Nanotoxicity
MethodsandProtocols
Editedby
QunweiZhang
DepartmentofEnvironmentalandOccupationalHealthSciences,SchoolofPublicHealthand InformationSciences,UniversityofLouisville,Louisville,KY,USA
Editor QunweiZhang
DepartmentofEnvironmentalandOccupationalHealthSciences
SchoolofPublicHealthandInformationSciences
UniversityofLouisville Louisville,KY,USA
ISSN1064-3745ISSN1940-6029(electronic) MethodsinMolecularBiology
ISBN978-1-4939-8915-7ISBN978-1-4939-8916-4(eBook) https://doi.org/10.1007/978-1-4939-8916-4
LibraryofCongressControlNumber:2018960874
© SpringerScience+BusinessMedia,LLC,partofSpringerNature2019
Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartofthematerialis concerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,broadcasting,reproduction onmicrofilmsorinanyotherphysicalway,andtransmissionorinformationstorageandretrieval,electronicadaptation, computersoftware,orbysimilarordissimilarmethodologynowknownorhereafterdeveloped.
Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublicationdoesnotimply, evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevantprotectivelawsandregulations andthereforefreeforgeneraluse.
Thepublisher,theauthors,andtheeditorsaresafetoassumethattheadviceandinformationinthisbookarebelievedto betrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsortheeditorsgiveawarranty, expressorimplied,withrespecttothematerialcontainedhereinorforanyerrorsoromissionsthatmayhavebeenmade. Thepublisherremainsneutralwithregardtojurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations.
ThisHumanaPressimprintispublishedbytheregisteredcompanySpringerScience+BusinessMedia,LLC,partof SpringerNature.
Theregisteredcompanyaddressis:233SpringStreet,NewYork,NY10013,U.S.A.
Preface
Nanotechnologyisamongtheworld’smostpromisingnewtechnologies,anditisprojected toholdsignificantimportanceinthetwenty-firstcentury.Nanotechnologyhasrevolutionizedareasasdiverseasengineering,informationtechnology,anddiagnostics.Asthe prevalenceofnanomaterialscontinuestoincrease,theriskofenvironmentalcontamination bynanoparticlesisrising.Consequently,occupationalandnonoccupationalexposureto nanoparticlesisgrowing,andtheirhealtheffectscannotbeignored.
Theuniquephysicalandchemicalpropertiesofsolidmaterialsatthenanoscalecontributetoserioustechnicallimitationsandpotentiallymisleadingresultsusingconventional toxicologyassays.Duetotheirhighsurfaceareaandhydrophobicity,nanoparticlescan adsorbvitaldyes,cellculturemicronutrients,orrelatedcytokines;therefore,theroutine methodsandprotocolsforlarger-sizedparticlesareunsuitablefornanotoxicologystudies. Themethodsandprotocolsin Nanotoxicity:MethodsandProtocols ofthesuccessful Methods inMolecularBiology seriesaddresstherecentlydevelopedmethodsforinvestigatingnanotoxicity.Thesemethodsandprotocolsrangefromroutinenanotoxicologyassaystogenomicsandproteomicstechniquesandincludebothinvitroandinvivoapproaches.Webelieve thisbookcanserveasastartingpointtointroduceresearcherstothemethodsandprotocols ofnanotoxicity,whichwillexpandtheworkbeingdoneinthisarea.
Thetargetaudienceforthisbookcomprisesresearchersandpostgraduatestudentsin thefieldsoftoxicology,environmentalscience,pharmacologicalscience,andclinical medicine.
Iamdeeplygratefultoallcontributingauthorswhodevotedtheirvaluabletimeand effortinwritingoutstandingstate-of-the-artmethodsandprotocolsforthisbook.Ialso wouldliketothanktheserieseditor,JohnWalker,forhisvaluablesuggestions.
