى �أن �لطري ��ق م�ش ��دود �أم ��ام م ��ن يعمل ��ون‬ ‫بالإره ��اب و م�شر �آمن ��ة و�شتظل �آمن ��ة باإذن �هلل‬ ‫ومطل ��وب من ��ا يف �ملرحل ��ة �لقادم ��ة �أن ندر� ��ش‬ ‫م�شاكلن ��ا من خالل جمموعة م ��ن �خلر�ء �لذين‬

‫ميتلكون �لروؤي ��ة و�خلرة من خالل جلان لإقرت�ح‬ ‫�حلل ��ول �لتنموية �ملنا�شبة ‪ ،‬مع �لرتكيز على �إقامة‬ ‫م�شروع ��ات تنموي ��ة خ ��ارج �ل ��ود�ي �ل ��ذى �أ�شبح‬ ‫يكت ��ظ بامل�شاكل‪ ،‬ول ��ذ� �أ�شبح لز�ما علين ��ا �إن�شاء‬ ‫جمتمع ��ات عمر�نية جدي ��دة بعيدة ع ��ن �لقاهرة‬ ‫و�لو�دى بها م�شروعات �إ�شتثمارية تتيح �ملزيد من‬ ‫فر� ��ش �لعمل خا�شة �ل�شباب وبها جميع �خلدمات‬ ‫و�ملر�ف ��ق �لعام ��ة م ��ن و�شائ ��ل مو��ش ��الت وطرق‬ ‫ومد�ر� ��ش وم�شت�شفي ��ات وحد�ئ ��ق وو�شائ ��ل ترفيه‬ ‫لت�شب ��ح مناطق ج ��ذب وت�شاهم بفاعلي ��ة فى رفع‬ ‫م�شتوى �ملعي�شة و�لتنمية �مل�شتد�مة فى م�شر‪.‬‬ ‫‪ Ó‬ه��ل تاأث��ر �لعم��ل يف �شرك��ة �إيف��ر ج��رو‬ ‫بالأح��د�ث و�لإ�شطر�ب��ات �ل�شيا�شي��ة �لتي‬ ‫مرت بها م�شر خالل �لثالثة �أعو�م �ملا�شية؟‬ ‫�إطالق� � ًا مل يتاأثر �لعمل بالأحد�ث �لتي مرت بها‬ ‫م�شر بعد ثورة ‪ 25‬يناير لعدة �أ�شباب‪� :‬أولها �أن‬ ‫�ل�شركة تعمل يف جمال له عالقة باإنتاج �لبرتول‬ ‫و�لغ ��ذ�ء و�ل�شل ��ع �لأ�شا�شية وجميعه ��ا منتجات‬ ‫عليه ��ا طل ��ب د�ئ ��م نظ ��ر ً� لإعتم ��اد �لعديد من‬ ‫�مل�شروع ��ات �ل�شناعية و�لزر�عي ��ة عليها ولآبد‬ ‫من �أن ت�شتمر يف عملها حتى ل يتاأثر �ملو�طن‪ ،‬بل‬ ‫�أكر م ��ن ذلك ز�د �لطلب على منتجات �ل�شركة‬ ‫ف ��ى هذه �لف ��رتة نتيجة ل�شعوب ��ة �لإ�شتري�د من‬ ‫�خل ��ارج �إما لأ�شب ��اب لوج�شتي ��ة �أو متوليه لعدم‬ ‫توفر �لعملة �ل�شعب ��ة‪� ،‬أما �ل�شبب �لثاين فريجع‬ ‫�ىل جه ��ود �لعاملن و�إنكار �لذ�ت يف تلك �لفرتة‬ ‫وكان ��و� م ��ن �أكر عو�م ��ل �لقوة و�لع ��ون لل�شركة‬ ‫‪ ،‬بينم ��ا يكم ��ن �ل�شب ��ب �لثال ��ث يف ق ��وة �لبنوك‬ ‫�مل�شري ��ة ف ��ى تلك �لف ��رتة و�إمكانياته ��ا �لعالية‬ ‫وقدرتها على متوي ��ل م�شروعات جديدة فى ظل‬ ‫هذه �لظ ��روف �ل�شعبة‪� ،‬أم ��ا �ل�شبب �لر�بع فهو‬ ‫يرج ��ع لإمياين �لتام ب� �اأن �لإن�شان �مل�شري لي�ش‬ ‫�إرهابي ��ا بطبعه ‪ ،‬و�أن ما يحدث ما هو �لإ ظاهرة‬ ‫دخيل ��ة علين ��ا و�شرع ��ان م ��ا �شتزول ف ��ى �ملدى‬ ‫�لقريب �إن �شاء �هلل ‪.‬‬ ‫‪ Ó‬ر�شال��ة يوجهه��ا �ملهند���س حمم��د �خل�ش��ن‬ ‫لرجال �لأعمال �مل�شرين‬ ‫�أطالب رجال �لأعمال بعدم �لرتدد و�لعمل على دفع‬ ‫عجلة �لإنت ��اج �ىل �لأمام من �أجل �لأجيال �لقادمة‬ ‫ولأن م�شر حتتاج �ىل كل رجل �أعمال يفتتح م�شانع‬ ‫جدي ��دة ويوفر فر� ��ش �لعمل لل�شب ��اب للق�شاء على‬ ‫�مل�ش ��كالت �لتي تعاين منها م�ش ��ر �لتي حتتاج �ىل‬ ‫رجال �أعمال ي�شاهمون يف بناء �إقت�شادها �لوطني‪.‬‬


‫�ملناف�شة فى �ل�شوق ��ن �ملحلى و�لأجنبى ‪ ،‬و�شنقوم‬ ‫بت�شدي ��ر ‪ % 50‬من �لطاقة �لإنتاجية وهو ما يعني‬ ‫جل ��ب �ملزيد من �لعمالت �لأجنبية خلزينة �لدولة‬ ‫ويح ��د من �لإ�شتري�د من �خلارج ‪ ،‬مما ي�شاهم يف‬ ‫دعم �لإقت�شاد �لقومي‪.‬‬ ‫‪ Ó‬هل هناك �ش��ركات م�شرية �أخ��رى منتجة‬ ‫لكلوريد �لكال�شيوم؟‬ ‫ل يوج ��د على �لإطالق ف ��ى م�ش ��ر‪� ،‬أو �أفريقيا �أية‬ ‫�شركة �أخرى منتجة لكلوريد �لكال�شيوم‪ ،‬فاإيفرجرو‬ ‫ه ��ى �ل�شركة �مل�شري ��ة �لوحيدة ف ��ى �ملنطقة �لتى‬ ‫لديها م�شنع فى مدينة �ل�ش ��اد�ت لت�شنيع كلوريد‬ ‫�لكال�شي ��وم تركي ��ز ‪ %94‬ع ��اىل �لنق ��اوة وبطاق ��ة‬ ‫�إنتاجية ‪� 30‬ألف طن فى �لوقت �حلايل‪ ،‬و ت�شتهدف‬ ‫�ل�شرك ��ة م�شاعفة �لطاقة �لإنتاجية لت�شل �إىل ‪60‬‬ ‫�ألف طن فى نهاية هذ� �لعام‪.‬‬ ‫ويعتر كلوريد �لكال�شيوم هو ع�شب �أعمال �حلفر‬ ‫و�لتنقيب عن �لبرتول و�لغاز �لطبيعى ‪ ،‬لذ� فنحن‬ ‫�شركة وطني ��ة ت�شعى �ىل دعم �ل�ش ��ركات �لعاملة‬ ‫ف ��ى قطاع �لب ��رتول �مل�ش ��رى‪ ،‬وت�شاه ��م بقوة فى‬ ‫دعمه وحتقيق �إ�شتقالليت ��ه و�لبعد عن �لإ�شتري�د‬ ‫من �خل ��ارج باإنتاج ه ��ذ� �ملركب حملي ��ا ب�شو�عد‬ ‫م�شري ��ة خال�شة تعم ��ل بكل حب عل ��ى �إ�شتقالل‬ ‫م�ش ��ر و�لبع ��د ع ��ن �لتبعي ��ة لل�ش ��ركات �لأجنبية‬ ‫�ملنتجة لكلوريد �لكال�شيوم‪.‬‬ ‫‪ Ó‬كيف تفي �شركة �إيفرجرو مبعاير �جلودة‬ ‫�لعاملية و�ملحلية ؟‬ ‫ف ��ى �إط ��ار �حلر� ��ش عل ��ى دع ��م تط ��ور �ل�شرك ��ة‬ ‫و�حلف ��اظ عل ��ى م�شتوي ��ات �جل ��ودة �ملرتفع ��ة‬ ‫ملنتجاتها ومكانتها �لرفيعة على خريطة �ل�شركات‬ ‫�لعاملي ��ة �لعامل ��ة ف ��ى هذ� �ملج ��ال تق ��وم �ل�شركة‬ ‫بتطبي ��ق �أف�شل معاي ��ري �جلودة �لعاملي ��ة و�ملحلية‬ ‫مم ��ا �شاعدن ��ا عل ��ى �إ�شتيف ��اء متطلب ��ات �إتفاقية‬ ‫ت�شدير �لكيماوي ��ات لدول �لإحتاد �لأوروبي و�لتى‬ ‫يطلق عليها �لريت� ��ش ‪ REACH‬ومت ت�شجيل جميع‬ ‫منتجاتنا ونقوم حالي ��ا بالت�شدير للعديد من دول‬ ‫�لحتاد �لأوروب ��ي‪ ،‬و�ل�شركة حا�شلة على �شهاد�ت‬ ‫�جلودة �لتالية‪:‬‬ ‫‪� 2008-ISO 9001‬خلا�شة بنظام �إد�رة �جلودة‪.‬‬ ‫‪� 2007-ISO 18001‬خلا�شة بنظام �إد�رة �ل�شحة‬ ‫و�ل�شالمة �ملهنية‪.‬‬ ‫‪� 2004-ISO 14001‬خلا�شة بنظام �إد�رة �لبيئة‪.‬‬ ‫‪� 2005-ISO 17025‬خلا�شة بنظام �عتماد �ملعامل‬ ‫و�ملختر�ت‪.‬‬

