Relational and algebraic methods in computer science 17th international conference ramics 2018 groni

Page 1


Relational and Algebraic Methods in Computer Science 17th International Conference RAMiCS 2018 Groningen

The Netherlands October 29 November

1 2018 Proceedings Jules Desharnais

Visit to download the full and correct content document: https://textbookfull.com/product/relational-and-algebraic-methods-in-computer-scienc e-17th-international-conference-ramics-2018-groningen-the-netherlands-october-29-n ovember-1-2018-proceedings-jules-desharnais/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Relational and Algebraic Methods in Computer Science

14th International Conference RAMiCS 2014 Marienstatt Germany April 28 May 1 2014 Proceedings 1st Edition

Peter Höfner

https://textbookfull.com/product/relational-and-algebraicmethods-in-computer-science-14th-international-conferenceramics-2014-marienstatt-germanyapril-28-may-1-2014-proceedings-1st-edition-peter-hofner/

Discovery Science 21st International Conference DS 2018

Limassol Cyprus October 29 31 2018 Proceedings Larisa Soldatova

https://textbookfull.com/product/discovery-science-21stinternational-conference-ds-2018-limassol-cyprusoctober-29-31-2018-proceedings-larisa-soldatova/

Computer Information Systems and Industrial Management: 17th International Conference, CISIM 2018, Olomouc, Czech Republic, September 27-29, 2018, Proceedings

Khalid Saeed

https://textbookfull.com/product/computer-information-systemsand-industrial-management-17th-international-conferencecisim-2018-olomouc-czech-republicseptember-27-29-2018-proceedings-khalid-saeed/

PRIMA 2018 Principles and Practice of Multi Agent Systems 21st International Conference Tokyo Japan October 29 November 2 2018 Proceedings Tim Miller

https://textbookfull.com/product/prima-2018-principles-andpractice-of-multi-agent-systems-21st-international-conferencetokyo-japan-october-29-november-2-2018-proceedings-tim-miller/

Swarm Intelligence 11th International Conference ANTS

2018 Rome Italy October 29 31 2018 Proceedings Marco Dorigo

https://textbookfull.com/product/swarm-intelligence-11thinternational-conference-ants-2018-rome-italyoctober-29-31-2018-proceedings-marco-dorigo/

Network and Parallel Computing 15th IFIP WG 10 3

International Conference NPC 2018 Muroran Japan

November 29 December 1 2018 Proceedings Feng Zhang

https://textbookfull.com/product/network-and-parallelcomputing-15th-ifip-wg-10-3-international-conferencenpc-2018-muroran-japan-november-29-december-1-2018-proceedingsfeng-zhang/

Digital Heritage Progress in Cultural Heritage Documentation Preservation and Protection 7th

International Conference EuroMed 2018 Nicosia Cyprus October 29 November 3 2018 Proceedings Part II Marinos

Ioannides https://textbookfull.com/product/digital-heritage-progress-incultural-heritage-documentation-preservation-and-protection-7thinternational-conference-euromed-2018-nicosia-cyprusoctober-29-november-3-2018-proceedings-part-ii-marinos/

Graph Theoretic Concepts in Computer Science 44th

International Workshop WG 2018 Cottbus Germany June 27 29 2018 Proceedings Andreas Brandstädt

https://textbookfull.com/product/graph-theoretic-concepts-incomputer-science-44th-international-workshop-wg-2018-cottbusgermany-june-27-29-2018-proceedings-andreas-brandstadt/

Applied Informatics First International Conference ICAI 2018 Bogotá Colombia November 1 3 2018 Proceedings Hector Florez

https://textbookfull.com/product/applied-informatics-firstinternational-conference-icai-2018-bogota-colombianovember-1-3-2018-proceedings-hector-florez/

Jules Desharnais · Walter Guttmann

Relational and Algebraic Methods in Computer Science

17th International Conference, RAMiCS 2018 Groningen, The Netherlands, October 29 – November 1, 2018 Proceedings

LectureNotesinComputerScience11194

CommencedPublicationin1973

FoundingandFormerSeriesEditors: GerhardGoos,JurisHartmanis,andJanvanLeeuwen

EditorialBoard

DavidHutchison

LancasterUniversity,Lancaster,UK

TakeoKanade

CarnegieMellonUniversity,Pittsburgh,PA,USA

JosefKittler UniversityofSurrey,Guildford,UK

JonM.Kleinberg

CornellUniversity,Ithaca,NY,USA

FriedemannMattern

ETHZurich,Zurich,Switzerland

JohnC.Mitchell

StanfordUniversity,Stanford,CA,USA

MoniNaor

WeizmannInstituteofScience,Rehovot,Israel

C.PanduRangan

IndianInstituteofTechnologyMadras,Chennai,India

BernhardSteffen

TUDortmundUniversity,Dortmund,Germany

DemetriTerzopoulos UniversityofCalifornia,LosAngeles,CA,USA

DougTygar UniversityofCalifornia,Berkeley,CA,USA

GerhardWeikum

MaxPlanckInstituteforInformatics,Saarbrücken,Germany

Moreinformationaboutthisseriesathttp://www.springer.com/series/7407

StefJoosten(Eds.)

Relationaland AlgebraicMethods inComputerScience

17thInternationalConference,RAMiCS2018

Groningen,TheNetherlands,October29 – November1,2018

Proceedings

Editors JulesDesharnais

Université Laval

Québec,QC

Canada

WalterGuttmann

UniversityofCanterbury

Christchurch

NewZealand

StefJoosten

OpenUniversiteit

Heerlen

TheNetherlands

ISSN0302-9743ISSN1611-3349(electronic)

LectureNotesinComputerScience

ISBN978-3-030-02148-1ISBN978-3-030-02149-8(eBook) https://doi.org/10.1007/978-3-030-02149-8

LibraryofCongressControlNumber:2015949476

LNCSSublibrary:SL1 – TheoreticalComputerScienceandGeneralIssues

© SpringerNatureSwitzerlandAG2018

Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartofthe materialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodologynow knownorhereafterdeveloped.

Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse.

Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbookare believedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsortheeditors giveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforanyerrorsor omissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictionalclaimsin publishedmapsandinstitutionalaffiliations.

ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland

Preface

Thisvolumecontainstheproceedingsofthe17thInternationalConferenceonRelationalandAlgebraicMethodsinComputerScience(RAMiCS2018),whichwasheld inGroningen,TheNetherlands,fromOctober29toNovember1,2018.

Theplantoinitiatethisseriesofconferenceswasputinplaceduringthe38th BanachSemesteronAlgebraicMethodsinLogicandTheirComputerScience ApplicationinWarsaw,Poland,inSeptemberandOctober1991.The firstnumbered occurrencewasaDagstuhlseminaronRelationalMethodsinComputerScience (RelMiCS1),heldinGermanyin1994.Fromthenonanduntil2009,atintervalsof aboutoneyearandahalf,therewasaRelMiCSconference.Startingin2003,RelMiCS conferenceswereheldjointlywithApplicationsofKleeneAlgebras(AKA)conferences.AtRelMiCS11/AKA6inDoha,Qatar,itwasdecidedtousethecurrentname fortheseries,thatis,RelationalandAlgebraicMethodsinComputerScience (RAMiCS).

RecurrenttopicsofRAMiCSconferencesincludesemiring-andlattice-based structuressuchasrelationalgebrasandKleenealgebras,theirconnectionswithprogramlogicsandotherlogics,theiruseintheoriesofcomputing,theirformalization withtheoremprovers,andtheirapplicationtomodelingandreasoningaboutcomputingsystemsandprocesses.

Intotal,30papersweresubmittedtoRAMiCS2018andtheProgramCommittee selected21ofthemforpresentationattheconference.Intheseproceedingstheselected papersaregroupedunderthreeheadings: “TheoreticalFoundations,”“Reasoning AboutComputationsandPrograms,” and “ApplicationsandTools.” Eachsubmission wasevaluatedbyatleastfourindependentreviewers,andfurtherdiscussedelectronicallyduringtwoweeks.ThechairsareverygratefultoallProgramCommittee membersandtotheexternalreviewersfortheirtimeandexpertise.