Louisville,KY,USAQunweiZhang
Preface.. ...................................................................v
Contributors
1InVitroMethodsforAssessingNanoparticleToxicity .......................1 DustinT.Savage,J.ZachHilt,andThomasD.Dziubla
2MethodsforAssessingMastCellResponsestoEngineered NanomaterialExposure ..................................................31 NasserB.AlsalehandJaredM.Brown
3PreparationandUtilizationofa3DHumanLiverMicrotissue ModelforNanotoxicologicalAssessment ..................................47 AliKermanizadeh
4DerivingNeuralCellsfromPluripotentStemCells forNanotoxicityTesting .................................................57 YilingHong,NymphChan,andAynunN.Begum
5MethodsforEvaluationofOvarianGranulosaCellswithExposure toNanoparticles ........................................................73 JinLiuandWenchangZhang
6InVitroApproachesforAssessingtheGenotoxicityofNanomaterials. ........83 MariaDusinska,EspenMariussen,EliseRunde´n-Pran, AlexandraMisciHudecova,ElisabethElje,AlenaKazimirova, NaoualeElYamani,NilsDommershausen,JulianTharmann, DagmarFieblinger,FrankHerzberg,AndreasLuch,andAndreaHaase
7MeasurementofNanoparticle-InducedMitochondrial MembranePotentialAlterations ..........................................123 SalikHussain
8ApplicationofGelatinZymographyinNanotoxicityResearch. ...............133 YueZhang,RongWan,QunweiZhang,andYiqunMo
9DeterminationofPhosphorylatedHistoneH2AX inNanoparticle-InducedGenotoxicStudies.. ..............................145 RongWan,YiqunMo,RuiruiTong,MeiqinGao,andQunweiZhang
10AnalysisofNanomaterialToxicitybyWesternBlot... .......................161 GaoLong,YiqunMo,QunweiZhang,andMizuJiang 11QuantificationofMitochondrialGenomeTranscription inMaleReproductiveCellsbyReal-TimePCR .............................171 ChengXu,QianLiu,JinXu,andAihuaGu
12DNAMethylationAnalysis.. .............................................181 LingfangFengandJianlinLou
13EvaluationofNrf2withExposuretoNanoparticles.. .......................229 FuliZhengandHuangyuanLi
14ApplicationofElectronMicroscopesinNanotoxicityAssessment .............247 JunzheZhang,XiaoHe,andMichaelT.Tseng
15MetabolicFingerprintingofBacteriaExposedtoNanomaterials, UsingOnlineDatabases,NMR,andHigh-Resolution MassSpectrometry.. ....................................................271
TheodorosG.ChatzimitakosandConstantineD.Stalikas
16MethodstoQuantifyNanomaterialAssociationwith, andDistributionAcross,theBlood–BrainBarrierInVivo
RobertA.Yokel
17EvaluationofGenotoxicityofNanoparticlesinMouseModels ...............301 SameeraNallanthighalandRamuneReliene
18EvaluationofPulmonaryToxicityofNanoparticles byBronchoalveolarLavage.. .............................................313
YiqunMo,YueZhang,andQunweiZhang
19PulmonaryFunctionTestinginAnimals ...................................323
GaryW.Hoyle,ConnieF.Schlueter,andSadiatuMusah
20NanotoxicityAssessmentUsingEmbryonicZebrafish
EduardDumitrescu,KennethWallace,andSilvanaAndreescu
21Applicationof Daphniamagna forNanoecotoxicityStudy ...................345
ZhizhenXu,YingyingLiu,andYuqianWang
22TheOverviewofMethodsofNanoparticleExposureAssessment .............353 PengZhaoandYuanbaoZhang
Contributors
NASSER B.ALSALEH DepartmentofPharmaceuticalSciences,ColoradoCenterfor NanomedicineandNanosafety,SkaggsSchoolofPharmacyandPharmaceuticalSciences, UniversityofColorado,Aurora,CO,USA