‫‪ Ó‬م��ا ه��و حج��م �لعمال��ة بال�شرك��ة وه��ل‬ ‫ت�شتعينون بخرب�ء �أجانب؟‬ ‫ل ��دى �ل�شرك ��ة �أك ��ر م ��ن ‪ 1000‬موظ ��ف م ��ا بن‬ ‫مهند� ��ش وفن ��ى و�إد�ري وعامل وجميعه ��ا �شو�عد‬ ‫م�شري ��ة ‪ %100‬مدربة حمليا وخارجيا وعلى �أعلى‬ ‫م�شت ��وى من �لكفاءة وحتر� ��ش �ل�شركة د�ئما على‬ ‫تدريب عمالتها �لفنية عل ��ى �أحدث �لتكنولوجيات‬ ‫�مل�شتخدم ��ة ف ��ى �إنت ��اج �لكيماوي ��ات و�لأ�شم ��دة ‪،‬‬ ‫وتق ��وم �ل�شرك ��ة باإع ��د�د بر�م ��ج تدري ��ب د�خلية‬ ‫وخارجي ��ة و�إحل ��اق �لعمال ��ة بال ��دور�ت و�لر�مج‬ ‫�لتدريبي ��ة �لت ��ي تنظمه ��ا �جله ��ات �ملتخ�ش�ش ��ة‬ ‫ومن ناحية �أخ ��رى نقدم لهم خدمات كثرية تتعلق‬ ‫بتح�ش ��ن �أحو�له ��م �ملعي�شية �لأمر �ل ��ذي يوؤدي يف‬ ‫�لنهاي ��ة �ىل زي ��ادة ولئه ��م و�إنتمائه ��م ل�شركتهم‬ ‫وي�شعرهم د�ئما بالتميز ‪.‬‬ ‫‪ Ó‬بعد �إنت��اج كلوريد �لكال�شيوم خلدمة قطاع‬ ‫�لبرتول ‪ ...‬فهل له��ذ� �ملركب �إ�شتخد�مات‬ ‫�أخرى فى غر قطاع �لبرتول؟‬ ‫تنت ��ج �ل�شرك ��ة كلوري ��د �لكال�شي ��وم ع ��اىل �لنقاوة‬ ‫برتكي ��ز ‪ %94‬خلدم ��ة �ل�ش ��ركات �لعاملة يف جمال‬ ‫�لبح ��ث و�لتنقيب ع ��ن �لبرتول و�لغ ��از �لطبيعى ‪،‬‬ ‫وهو منت ��ج ي�شتخدم �أ�شا�ش ًا يف تبط ��ن �لآبار �أثناء‬ ‫�حلف ��ر وف ��ى جتفي ��ف بع� ��ش �مل�شتق ��ات �لبرتولية‬ ‫�لع�شوية ‪� ،‬إلأ �أن كلوريد �لكال�شيوم ي�شتخدم وعلى‬ ‫نطاق و��شع يف �لعديد من �ل�شناعات و �لتطبيقات‬ ‫�لزر�عي ��ة و�ل�شحي ��ة يف جميع �أنح ��اء �لعامل منها‬ ‫عل ��ى �شبي ��ل �ملث ��ال ‪� :‬إ�شتخد�م ��ه كمحل ��ول ملحي‬ ‫ملحط ��ات �لتريد ‪ ،‬و �لتخل�ش م ��ن �جلليد و�لغبار‬ ‫م ��ن على �لط ��رق يف �أوروب ��ا وذلك ب�شب ��ب طبيعته‬

‫�ل�شرتطابي ��ة وقدرت ��ه عل ��ى �إمت�شا� ��ش �لرطوبة‬ ‫و�إط ��الق ح ��ر�رة مم ��ا ي�شاعد عل ��ى �إذ�ب ��ة �لثلوج‬ ‫�ملرت�كمة على �لطرق و�لتى تعوق حركة �لنقل‪ ،‬كما‬ ‫�أن كلوري ��د �لكال�شيوم هو مك ��ون رئي�شي يف �لعديد‬ ‫م ��ن �ل�شناع ��ات �لغذ�ئية مثل منتج ��ات �لألبان و‬ ‫�لوجب ��ات �خلفيفة ‪ ،‬وكمادة م�شافة يف بع�ش �أنو�ع‬ ‫�ل�شوكولتة ‪ ،‬و يف �شناعة �جلنب �ملطبوخ‪.‬‬ ‫�أي�شا لكلوريد �لكال�شيوم �لعديد من �لإ�شتخد�مات‬ ‫�لطبية حيث ي�شتخدم فى عالج نق�ش �لكال�شيوم‬ ‫ولن �لعظام ف ��ى �لإن�شان‪ ،‬وتكوين �لعظام و�إعادة‬ ‫�لتئامها فى حالة �لك�شور ‪.‬‬ ‫وكلوري ��د �لكال�شي ��وم مثله مثل كلوري ��د �ل�شوديوم‬ ‫فكالهم ��ا مالح �مل ��ذ�ق ‪ ،‬وميك ��ن �أن ي�ش ��اف �إىل‬ ‫بع� ��ش �لأطعم ��ة ب ��دل م ��ن �ملل ��ح �لع ��ادي لبع�ش‬ ‫�ملر�ش ��ى �لذين ين�شحهم �لأطباء بعدم �إ�شتخد�م‬ ‫مل ��ح �لطع ��ام لأغر��ش طبي ��ة ليكون له ��م مبثابة‬ ‫م�شدر �لكال�شيوم �لغذ�ئي و�ملذ�ق �ملالح‪.‬‬ ‫وت�شته ��دف �ل�شرك ��ة م�شاعفة طاقته ��ا �لإنتاجية‬ ‫من كلوري ��د �لكال�شيوم لت�شل �إيل ‪� 60‬لف طن مع‬ ‫نهاية �لع ��ام �جلاري برتكي ��ز ‪ % 94‬ودرجة ذوبان‬ ‫عالية ج ��د ً�‪ ،‬وبالتايل فهو �شال ��ح لالإ�شتخد�م فى‬ ‫جمي ��ع �ملجالت �ل�شاب ��ق �لإ�شارة �ليه ��ا بالإ�شافة‬ ‫�ىل �لعديد من �لإ�شتخد�مات �ل�شناعية �لأخرى ‪.‬‬ ‫‪ Ó‬ه��ل هن��اك مي��زة تناف�شي��ة لإ�شتخ��د�م‬ ‫كلوري��د �لكال�شيوم �لذي تنتج��ه �شركتكم‬ ‫يف مقابل �ملنتج �مل�شتورد ؟‬ ‫بالطب ��ع يتمتع كلوري ��د �لكال�شي ��وم �مل�شري �لذي‬ ‫تنتجه �شركتنا مبميز�ت تناف�شية كثرية‪:‬‬ ‫�أوله ��ا �ل�شعر �ملنخف�ش مقارن ��ة بامل�شتورد �إ�شافة‬ ‫‪- June 2014‬‬

‫‪19 Petroleum Today‬‬


‫املهند�س حممد اخل�سن رئي�س جمل�س اإدارة �سركة اإيفرجرو للأ�سمدة املتخ�س�سة ‪:‬‬

‫"اإيفرجرو" تنتج كلوريد الكال�سيوم بجودة عالية و�سعر‬ ‫مناف�س خلدمة ال�سركات العاملة فى قطاع البرتول‬ ‫تق��وم �شرك��ة �إيفرج��رو باإنت��اج كلوري��د‬ ‫�لكال�شيوم ع��ايل �لنقاوة وبرتكي��ز يزيد على‬ ‫‪ % 94‬ب�شع��ر مناف���س ج��د ً� مقارن��ة بكلوري��د‬ ‫�لكال�شي��وم �مل�شت��ورد م��ن �خل��ارج وبطاق��ة‬ ‫�إنتاجية ت�شل �ىل ‪� 60‬ألف طن �شنويا م�شاهمة‬ ‫منها فى خدمة قطاع �لبرتول �مل�شرى‪.‬‬ ‫�لتق��ت جمل��ة " برتولي��م ت��ود�ي " باملهند�س‬ ‫حمم��د �خل�ش��ن رئي���س جمل���س �إد�رة �شرك��ة‬ ‫�إيفرج��رو �ل��ذي �أك��د عل��ى �أن��ه مت �إن�ش��اء‬ ‫�ل�شرك��ة ع��ام ‪� 2006‬إنطالق�� ًا م��ن �إميان��ه‬ ‫باأهمي��ة �لت�شني��ع �ملحل��ى ودوره �لفع��ال ف��ى‬ ‫دع��م �لإقت�ش��اد �مل�ش��رى وخل��ق فر���س عمل‬ ‫جدي��دة لل�شب��اب وتوط��ن �لط��رق �حلديثة‬ ‫فى �شناع��ة �لأ�شمدة و�لكيماوي��ات فى م�شر‬ ‫و�حل��د م��ن �إ�شت��ر�د تل��ك �ملنتج��ات وتوف��ر‬ ‫�لعم��الت �لأجنبي��ة وجعل تل��ك �ملنتجات يف‬ ‫متن��اول ي��د �مل�شتهل��ك �مل�ش��ري ف��ى كل وق��ت‬ ‫وباأ�شع��ار تناف�شي��ة وبالعمل��ة �لت��ى يحددها‬ ‫�مل�شرتى ح�شب ظروفه‪.‬‬ ‫�حل��و�ر �لت��ايل ير�شد ظ��روف ودو�ف��ع ن�شاأة‬ ‫�شركة �إيفرج��رو و�ملنتجات �لكيماوية و�لتي‬ ‫تخ��دم قطاع �لب��رتول �مل�ش��ري م�شاهمة منها‬ ‫فى تنمية �لإقت�شاد �مل�شري ‪.‬‬ ‫‪ Ó‬هل لنا �أن نتعرف على دو�فع وظروف ن�شاأة‬ ‫هذ� �ل�شرح �لوطني �لكبر ؟‬ ‫ب ��د�أت �شركة �إيفرجرو عمله ��ا يف عام ‪ 2006‬وكان‬ ‫�أحد �لدو�فع �لأ�شا�شي ��ة لإن�شائها هو �إنتاج كلوريد‬ ‫�لكال�شيوم حمليا لتلبية متطلبات �شركات �لبرتول‬ ‫�لعاملة فى م�شر من هذه �ملادة �لهامة �مل�شتخدمة‬ ‫فى �حلفر و�لتنقيب عن �لب ��رتول و�لغاز �لطبيعى‬ ‫خا�ش ��ة فى ظل �لإرتفاع �لكبري يف �لأ�شعار �لعاملية‬ ‫‪18‬‬