RolandBackhouse,ManuelBodirsky,andPhilippaGardnerkindlyacceptedour invitationtopresenttheirresearchattheconference.TheabstractsofRolandBackhouse’s talk, “TheImportanceofFactorisationinAlgorithmDesign,” andPhilippaGardner ’stalk, “ScalableReasoningAboutConcurrentPrograms,” areincludedintheproceedings.Sois thefullpaperrelatedtoManuelBodirsky’stalk, “FiniteRelationAlgebraswithNormal Representations.” Thisconferencefeaturedatutorialonmotivatingstudentsforrelation algebrapresentedbyoneofus(StefJoosten).Theabstractofthistutorialisalsoincluded inthisvolume.Anexperimentalsessionofthisconferencewasameetingwithsoftware engineerswhoworkinpractice,mostofwhomhavelittlecontactwiththetheories discussedinourconference.Thismeetingwasplannedasawaytofosterapplicationsof relationalandalgebraicmethodsincomputerscience.

WethanktheRAMiCSSteeringCommitteefortheirsupportandtheOpenUniversiteitNederlandfororganizingthisconference.Wegratefullyacknowledgethe financial supportofOrdinaNederlandBVfortheirsponsorshipandtheirhelpwithorganizingthis

conference.WealsothanktheGroningenCongresBureauandtheRijksuniversiteit GroningenforthewarmwelcomewereceivedintheAcademiegebouwandthecityitself. AspecialthankyouisduetoSebastiaanJ.C.Joosten,authorinpreviouseditionsandthis timeaveryactive,talentedpublicitychair.

WealsoappreciatetheexcellentfacilitiesofferedbytheEasyChairconference administrationsystem,andAlfredHofmannandAnnaKramer ’shelpinpublishingthis volumewithSpringer.Finally,weowemuchtoallauthorsandparticipantsfortheir supportofthisRAMiCSconference.

October2018JulesDesharnais

WalterGuttmann

StefJoosten

Organization

OrganizingCommittee

ConferenceChair

StefJoostenOpenUniversiteit,TheNetherlands

PCChairs

JulesDesharnaisUniversité Laval,Canada

WalterGuttmannUniversityofCanterbury,NewZealand

PublicityChair

SebastiaanJoostenUniversiteitTwente,TheNetherlands

ProgramCommittee

LucaAcetoReykjavíkUniversity,Iceland GranSassoScienceInstitute,Italy

RudolfBerghammerChristian-Albrechts-UniversitätzuKiel,Germany

JulesDesharnaisUniversité Laval,Canada

UliFahrenberg ÉcolePolytechnique,France

HitoshiFurusawaKagoshimaUniversity,Japan

WalterGuttmannUniversityofCanterbury,NewZealand

RobinHirschUniversityCollegeLondon,UK

PeterHöfnerData61,CSIRO,Australia

MarcelJacksonLaTrobeUniversity,Australia

Jean-BaptisteJeanninUniversityofMichigan,USA

PeterJipsenChapmanUniversity,USA

StefJoostenOpenUniversiteit,TheNetherlands

WolframKahlMcMasterUniversity,Canada

BarbaraKönigUniversitätDuisburg-Essen,Germany

DexterKozenCornellUniversity,USA

AgiKuruczKing’sCollegeLondon,UK

TadeuszLitakFriedrich-AlexanderUniversitätErlangen-Nürnberg, Germany

RogerMadduxIowaStateUniversity,USA

AnnabelleMcIverMacquarieUniversity,Australia

SzabolcsMikulásBirkbeck,UniversityofLondon,UK

AliMiliNewJerseyInstituteofTechnology,USA

BernhardMöllerUniversitätAugsburg,Germany

José N.OliveiraUniversidadedoMinho,Portugal

AlessandraPalmigianoTechnischeUniversiteitDelft,TheNetherlands

DamienPousCNRS,France

MehrnooshSadrzadehQueenMaryUniversityofLondon,UK

JohnStellUniversityofLeeds,UK

GeorgStruthUniversityofSheffi eld,UK

MichaelWinterBrockUniversity,Canada

SteeringCommittee

RudolfBerghammerChristian-Albrechts-UniversitätzuKiel,Germany

JulesDesharnaisUniversité Laval,Canada

AliJaouaQatarUniversity,Qatar

PeterJipsenChapmanUniversity,USA

BernhardMöllerUniversitätAugsburg,Germany

José N.OliveiraUniversidadedoMinho,Portugal

EwaOrłowskaNationalInstituteofTelecommunications,Poland

GuntherSchmidtUniversitätderBundeswehrMünchen,Germany

MichaelWinter(Chair)BrockUniversity,Canada

AdditionalReviewers

MusaAl-Hassy

BenjaminCabrera

ChristianDoczkal

JérémyDubut

SabineFrittella

IliasGarnier

Sponsors

RolandGlück

GiuseppeGreco

LucyHam

SebastiaanJoosten

FeiLiang

KonstantinosMamouras

OrdinaNederlandBV(MainSponsor)

GroningenCongresBureau

LocalOrganizers

ChrisjaMurisOpenUniversiteit

HeleenBakkerOpenUniversiteit

HillebrandMeijerOrdina

ErickKosterOrdina

AstridPatzOrdina

MargotSpeeGroningenCongresBureau

KellyScholtensGroningenCongresBureau

KokiNishizawa

FilipSieczkowski

JorgeSousaPinto

NorihiroTsumagari

ThorstenWißmann

AbstractsofInvitedTalks

ScalableReasoningAboutConcurrent Programs

ImperialCollegeLondon,UK p.gardner@imperial.ac.uk

Scalablereasoningaboutcomplexconcurrentprogramsinteractingwithshared memoryisafundamental,openresearchproblem.Developersmanagethecomplexity ofconcurrentsoftwaresystemsbydesigningsoftwarecomponentsthatare compositional and modular.Withcompositionality,adeveloperdesignslocalsubcomponents withwell-understood interfaces thatconnecttotherestofthesystem.Withmodularity, adeveloperdesignsreusablesubcomponentswith abstract softwareinterfacesthatcan hidethecomplexityofthesubcomponentsfromtherestofthesystem.Thechallengeis todevelopcompositional,modularreasoningofconcurrentprograms,whichfollows theintuitionsofthedeveloperinhowtostructuretheirsoftwarecomponentswith preciselydefinedspeci ficationsofsoftwareinterfaces.Thesespecifi cationsshouldnot leakimplementationdetailsandshouldbeexpressedatthelevelofabstractionofthe client.

Iwilldescribetheworkdonebymygroupandothersoncompositionaland modularreasoningaboutconcurrentprogramsusingmodernconcurrentseparation logics.Iwillpresentworkonreasoningabout safetyproperties,highlightingtheCAP logic[ECOOP ’10]whichintroducedlogicalabstraction(the fictionofseparation)to concurrentseparationlogicsandtheTaDAlogic[ECOOP’14]whichintroduced abstractatomicity(the fictionofatomicity).Iwillalsopresentnewworkon progress properties,introducingtheTaDA-Livelogicforreasoningabouttheterminationof blockingprograms.Iwilldemonstratethesubtletyofthereasoningusingasimplelock module,andalsocomparethisworkwithlinearizability,contextualrefi nementand otherconcurrentseparationlogics.

Paperstoread:

O’Hearn,P.W.:Resources,concurrency,andlocalreasoning.Theor.Comput.Sci. 375 (1–3),271–307(2007) http://www0.cs.ucl.ac.uk/staff/p.ohearn/papers/concurrency.pdf Dinsdale-Young,T.,daRochaPinto,P.,Gardner,P.:Aperspectiveonspecifyingand verifyingconcurrentmodules.J.LogicalAlgebraicMethodsProgram. 98,1–25(2018) https://www.doc.ic.ac.uk/*pg/publications/Dinsdale-Young2018perspective.pdf

TheImportanceofFactorisation inAlgorithmDesign

SchoolofComputerScience,UniversityofNottingham rcb@cs.nott.ac.uk

In1971,J.H.Conway[Con71]publishedaslimvolumeentitled “RegularAlgebraand FiniteMachines” whichwastohavegreatinfluenceonmyownwork(eg.[Bac06]). Iwasparticularlyimpressedbythechapteronfactortheoryanditssubsequent applicationintheconstructionofbiregulators.AlthoughsomeelementsofConway’s bookarenowwellcited,thispartofthebookstillappearstobemuchlesswellknown. Thegoalofthistalkistoexplainwhyfactortheoryisimportantinthedesignof algorithms.