SILVANA ANDREESCU DepartmentofChemistryandBiomolecularScience,Clarkson University,Potsdam,NY,USA
AYNUN N.BEGUM CollegeofVeterinaryMedicine,WesternUniversityofHealthSciences, Pomona,CA,USA
JARED M.BROWN DepartmentofPharmaceuticalSciences,ColoradoCenterfor NanomedicineandNanosafety,SkaggsSchoolofPharmacyandPharmaceuticalSciences, UniversityofColorado,Aurora,CO,USA
NYMPH CHAN CollegeofVeterinaryMedicine,WesternUniversityofHealthSciences, Pomona,CA,USA
THEODOROS G.CHATZIMITAKOS DepartmentofChemistry,UniversityofIoannina, Ioannina,Greece
NILS DOMMERSHAUSEN DepartmentofChemicalandProductSafety,GermanFederal InstituteforRiskAssessment(BfR),Berlin,Germany
EDUARD DUMITRESCU DepartmentofChemistryandBiomolecularScience,Clarkson University,Potsdam,NY,USA
MARIA DUSINSKA HealthEffectsLaboratory,DepartmentofEnvironmentalChemistry, NorwegianInstituteforAirResearch(NILU),Kjeller,Norway
THOMAS D.DZIUBLA DepartmentofChemicalandMaterialsEngineering,Universityof Kentucky,Lexington,KY,USA
NAOUALE EL YAMANI HealthEffectsLaboratory,DepartmentofEnvironmentalChemistry, NorwegianInstituteforAirResearch(NILU),Kjeller,Norway
ELISABETH ELJE HealthEffectsLaboratory,DepartmentofEnvironmentalChemistry, NorwegianInstituteforAirResearch(NILU),Kjeller,Norway
LINGFANG FENG InstituteofOccupationalDiseases,ZhejiangAcademyofMedicalSciences, Hangzhou,P.R.China
DAGMAR FIEBLINGER DepartmentofChemicalandProductSafety,GermanFederal InstituteforRiskAssessment(BfR),Berlin,Germany
MEIQIN GAO DepartmentofPathology,SchoolofBasicMedicalSciences,FujianMedical University,Fuzhou,People’sRepublicofChina
AIHUA GU StateKeyLaboratoryofReproductiveMedicine,InstituteofToxicology,Nanjing MedicalUniversity,Nanjing,China;KeyLaboratoryofModernToxicologyofMinistryof Education,SchoolofPublicHealth,NanjingMedicalUniversity,Nanjing,China
ANDREA HAASE DepartmentofChemicalandProductSafety,GermanFederalInstitutefor RiskAssessment(BfR),Berlin,Germany
XIAO HE CASKeyLabforBiomedicalEffectsofNanomaterialsandNanosafety,Institute ofHighEnergyPhysics,ChineseAcademyofSciences,Beijing,P.R.China
FRANK HERZBERG DepartmentofChemicalandProductSafety,GermanFederalInstitute forRiskAssessment(BfR),Berlin,Germany
J.ZACH HILT DepartmentofChemicalandMaterialsEngineering,Universityof Kentucky,Lexington,KY,USA
YILING HONG CollegeofVeterinaryMedicine,WesternUniversityofHealthSciences, Pomona,CA,USA
GARY W.HOYLE DepartmentofEnvironmentalandOccupationalHealthSciences,School ofPublicHealthandInformationSciences,UniversityofLouisville,Louisville,KY,USA
ALEXANDRA MISCI HUDECOVA HealthEffectsLaboratory,DepartmentofEnvironmental Chemistry,NorwegianInstituteforAirResearch(NILU),Kjeller,Norway
SALIK HUSSAIN DepartmentofPhysiologyandPharmacology,RobertC.ByrdHealthScience Center,SchoolofMedicine,WestVirginiaUniversity,Morgantown,WV,USA
MIZU JIANG DepartmentofGastroenterology,AffiliatedChildren’sHospital,Zhejiang UniversitySchoolofMedicine,Hangzhou,ZhejiangProvince,China
ALENA KAZIMIROVA HealthEffectsLaboratory,DepartmentofEnvironmentalChemistry, NorwegianInstituteforAirResearch(NILU),Kjeller,Norway
ALI KERMANIZADEH NanoSafetyResearchGroup,SchoolofEngineeringandPhysical Science,InstituteofBiologicalChemistry,BiophysicsandBioengineering,Heriot-Watt University,Edinburgh,UK
HUANGYUAN LI FujianProvincialKeyLaboratoryofEnvironmentalFactorsandCancer, SchoolofPublicHealth,FujianMedicalUniversity,Fuzhou,P.R.China;Departmentof PreventiveMedicine,SchoolofPublicHealth,FujianMedicalUniversity,Fuzhou,P.R. China