‫‪- June 2014‬‬

‫‪Petroleum Today‬‬

‫له ��ذ� �ملنتج �أم ��ا �لد�فع �لث ��اين فق ��د كان ملو�كبة‬ ‫�لتط ��ور �لكب ��ري �لذى ح ��دث يف �أ�شالي ��ب �إنتاج‬ ‫�لكيماوي ��ات و�لأ�شمدة �حلديثة فى �ل�شنو�ت‬ ‫�لقليل ��ة �ملا�شي ��ة لتتما�شي م ��ع �إقت�شاديات‬ ‫�لإنت ��اج و�ملحافظ ��ة عل ��ي �ل�شح ��ة �لعام ��ة‬ ‫و�لبيئة‪ ،‬وهناك د�فع ثالث‬ ‫ه ��ام �أل وه ��و تعظيم‬ ‫�لإ�شتف ��ادة م ��ن‬ ‫�خلام ��ات �ملحلي ��ة‬ ‫�ملوج ��ودة بوف ��رة‬ ‫وبج ��ودة عالي ��ة‬ ‫مث ��ل كربون ��ات‬ ‫� لكا ل�شي ��و م‬ ‫عالي ��ة �لنق ��اوة‬ ‫� مل�شتخر ج ��ة‬ ‫م ��ن حماج ��ر‬ ‫حمافظ ��ة �ملني ��ا‬ ‫و �لت ��ى تعت ��ر‬ ‫�أف�ش ��ل �ملناطق‬ ‫عل ��ى �مل�شت ��وى �لعاملى لإ�شتخ ��ر�ج كربونات‬ ‫�لكال�شي ��وم و�لتى تعت ��ر مكون �أ�شا�ش ��ي فى �إنتاج‬ ‫كلوريد �لكال�شيوم‪.‬‬ ‫‪ Ó‬ما هو حجم �إ�شتثمار�ت �ل�شركة ؟‬ ‫ي�ش ��ل حج ��م �إ�شتثم ��ار�ت �ل�شرك ��ة ف ��ى �لوق ��ت‬ ‫�حل ��اىل �ىل ‪1.3‬ملي ��ار جني ��ه م�ش ��رى وكان ��ت‬ ‫بد�ي ��ة �إ�شتثم ��ار�ت �ل�شركة يف م�ش ��روع �أبو رو��ش‬ ‫باإ�شتثمار�ت و�شل ��ت ‪ 600‬مليون جنيه لإنتاج ‪160‬‬ ‫�ألف طن من �لكيماويات وحام�ش �لهيدروكلوريك‬ ‫و�لأ�شم ��دة �حلديث ��ة باأنو�عه ��ا �ملختلف ��ة وبع ��د‬ ‫ثالث �شن ��و�ت مت �شخ �إ�شتثم ��ار�ت جديدة و�شلت‬ ‫�ىل ‪ 700‬ملي ��ون جني ��ه للب ��دء فى تنفي ��ذ �ملرحلة‬ ‫�لأوىل من م�شروعنا �لعم ��الق يف مدينة �ل�شاد�ت‬

‫لإنت ��اج �أحما� ��ش �لكريتي ��ك و�لهيدروكلوري ��ك‬ ‫و�لفو�شفوريك و �شلفات �لبوتا�شيوم وكذلك لإنتاج‬ ‫كلوري ��د �لكال�شيوم عاىل �لنق ��اوة و�لذى يعتر من‬ ‫�ملو�د �لأ�شا�شي ��ة �مل�شتخدمة فى قطاع �لبرتول فى‬ ‫�حلفر و�لتنقيب عن �لبرتول و�لغاز �لطبيعى ‪.‬‬ ‫وهن ��اك مرحلة �أخرى فى جمم ��ع م�شانع �ل�شركة‬ ‫بال�شاد�ت ت�شته ��دف �إن�شاء م�شنع لإنتاج حام�ش‬ ‫�لنيرتي ��ك بطاق ��ة �إنتاجي ��ة ت�ش ��ل �ىل ‪ 1000‬طن‬ ‫يومي ��ا مما ي�شاعد على �إنت ��اج ‪ 500‬طن يوميا من‬ ‫ن ��رت�ت �لكال�شيوم لت�شبح �شركتن ��ا من �ل�شركات‬ ‫�لهامة و�لثالثة على م�شتوى �لعامل يف �إنتاج نرت�ت‬ ‫�لكال�شيوم مم ��ا يعطى �ل�شرك ��ة فر�شة كبرية فى‬



‫املهند�س مدحت اإ�صطفانو�س رئي�س ال�صعبة العامة لالأ�صمنت‪:‬‬

‫التحول لإ�صتخدام الفحم وتوفري الغاز الطبيعي‬ ‫�صيوفر �صنوي ًا ‪ 5‬مليار جنيه للموازنة العامة‬ ‫اأكد املهند�ض مدحت اإ�سطفانو�ض رئي�ض ال�سعبة‬ ‫العامة لالأ�سمنت باإحتاد ال�سناعات امل�سرية اأن‬ ‫التحول الإ�ستخدام الفحم وتوفري الغاز الطبيعي‬ ‫�س ��يوفر �س ��نوي ًا ‪ 5‬ملي ��ار جنيه للموازن ��ة العامة‬ ‫االأمر الذي ي�س ��ب يف م�س ��لحة املواطن �س ��واء‬ ‫فيم ��ا يخ� ��ض التعلي ��م اأو ال�س ��حة اأو اخلدمات‬ ‫املقدم ��ة ل ��ه مطالب� � ًا ب�س ��رعة تفعي ��ل الق ��رار‬ ‫احلكومي اخلا�ض با�ستخدام الفحم يف م�سانع‬ ‫االأ�سمنت دون االإلتفات لالأراء املعار�سة‪.‬‬ ‫وقال املهند�ض مدحت اإ�س ��طفانو�ض اأن خ�س ��ائر‬ ‫االإقت�س ��اد امل�س ��ري يف العام املا�س ��ي يف قطاع‬ ‫�س ��ناعة االأ�س ��منت ق ��د بلغ ��ت ‪ 11‬ملي ��ار جنيه‬ ‫ب�س ��بب اأزمة الطاقة يف م�س ��ر االأم ��ر الذي اأدى‬ ‫اإىل تراج ��ع اإنتاجية القطاع م ��ن ‪ 68‬مليون طن‬ ‫اإىل ‪ 48‬مليون طن باالإ�س ��افة اإىل اخل�سارة التي‬ ‫ت�سببت بها �سياع الفر�ض الت�سديرية‪.‬‬ ‫واأو�س ��ح رئي�ض ال�س ��عبة العامة لالأ�سمنت اأنه مت‬ ‫اإ�س ��ترياد ‪ 1.5‬ملي ��ون "كلينك ��ر" ل�س ��د الفجوة‬ ‫بني االإنتاج واالإ�س ��تهالك املحلي املطلوب متوقع ًا‬ ‫ت�س ��اعف خ�س ��ائر القط ��اع يف ‪ 2014‬حالة عدم‬ ‫وج ��ود حل ��ول �س ��ريعة وحقيقي ��ة باالإ�س ��افة اإىل‬ ‫خ�س ��ائر الكهرباء من الدعم املدفوع الإ�س ��ترياد‬ ‫م ��ازوت من اخل ��ارج بد ًال م ��ن اإ�س ��تخدام الغاز‬ ‫الطبيع ��ي املنت ��ج حملي� � ًا والذي يذهب مل�س ��انع‬ ‫االأ�سمنت وميكن اأن ي�سد الفجوة لقطاع الكهرباء‬ ‫حال اإ�ستخدام الفحم يف م�سانع االأ�سمنت‪.‬‬ ‫ولفت اإ�س ��طفانو�ض اإن �س ��عر اإ�س ��ترياد الفحم و‬ ‫حتى و�س ��وله اإىل اأر�ض امل�س ��نع م ��رورا بتكلفة‬ ‫ال�س ��حن واجلمارك والنقل �سيكون اأقل من �سعر‬

‫‪16‬‬

‫‪- June 2014‬‬

‫‪Petroleum Today‬‬

‫الغ ��از الذى حت�س ��ل علي ��ه حاليا ب � � ‪ 6‬دوالرات‬ ‫للمليون وح ��دة حرارية بريطانية بقيمة ن�س ��ف‬ ‫دوالر مو�س ��حا اأنه و اإن كان ال�سعرين متقاربني‬ ‫اإال اأن االأه ��م ه ��و اإتاحة م�س ��در جدي ��د و دائم‬ ‫للوقود و م�ستقر فى االأ�سعار على املدى املتو�سط‬ ‫والبعيد ‪.‬‬ ‫واأكد رئي�ض �سعبة االأ�سمنت على اأن رو�سيا اأكرب‬ ‫منتج للغاز فى العامل تعتمد على الفحم بن�س ��بة‬ ‫‪ %85‬فى �س ��ناعة االأ�سمنت مقابل ‪ %2‬كوك و‪%1‬‬ ‫غ ��از طبيع ��ى وب ��داأت دول اخللي ��ج العرب ��ى فى‬ ‫اإدخال الفحم تدريجيا �س ��من املكون الرئي�س ��ى‬ ‫الإنتاج االأ�سمنت م�سري ًا اإىل اأن الواليات املتحدة‬ ‫رغم اإكت�سافها الغاز ال�سخرى بتكلفة ت�سل اإىل‬ ‫ن�س ��ف تكلف ��ة اإ�س ��تخدام الفح ��م اإال اأن اأجهزة‬

‫البيئة فى اأمريكا منعت م�س ��انع االأ�س ��منت من‬ ‫التحول اإليه‪.‬‬ ‫واأكد اإ�س ��طفانو�ض ع ��دم وجود دول ��ة فى العامل‬ ‫حترق الغاز الطبيعي مثل م�سر فى االأ�سمنت اأو‬ ‫الكهرباء الأن القيمة امل�س ��افة له ت�س ��اوى �سفر ًا‬ ‫واإمنا تلجاأ الإ�ستخدامه فى الت�سنيع مو�سح ًا اأن‬ ‫االأ�سمنت ي�ستهلك ‪ %20‬من اإنتاج الغاز امل�سرى‬ ‫اإذا ما مت توجيه تلك الن�س ��بة اإىل اإنتاج الكهرباء‬ ‫�س ��يوفر للدول ��ة ‪ 5‬ملي ��ارات دوالر �س ��نويا بديال‬ ‫ع ��ن ا�س ��ترياد املازوت لرتتف ��ع تل ��ك القيمة اإذا‬ ‫ما مت حتويله ل�س ��ناعة االأ�س ��مدة االآزوتية حيث‬ ‫ت�س ��ل اإىل ‪� 20‬س ��عف القيم ��ة امل�س ��افة وترتفع‬ ‫الن�سبة اإىل ‪ %200‬حال اإ�ستخدامه فى �سناعات‬ ‫البرتوكيماويات‪.‬‬