WeintroduceConway’sfactormatrixandthenshowhowthe(unique) reflexive-transitive-reductionofthefactormatrix,dubbedthe “factorgraph” [Bac75], isthebasisofthewell-knownKnuth-Morris-Prattpattern-matchingalgorithm [KMP77,BL77].Thisservesasanappetiserforareviewof fixed-pointtheoryand Galoisconnections,focusingparticularlyontherelevanceofthetheoryinthedesignof algorithms.

Wethenreturntofactortheoryandhowitformsthebasisofpracticalapplications inprogramanalysis[SdML04].Weconcludewithsomespeculationonhowagreater focusonfactorisationmighthelpustobetterunderstandthecomplexityofalgorithms.

References

[Bac75]Backhouse,R.C.:Closurealgorithmsandthestar-heightproblemofregularlanguages.Ph.D.thesis,UniversityofLondon(1975).Scanned-incopyofthechapters onfactortheoryavailablefrom www.cs.nott.ac.uk/*psarb2/MPC/FactorGraphs.pdf

[Bac06]Backhouse,R.:Regularalgebraappliedtolanguageproblems.J.Log.Algebraic Program. 66,71–111(2006)

[BL77]Backhouse,R.C.,Lutz,R.K.:Factorgraphs,failurefunctionsandbi-trees.In: Salomaa,A.,Steinby,M.(eds.)ICALP1977.LNCS,vol.52,pp.61–75.Springer, Heidelberg(1977)

[Con71]Conway,J.H.:RegularAlgebraandFiniteMachines.ChapmanandHall,London (1971)

[KMP77]Knuth,D.E.,Morris,J.H.,Pratt,V.R.:Fastpatternmatchinginstrings. SIAMJ.Comput. 6,325–350(1977)

[SdML04]Sittampalam,G.,deMoor,O.,Larssen,K.F.:Incrementalexecutionoftransformationspecifications.In:Proceedingsofthe31stSIGPLAN-SIGACTSymposiumon PrinciplesofProgrammingLanguages,POPL2004,vol.39.ACMSIGPLAN Notices,pp.26–38,January2004

Tutorial:RelationAlgebraintheClassroom withAmpersand

OpenUniversityoftheNetherlands stef.joosten@ou.nl

Thistutorialexploresawaytomotivatestudentsforrelationalgebrasbyapplyingitin softwareengineering.Participantswillgethands-onexperiencewithAmpersand[1], whichisacompilerthattransformsaspeci ficationinrelationalgebrainworking software.Theywillbedirectedtothedocumentationsite[2]formorepreciseinformationaboutthelanguageandtools.

Thistutorialstartswithamotivation:WhymightworkingwithAmpersandmotivatestudentsforrelationalgebra?Thentheparticipantswillcreateaninformation systemonline,justlikestudentsdointhecourseRuleBasedDesign[3].Forthis purposeweaskparticipantstobringtheirlaptops.Thepresentationproceedsby pointingoutwhichlearningpointsarerelevantinthetutorial.It finalizesbygivingan overviewintheavailablematerialsandtools.Allmaterialsarefreelyavailableinopen source,soparticipantscantakeittotheirownclassrooms.

Professorswhowanttousethesematerialsarecordiallyinvitedtopartakeinthe furtherdevelopment.

Background

Ampersandwasoriginallyintendedasameanstospecifyrequirements[4]in heterogeneousrelationalgebra[5].Thetoolsetevolvedintoatoolforstudents[6].The Ampersandtoolsethasbeenusedsince2013[7]attheOpenUniversityintwocourses andnumerousresearchassignments.

ThenovelfeatureofAmpersandisthatatheoryinrelationalgebraisbeingusedas adatabaseprogram.Itspeci fiespersistence(i.e.thedatabase)anduserinterfaces.This isachievedbyusingoneinterpretationofthealgebra:arelationisinterpretedasa fi nite setofpairs.

Theusergetsaprogramminglanguagethatisdeclarative,stronglytyped,and easilysubjectedtoproofsofcorrectness[8].Thebenefitsarefastdevelopment(because theAmpersandcompilergeneratesworkingsoftware),maintainability(becausesoftwareiseasilydividedintoindependentchunks),andadaptability(becausegenerating anapplicationanddeployingitisautomated).

References

1.Joosten,S.:RAP3(2009–2018). rap.cs.ou.nl/RAP3

2.Joosten,S.,Hageraats,E.:DocumentationofAmpersand(2016–2018). ampersandtarski. gitbook.io/documentation/

3.Rutledge,L.,Wetering,R.v.d.,Joosten,S.:CourseIM0103RuleBasedDesignforCS(2009–2018). www.ou.nl/-/IM0403_Rule-Based-Design

4.Dijkman,R.M.,FerreiraPires,L.,Joosten,S.M.M.:Calculatingwithconcepts:atechniquefor thedevelopmentofbusinessprocesssupport.In:Evans,A.(ed.)ProceedingsoftheUML 2001WorkshoponPracticalUML-BasedRigorousDevelopmentMethods:Counteringor IntegratingtheeXstremists,LectureNotesinInformatics,vol.7.FIZ,Karlsruhe(2001)

5.vanderWoude,J.,Joosten,S.:Relationalheterogeneityrelaxedbysubtyping.In:deSwart,H. (ed.)RAMICS2011.LNCS,vol.6663,pp.347–361.Springer,Heidelberg(2011)

6.Michels,G.,Joosten,S.,vanderWoude,J.,Joosten,S.:Ampersand:applyingrelationalgebra inpractice.In:Proceedingsofthe12thConferenceonRelationalandAlgebraicMethodsin ComputerScienceRAMICS2011.LNCS,vol.6663,pp.280–293.Springer-Verlag,Berlin (2011)

7.Michels,G.,Joosten,S.:ProgressivedevelopmentandteachingwithRAP.In:Proceedings ofthe3rdComputerScienceEducationResearchConferenceonComputerScienceEducation Research,CSERC2013,pp.3:33–3:43.OpenUniversity,Heerlen,TheNetherlands(2013)

8.Joosten,S.:Relationalgebraasprogramminglanguageusingtheampersandcompiler.J.Log. AlgebraicMethodsProgram. 100,113–129(2018)

Contents

InvitedPaper

FiniteRelationAlgebraswithNormalRepresentations.................3 ManuelBodirsky

TheoreticalFoundations

C-Dioidsand l-ContinuousChomsky-Algebras.....................21 HansLeiß andMarkHopkins

CoequalizersandTensorProductsforContinuousIdempotentSemirings....37 MarkHopkinsandHansLeiß

Distances,NormsandErrorPropagationinIdempotentSemirings.........53 RolandGlück

T-NormBasedOperationsinArrowCategories.....................70 MichaelWinter

DecidabilityofEquationalTheoriesforSubsignaturesofRelationAlgebra...87 RobinHirsch

CompositionofDifferent-TypeRelationsviatheKleisliCategory fortheContinuationMonad...................................97 KokiNishizawaandNorihiroTsumagari

AxiomatizingDiscreteSpatialRelations...........................113 GiuliaSindoni,KatsuhikoSano,andJohnG.Stell

AModalandRelevanceLogicforQualitativeSpatialReasoning.........131 PranabKumarGhoshandMichaelWinter

OntheStructureofGeneralizedEffectAlgebrasandSeparationAlgebras...148 SarahAlexander,PeterJipsen,andNadiyaUpegui

CountingFiniteLinearlyOrderedInvolutiveBisemilattices.............166 StefanoBonzio,MichelePraBaldi,andDiegoValota

MIX H-AutonomousQuantalesandtheContinuousWeakOrder.........184 MariaJoãoGouveiaandLuigiSantocanale

ReasoningAboutComputationsandPrograms

CalculationalVerificationofReactiveProgramswithReactiveRelations andKleeneAlgebra.........................................205