JIN LIU FujianProvincialKeyLaboratoryofEnvironmentalFactorsandCancer,Schoolof PublicHealth,FujianMedicalUniversity,Fuzhou,People’sRepublicofChina; DepartmentofPreventiveMedicine,SchoolofPublicHealth,FujianMedicalUniversity, Fuzhou,People’sRepublicofChina
QIAN LIU StateKeyLaboratoryofReproductiveMedicine,InstituteofToxicology,Nanjing MedicalUniversity,Nanjing,China;KeyLaboratoryofModernToxicologyofMinistryof Education,SchoolofPublicHealth,NanjingMedicalUniversity,Nanjing,China
YINGYING LIU DepartmentofRawMaterialIndustryResearch,ChinaCenterfor InformationIndustryDevelopment,Beijing,People’sRepublicofChina
GAO LONG DepartmentofGastroenterology,AffiliatedChildren’sHospital,Zhejiang UniversitySchoolofMedicine,Hangzhou,ZhejiangProvince,China
JIANLIN LOU InstituteofOccupationalDiseases,ZhejiangAcademyofMedicalSciences, Hangzhou,P.R.China
ANDREAS LUCH DepartmentofChemicalandProductSafety,GermanFederalInstitutefor RiskAssessment(BfR),Berlin,Germany
ESPEN MARIUSSEN HealthEffectsLaboratory,DepartmentofEnvironmentalChemistry, NorwegianInstituteforAirResearch(NILU),Kjeller,Norway
YIQUN MO DepartmentofEnvironmentalandOccupationalHealthSciences,Schoolof PublicHealthandInformationSciences,UniversityofLouisville,Louisville,KY,USA
SADIATU MUSAH DepartmentofEnvironmentalandOccupationalHealthSciences,School ofPublicHealthandInformationSciences,UniversityofLouisville,Louisville,KY,USA
SAMEERA NALLANTHIGHAL CancerResearchCenter,UniversityatAlbany,StateUniversity ofNewYork,Rensselaer,NY,USA;DepartmentofBiomedicalSciences,Universityat Albany,StateUniversityofNewYork,Albany,NY,USA
RAMUNE RELIENE CancerResearchCenter,UniversityatAlbany,StateUniversityofNew York,Rensselaer,NY,USA;DepartmentofEnvironmentalHealthSciences,Universityat Albany,StateUniversityofNewYork,Albany,NY,USA
ELISE RUNDE ´ N-PRAN HealthEffectsLaboratory,DepartmentofEnvironmentalChemistry, NorwegianInstituteforAirResearch(NILU),Kjeller,Norway
DUSTIN T.SAVAGE DepartmentofChemicalandMaterialsEngineering,Universityof Kentucky,Lexington,KY,USA
CONNIE F.SCHLUETER DepartmentofEnvironmentalandOccupationalHealthSciences, SchoolofPublicHealthandInformationSciences,UniversityofLouisville,Louisville,KY, USA
CONSTANTINE D.STALIKAS DepartmentofChemistry,UniversityofIoannina,Ioannina, Greece
JULIAN THARMANN DepartmentofChemicalandProductSafety,GermanFederalInstitute forRiskAssessment(BfR),Berlin,Germany
RUIRUI TONG DepartmentofPathology,SchoolofBasicMedicalSciences,FujianMedical University,Fuzhou,People’sRepublicofChina
MICHAEL T.TSENG DepartmentofAnatomicalSciencesandNeurobiology,Universityof Louisville,Louisville,KY,USA
KENNETH WALLACE DepartmentofBiology,ClarksonUniversity,Potsdam,NY,USA
RONG WAN DepartmentofPathology,SchoolofBasicMedicalSciences,FujianMedical University,Fuzhou,People’sRepublicofChina;DepartmentofEnvironmentaland OccupationalHealthSciences,SchoolofPublicHealthandInformationSciences, UniversityofLouisville,Louisville,KY,USA
YUQIAN WANG KeyLaboratoryofOccupationalSafetyandHealth,BeijingMunicipal InstituteofLabourProtection,Beijing,People’sRepublicofChina
CHENG XU StateKeyLaboratoryofReproductiveMedicine,InstituteofToxicology,Nanjing MedicalUniversity,Nanjing,China;KeyLaboratoryofModernToxicologyofMinistryof Education,SchoolofPublicHealth,NanjingMedicalUniversity,Nanjing,China; DepartmentofCardiothoracicSurgery,Children’sHospitalofNanjingMedical University,Nanjing,China