‫املهند�س حممد اخل�صن رئي�س �صعبة الأ�صمدة ‪:‬‬

‫الأف�صــل ل�صركــات الأ�صمــدة احل�صــول على الغــاز‬ ‫بـ �صبعة دولرات بدون تخفي�س احل�ص�س املقررة لها‬ ‫يوؤك ��د املهند� ��ض حمم ��د اخل�س ��ن رئي�ض ال�س ��عبة‬ ‫العامة لالأ�س ��مدة باإحتاد ال�سناعات امل�سرية فى‬ ‫ت�سريحات خا�س ��ة ملجلة " برتوليم توداى " على‬ ‫اأن اأزم ��ة الطاق ��ة ونق� ��ض الغاز الطبيع ��ي كان له‬ ‫تاأثري �س ��لبي كبري على �سناعة االأ�سمدة يف م�سر‬ ‫خالل الفرتة االأخرية وت�س ��بب يف حدوث خ�س ��ائر‬ ‫كبرية لل�س ��ركات نتيجة الإنخفا�ض اإنتاج م�س ��انع‬ ‫االأ�س ��مدة الأن الغاز الطبيعي يع ��د اأحد املدخالت‬ ‫الرئي�سية يف �سناعة االأ�سمدة حيث يدخل بن�سبة‬ ‫ت�س ��ل اإىل ‪ % 55‬م ��ن تكلف ��ة االإنتاج يف االأ�س ��مدة‬ ‫االأزوتي ��ة وق ��د تاأث ��رت �س ��ناعة االأ�س ��مدة موؤخر ًا‬ ‫ب�سبب عدم توفري الكميات الالزمة مل�سانع انتاج‬ ‫االأ�س ��مدة التي مل تتمكن يف العام املا�سي مثال االإ‬ ‫من احل�س ��ول فقط على ‪ % 60‬من ح�س�ض الغاز‬ ‫الطبيع ��ي املقررة لها مما كان له اأثر �س ��لبي على‬ ‫عملية االإنتاج‬ ‫ولف ��ت املهند� ��ض حمم ��د اخل�س ��ن اىل اأن الدولة‬ ‫تدعم الغاز الطبيعي مل�س ��انع االأ�سمدة حيث يباع‬ ‫له ��ا بثالثة دوالرات لكل ملي ��ون وحدة حرارية يف‬ ‫حني اأن تكلفة اإنتاجه قد ت�سل اىل �سبعة دوالرات‬ ‫م ��ع العلم اأن بع�ض الدول متنحه باملجان مل�س ��انع‬ ‫االأ�سمدة ودول اأخرى توفره ب�سعر رمزي ال يتعدى‬ ‫دوالر ًا واحد ًا لكل ملي ��ون وحدة حرارية مثل دولة‬ ‫اجلزائ ��ر عل ��ى �س ��بيل املث ��ال يف اإط ��ار دعم تلك‬ ‫ال�سناعة احليوية ‪.‬‬ ‫وق ��ال رئي� ��ض ال�س ��عبة العام ��ة لالأ�س ��مدة اأنه من‬ ‫االأف�س ��ل ل�سركات االأ�س ��مدة توفري الغاز املطلوب‬ ‫لها ب�س ��عر �سبعة دوالرات اأي ب�س ��عر تكلفة اإنتاجه‬ ‫ب ��د ًال م ��ن ثالث ��ة دوالرات وهو ال�س ��عر املدعم مع‬ ‫ع ��دم تخفي�ض احل�س ���ض املقررة له ��ا من الغاز‬ ‫م�س ��يفا اأن ذل ��ك ه ��و االإجتاه االأ�س ��لم واالأف�س ��ل‬ ‫لتلك ال�س ��ركات والذي ال يوؤثر على حجم اإنتاجها‬

‫بال�سلب وبالتايل على م�سلحة امل�ستهلك امل�سري‪.‬‬ ‫وطال ��ب املهند� ��ض حمم ��د ا خل�س ��ن بالعمل على‬ ‫ن�س ��ر ثقافة تر�س ��يد اإ�س ��تخدام الطاقة وخا�س ��ة‬ ‫يف االإ�س ��اءة واجلوان ��ب الرتفيهي ��ة م ��ع �س ��رورة‬ ‫اإ�س ��تخدام الطاق ��ات البديل ��ة مثل طاق ��ة الرياح‬ ‫والطاق ��ة ال�سم�س ��ية يف تولي ��د الكهرب ��اء ويف‬ ‫االإ�ساءة ومن اأجل توفري الغاز الطبيعي للم�سانع‬ ‫وال�س ��ركات حتى ال تتاأثر عملي ��ات االإنتاج يف هذه‬ ‫امل�س ��انع مما ي�سر مب�س ��لحة امل�ستهلك امل�سري‬ ‫وامل�سلحة العليا للدولة يف املقام االأول‬ ‫ونف ��ى رئي�ض ال�س ��عبة العامة لالأ�س ��مدة وجود اأي‬ ‫تق�س ��ري من جان ��ب قط ��اع البرتول امل�س ��ري يف‬ ‫توف ��ري كميات الغ ��از الطبيع ��ي للم�س ��انع الأن ما‬ ‫ي�س ��بب اأزمة الطاقة هو تناق� ��ض طبيعي يف اإنتاج‬ ‫حق ��ول الغ ��از الطبيع ��ي ورغ ��م ذلك ف� �اإن قطاع‬ ‫البرتول ممث ��ل يف وزارة البرتول والرثوة املعدنية‬ ‫والهيئ ��ة العام ��ة للب ��رتول يح ��اوالن املوائم ��ة بني‬

‫اإحتياج ��ات حمطات توليد الكهرب ��اء واإحتياجات‬ ‫امل�س ��انع يف نف� ��ض الوق ��ت ويعمل م ��ن اأجل توفري‬ ‫كمي ��ات الغاز الطبيع ��ي بقدر االإمكان لل�س ��ناعة‬ ‫وخا�سة �سناعة االأ�سمدة‬ ‫وق ��ال اأي�س ��ا اأن اإ�س ��تخدام الفح ��م للتخفيف من‬ ‫اأزم ��ة الطاق ��ة اأم ��ر يحت ��اج اإىل درا�س ��ات دقيقة‬ ‫ووافي ��ة وذل ��ك قب ��ل تطبيق ��ه يف امل�س ��انع كثيفة‬ ‫االإ�س ��تهالك للطاقة والبد واأن يتم اإ�س ��تخدامه يف‬ ‫مناطق بعيدة عن الكتل ال�سكانية واأن يتم تطبيقه‬ ‫طبق ��ا للمعاي ��ري واالإ�س ��رتاطات البيئي ��ة الدولية‬ ‫للحد م ��ن خط ��ر التل ��وث وحفاظ ًا على ال�س ��حة‬ ‫العامة للمواطن كما اأنه يكمن اإ�س ��تخدام الطاقة‬ ‫ال�سم�سية يف املدن لالإ�ساءة وتوفري الكهرباء كما‬ ‫يجب درا�س ��ة اإمكانية اإ�س ��تخدام الكريو�س ��ني يف‬ ‫ت�س ��غيل حمطات الكهرباء بد ًال من الغازالطبيعي‬ ‫وامل ��ازوت من اأج ��ل توفري الغاز للم�س ��انع بهدف‬ ‫خلق قيمة م�سافة‬ ‫‪- June 2014‬‬

‫‪15 Petroleum Today‬‬


‫الدكتور اأحمد ال�صباغ مدير معهد بحوث البرتول ‪:‬‬

‫الإ�صتثمار فى الوقود احليوي املكمل للوقود البرتويل‬ ‫ينهي م�صاكل الطاقة فى م�صر‬ ‫الدكت ��ور اأحم ��د ال�س ��باغ مدير معهد بح ��وث البرتول‬ ‫وفى ت�س ��ريحات خا�سة ملجلة " برتوليم توداى " يرى‬ ‫اأن االإ�س ��تثمار يف جماالت الوق ��ود احليوي واملكمل من‬ ‫�ساأنه العمل على اإنهاء م�ساكل الطاقة التي تعاين منها‬ ‫م�س ��ر يف الوق ��ت الراهن وم�س ��تقبال م�س ��ري ًا اىل اأن‬ ‫معهد بحوث البرتول اإنتهج لنف�سه �سيا�سة مبداأ الطاقة‬ ‫البديلة اأواملكملة من النظرة البيئية واالإقت�سادية الفت ًا‬ ‫اإىل اأن املعهد نظم موؤخر ًا ور�سة عمل بعنوان (الوقود‬ ‫البدي ��ل املكم ��ل‪ ..‬نظ ��رة علمي ��ة واإقت�س ��ادية وبيئية)‬ ‫ح�س ��رها العدي ��د م ��ن خ ��رباء الطاق ��ة واملهتمني بها‬ ‫وناق�س ��ت ور�س ��ة العمل االإ�س ��تثمار يف جماالت الوقود‬ ‫البديلة واملكملة للوقود البرتويل ‪.‬‬ ‫وطالب الدكتور اأحمد ال�سباغ الدولة ب�سرورة ت�سجيع‬ ‫وتبني االإ�ستثمار يف جمال الوقود والطاقة باعتبارهما‬ ‫�سرورة من �سروريات احلياة �ساربا املثل بالعديد من‬ ‫درا�سات امل�سروعات التي يتبناها معهد بحوث البرتول‬ ‫يف ه ��ذا ال�س� �اأن ومنها اإنت ��اج البيوديزل م ��ن النباتات‬ ‫الزيتي ��ة مثل نبات ��ات اجلاتروفا واخلروع م�س ��يفا اأن‬ ‫لهذا امل�س ��روع جدوى اإقت�س ��ادية كبرية فمثال لو متت‬ ‫زراع ��ة ‪ 10‬اأالآف فدان بنباتات اجلاتروفا واخلروع يف‬ ‫ال�س ��حراء وعلى مياه ال�س ��رف ال�س ��حي ويف جنوب‬ ‫م�س ��ر حيث يحت ��اج ذل ��ك اىل درجة ح ��رارة مرتفعة‬ ‫اىل جانب اإن�س ��اء م�سنع لع�سر هذه النباتات وم�سنع‬ ‫اآخ ��ر لتحوي ��ل الزي ��وت اىل البيوديزل وم�س ��نع ثالث‬ ‫لت�سنيع اخل�سب ال�سناعي من خملفات هذه النباتات‬ ‫م�س ��ري ًا اإىل اأن تلك امل�س ��روعات لها جدوى اإقت�سادية‬ ‫كب ��رية تتمث ��ل يف توفري م ��ا يقرب من ‪ 35‬األف فر�س ��ة‬ ‫عمل واإنت ��اج ‪ 25‬األف طن بيوديزل وخم�س ��ة اأالآف طن‬ ‫جل�س ��رين وكميات هائلة من ناجت ع�س ��ر البذور تقوم‬ ‫عليها �سناعة اخل�سب ال�سناعي ‪.‬‬ ‫وطالب الدكتور ال�س ��باغ الدولة باعتبار هذا امل�س ��روع‬ ‫م�س ��روع ًا قومي� � ًا الأن ��ه يوف ��ر نح ��و ‪ % 20‬م ��ن الديزيل‬ ‫العادي م�س ��دد ًا على اأنه يدعو قطاع البرتول امل�س ��ري‬ ‫‪14‬‬