SimonFoster,KangfengYe,AnaCavalcanti,andJimWoodcock

VerifyingHybridSystemswithModalKleeneAlgebra................225

JonathanJuliánHuertayMuniveandGeorgStruth

AlgebraicDerivationofUntilRulesandApplicationtoTimerVerification...244

JessicaErtel,RolandGlück,andBernhardMöller

FalseFailure:CreatingFailureModelsforSeparationLogic.............263

CallumBannisterandPeterHöfner

TowardsanAnalysisofDynamicGossipinNetKAT ..................280

MalvinGattingerandJanaWagemaker

CoalgebraicToolsforRandomness-ConservingProtocols...............298

DexterKozenandMatveySoloviev

ApplicationsandTools

AlgebraicSolutionofWeightedMinimaxSingle-FacilityConstrained LocationProblems.........................................317

NikolaiKrivulin

ASetSolverforFiniteSetRelationAlgebra.......................333

MaximilianoCristiá andGianfrancoRossi

OntheComputationalComplexityofNon-dictatorialAggregation........350

LefterisKirousis,PhokionG.Kolaitis,andJohnLivieratos

CalculationalRelation-AlgebraicProofsintheTeaching Tool

WolframKahl

InvitedPaper

FiniteRelationAlgebraswithNormal Representations

Institutf¨urAlgebra,TUDresden,01062Dresden,Germany manuel.bodirsky@tu-dresden.de

Abstract. Oneofthetraditionalapplicationsofrelationalgebrasis toprovideasettingforinfinite-domainconstraintsatisfactionproblems. Complexityclassificationforthesecomputationalproblemshasbeenone ofthemajoropenresearchchallengesofthisapplicationfield.Thepast decadehasbroughtsignificantprogressonthetheoryofconstraintsatisfaction,bothoverfiniteandinfinitedomains.Thisprogresshasbeen achievedindependentlyfromtherelationalgebraapproach.Thepresent articletranslatestherecentfindingsintothetraditionalrelationalgebra setting,andpointsoutaseriesofopenproblemsattheinterfacebetween modeltheoryandthetheoryofrelationalgebras.

1Introduction

Oneofthefundamentalcomputationalproblemsforarelationalgebra A is the networksatisfactionproblemfor A,whichistodetermineforagiven Anetwork N whetheritissatisfiableinsomerepresentationof A (fordefinitions, seeSects. 2 and 3).RobinHirschnamedin1995the ReallyBigComplexity Problem(RBCP) forrelationalgebras,whichisto ‘clearlymapoutwhich(finite) relationalgebrasaretractableandwhichareintractable’ [Hir96].Forexample, forthePointAlgebrathenetworksatisfactionproblemisinPandforAllen’s IntervalAlgebraitisNP-hard.Oneofthestandardmethodstoshowthatthe networksatisfactionproblemforafiniterelationalgebraisinPisviaestablishing localconsistency.Thequestionwhetherthenetworksatisfactionproblemfor A canbesolvedbylocalconsistencymethodsisanotherquestionthathasbeen studiedintensivelyforfiniterelationalgebras A (see[BJ17]forasurveyonthe secondquestion).

If A hasafullyuniversalsquarerepresentation(wefollowtheterminologyof Hirsch[Hir96])thenthenetworksatisfactionproblemfor A canbeformulated asaconstraintsatisfactionproblem(CSP)foracountablyinfinitestructure. Thecomplexityofconstraintsatisfactionisaresearchdirectionthathasseen quitesomeprogressinthepastyears.The dichotomyconjecture ofFederand

ManuelBodirsky—TheauthorhasreceivedfundingfromtheEuropeanResearch CouncilundertheEuropeanCommunity’sSeventhFrameworkProgramme (FP7/2007-2013GrantAgreementno.257039,CSP-Infinity).

c SpringerNatureSwitzerlandAG2018

J.Desharnaisetal.(Eds.):RAMiCS2018,LNCS11194,pp.3–17,2018. https://doi.org/10.1007/978-3-030-02149-8 1

Vardifrom1993statesthateveryCSPforafinitestructureisinPorNPhard;the tractabilityconjecture [BKJ05]isastrongerconjecturethatpredicts preciselywhichCSPsareinPandwhichareNP-hard.Twoindependentproofs oftheseconjecturesappearedin2017[Bul17, Zhu17],basedonconceptsand toolsfromuniversalalgebra.AnearlierresultofBartoandKozik[BK09]gives anexactcharacterisationofthosefinite-domainCSPsthatcanbesolvedbylocal consistencymethods.

Usually,thenetworksatisfactionproblemforafiniterelationalgebra A cannotbeformulatedasaCSPforafinitestructure.However,suprisinglyoftenit canbeformulatedasaCSPforacountablyinfinite ω -categorical structure B Foranimportantsubclassof ω -categoricalstructureswehaveatractabilityconjecture,too.TheconditionthatsupposedlycharacterisescontainmentinPcan beformulatedinmanynon-triviallyequivalentways[BKO+17, BP16, BOP17] andhasbeenconfirmedinnumerousspecialcases,seeforinstancethearticles[BK08, BMPP16, KP17, BJP17, BMM18, BM16]andthereferencestherein.

Inthelightoftherecentadvancesinconstraintsatisfaction,bothoverfinite andinfinitedomains,werevisittheRBCPanddiscussthecurrentstateofthe art.Inparticular,weobservethatif A hasa normalrepresentation (again,we followtheterminologyofHirsch[Hir96]),thenthenetworksatisfactionproblem for A fallsintothescopeoftheinfinite-domaintractabilityconjecture.Wealso showthatthereisanalgorithmthatdecidesforagivenfiniterelationalgebra A withafullyuniversalsquarerepresentationwhether A hasanormalrepresentation.(Inotherwords,thereisanalgorithmthatdecidesforagiven A whether theclassofatomic A-networkshastheamalgamationproperty.)Thescopeof thetractabilityconjectureislarger,though.Wedescribeanexampleofafinite relationalgebrawhichhasan ω -categoricalfullyuniversalsquarerepresentation (andapolynomial-timetractablenetworksatisfactionproblem)whichisnot normal,butwhichdoesfallintothescopeoftheconjecture.

Whethertheinfinite-domaintractabilityconjecturemightcontributetothe resolutionoftheRBCPingeneralremainsopen;wepresentseveralquestions inSect. 7 whoseanswerwouldshedsomelightonthisquestion.Thesequestions concerntheexistenceof ω -categoricalfullyuniversalsquarerepresentationsand areofindependentinterest,andinmyviewtheyarecentraltothetheoryof representablefiniterelationalgebras.

2RelationAlgebras

A properrelationalgebra isaset B togetherwithaset R ofbinaryrelations over B suchthat

1.Id:= {(x,x) | x ∈ B }∈R; 2.If R1 and R2 arefrom R,then R1 ∨ R2 := R1 ∪ R2 ∈R; 3.1:= R∈R R ∈R; 4.0:= ∅∈R;

5.If R ∈R,then R :=1 \ R ∈R;

6.If R ∈R,then R := {(x,y ) | (y,x) ∈ R}∈R;

7.If R1 and R2 arefrom R,then R1 ◦ R2 ∈R;where R1 ◦ R2 := {(x,z ) |∃y ((x,y ) ∈ R1 ∧ (y,z ) ∈ R2 )} .

Wewanttopointoutthatinthisstandarddefinitionofproperrelationalgebrasitis not requiredthat1denotes B 2 .However,inmostexamples,1indeed denotes B 2 ;inthiscasewesaythattheproperrelationalgebrais square.The inclusion-wiseminimalnon-emptyelementsof R arecalledthe basicrelations oftheproperrelationalgebra.

Example1(ThePointAlgebra). Let B = Q bethesetofrationalnumbers,and consider R = {∅, =,<,>, ≤, ≥, = , Q2 } .

Thoserelationsformaproperrelationalgebra(withthebasicrelations <,>, =, andwhere1denotes Q2 )whichisknownunderthename pointalgebra.