JIN XU StateKeyLaboratoryofReproductiveMedicine,InstituteofToxicology,Nanjing MedicalUniversity,Nanjing,China;KeyLaboratoryofModernToxicologyofMinistryof Education,SchoolofPublicHealth,NanjingMedicalUniversity,Nanjing,China
ZHIZHEN XU KeyLaboratoryofOccupationalSafetyandHealth,BeijingMunicipal InstituteofLabourProtection,Beijing,People’sRepublicofChina
ROBERT A.YOKEL PharmaceuticalSciencesDepartment,UniversityofKentuckyAcademic MedicalCenter,Lexington,KY,USA
JUNZHE ZHANG CASKeyLabforBiomedicalEffectsofNanomaterialsandNanosafety, InstituteofHighEnergyPhysics,ChineseAcademyofSciences,Beijing,P.R.China
QUNWEI ZHANG DepartmentofEnvironmentalandOccupationalHealthSciences,School ofPublicHealthandInformationSciences,UniversityofLouisville,Louisville,KY,USA
WENCHANG ZHANG FujianProvincialKeyLaboratoryofEnvironmentalFactorsand Cancer,SchoolofPublicHealth,FujianMedicalUniversity,Fuzhou,People’sRepublicof China;DepartmentofPreventiveMedicine,SchoolofPublicHealth,FujianMedical University,Fuzhou,People’sRepublicofChina
YUANBAO ZHANG KeyLaboratoryofOccupationalSafetyandHealth,BeijingMunicipal InstituteofLabourProtection,Beijing,People’sRepublicofChina
YUE ZHANG DepartmentofEnvironmentalandOccupationalHealthSciences,Schoolof PublicHealthandInformationSciences,UniversityofLouisville,Louisville,KY,USA
PENG ZHAO KeyLaboratoryofOccupationalSafetyandHealth,BeijingMunicipal InstituteofLabourProtection,Beijing,People’sRepublicofChina
FULI ZHENG FujianProvincialKeyLaboratoryofEnvironmentalFactorsandCancer, SchoolofPublicHealth,FujianMedicalUniversity,Fuzhou,P.R.China;Departmentof PreventiveMedicine,SchoolofPublicHealth,FujianMedicalUniversity,Fuzhou,P.R. China
InVitroMethodsforAssessingNanoparticleToxicity
DustinT.Savage,J.ZachHilt,andThomasD.Dziubla
Abstract
Asaconsequenceoftheirincreaseinannualproductionandwidespreaddistributionintheenvironment, nanoparticlespotentiallyposeasignificantpublichealthrisk.Thesought-aftercatalyticactivitygrantedby theirphysiochemicalpropertiesdoublesasahazardtophysiologicalprocessesfollowingexposurethrough inhalation,oral,transdermal,subcutaneous,andintravenousuptake.Uponuptakeintothebody,theirsize, morphology,surfacecharge,coating,andchemicalcompositionaugmenttheresponseofbiologicalsystems tothematerialsandenhancetheirtoxicity.Identificationofeachpropertyisnecessarytopredicttheharm imposedbyforeignnanomaterialsinthebody.Assaymethodsrangingfromendotoxinandlactate dehydrogenase(LDH)signalingtoapoptosisandoxidativestressdetectionsupplyvaluabletechniques forexposingbiomarkersofnanoparticle-inducedcellulardamage.Spectroscopicinvestigationofepithelial barrierpermeationanddistributionwithinlivingcellsrevealstheproclivityofnanoparticlestopenetratethe body’snaturaldefensiveboundariesanddepositthemselvesincytotoxiclocations.Combinationofthe variouscharacterizationmethodologiesandassaysisrequiredforeverynewnanoparticulatesystemdespite preexistingdataforsimilarsystemsduetothelackofdeterministictrendsamonginvestigatednanoparticles. Thepropensityofnanomaterialstodenatureproteinsandoxidizesubstratesintheirlocalenvironment generatessignificantconcernfortheapplicabilityofseveraltraditionalinvitroassays,andthemodification ofsusceptibleapproachesintonovelmethodssuitablefortheevaluationofnanoparticlescomprisesthe focusoffutureworkcenteredonnanoparticletoxicityanalysis.