‫‪- June 2014‬‬

‫‪Petroleum Today‬‬

‫بتبن ��ي ه ��ذه امل�س ��روعات التي حتت ��اج اىل ت�س ��افر ‪6‬‬ ‫وزارات وه ��ي وزارات التنمي ��ة املحلية وال ��ري والبيئة‬ ‫والزراع ��ة والب ��رتول والبحث العلمي ممثل ��ة يف معهد‬ ‫بحوث البرتول مقرتح ًا اإن�ساء �سركات م�ساهمة الإدارة‬ ‫ه ��ذه امل�س ��روعات للمحافظة على االإ�س ��تدامة يف تلك‬ ‫امل�سروعات القومية ‪.‬‬ ‫وك�س ��ف مدير معهد بح ��وث الب ��رتول اأن املعهد يتبنى‬ ‫م�س ��روع اآخر وهو جمع خملفات زي ��وت الطعام واإنتاج‬ ‫البيودي ��زل منها مو�س ��ح ًا اأن يف م�س ��ر م ��ا يقرب من‬ ‫‪ 30‬ملي ��ون اأ�س ��رة م ��ن املمكن جمع ل ��رت خملفات زيت‬ ‫طعام من االإ�س ��رة �سهريا في�س ��بح املجموع ‪ 30‬مليون‬ ‫ل ��رت اأي ‪ 30‬األف طن �س ��هريا ميكن اإنت ��اج ‪ 25‬األف طن‬ ‫بيوديزل وخم�س ��ة اأالآف طن جل�س ��رين من هذه الكمية‬ ‫بعد اإن�س ��اء �س ��ركات له ��ذا الغر�ض وتوف ��ري اأالآف من‬ ‫فر�ض العمل لل�س ��باب‪ ،‬كما اأن املعهد يتبنى م�سروعات‬ ‫اإع ��ادة تدوير املخلفات الزراعي ��ة املختلفة الإنتاج البيو‬ ‫اإيثانول والذي ميكن اإ�س ��تخدامه مبا�سرة كوقود كامل‬ ‫كم ��ا يحدث يف الربازيل مع عم ��ل بع�ض التعديالت يف‬ ‫مواتري االإحرتاق كما ميكن اإ�سافته بن�سبة ‪ % 10‬اأو ‪20‬‬

‫‪ %‬اىل اجلازول ��ني وه ��و بنزين ‪ 80‬لتحويل ��ه اإىل بنزين‬ ‫‪ 92‬اأو ‪ 95‬اأو ‪ 98‬وق ��د قدم املعهد يف هذا املجال جتربة‬ ‫اإ�س ��افة امليثانول على البنزي ��ن ‪ 80‬لرفعه اإىل البنزين‬ ‫‪ 92‬لالإ�س ��تغناء عن اإ�س ��ترياد البنزي ��ن ‪ 95‬من اخلارج‬ ‫لتوفري مليارات اجلنيهات من الدعم احلكومي وحيث‬ ‫اأن م�س ��ر تنتج امليثانول فقد تقدم املعهد بهذا البديل‬ ‫ايل اأن يت ��م اإنت ��اج البيو اإيثانول واأنه جاري مناق�س ��ات‬ ‫م ��ع هيئ ��ة الب ��رتول لتطبيق ه ��ذا النم ��ط اجلديد من‬ ‫خمل ��وط امليثانول مع بنزين ‪ 80‬وق ��دم املعهد يف ذلك‬ ‫نتائ ��ج ممت ��ازة وتطبيقي ��ة ويبق ��ى اإتخاذ الق ��رار نحو‬ ‫عم ��ل جترية ميدانية لتطبيقه يف م�س ��ر كافة‪ ،‬وهناك‬ ‫م�س ��روعات اأخ ��رى يتبناه ��ا املعه ��د منه ��ا اإ�س ��تخدام‬ ‫الطحالب اخل�سراء يف اإنتاج البيوديزل وقد و�سل هذا‬ ‫امل�س ��روع اإىل نتائج مب�س ��رة وجاري رفعه لتحويله اإىل‬ ‫م�س ��روع ن�س ��ف �س ��ناعي وكذلك اأطلق املعهد مبادرة‬ ‫لتحوي ��ل خملف ��ات البال�س ��تيك والبرتوكيماويات اإىل‬ ‫ديزيل وبنزين �س ��من م�س ��روع ممول ذاتي ًا وقد و�س ��ل‬ ‫فريق البحث فيه اإىل ن�س ��بة ت�سل اإىل ‪ % 80‬من حتويل‬ ‫تلك املخلفات اىل وقود �سائل يتم اإ�ستخدامه مبا�سرة‪.‬‬


‫الدكتور تامر اأبو بكر رئي�س جلنة الطاقة باإحتاد ال�صناعات‪:‬‬

‫اإ�صتخدام الفحم والطاقة املتجددة كوقود بديل اأمر‬ ‫حتمي واإ�صالح منظومة دعم الطاقة يحل الأزمة‬ ‫اأك��د الدكتور تامر اأب��و بكر رئي�ض جلنة الطاقة‬ ‫ورئي�ض غرفة البرتول والتعدين باإحتاد ال�سناعات‬ ‫فى ت�سريحات خا�سة ملجلة " برتوليم توداى " اأن‬ ‫االأ�سباب الرئي�سية وراء اأزمة الطاقة التي تقا�سيها‬ ‫م�سر حاليا هي تزايد االإ�ستهالك �سنوي ًا بن�سبة‬ ‫ت�سل اىل ‪ % 6،5‬يف ظل تراجع معدالت االإنتاج‬ ‫م��ع ع��دم و�سع احل�ك��وم��ات يف ال �ف��رتات املا�سية‬ ‫خطة قومية لتوفري اإحتياجات م�سر من الطاقة‬ ‫واأي �� �س��ا ع��دم وج ��ود خليط م�ت�ن��وع م��ن م�سادر‬ ‫الطاقة املختلفة واالإعتماد كليا على البرتول والغاز‬ ‫الطبيعي وع��دم االإ�ستثمار يف ال�ب��دائ��ل االأخ��رى‬ ‫من الطاقة ومنها الفحم وطاقة الرياح والطاقة‬ ‫ال�سم�سية واإنتاج الكهرباء من املفاعالت النووية‬ ‫كما يحدث يف بقية دول العامل ‪.‬‬ ‫وق ��ال ال��دك �ت��ور ت��ام��ر اأن �ن��ا ن�ح�ت��اج اإىل اإ� �س��الح‬ ‫منظومة دعم الطاقة حتى ي�سل اإىل م�ستحقيه‬ ‫من الفقراء وحمدودي الدخل الأن الدعم يف �سكله‬ ‫احل��ايل ي�سل جزء كبري منه اإىل غري م�ستحقيه‬ ‫وي�سجع على تهريب الوقود واملنتجات البرتولية‬ ‫خ��ارج احل��دود مم��ا نتج عنه زي��ادة ال�ع��بء علي‬ ‫كاهل املوازنة العامة للدولة مع الزيادة امل�ستمرة‬ ‫يف االإ�ستهالك وم��ن الطبيعي االأ ي�ستثمر رجال‬ ‫االأعمال يف الطاقات البديلة مادامت اأغلى بكثري‬ ‫من الوقود االأحفوري التقليدي املدعم ‪.‬‬ ‫ويقرتح رئي�ض جلنة الطاقة باحتاد ال�سناعات‬ ‫رفع الدعم عن الوقود وتقدمي دعم عيني ونقدي‬ ‫للفقراء وحم��دودي الدخل وهي الفئة التي ت�سكل‬ ‫‪ % 70‬من حجم املجتمع امل�سري وقد ي�سل الدعم‬ ‫ال�ن�ق��دي اإىل ‪ 500‬جنيه ل �الأ� �س��رة م�ث��ال وميكن‬