The relationalgebraassociatedto (B, R)isthealgebra A withthedomain A := R andthesignature τ := {∨, , 0, 1, ◦, , Id} obtainedfrom(B, R)inthe obviousway.An abstractrelationalgebra isa τ -algebrathatsatisfiessomeof thelawsthatholdfortherespectiveoperatorsinaproperrelationalgebra.We donotneedtheprecisedefinitionofanabstractrelationalgebrainthisarticle sincewedealexclusivelywith representable relationalgebras:a representation ofanabstractrelationalgebra A isarelationalstructure B whosesignature is A;thatis,theelementsoftherelationalgebraaretherelationsymbolsof B.Eachrelationsymbol a ∈ A isassociatedtoabinaryrelation aB over B suchthatthesetofrelationsof B inducesaproperrelationalgebra,andthe map a → aB isanisomorphismwithrespecttotheoperations(andconstants) {∨, , 0, 1, ◦, , Id}.Inthiscase,wealsosaythat A isthe abstractrelation algebraof B.Anabstractrelationalgebrathathasarepresentationiscalled representable.For x,y ∈ A,wewrite x ≤ y asashortcutforthepartialorder definedby x ∨ y = y .Theminimalelementsof A \{0} withrespectto ≤ are calledthe atoms of A.Ineveryrepresentationof A,theatomsdenotethebasic relationsoftherepresentation.Wementionthatthereareabstractfiniterelation algebrasthatarenotrepresentable[Lyn50],andthatthequestionwhethera finiterelationalgebraisrepresentableisundecidable[HH01].

Example2. The(abstract)pointalgebraisarelationalgebrawith8elements and3atoms,=, <,and >,andcanbedescribedasfollows.Thevaluesofthe compositionoperatorfortheatomsofthepointalgebraareshowninthetable ofFig. 1.Notethatthistabledeterminesthefullcompositiontable.Theinverse (<) of < is >,andIddenotes=whichisitsowninverse.Thisfullydetermines therelationalgebra.Theproperrelationalgebrawithdomain Q presentedin Example 1 isarepresentationofthepointalgebra.

Fig.1. Thecompositiontableforthebasicrelationsinthepointalgebra.

3TheNetworkSatisfactionProblem

Let A beafiniterelationalgebrawithdomain A.An A-network N =(V ; f ) consistsofafinitesetofnodes V andafunction f : V × V → A.

Anetwork N iscalled – atomic iftheimageof f onlycontainsatomsof A andif f (a,c) ≤ f (a,b) ◦ f (b,c)forall a,b,c ∈ V (1) (herewefollowagainthedefinitionsin[Hir96]);

satisfiablein B,forarepresentation B of A,ifthereexistsamap s : V → B (where B denotesthedomainof B)suchthatforall x,y ∈ V (s(x),s(y )) ∈ f (x,y )B ;

satisfiable if N issatisfiableinsomerepresentation B of A.

The (general)networksatisfactionproblemforafiniterelationalgebra A is thecomputationalproblemtodecidewhetheragiven A-networkissatisfiable. Therearefiniterelationalgebras A wherethisproblemisundecidable[Hir99]. Arepresentation B of A iscalled – fullyuniversal ifeveryatomic A-networkissatisfiablein B; – square ifitsrelationsformaproperrelationalgebrathatissquare.

Thepointalgebraisanexampleofarelationalgebrawithafullyuniversalsquare representation.Notethatif A hasafullyuniversalrepresentation,thenthe networksatisfactionproblemfor A isdecidableinNP:foragivennetwork(V,f ), simplyselectforeach x ∈ V 2 anatom a ∈ A with a ≤ f (x),replace f (x)by a, andthenexhaustivelycheckcondition(1).Alsonotethatafiniterelationalgebra hasafullyuniversalrepresentationifandonlyiftheso-calledpath-consistency proceduredecidessatisfiabilityofatomic A-networks(see,e.g.,[BJ17, HLR13]). However,notallfiniterelationalgebrashaveafullyuniversalrepresentation. Anexampleofarelationalgebrawith4atomswhichhasarepresentationwith sevenelementsbutwherepathconsistencyofatomicnetworksdoesnotimply consistency,called B9 ,hasbeengivenin[LKRL08].Arepresentationof B9 withdomain {0, 1,..., 6} isgivenbythebasicrelations {R0 ,R1 ,R2 ,R3 } where Ri = {(x,y ) | x + y = i mod7},for i ∈{0, 1, 2, 3}.Infact,everyrepresentation of B9 isisomorphictothisrepresentation.Let N bethenetwork(V,f )with V = {a,b,c,d}, f (a,b)= f (c,d)= R3 , f (a,d)= f (b,c)= R2 , f (a,c)= f (b,d)= R1 , f (i,i)= R0 forall i ∈ V ,and f (i,j )= f (j,i)forall i,j ∈ V .Then N isatomic butnotsatisfiable.

4ConstraintSatisfactionProblems

Let B beastructurewitha(finiteorinfinite)domain B andafiniterelational signature ρ.Thenthe constraintsatisfactionproblemfor B isthecomputational problemofdecidingwhetherafinite ρ-structure E homomorphicallymapsto B Notethatif B isasquarerepresentationof A,thentheinput E canbeviewed asan A-network N .Thenodesof N aretheelementsof E.Todefine f (x,y )for variables x,y ofthenetwork,let a1 ,...,ak bealistofallelements a ∈ A such that(x,y ) ∈ aE .Thendefine f (x,y )=(a1 ∧···∧ ak );if k =0,then f (x,y )=1. Observethat E hasahomomorphismto B ifandonlyif N issatisfiablein B (hereweusetheassumptionthat B isasquarerepresentation).

Conversely,when N isan A-network,thenweview N asthe A-structure E whosedomainarethenodesof N ,andwhere(x,y ) ∈ r E ifandonlyif r = f (x,y ). Again, E hasahomomorphismto B ifandonlyif N issatisfiablein B.

Proposition1. Let B beafullyuniversalsquarerepresentationofafiniterelationalgebra A.Thenthenetworksatisfactionproblemfor A equalstheconstraint satisfactionproblemfor B (uptothetranslationbetween A-networksandfinite A-structurespresentedabove).

Proof. Wehavetoshowthatanetworkissatisfiableifandonlyifithasahomomorphismto B.Clearly,if N hasahomomorphismto B thenitissatisfiablein B,andhencesatisfiable.Fortheotherdirection,supposethatthe A-network N =(V,f )issatisfiableinsomerepresentationof A.Thenthereexistsforeach x ∈ V 2 anatomic a ∈ A suchthat a ≤ f (x)andsuchthatthenetwork N obtainedfrom N byreplacing f (x)by a satisfies(1);hence, N isatomicand satisfiablein B since B isfullyuniversal.Hence, N issatisfiablein B,too.

Forgeneralinfinitestructures B asystematicunderstandingofthecomputationalcomplexityofCSP(B)isahopelessendeavour[BG08].However,if B isa first-orderreductofafinitelyboundedhomogeneousstructure (thedefinitionscan befoundbelow),thentheuniversal-algebraictractabilityconjectureforfinitedomainCSPscanbegeneralised.Thisconditionissufficientlygeneralsothatit includesfullyuniversalsquarerepresentationsofalmostalltheconcretefinite relationalgebrasstudiedintheliterature,andtheconditionalsocapturesthe classoffinite-domainCSPs.Aswewillsee,theconceptsof finiteboundedness and homogeneity areconditionsthathavealreadybeenstudiedintherelation algebraliterature.

4.1FiniteBoundedness

Let ρ bearelationalsignature,andlet F beasetof ρ-structures.ThenForb(F ) denotestheclassofallfinite ρ-structures A suchthatnostructurein F embeds into A.Fora ρ-structure B wewriteAge(B)fortheclassofallfinite ρ-structures thatembedinto B.Wesaythat B is finitelybounded if B hasafiniterelational signatureandthereexistsafinitesetoffinite τ -structures F suchthatAge(B)= Forb(F ).Asimpleexampleofafinitelyboundedstructureis(Q; <).Itiseasy

toseethattheconstraintsatisfactionproblemofafinitelyboundedstructure B isinNP.

Proposition2. Let A beafiniterelationalgebrawithafullyuniversalsquare representation B.Then B isfinitelybounded.

Proof(Proofsketch). Besidessomeboundsofsizeatmosttwothatmakesure thattheatomicrelationspartition B 2 ,itsufficestoincludeappropriatethreeelementstructuresinto F thatcanbereadofffromthecompositiontable of A

4.2Homogeneity

Arelationalstructure B is homogeneous (or ultra-homogeneous [Hod97])ifevery isomorphismbetweenfinitesubstructuresof B canbeextendedtoanautomorphismof B.Asimpleexampleofahomogeneousstructureis(Q; <).