Keywords Nanoparticletoxicity,Invitroassays,Mechanismsoftoxicity,Nanoparticle-cellinteraction,Nanomaterials,Biocompatibility,Nanoparticlecharacterization,Reactiveoxygenspecies
1Introduction
Duetotheiruniquephysiochemicalproperties,nanoparticleshave receivedsignificantinterestoverthelastseveraldecadesastherapeuticagents[1–3],catalysts[4, 5],andcommercialmaterial enhancers[6–8].Bycombiningtheirsmallsizewithindividual chemistries,bulkmaterialpropertiesarealteredoraugmentedto grantnanomaterialsnewfeaturesthatareotherwiseunattainableby theirmacroscalecounterparts.Inparticular,thecharacteristic increaseinsurfaceareatovolumeratioaccompanyingnanoparticles producesasubstantialincreaseincatalyticactivity.Thesizeof
QunweiZhang(ed.), Nanotoxicity:MethodsandProtocols,MethodsinMolecularBiology,vol.1894, https://doi.org/10.1007/978-1-4939-8916-4_1, © SpringerScience+BusinessMedia,LLC,partofSpringerNature2019
nanomaterialsalsopermitsquantumeffectstodominatethematerials’behaviorandbestowfluorescent,magnetic,andelectrical capacitiesthatareforeigntotheirtraditionalchemistries [9, 10].Thesepropertieshavesignificantlyimprovedtheefficacy ofeverydayconsumerproductslikefood,paints,andhousehold cleanersbysupplyinghighlytunedamplificationtothegoods beyondtheirstand-alonelimits[6, 7, 11, 12].Albeitusefulfor improvingcommoditiesandthedesignofhighlyreactiveagentsfor theranosticsorcatalysis,thesurfacereactivityofnanoparticles furtherstheirpotentialtointeractwithbiologicalandenvironmentalsubstances.Ininstanceswheremagnifiedbiologicalinteraction isundesiredorunforeseen,andevenincasesemphasizingspecific biologicalinterplay,thematerialscanpresentunsoughtpotency towardbiosystemsthatcanultimatelyleadtoadversephysiological consequences.
Thefrequentuseofnanomaterialsineverydayconsumerproductssuchassunscreens,cosmetics,andpharmaceuticalandfood additivesacceleratestheirwidespreaddistributionintheenvironment[7, 8].Oncedepositedtherein,bystandersareatriskof exposurethroughinhalation,oral,ortransdermaluptake.This riskcanincreaseevenfurtherwithintravenousorsubcutaneous injection[13].Inhalationputsthenasopharyngeal,tracheobronchial,andalveolarregionsatriskforaccumulationintheabsenceof alveolar–capillarybarrierclearance.Oralingestionofnanoparticles istypicallyshieldedfromtoxicitybythephysiochemicalandcellular barriersinhabitingthegastrointestinaltract,butnanoparticlesstill exhibitsize-dependenttransitionthroughthedigestivesystem’s defensesintothebloodstream[13].Uponenteringtheblood, nanoparticlesfollowtheexpectedabsorption,distribution,metabolism,andexcretion(ADME)modelofpharmacokineticsthroughoutthebody.Thismodelis,however,complicatedbypotential aggregationandsurfaceabsorptionofbloodplasmaproteinswhich forma“corona”thatgreatlyaugmentsthebiologicalresponseto thesematerials[14].Nonetheless,targetorganssuchasthespleen, kidney,andliveraccumulatethenanomaterialsforlongerperiods thantraditionalpharmaceuticalagentswithmaximalhalf-lives extendingintoyears.Withoutclearance,theparticlescangenerate oxidativestress,inflammation,andsubsequentcelldeathinand aroundthesubjectedorgansandcanformagglomerateswithin vesselsthatimpedebloodflowandruptureblockages[13].Asa result,methodsforassessingthepossibletoxicityofnewlydevelopednanoparticlesarerequiredtounderstandtheparticles’threat tothehealthofbothmanufacturersandconsumersbeforetheir finalapplication.