‫الو�سول ايل م�ستحقيه من خالل توزيع هذا املبلغ‬ ‫على البطاقات التموينية وو�سع معايري حتدد من‬ ‫هم حمدودي الدخل امل�ستحقني للدعم فمثال ميكن‬ ‫اإعتبار كمية الكهرباء امل�ستهلكة لكل اأ�سرة معيار ًا‬ ‫الفت ًا اىل اأن تطبيق املنظومة اجلديدة قد يعرتيها‬ ‫بع�ض االأخطاء التي قد ت�سل اىل ‪ % 20‬والتي من‬ ‫املمكن اأي�سا تالفيها يف الفرتة الالأحقة لتطبيق‬ ‫هذه املنظومة م�سري ًا اىل اأن��ه �سيتم اإنفاق ما مت‬ ‫توفريه من ج��راء رفع الدعم على اإ�سترياد وقود‬ ‫ومنتجات برتولية من اخلارج للوفاء باحتياجات‬ ‫ال�سوق املحلي من هذه املنتجات ‪.‬‬ ‫وع��ن اإ��س�ت�خ��دام الفحم يف ال�سناعات كثيفة‬ ‫االإ� �س �ت �خ��دام للطاقة مثل االأ��س�م�ن��ت واال��س�م��دة‬ ‫واحل��دي��د وال���س�ل��ب اأي ��د ال��دك �ت��ور ت��ام��ر اأب��وب�ك��ر‬ ‫اإ��س�ت�خ��دام الفحم يف ه��ذه ال�سناعات وخا�سة‬ ‫�سناعة اال�سمنت وقال اأن ذلك االمر حتمي وال مفر‬ ‫منه الأن هذه ال�سناعات حتتاج اإىل اأفران �سديدة‬ ‫احل��رارة قد ت�سل اىل ‪ 1400‬درجة حرارة مئوية‬ ‫والبد من حتويل م�سانع االأ�سمنت للعمل بالفحم‬ ‫لتوفري الغاز الطبيعي واإ�ستخدامه يف �سناعات‬ ‫اأخرى خللق قيمة م�سافة لالقت�ساد امل�سري مثل‬ ‫�سناعة البرتوكيماويات ‪.‬‬ ‫و���س��دد رئ �ي ����ض جل �ن��ة ال �ط��اق��ة ع �ل��ى اأن ه�ن��اك‬ ‫تكنولوجيات ك�ث��رية حت��د م��ن االأ� �س��رار املنبعثة‬ ‫من اإ�ستخدام الفحم يف توليد الكهرباء و�سناعة‬ ‫االأ��س�م�ن��ت ح�ي��ث اأن ��ه م��ن امل�م�ك��ن اأن ي�ت��م و�سع‬ ‫التزامات على امل�سانع الإ�ستخدام تلك التكنولوجيا‬ ‫ونبداأ يف اإ�ستخدام الفحم يف امل�سانع املوجودة يف‬ ‫املناطق النائية �سواء كانت يف ال�سحراء اأو القريبة‬

‫من املوانئ‬ ‫كما اإق��رتح اإن�ساء منطقة قريبة من اأح��د املوانئ‬ ‫بها ع�سر حمطات لتوليد الكهرباء ت�ستخدم الفحم‬ ‫وتكون بالطبع بعيده عن الكتل ال�سكنية لتوفري‬ ‫الغاز لل�سناعات‬ ‫واأ�ساد الدكتور تامر اأبو بكر باداء املهند�ض �سريف‬ ‫اإ�سماعيل وزير البرتول والرثوة املعدنية وقيادات‬ ‫ال���وزارة م�سري ًا اىل اأن�ه��م جنحوا يف تنفيذ ‪25‬‬ ‫اإتفاقية جديدة كما اأنهم ي�سعون بكل قوة لت�سديد‬ ‫م�ستحقات ال�سركات االأجنبية من اأجل ت�سجيعيها‬ ‫على �سخ اإ�ستثمارات جديدة لتنمية االآبار والتنقيب‬ ‫يف مناطق اإمتياز جديدة من اأج��ل زي��ادة االإنتاج‬ ‫وتوفري املنتجات البرتولية ‪.‬‬

‫‪- June 2014‬‬

‫‪13 Petroleum Today‬‬


‫املهند�س خالد عبدالبديع رئي�س ايجا�س‪:‬‬

‫�صحنات الغاز امل�صال املقرر اإ�صتريادها �صت�صاهم‬ ‫فى حل جزء من امل�صكلة‬ ‫اأك��د املهند�ض خالد عبد البديع رئي�ض ال�سركة‬ ‫ال�ق��اب���س��ة ل �ل �غ��ازات ال�ط�ب�ي�ع�ي��ة "ايجا�ض" يف‬ ‫ت�سريحات خا�سة " لبرتوليم توداي " اأن �سحنات‬ ‫ال �غ��از امل �� �س��ال امل �ق��رر اإ� �س �ت��رياده��ا خ ��الل �سهر‬ ‫اأغ�سط�ض القادم �ست�ساهم يف حل جزء من م�سكلة‬ ‫الطاقة ونق�ض الوقود التي تعاين منها م�سر والتي‬ ‫تتمثل يف املقام االأول يف االنقطاع الدائم يف التيار‬ ‫الكهربائي ولن تق�سي على امل�سكلة ب�سكل كامل‬ ‫ولكنها �ست�ساهم يف تقليل الفجوة ‪.‬‬ ‫واأ��س��اف اأن قطاع ال�ب��رتول يعمل على جتنب اأي‬ ‫اأزم��ات فى الطاقة من خ��الل العمل على زي��ادة‬ ‫االإن��ت��اج وحت�ف�ي��ز ال���س��رك��اء االأج��ان��ب ع�ل��ى �سخ‬ ‫اإ�ستثمارات جديدة وتنمية االآبار والعمل على �سد‬ ‫العجز احلاىل للطاقة من خالل عملية االإ�سترياد‬ ‫و� �س��رورة ن�سر ثقافة الرت�سيد وال �ت��ى �ساهمت‬ ‫ب�سكل كبري فى حل جزء من اأزم��ة اإنقطاع التيار‬ ‫الكهربائى بعد اإدراك املواطنني باأهمية الرت�سيد‪.‬‬ ‫و�سدد على اأن قطاع البرتول لن يتوانى فى توفري‬ ‫اإحتياجات قطاع الكهرباء ولن يدخر اأى م�سئول فى‬ ‫قطاع البرتول اأى جهد فى تاأمني االإحتياجات من‬ ‫املنتجات البرتولية وحمطات الكهرباء من الوقود‬ ‫كما اأن القطاع يقوم مب�سروعات تنموية يف قطاع‬ ‫الغاز من اأجل زيادة اإنتاج م�سر من الغاز الطبيعي‬ ‫لتقليل الفجوة ‪.‬‬ ‫وق��ال عبد البديع اأن معدالت اإ�ستهالك الوقود‬ ‫ملحطات ال�ك�ه��رب��اء تبلغ ‪ 78‬مليون م��رت مكعب‬ ‫غ��از يومى و‪ 25‬األ��ف ط��ن م��ازوت باالإ�سافة اإىل‬ ‫‪ 2000‬ط��ن ��س��والر ي��وم��ى م���س��دد ًا على اأن قطاع‬ ‫ال�ب��رتول مل يق�سر ب �اأى �سكل ف��ى ت��وري��د كميات‬

‫‪12‬‬

‫‪- June 2014‬‬

‫‪Petroleum Today‬‬

‫الوقود ملحطات الكهرباء ويتم التعاقد على كافة‬ ‫اإحتياجات حمطات الكهرباء من امل��ازوت م�سريا‬ ‫اىل اأن قطاع البرتول يقوم يف حالة نق�ض الغاز‬ ‫بتوفري امل��زي��د م��ن كميات ال��وق��ود ال�سائل وهما‬ ‫املازوت وال�سوالر ملحطات الكهرباء كما اأن القطاع‬ ‫يقوم حاليا بتنفيذ العديد من م�سروعات البنية‬ ‫االأ�سا�سية الكبرية لزيادة كفاءة عملية نقل املازوت‬ ‫وال�سوالر بكفاءة عالية ملحطات الكهرباء لتعوي�ض‬ ‫النق�ض يف اإمدادات الغاز الطبيعي وبالفعل هناك‬ ‫العديد من حمطات الكهرباء التي بداأت معدالت‬ ‫نقل الوقود ال�سائل لها تزيد و�سوف تاأتي ثمار رفع‬ ‫كفاءة البنية االأ�سا�سية لنقل الوقود ال�سائل اىل‬ ‫حمطات الكهرباء خالل اأ�سهر ال�سيف القادمة ‪.‬‬ ‫وك�سف عبدالبديع اأن��ه مت تخفي�ض كميات الغاز‬ ‫بن�سب حم��دودة على القطاع ال�سناعى خا�سة‬

‫ال�سناعات كثيفة االإ�ستهالك للطاقة وذل��ك من‬ ‫اأجل توفري الوقود ملحطات الكهرباء الفت ًا اإىل اأن‬ ‫رجال االأعمال واأ�سحاب امل�سانع يقدرون الظروف‬ ‫التى متر بها البالد حالي ًا م�سيفا اأن قطاع البرتول‬ ‫يعطى االأول��وي��ة ف��ى ت��وف��ري ال�ط��اق��ة اإىل حمطات‬ ‫الكهرباء حيث يتم التخفي�ض بالت�ساوى طبقا خلطة‬ ‫االأولويات حيث تعد حمطات الكهرباء فى املرتبة‬ ‫االأوىل تليها االأ�سمدة ثم باقى ال�سناعات االأخرى ‪.‬‬ ‫وقال رئي�ض �سركة اإيجا�ض اأن هناك اإجتماعات‬ ‫م�ستمرة وف �ق��ا للتن�سيق امل�ستمر م��ع ال �ب��رتول‬ ‫وم�سئوىل وزارة الكهرباء والطاقة اجلديدة بهدف‬ ‫ر�سم خريطة الت�سغيل مبا ي�سمن االإ�ستمرارية ورفع‬ ‫كفاءة ت�سغيل حمطات الكهرباء حيث يتم عقد‬ ‫اإجتماعات دوري��ة لتحديد االأولويات واإحتياجات‬ ‫الكهرباء من الوقود‪.‬‬


‫ب‪ .‬الإ�شالح يف الأجل املتو�شط والطويل‬ ‫ت��ق��وم �سيا�سات اإ���س��الح ال��ط��اق��ة يف االأج��ل‬ ‫املتو�سط والطويل (�سنة – ‪� 5‬سنوات) علي نقل‬ ‫اأعباء اإنتاج الطاقة من احلكومة اإيل القطاع‬ ‫اخلا�ض ونقل االعتماد علي امل�سادر التقليدية‬ ‫النا�سبة اإيل املوارد اجلديدة واملتجددة‪ ،‬حيث‬ ‫�سيتم ال�سماح للقطاع اخلا�ض بالدخول يف‬ ‫�سوق اإنتاج الكهرباء وا�سترياد املواد البرتولية‬ ‫الإم��داده��ا للقطاع اخل��ا���ض‪ ،‬و�سيتم اإع��ط��اوؤه‬

‫وملدة ‪ 30‬عاما‪.‬‬ ‫‪ Ó‬عدم قيام احلكومة باإمداد امل�سانع اجلديدة‬ ‫بالطاقةحتى ت��رتك فر�سة للقطاع اخلا�ض‬ ‫للنمو واالزدهار يف هذا املجال‪.‬‬ ‫‪ Ó‬ال���س�م��اح للقطاع اخل��ا���ض ب��ان���س��اء �سركات‬ ‫للتوزيع مع ح�سول احلكومة (وزارة الكهرباء‬ ‫– املحافظات) علي ح�سة جمانية يف هذة‬ ‫ال�سركات بن�سبة ‪ ،%5‬وتزداد ايل ‪ %30‬خ�سما‬ ‫من ح�سة احلكومة يف ارباح هذة ال�سركات‪.‬‬