Arepresentationofafiniterelationalgebra A iscalled normal ifitissquare, fullyuniversal,andhomogeneous[Hir96].ThefollowingisanimmediateconsequenceofPropositions 1 and 2

Corollary1. Let A beafiniterelationalgebrawithanormalrepresentation B. Thenthenetworksatisfactionproblemfor A equalstheconstraintsatisfaction problemforafinitelyboundedhomogeneousstructure.

Aversatiletooltoconstructhomogeneousstructuresfromclassesoffinite structuresis amalgamation ` alaFra¨ıss´e.Wepresentitforthespecialcaseof relationalstructures ;thisisallthatisneededhere.An embedding of A into B isanisomorphismbetween A andasubstructureof B.An amalgamation diagram isapair(B1 , B2 )where B1 , B2 are τ -structuressuchthatthereexists asubstructure A ofboth B1 and B2 suchthatallcommonelementsof B1 and B2 areelementsof A.Wesaythat(B1 , B2 )isa 2-pointamalgamationdiagram if |B1 \ A| = |B2 \ A| =1.A τ -structure C isan amalgamof (B1 , B2 ) over A iffor i =1, 2thereareembeddings fi of Bi to C suchthat f1 (a)= f2 (a)for all a ∈ A.Inthecontextofrelationalgebras A,theamalgamationpropertycan alsobeformulatedwithatomic A-networks,inwhichcaseithasbeencalledthe patchworkproperty [HLR13];westickwiththemodel-theoreticterminologyhere sinceitisolderandwell-established.

Definition1. Anisomorphism-closedclass C of τ -structureshasthe amalgamationproperty ifeveryamalgamationdiagramofstructuresin C hasanamalgamin C .Aclassoffinite τ -structuresthatcontainsatmostcountablymany non-isomorphicstructures,hastheamalgamationproperty,andisclosedunder takinginducedsubstructuresandisomorphismsiscalledan amalgamationclass.

Notethatsinceweonlylookatrelationalstructureshere(andsinceweallow structurestohaveanemptydomain),theamalgamationpropertyof C implies the jointembeddingproperty(JEP) for C ,whichsaysthatforanytwostructures B1 , B2 ∈C thereexistsastructure C ∈C thatembedsboth B1 and B2

Theorem1(Fra¨ıss´ e [Fra54, Fra86];see [Hod97]). Let C beanamalgamation class.Thenthereisahomogeneousandatmostcountable τ -structure C whose ageequals C .Thestructure C isuniqueuptoisomorphism,andcalledthe Fra¨ıss´elimit of C .

Thefollowingisawell-knownexampleofafiniterelationalgebrawhichhas afullyuniversalsquarerepresentation,butnotanormalone.

Example3. The leftlinearpointalgebra (see[Hir97, D¨un05])isarelationalgebra withfouratoms,denotedby=, <, >,and |.Hereweimaginethat‘x<y ’signifies that x is earlierintimethan y .Theideaisthatateverypointintimethepast islinearlyordered;thefuture,however,isnotyetdeterminedandmightbranch intodifferentworlds;incomparabilityoftimepoints x and y isdenotedby x|y Wemightalsothinkof x<y as x istotheleftof y ifwedrawpointsinthe plane,andthismotivatesthename leftlinearpointalgebra.Thecomposition operatoronthosefourbasicrelationsisgiveninFig. 2.Theinverse(<) of < is >,Iddenotes=,and | isitsowninverse,andtherelationalgebraisuniquely givenbythisdata.Itiswellknown(fordetails,see[Bod04])thattheleftlinear pointalgebrahasafullyuniversalsquarerepresentation.Ontheotherhand,the networksdrawninFig. 3 showthefailureofamalgamation.

Fig.2. Thecompositiontableforthebasicrelationsintheleftlinearpointalgebra.

AnalgorithmtotestwhetherafiniterelationalgebrahasanormalrepresentationcanbefoundinSect. 6

4.3TheInfinite-DomainDichotomyConjecture

Theinfinite-domaindichotomyconjectureappliestoaclasswhichislargerthan theclassofhomogeneousfinitelyboundedstructures.Tointroducethisclasswe needtheconceptof first-orderreducts. Supposethattworelationalstructures A and B havethesamedomain,that thesignatureofastructure A isasubsetofthesignatureof B,andthat RA = RB forallcommonrelationsymbols R.Thenwecall A a reductof B,and B an expansionof A.Inotherwords, A isobtainedfrom B bydroppingsome oftherelations.A first-orderreductof B isareductoftheexpansionof B byallrelationsthatarefirst-orderdefinablein B.TheCSPforafirst-order reductofafinitelyboundedhomogeneousstructureisinNP(see[Bod12]). Anexampleofastructurewhichisnothomogeneous,butareductoffinitely

Fig.3. Exampleshowingthatatomicnetworksfortheleftlinearpointalgebradonot havetheamalgamationproperty.Adirectededgefrom x to y signifies x<y ,anda dashededgebetween x and y signifies x|y

boundedhomogeneousstructureistherepresentationoftheleft-linearpoint algebra(Example 3)givenin[Bod04].

Conjecture1(Infinite-domaindichotomyconjecture). Let B beafirst-order reductofafinitelyboundedhomogeneousstructure.ThenCSP(B)iseither inPorNP-complete.

Hence,theinfinite-domaindichotomyconjectureimpliestheRBCPforfinite relationalgebraswithanormalrepresentation.InSect. 5 wewillseeamore specificconjecturethatcharacterisestheNP-completecasesandthecasesthat areinP.

5TheInfinite-DomainTractabilityConjecture

Tostatetheinfinite-domaintractabilityconjecture,weneedacoupleofconcepts thataremostnaturallyintroducedfortheclassofall ω -categoricalstructures.A theoryiscalled ω -categorical ifallitscountablyinfinitemodelsareisomorphic. Astructureiscalled ω -categorical ifitsfirst-ordertheoryis ω -categorical.Note thatfinitestructuresare ω -categoricalsincetheirfirst-ordertheoriesdonot havecountablyinfinitemodels.Homogeneousstructures B withfiniterelational signatureare ω -categorical.Thisfollowsfromaveryusefulcharacterisationof ω -categoricitygivenbyEngeler,Svenonius,andRyll-Nardzewski(Theorem 2). Thesetofallautomorphismsof B isdenotedbyAut(B).The orbit ofa k -tuple (t1 ,...,tn )underAut(B)istheset {(a(t1 ),...,a(tn )) | a ∈ Aut(B)}.Orbitsof pairs(i.e.,2-tuples)arealsocalled orbitals

Theorem2(see [Hod97]). Acountablestructure B is ω -categoricalifandonly if Aut(B) hasonlyfinitelymanyorbitsof n-tuples,forall n ≥ 1.

ThefollowingisaneasyconsequenceofTheorem 2

Proposition3. First-orderreductsof ω -categoricalstructuresare ω -categorical.

First-orderreductsofhomogeneousstructures,ontheotherhand,neednot behomogeneous.Anexampleofan ω -categoricalstructurewhichisnothomogeneousisthe ω -categoricalrepresentationoftheleftlinearpointalgebragiven in[Bod04](seeExample 3).Notethatevery ω -categoricalstructure B,andmore generallyeverystructurewithfinitelymanyorbitals,givesrisetoafiniterelationalgebra,namelytherelationalgebraassociatedtotheunionsoforbitalsof B (see[BJ17]);werefertothisrelationalgebraasthe orbitalrelationalgebra of B

Wefirstpresentaconditionthatimpliesthatan ω -categoricalstructurehas anNP-hardconstraintsatisfactionproblem(Sect. 5.1).Thetractabilityconjecturesaysthateveryreductofafinitelyboundedhomogeneousstructurethat doesnotsatisfythisconditionisNP-complete.Wethenpresentanequivalent characterisationoftheconditionduetoBartoandPinsker(Sect. 5.2),andthen yetanotherconditionduetoBarto,Oprˇsal,andPinsker,whichwaslatershown tobeequivalent(Sect. 5.3).

5.1TheOriginalFormulationoftheConjecture

Let B bean ω -categoricalstructure.Then B iscalled

–a core ifallendomorphismsof B (i.e.,homomorphismsfrom B to B)are embeddings(i.e.,areinjectiveandalsopreservethecomplementofeachrelation).

– modelcomplete ifallself-embeddingsof B areelementary,i.e.,preserveall first-orderformulas.