Asnewnanomaterialsaredeveloped,rapidscreeningoftheir biologicalandhealthimpactsmustbeperformedtoassesstheir potentialriskandprovideinsightsintoproperhandlingandcare.As partofthisscreening,invitronanoparticletoxicityassessment
representsadefactomethodofacutehazardidentificationfor potentiallydangerousnanoparticles.Themethodsarenotacompletereplacementforinvivoevaluation;whereasinvitroanalysis recordstheacutedamagingeffectsofnanoparticlesinaspecific cellularenvironment,invivoanimalmodelstrackbiodistribution andbioaccumulationpathwaysinamannerthatiscurrently unavailabletoinvitroobservation.Bothmethodsareneededto fullyinvestigatethetoxicityandpotentialriskofaparticularnanomaterial.Often,asaprecursorforinvivostudies,invitroassessmentisemployedtoidentifytheminimumtoxicdosefromcell viabilityprotocols.Complementarybiomarkeranalysisisapplied thereaftertodetectsignsofnonnecroticcellulardamagewhencell viabilityismaintained.Theabsenceofterminalmarkerscombined withundisturbedcellviabilityofferspossiblecategorizationofthe nanomaterialinquestionasinert,buttheprognosisismoreovera heraldforintroductionintoinvivotrialsforconfirmation.Invitro studies,moreover,screenformanyoftheknownmechanismsof toxicitythatcanemergeininvivostudiesand,asaconsequence, establishinvitroprotocolsasanecessaryprerequisite.Readers interestedininvivoanalysisofnanoparticlesarerecommendedto readthereviewbyKumaretal.[15]andchapterbyClichiciand Filip[16].Themethodologyusedforinvitronanoparticletoxicity analysisisthefocusofthisbookandwillbediscussedherein.
2MechanismsofToxicity
Nanoparticletoxicitystemsprimarilyfromtheparticle’sphysiochemicalpropertiesandindividualarchitecture.Size,shape,surface charge,coating,andchemicalconstituencyallplaykeyrolesin determiningtheparticles’uptakeandbiocompatibility.Established bytheNationalNanotechnologyInitiative,nanoparticlesare definedashavingcharacteristicdimensionsbelow100nm,but theirsizeisgenerallyrecognizedtoincludeparticleswithdimensionsofupto1 μm[17].Inthelowerstrataofthesizeregime, particularlybelow100nm[18–20],nanoparticlescantakeadvantageoftheenhancedpermeationandretention(EPR)effectattributedtohighlyvascularizedtissuessuchastumorswhichmakesthe sizedistributiondesirableamongthepharmacologicalcommunity [21].Additionally,asthesizeofnanoparticlesdecline,theenergy barrierassociatedwithuptakeisalsoreduced,allowingfor enhancedtransdermalmigrationandcellularpenetration.Decreasingthetotalsurfaceareaexposedtoaphagocytelowerstheenergy penaltyrequiredforenergy-dependentendocytosisandraisesthe probabilityofphagocyticconsumption.Therelativeincreasein particlesurfacearealinkedtoareductioninvolumealsoheightens theparticle’sreactivityandenablesfurtheruptakethrough receptor-mediatedendocytosisandnonphagocyticmechanisms.