‫حوافز حمددة وهي‪:‬‬ ‫‪ Ó‬اإعفاء املعدات واملهمات من الر�سوم اجلمركية‬ ‫وال�سرائب‪.‬‬ ‫‪ Ó‬اعفاء من ال�سرائب ملدة خم�ض �سنوات‪.‬‬ ‫‪ Ó‬تخ�سي�ض االرا���س��ي ب���دون مقابل فرتة‬ ‫ان�ساء امل�سروع وبحد اق�سي ‪� 3‬سنوات ويلي‬ ‫ذلك تطبيق مقابل انتفاع ال يتعدي ‪/ $ 1‬‬ ‫م‪ 2‬ملدة ‪� 5‬سنوات ويلي ذلك مراجعة ال�سعر‬ ‫يف �سوء اال�سعار ال�سائدة مرة كل ‪� 5‬سنوات‬

‫�شيا�شات وم�شروعات ال�شالح يف الجل املتو�شط والطويل‬ ‫ال�شيا�شة‬

‫امل�شروع‬

‫االعتماد علي الطاقة‬ ‫املتجددة وغري القابلة‬ ‫للن�سوب مثل الطاقة‬ ‫ال�سم�سية وطاقة الرياح‬

‫ منح ال�سركات الراغبة يف‬‫اال�ستثمار يف جمال الكهرباء‬ ‫م�ساحات حمددة (بني ‪5-2‬‬ ‫اآالف فدان) بنظام حق االنتفاع‬ ‫الإن�ساء مزارع لتوليد الكهرباء‬ ‫من الرياح اأو الطاقة ال�سم�سية‬ ‫وم�سانع النتاج مكونات تلك‬ ‫امل�سروعات‪.‬‬ ‫ الزام الوحدات ال�سكنية‬‫بالتجمعات اجلديدة برتكيب‬ ‫�سخانات �سم�سية للمياة والواح‬ ‫�سم�سية مع التعاقد معها ل�سراء‬ ‫الطاقة الفائ�سة‪.‬‬

‫تعظيم اال�ستفادة من‬ ‫الطاقة‬

‫حتويل ال�سيارات لتعمل بالغاز‬ ‫الطبيعي او الكهرباء املولدة من‬ ‫الطاقة ال�سم�سية‬

‫الأهداف‬

‫النتائج املتوقعة‬

‫التمويل‬

‫القطاع واال�ستثمار‬ ‫ �سد العجز يف الطاقة‬‫ انتاج ‪ 20 – 15‬الف‬‫ميجا ا�سافية من الطاقة الكهربية‪ ،‬وتوفري كميات اخلا�ض واال�ستثمار‬ ‫كبرية من الوقود البرتويل العقاري‬ ‫ال�سم�سية‪.‬‬ ‫وتوجيهه لل�سناعات‬ ‫ تخفيف عبء دعم‬‫الطاقة علي املوازنة العامة التحويلية‪.‬‬ ‫ خلق ن�ساط ا�ستثماري ‪ -‬حتلية مياه البحر‬‫جديد يف م�سر وهي اإنتاج (توفري املياه)ثم‬ ‫ونقل الكهرباء وخا�سة يف ا�ستخدامها يف الزراعة‬ ‫ظل متتع م�سر مب�سادر (اإ�سافة طاقات زراعية‬ ‫غري حمدودة من الطاقة اإنتاجية جديدة)‬ ‫ال�سم�سية وطاقة الرياح‪.‬‬ ‫ خلق ‪ 12 -10‬مليون‬‫فر�سة عمل‪.‬‬ ‫�سد العجز الغذائي‬‫وت�سدير الفائ�ض‬ ‫انخفا�ض كبري يف حجم‬ ‫توفري الطاقة البرتولية‬ ‫غالية الثمن ببديل رخي�ض ا�ستخدام البنزين‬ ‫وال�سوالر‬

‫تقليل ا�ستهالك البوتاجاز اإمدادغالبية املنازل يف املناطق توفري االأعباء املالية‬ ‫احل�سرية بالغاز الطبيعي وق�سر الناجتة عن دعم �سلعة‬ ‫مرتفع الثمن وي�ستورد‬ ‫البوتاجاز‬ ‫اأكرث من ‪ %50‬منه ل�سالح توزيع البوتاجاز علي املناطق‬ ‫النائية والع�سوائية‬ ‫الغاز الطبيعي‬ ‫توفري نفقات ا�سترياد‬ ‫امل�ستقات البرتولية‬

‫تعظيم القيمة امل�سافة‬ ‫للمنتجات البرتولية‬ ‫واخلام‬

‫زيادة الطاقة االإنتاجية للمعامل‬ ‫امل�سرية احلالية وبناء معامل‬ ‫جديدة‪ ،‬مع التو�سع يف �سناعة‬ ‫البرتوكيماويات وجممعات‬ ‫ال�سناعات ال�سغرية واملتو�سطة‬ ‫القائمة عليها وعلي الرثوات‬ ‫املعدنية واملحجرية‬

‫التمييز بني م�ستهلكي‬ ‫الطاقة االأغنياء والفقراء‬

‫و�سع �سرائح �سعريه لال�ستهالك‪ :‬رفع الدعم عن القادرين‬ ‫اأول ‪ 500‬كيلو وات و ‪ 200‬لرت‬ ‫وقود تكون ب�سعر مدعم للجميع‬ ‫ال�سريحة الثانية‪ :‬ال ‪500‬‬ ‫كيلووات التالية وال ‪ 200‬لرت‬ ‫وقود التالية تكون ب�سعر �سعف‬ ‫ال�سعر املدعم‬ ‫ال�سريحة الثالثة‪ :‬بعد ‪ 1000‬كيلو‬ ‫وان و‪ 400‬لرت وقد تكون بال�سعر‬ ‫الغري مدعم‪.‬‬

‫وفورات مالية تتعدي‬ ‫‪ %50‬من قيمة دعم‬ ‫البوتاجاز(‪ 10‬مليار جنيه‬ ‫�سنويا)‬

‫و�سع القوانني والت�سريعات البرتول‬ ‫واحلوافز تق�سيط عمليات واملالية‬ ‫التحويل اأو التحويل بقر�ض مب�ساعدة‬ ‫النظام البنكي‬ ‫بدون فوائد‬

‫وزارة البرتول‬

‫االأفراد امل�سرتكني‬

‫توفري ‪ %60‬من تكلفة اإنتاج وزارة البرتول‬ ‫القطاع اخلا�ض‬ ‫الطاقة يف م�سر‪ ،‬حيث‬ ‫اأن �سعر ت�سدير البرتول‬ ‫اخلام ميثل‪ %40‬من �سعر‬ ‫�سراء الربميل م�ستقات‬

‫موارد مالية كبرية‬ ‫مع تر�سيد ا�ستهالك‬ ‫الطاقة‬

‫‪-‬‬

‫امل�شئول عن التنفيذ‬ ‫املطلوب من احلكومة‬ ‫ومدة التنفيذ‬ ‫ حتديد االأرا�سي القابلة وزارات الكهرباء‬‫والبرتول واالنتاج احلربي‬ ‫للتنمية‬ ‫ اإقرار حزمة احلوافز يف والدفاع واال�سكان‬‫والزراعة والري‬ ‫هذا املجال‬ ‫واال�ستثمار وال�سناعة‬ ‫والبيئة والبحث العلمي‬ ‫(�سنة – ‪� 3‬سنوات)‬

‫زيادة الطاقة االإنتاجية‬ ‫ل�سركات مد خطوط الغاز‬ ‫الطبيعي للمنازل لالنتهاء‬ ‫ب�سرعة من تغطية املناطق‬ ‫احل�سرية يف خالل ‪� 5‬سنوات‬

‫البرتول واملاليه خ�سما‬ ‫من دعم البوتاجاز‬ ‫(�سنة – ‪� 5‬سنوات)‬

‫و�سع خطة تنفيذية‬ ‫للم�سروع والبدء يف‬ ‫التنفيذ‬

‫وزارة البرتول‬ ‫والقطاع اخلا�ض‬ ‫(‪� 5 – 3‬سنوات)‬

‫حتديد ال�سرائح وو�سع‬ ‫برنامج التنفيذ‬

‫وزارة البرتول والكهرباء‬ ‫واملالية والتنمية االدارية‬ ‫(�سنتني – ‪� 3‬سنوات)‬

‫‪- June 2014‬‬

‫‪11 Petroleum Today‬‬


‫تو�صيات وا�صرتاتيجيات الإ�صالح‬ ‫فـى جمال الطاقة‬ ‫املهند�س اأ�صامة كمال‬

‫وزير البرتول والرثوة املعدنية "الأ�سبق"‬ ‫يف ��س��وء احل��اج��ة ايل ر��س��م اإ�سرتاتيجية للطاقة‬ ‫يف م�سر‪ ،‬ف��ان االم��ر يتطلب ان تتمثل اخلطوط‬ ‫اال�سرتاتيجية ال�سالح منظومة الطاقة يف م�سر يف‬ ‫انها اخلطوط احلاكمة لتحرك الدولة يف ا�سالح‬ ‫منظومة الطاقة اي ًا ما كان توجه احلكومة‪ ،‬وتتمثل‬ ‫تلك اخلطوط فيما يلي‪:‬‬ ‫‪ Ó‬تخفي�ض حجم الدعم املقدم للطاقة مع مراعاة‬ ‫البعد االجتماعي‪ ،‬اذ يبلغ دع��م الطاقة حاليا‬ ‫مايزيد علي ‪ 350‬مليار جنيه من ايرادات الدولة‬ ‫بح�سابات الفر�سة البديلة‪.‬‬ ‫‪ Ó‬ح�سول امل�ستحق علي دعم وم�ساندة احلكومة اأي ًا‬ ‫كان التوجه االقت�سادي للدولة‪ ،‬و لن يح�سل علي‬ ‫الدعم اإال امل�ستحقني فقط والذين ميثلون ‪ %80‬من‬ ‫اجمايل ال�سكان ويح�سلون حاليا علي ‪ %20‬من‬ ‫الدعم بينما تتح�سل الطبقات املقتدرة والغنية‬