Clearly,if B isarepresentationofafiniterelationalgebra A,then B isacore. However,notallrepresentationsoffiniterelationalgebrasaremodelcomplete. Asimpleexampleistheorbitalrelationalgebraofthestructure(Q+ 0 ; <)where Q+ 0 denotesthenon-negativerationals:itsrepresentationwithdomain Q+ 0 has self-embeddingsthatdonotpreservetheorbital {(0, 0)}

Let τ bearelationalsignature.A τ -formulaiscalled primitivepositive if itisoftheform ∃x1 ,...,xn (ψ1 ∧···∧ ψm )where ψi isoftheform y1 = y2 oroftheform R(y1 ,...,yk )for R ∈ τ ofarity k .Thevariables y1 ,...,yk can befreeorfrom x1 ,...,xn .Clearly,primitivepositiveformulasarepreservedby homomorphisms.

Theorem3([Bod07, BHM10]). Every ω -categoricalstructureishomomorphicallyequivalenttoamodel-completecore C,whichisuniqueuptoisomorphism, andagain ω -categorical.Allorbitsof k -tuplesareprimitivepositivedefinable in C

Let B and A bestructures,let D ⊆ B n ,andlet I : D → A beasurjection. Then I iscalleda primitivepositiveinterpretation ifthepre-imageunder I of A,oftheequalityrelation=A on A,andofallrelationsof A isprimitivepositive definablein A.Inthiscasewealsosaythat B interprets A primitivelypositively. Thecompletegraphwiththreevertices(butwithoutloops)isdenotedby K3

Theorem4([Bod08]). Let B bean ω -categoricalstructure.Ifthemodelcompletecoreof B hasanexpansionbyfinitelymanyconstantssothatthe resultingstructureinterprets K3 primitivelypositively,then CSP(B) isNP-hard.

Wecannowstatetheinfinite-domaintractabilityconjecture.

Conjecture2. Let B beafirst-orderreductofafinitelyboundedhomogeneous structure.If B doesnotsatisfytheconditionfromTheorem 4 thenCSP(B)is inP.

Thisconjecturehasbeenverifiedinnumerousspecialcases(see,forinstance, thearticles[BK08, BMPP16, KP17, BJP17, BMM18, BM16]),includingtheclass offinite-structures[Bul17, Zhu17].

5.2TheTheoremofBartoandPinsker

Thetractabilityconjecturehasafundamentallydifferent,butequivalentformulation:insteadofthe non-existence ofahardness-condition,werequirethe existence ofapolymorphismsatisfyingacertainidentity;theconceptofpolymorphismsisfundamentaltotheresolutionoftheFeder-Vardiconjecturein both[Bul17]and[Zhu17].

Definition2. A polymorphism ofastructure B isahomomorphismfrom Bk to B,forsome k ∈ N.Wewrite Pol(B) forthesetofallpolymorphismsof B.

Anoperation f : B 6 → B iscalled

Siggers ifitsatisfies

f (x,y,x,z,y,z )= f (z,z,y,y,x,x)

forall x,y,z ∈ B ; – pseudo-Siggersmodulo e1 ,e2 : B → B if

e1 (f (x,y,x,z,y,z ))= e2 (f (z,z,y,y,x,x))

forall x,y,z ∈ B .

Theorem5([BP16]). Let B bean ω -categoricalmodel-completecore.Then either – B canbeexpandedbyfinitelymanyconstantssothattheresultingstructure interprets K3 primitivelypositively,or – B hasapseudo-Siggerspolymorphismmoduloendomorphismsof B.

5.3TheWonderlandConjecture

Aweakerconditionthatimpliesthatan ω -categoricalstructurehasanNP-hard CSPhasbeenpresentedin[BOP17].Forreductsofhomogeneousstructures withfinitesignature,however,thetwoconditionsareequivalent[BKO+17]. Hence,weobtainanotherdifferentbutequivalentformulationofthetractability conjecture.Theadvantageofthenewformulationisthatitdoesnotrequirethat thestructureisamodel-completecore.

Let B beacountablestructure.Amap μ :Pol(B) → Pol(A)iscalled minorpreserving ifforevery f ∈ Pol(B)ofarity k andall k -aryprojections π1 ,...,πk wehave μ(f ) ◦ (π1 ,...,πk )= μ(f ◦ (π1 ,...,πk ))where ◦ denotescomposition offunctions.ThesetPol(B)isequippedwithanaturalcompleteultrametric d (see,e.g.,[BS16]).Todefine d,supposethat B = N.For f,g ∈ Pol(B)we define d(f,g )=1if f and g havedifferentarity;otherwise,ifboth f,g have arity k ∈ N,then d(f,g ):=2 min{n∈

Theorem6(of [BOP17]). Let B be ω -categorical.Supposethat Pol(B) hasa uniformlycontinuousminor-preservingmapto Pol(K3 ).Then CSP(B) isNPcomplete.

Wementionthatthereare ω -categoricalstructureswheretheconditionfrom Theorem 6 applies,butnottheconditionfromTheorem 4

Theorem7(of [BKO+17]). If B isareductofahomogeneousstructurewith finiterelationalsignature,thentheconditionsgiveninTheorem 4 andinTheorem 6 areequivalent.

6TestingtheExistenceofNormalRepresentations

Inthissectionwepresentanalgorithmthattestswhetheragivenfiniterelation algebrahasanormalrepresentation.Thisfollowsfromamodel-theoreticresult thatseemstobefolklore,namelythattestingtheamalgamationpropertyfora classofstructuresthathastheJEPandasignatureofmaximalaritytwowhich isgivenbyafinitesetofforbiddensubstructuresisdecidable.Wearenotaware ofaproofofthisintheliterature.

Theorem8. Thereisanalgorithmthatdecidesforagivenfiniterelationalgebra A whichhasafullyuniversalsquarerepresentationwhether A alsohasa normalrepresentation.

Proof. Firstobservethattheclass C ofallatomic A-networks,viewedas Astructures,hastheJEP:if N1 and N2 areatomicnetworks,thentheyaresatisfiablein B since B isfullyuniversal,andhenceembedinto B whenviewedas structures.Since B issquarethesubstructureof B inducedbytheunionofthe imagesof N1 and N2 isanatomicnetwork,too,anditembeds N1 and N2

Let k bethenumberofatomsof A.Itclearlysufficestoshowthefollowing claim,sincetheconditiongiventherecanbeeffectivelycheckedexhaustively.

Claim. C hastheAPifandonlyifall2-pointamalgamationdiagramsof sizeatmost k +2amalgamate.

Sosupposethat D =(B1 , B2 )isanamalgamationdiagramwithoutamalgam.Let B1 beamaximalsubstructureof B1 thatcontains B1 ∩ B2 suchthat (B1 , B2 )hasanamalgam.Let B2 beamaximalsubstructureof B2 thatcontains B1 ∩ B2 suchthat(B1 , B2 )hasanamalgam.Then Bi = Bi forsome i ∈{1, 2};let C1 beasubstructureof Bi thatextends Bi byoneelement,and let C2 := B3 i .Then(C1 , C2 )isa2-pointamalgamationdiagramwithoutan amalgam.Let C0 := C1 ∩ C2 .Let C1 \ C0 = {p} and C2 \ C0 = {q }.Foreach a ∈ A thereexistsanelement ra ∈ C0 suchthatthenetwork({r,p,q },f )with f (p,q )= a, f (p,r )= f B1 (p,r ), f (r,q )= f B2 (r,q )failstheatomicityproperty(1).Let C1 bethesubstructureof C1 inducedby {p}∪{ra | a ∈ A} and A1 bethesubstructureof C2 inducedby {q }∪{ra | a ∈ A}.Thentheamalgamation diagram(C1 , C2 )hasnoamalgam,andhassizeatmost k +2.

A: Finite relation algebras with a normal representation

B: Finite relation algebras with a fully universal square representation which is a reduct of

C: Finite relation algebras with an -categorical fully universal square representation (1) (2)

D: Finite relation algebras with a fully universal square representation

E: Finite representable relation algebras

Fig.4. Subclassesoffiniterepresentablerelationalgebras.Membershipofrelation algebrasfromDtotheinnermostboxAisdecidable(Theorem 8).Example 3 separates BoxAandBoxB.Thefiniterelationalgebrafrom[Hir99]separatesBoxDandE. BoxBfallsintothescopeoftheinfinite-domaintractabilityconjecture.BoxesCand Dmightalsofallintothescopeofthisconjecture(seeProblem(1)andProblem(2)).

