Algorithmic Modelling with Grasshopper by Mohamad Khabazi

Page 53

49

Transformations

4_2_On curves and linear geometries As we have experimented with points that are 0‐Dimension geometries now we can start to think about curves as 1‐Dimensional objects. Like points, curves could be the base for constructing so many different objects. We can extrude a simple curve along another one and make a surface, we can connect different curves together and make surfaces and solids, we can distribute any object along a curve with specific intervals and so many other ways to use a curve as a base geometry to generate other objects. Displacements We generated so many point grids in chapter 3. There is a component called <Grid rectangular> (Vector > Point > Grid rectangular) which produces a grid of points which are connected together make some cells also. We can control the number of points in X and Y direction and the distance between points.

Fig.4.3. a simple <Grid Rectangular> component with its predefined values. You can change the size of grid by a <number slider>. I want to change the Z coordinates of the points as well. So I need to change the base plane of the grid. To do this, I introduced a <XY plane> component (Vector > Constants > XY plane) which is a predefined plane in the orientation of the X and Y axis and I displaced it in Z direction by a <Z unit> component (Vector > Constants > Z unit) which is a vector along Z axis with the length (magnitude) of one. I can change the height of this displacement by the size of the vector through a <number slider> that I connected to the input of the <Z unit> component. So by changing the position of the <XY plane> along the Z axis the height of the grid also changes.

Chapter 4


Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.