‫والتي متثل ‪ %20‬من اجمايل ال�سكان علي ‪ %80‬من‬ ‫هذا الدعم بغري حق‪.‬‬ ‫‪ Ó‬دم��ج ا�سرتاتيجيات وخ�ط��ط واأه� ��داف الطاقة‬ ‫امل�ستدامة داخل ا�سرتاتيجيات و�سيا�سات وخطط‬ ‫التنمية الوطنية‪.‬‬ ‫ال�����ش��ي��ا���ش��ات وامل�������ش���روع���ات ال��ت��ن��ف��ي��ذي��ة‬ ‫لإ�شرتاتيجية قطاع الطاقة يف م�شر‬ ‫من املمكن اإ�سالح قطاع الطاقة يف م�سر باالعتماد‬ ‫علي جناحي ال�سوق وهما العر�ض والطلب‪،‬حيث اأن‬ ‫اإ�سالح جانب بدون اآخر �سيحد من كفاءة عمليات‬ ‫االإ�� �س ��الح‪ .‬وي�ت�م�ث��ل ج��ان��ب ال �ع��ر���ض يف احل�ك��وم��ة‬ ‫عامة ووزارة البرتول والكهرباء خا�سة والهيئات‬ ‫وال�سركات التابعني لهما‪ ،‬حيث انهما املخوليني‬ ‫باإنتاج وادارة �سئون البرتول والكهرباء ‪........‬الخ‪.‬‬

‫ويتمثل جانب الطلب يف امل�ستهلكني وامل�ستفيدين من‬ ‫املوارد البرتولية والكهرباء ويرتكز قطاع امل�ستهلكني‬ ‫يف ال �ق �ط��اع ال �ع��ائ �ل��ي وه ��و اال� �س �ت �خ��دام امل �ن��زيل‬ ‫وال�سيارات‪ ،‬والقطاع اخلا�ض االقت�سادي �سواء كانت‬ ‫حمالت جتارية او م�سانع او ور���ض حرفية ‪.......‬‬ ‫الخ‪ .‬باال�سافة ايل الوحدات احلكومية والقطاع العام‬ ‫�سواء كانت وحدات ادراية او خدمية او انتاجية‪.‬‬ ‫اأ ‪ .‬الإ�شالح يف الأجل الق�شري ويهدف ايل‪:‬‬ ‫‪ Ó‬تخفيف ع��بء دع��م الطاقة علي امل��وازن��ة العامة‬ ‫للدولة‪.‬‬ ‫‪ Ó‬تخفي�ض املديونية علي موؤ�س�سات الدولة وخا�سة‬ ‫ال�سركاء وامل�ستثمرين االج��ان��ب وم��ن ثم توفري‬ ‫�سيولة لالإنفاق علي م�سروعات البحث والتنقيب‬ ‫ع��ن اآب���ار ج��دي��دة واق��ام��ة م���س��روع��ات الطاقة‬ ‫اجلديدة واملتجددة‪.‬‬

‫�شيا�شات وم�شروعات ال�شالح يف الجل الق�شري‬ ‫ال�شيا�شة‬ ‫توفري اعتمادات مالية‬ ‫جديدة باالعتماد الذاتي‬ ‫(‪ 50 – 40‬مليار دوالر)‬

‫امل�شروع‬

‫ البدء يف م�سروعات‬‫بيع ح�سة (ال تتعدي ‪ )%25‬من ‪ -‬معاجلة بع�ض‬ ‫جديدة‪.‬‬ ‫اأ�سول قطاع الطاقة للم�سرين االختالالت املالية‬ ‫يف الداخل واخلارج‪ ،‬عن طريق ‪� -‬سداد املديونية لل�سريك ‪ -‬حت�سني موقف‬ ‫االحتياطي من النقد‬ ‫االأجنبي‬ ‫االكتتاب العام‬ ‫االجنبي‬

‫ذاتي‬

‫ جتهيز قائمة‬‫بامل�سروعات‬ ‫ التجهيز الفني للطرح‬‫واإدارة املحفظة‬ ‫ طرح امل�سروعات‬‫لالكتتاب‬

‫تقليل دعم الطاقة مرحليا وفورات مالية كبرية‬ ‫ميكن ا�ستخدامها يف‬ ‫حلني حتديد كميات‬ ‫امل�سروعات التنموية‬ ‫مدعمة لكل م�ستحق‬ ‫الداعمة الإ�سرتاتيجية‬ ‫للدعم‬ ‫اإ�سالح الطاقة‬ ‫(خا�سة امل�سروعات يف‬ ‫االأجل الطويل يف تلك‬ ‫االإ�سرتاتيجية)‬

‫ذاتي‬

‫ تفعيل اآلية توزيع‬‫امل�ستقات املدعمة‬ ‫(كوبونات‪-‬كروت‬ ‫ذكية‪....‬الخ)‬ ‫حتديد اأ�س�ض اختيار‬‫امل�ستحقني‪ ،‬حيث يتم‬ ‫ا�ستبعاد غري امل�ستحقني‪،‬‬ ‫واآلية التحديد اإما عن‬ ‫طريق قيا�ض الدخل‬ ‫الظاهري اأو اختبار‬ ‫عنا�سر املعي�سة البديلة‪.‬‬

‫تخفيف عبء دعم الطاقة تطبيق منظومة اإحكام‬ ‫الرقابة علي نقل وتداول‬ ‫(‪ 40 – 30‬مليار جنيه‬ ‫الطاقة من منتجات‬ ‫�سنويا)‬ ‫برتولية او كهرباء من‬ ‫خالل الكروت الذكية‬ ‫للمنتجات البرتولية‬ ‫والكهرباء‬

‫‪10‬‬

‫‪- June 2014‬‬

‫الأهداف‬

‫النتائج املتوقعة‬

‫التمويل‬

‫املطلوب من احلكومة‬

‫‪Petroleum Today‬‬

‫امل�شئول عن التنفيذ‬ ‫ومدة التنفيذ‬ ‫وزارة البرتول والكهرباء‬ ‫واملالية خالل �سهرين‬

‫وزارات البرتول والكهرباء‬ ‫والتموين والتنمية االإدارية‬ ‫والداخلية والتنمية املحلية‬ ‫وجهاز االإح�ساء‬ ‫خالل �سهرين‬


‫أزمة الطاقة يف مصر بني األسباب واحللول‬

‫مع قدوم أشهر الصيف احلارة تعود من جديد أزمة الطاقة يف مصر لتطل برأسها يف ظل تنامي إستهالك‬ ‫الوقود وتراجع إنتاج الغاز الطبيعي بسبب التناقص الطبيعي للحقول وعزوف شركات إنتاج البرتول العاملية‬ ‫عن ضخ إستثمارات جديدة يف قطاع البرتول نظرًا لتزايد ديونها املستحقة على قطاع البرتول املصري‬ ‫واالضطرابات السياسية واالمنية التي شهدتها مصر عقب تفجر ثورة اخلامس والعشرين من يناير ‪.‬‬ ‫أزمة الطاقة يف مصر تتجسد يف شكل رئيسي يف اإلنقطاع الدائم واملتكرر للكهرباء رغم توجيه قطاع‬ ‫البرتول كميات كبرية من الغاز الطبيعي حملطات الكهرباء وتخفيض حصص الغاز املكررة للصناعة والتصدير‬ ‫وذلك من أجل توفري الغاز لتوليد الكهرباء وهو ما سبب أزمة كبرية بني وزارة البرتول املصرية وشركة بريتش‬ ‫جاز الربيطانية أكرب منتج للغاز الطبيعي يف مصر والتي وصلت مستحقاتها لدى قطاع البرتول على ما يقارب‬ ‫مليار ونصف املليار دوالر ومت حرمانها من تصدير حصتها من الغاز اىل اخلارج ‪.‬‬ ‫العديد من خرباء البرتول والطاقة يرون أهمية البحث عن بدائل جديدة لتوليد الكهرباء وعلى رأسها طاقة‬ ‫الرياح والطاقة الشمسية وإنشاء املفاعالت النووية وعدم اإلعتماد كليا على الغاز الطبيعي والذي ال يكفي‬ ‫حمطات الكهرباء كما هو معروف خاصة وأن حجم إعتماد حمطات إنتاج الكهرباء على الغاز الطبيعي تخطى‬ ‫حاجز الـ‪ %71‬من قيمة كل املصادر حسب ما صرح به الدكتور حممد شاكر وزير الكهرباء والطاقة اجلديدة‬ ‫مؤخرا حيث يتم تغذية احملطات بنحو ‪ 20‬ألف طن مازوت ونحو ‪ 78‬مليون مرت مكعب وأن العجز اليومي يقدر‬ ‫بـ ‪ 5‬مليون مرت مكعب من الغاز‪.‬‬ ‫اخلــرباء يطالبون ايضا بإصالح منظومة دعم املنتجات البرتولية حتى يتم ترشيد هذا الدعم وإيصاله اىل‬ ‫مستحقيه يف إطار تخفيف العبء عن امليزانية العامة للدولة خاصة وأن دعم املنتجات البرتولية زاد على‬ ‫‪ 130‬مليار جنيه مصري وهو ما ميثل ‪ % 25‬من إجمايل املوازنة العامة للدولة ‪.‬‬ ‫جملة " برتوليم توداي " من جانبها أعدت ملف عن أزمة الطاقة ‪ ..‬األسباب واحللول وإستطلعت أراء العديد من‬ ‫املسئولني وخرباء الطاقة والصناعة للوقوف على أسباب أزمة الطاقة ونقص الوقود التي تعاين منها مصر‬ ‫وتأثري ذلك على املواطن البسيط والصناعة على حد سواء وبحث سبل اخلروج من نفق هذه االزمة فكانت‬ ‫تلك االراء ‪...‬‬


49 Moha Fax: +2

49 Mohamad Mazhar Str, Zamalek, Cairo - Egypt, 11211, Tel: +20 2 27355837 - 27353877 Fax: +20 2 27358801, email: Secretariat@egytec.com , WEBSITE: WWWEGYTEC.COM



  ""   ""          

""   “”              “

  ""        " "      "             ""                           " "     ""     "" " ""        

 

                                                                          Petroleum Today

- June 2014

6


               

 "" 

                                                 ""                             5

Petroleum Today

- June 2014

   ""  ""  ""             

                                                


                       

  ""          ""

                                                                          

 

                                                                 Petroleum Today

- June 2014

4


                                                                                                

                                                                                                                                                                        " "                               " "                                                                         

   

                                                                                    

20142014 Petroleum Today Today - June - June 3 3Petroleum


"

               

                

                                                                           

                                                          

         

    

Petroleum Today

- June 2014

2





Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.