7ConclusionandOpenProblems

Hirsch’sReallyBigComplexityProblem(RBCP)forfiniterelationalgebras remainsreallybig.However,thenetworksatisfactionproblemofeveryfinite

Another random document with no related content on Scribd:

about donations to the Project Gutenberg Literary Archive Foundation.”

• You provide a full refund of any money paid by a user who notifies you in writing (or by e-mail) within 30 days of receipt that s/he does not agree to the terms of the full Project Gutenberg™ License. You must require such a user to return or destroy all copies of the works possessed in a physical medium and discontinue all use of and all access to other copies of Project Gutenberg™ works.

• You provide, in accordance with paragraph 1.F.3, a full refund of any money paid for a work or a replacement copy, if a defect in the electronic work is discovered and reported to you within 90 days of receipt of the work.

• You comply with all other terms of this agreement for free distribution of Project Gutenberg™ works.

1.E.9. If you wish to charge a fee or distribute a Project Gutenberg™ electronic work or group of works on different terms than are set forth in this agreement, you must obtain permission in writing from the Project Gutenberg Literary Archive Foundation, the manager of the Project Gutenberg™ trademark. Contact the Foundation as set forth in Section 3 below.

1.F.

1.F.1. Project Gutenberg volunteers and employees expend considerable effort to identify, do copyright research on, transcribe and proofread works not protected by U.S. copyright law in creating the Project Gutenberg™ collection. Despite these efforts, Project Gutenberg™ electronic works, and the medium on which they may be stored, may contain “Defects,” such as, but not limited to, incomplete, inaccurate or corrupt data, transcription errors, a copyright or other intellectual property infringement, a defective or damaged disk or other

medium, a computer virus, or computer codes that damage or cannot be read by your equipment.

1.F.2. LIMITED WARRANTY, DISCLAIMER OF DAMAGESExcept for the “Right of Replacement or Refund” described in paragraph 1.F.3, the Project Gutenberg Literary Archive Foundation, the owner of the Project Gutenberg™ trademark, and any other party distributing a Project Gutenberg™ electronic work under this agreement, disclaim all liability to you for damages, costs and expenses, including legal fees. YOU AGREE THAT YOU HAVE NO REMEDIES FOR NEGLIGENCE, STRICT LIABILITY, BREACH OF WARRANTY OR BREACH OF CONTRACT EXCEPT THOSE PROVIDED IN PARAGRAPH

1.F.3. YOU AGREE THAT THE FOUNDATION, THE TRADEMARK OWNER, AND ANY DISTRIBUTOR UNDER THIS AGREEMENT WILL NOT BE LIABLE TO YOU FOR ACTUAL, DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE OR INCIDENTAL DAMAGES EVEN IF YOU GIVE NOTICE OF THE POSSIBILITY OF SUCH DAMAGE.

1.F.3. LIMITED RIGHT OF REPLACEMENT OR REFUND - If you discover a defect in this electronic work within 90 days of receiving it, you can receive a refund of the money (if any) you paid for it by sending a written explanation to the person you received the work from. If you received the work on a physical medium, you must return the medium with your written explanation. The person or entity that provided you with the defective work may elect to provide a replacement copy in lieu of a refund. If you received the work electronically, the person or entity providing it to you may choose to give you a second opportunity to receive the work electronically in lieu of a refund. If the second copy is also defective, you may demand a refund in writing without further opportunities to fix the problem.

1.F.4. Except for the limited right of replacement or refund set forth in paragraph 1.F.3, this work is provided to you ‘AS-IS’, WITH NO OTHER WARRANTIES OF ANY KIND, EXPRESS

OR IMPLIED, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PURPOSE.

1.F.5. Some states do not allow disclaimers of certain implied warranties or the exclusion or limitation of certain types of damages. If any disclaimer or limitation set forth in this agreement violates the law of the state applicable to this agreement, the agreement shall be interpreted to make the maximum disclaimer or limitation permitted by the applicable state law. The invalidity or unenforceability of any provision of this agreement shall not void the remaining provisions.

1.F.6. INDEMNITY - You agree to indemnify and hold the Foundation, the trademark owner, any agent or employee of the Foundation, anyone providing copies of Project Gutenberg™ electronic works in accordance with this agreement, and any volunteers associated with the production, promotion and distribution of Project Gutenberg™ electronic works, harmless from all liability, costs and expenses, including legal fees, that arise directly or indirectly from any of the following which you do or cause to occur: (a) distribution of this or any Project Gutenberg™ work, (b) alteration, modification, or additions or deletions to any Project Gutenberg™ work, and (c) any Defect you cause.

Section 2. Information about the Mission of Project Gutenberg™

Project Gutenberg™ is synonymous with the free distribution of electronic works in formats readable by the widest variety of computers including obsolete, old, middle-aged and new computers. It exists because of the efforts of hundreds of volunteers and donations from people in all walks of life.

Volunteers and financial support to provide volunteers with the assistance they need are critical to reaching Project

Gutenberg™’s goals and ensuring that the Project Gutenberg™ collection will remain freely available for generations to come. In 2001, the Project Gutenberg Literary Archive Foundation was created to provide a secure and permanent future for Project Gutenberg™ and future generations. To learn more about the Project Gutenberg Literary Archive Foundation and how your efforts and donations can help, see Sections 3 and 4 and the Foundation information page at www.gutenberg.org.

Section 3. Information about the Project Gutenberg Literary Archive Foundation

The Project Gutenberg Literary Archive Foundation is a nonprofit 501(c)(3) educational corporation organized under the laws of the state of Mississippi and granted tax exempt status by the Internal Revenue Service. The Foundation’s EIN or federal tax identification number is 64-6221541. Contributions to the Project Gutenberg Literary Archive Foundation are tax deductible to the full extent permitted by U.S. federal laws and your state’s laws.

The Foundation’s business office is located at 809 North 1500 West, Salt Lake City, UT 84116, (801) 596-1887. Email contact links and up to date contact information can be found at the Foundation’s website and official page at www.gutenberg.org/contact

Section 4. Information about Donations to the Project Gutenberg Literary Archive Foundation

Project Gutenberg™ depends upon and cannot survive without widespread public support and donations to carry out its mission of increasing the number of public domain and licensed works that can be freely distributed in machine-readable form

accessible by the widest array of equipment including outdated equipment. Many small donations ($1 to $5,000) are particularly important to maintaining tax exempt status with the IRS.

The Foundation is committed to complying with the laws regulating charities and charitable donations in all 50 states of the United States. Compliance requirements are not uniform and it takes a considerable effort, much paperwork and many fees to meet and keep up with these requirements. We do not solicit donations in locations where we have not received written confirmation of compliance. To SEND DONATIONS or determine the status of compliance for any particular state visit www.gutenberg.org/donate.

While we cannot and do not solicit contributions from states where we have not met the solicitation requirements, we know of no prohibition against accepting unsolicited donations from donors in such states who approach us with offers to donate.

International donations are gratefully accepted, but we cannot make any statements concerning tax treatment of donations received from outside the United States. U.S. laws alone swamp our small staff.

Please check the Project Gutenberg web pages for current donation methods and addresses. Donations are accepted in a number of other ways including checks, online payments and credit card donations. To donate, please visit: www.gutenberg.org/donate.

Section 5. General Information About Project Gutenberg™ electronic works

Professor Michael S. Hart was the originator of the Project Gutenberg™ concept of a library of electronic works that could be freely shared with anyone. For forty years, he produced and

distributed Project Gutenberg™ eBooks with only a loose network of volunteer support.

Project Gutenberg™ eBooks are often created from several printed editions, all of which are confirmed as not protected by copyright in the U.S. unless a copyright notice is included. Thus, we do not necessarily keep eBooks in compliance with any particular paper edition.

Most people start at our website which has the main PG search facility: www.gutenberg.org.

This website includes information about Project Gutenberg™, including how to make donations to the Project Gutenberg Literary Archive Foundation, how to help produce our new eBooks, and how to subscribe to our email newsletter to hear about new eBooks.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.