Theshapeofnanoparticlesplaysasignificantroleintheprogressionofamaterialthroughthebodyinasmuchastheparticles’ size.Morphologiescanvaryfromhomogeneousandheterogeneoussolidspherestohollowmicellularrodsdependingonthe materialinquestionandthesynthesispathwayemployed [13, 17].Sphericalnanoparticlesarereportedtoundergophagocytosisandexcretionatfasterratesthantheirhighaspectratio counterparts.Thephenomenonisassumedtobeduetotheminimizationofcontactareaintersectingthecellmembraneandthe resultingaddedenergypenaltyassociatedwithinternalization [22].Whenthelongaxisofacylindricalparticleisalignedperpendiculartothemembranesurface,theenlargedandunsymmetrical deformationneededtoenvelopetheincidentparticleisassumedto beenergeticallyunfavorableincomparisontouniformspheres.In anotherconformation,ifthefaceofthetubefirstimposesonthe cellmembrane,phagocytosismaycommencewithouttheopportunityforcompletion.Theeventcanleadtofrustratedphagocytosis witheventualcellruptureandlocalizedinflammationasinthecase ofasbestos.Inacountervailingstudy,however,Grattonetal.[23] identifiedhighaspectrationanoparticlesashavingfour-fold increaseduptakeforHeLacellsincomparisontolowaspectratio particlesofsimilarsizeandchemistry.Theexplanationforthe differencefollowsthesamereasoningaspresentedfortherejection hypothesis,buttheenlargedsurfaceareaaffectinghighaspectratio particlesisinsteadtheorizedtosupplybeneficialmultivalentcationicinteractionswhichpromotenonspecificendocytosis.Ineither case,themorphologyofthenanoparticlescontributesheavilyto theiruptakemechanismandrepresentsamajorfactorintheir internalizationandclearancepotential.Additionalshapessuchas nonspherical,homogeneousandheterogeneousagglomerates, sphericalandtubularmicellularcapsules,anddendriticstructures individuallyconcludedifferentpreferentialuptakemechanismsthat complicatetheirADMEprofile[13, 17].Particlesthatevade phagocyticconsumptionandremainincirculationforlongerperiodsoftimearegenerallyanticipatedtopossessincreasedsystemic exposureandcytotoxicevents,butvastgeneralizationsareinappropriatefornanoparticulatesystemsduetoincongruenceamong trendsintheirbiocompatibility.Regardlessofpreexistinginformationfromsimilarsystems,newnanoparticlepreparationsnecessitate invitrostudytoverifythebiocompatibilityofslightmorphological orchemicalalterations.
Surfacechargelikewiseplaysadeterministicroleincellular uptakethatrivalsthecontributionsofparticlemorphology.Both netcationicandanionicchargearecorrelatedwithincreasedtoxicitywhileneutralsurfacesarebelievedtohavethegreatestbiocompatibility[13].Zwitterionicparticles,bycontrast,aregenerally consideredbenignduetotheirself-regulatedchargebalanceand haveundergoneextensiveinvestigationasantimicrobialand
Fig.1 Schematicdisplayingendocytosisofanionic(left)andcationic(right)nanoparticlesandtheirresulting cytosolicformations.Cationicnanoparticlesshowstrongerabsorptioncapabilitiesthantheiranioniccousins, and,onceendocytosed,theyactasspongesthatpumpprotonsandsignalcytotoxiccascades.Thelowerleft transmissionelectronmicroscopy(TEM)imagesshowaggregatedanionicparticles(bottomleft)inHeLacells comparedtodispersedcationicparticleswithheighteneduptake(bottomright).Reproducedfromref. 13 with permissionfromTheRoyalSocietyofChemistry
antifoulingagents[24].Positivelychargednanoparticlesexpress affinitytowardthenegativelychargedphospholipidheadspopulatingthelipidbilayerandencourageendocytosis.Onceinternalized, thecationicsurfacechargeactsasaprotonspongethatdisrupts normallysosomalactivityandinitiatescelldeathasshowninFig. 1 [13].Negativelychargedparticles,bycomparison,displaygreater potencyinbreachingtheskinbarrierviachargedensityandhave thepotentialtosignalcoagulationcascades.Undersufficientdoses, anionicnanoparticlescaninducethrombosisandeventualembolism.Inasimilarmanner,cationicparticlesassembleplateletaggregatesknownas“coronas”thatdisguisetheirunmaskedchemistry andprovideanalternativebiologicalidentity.Furthercomplicating thefunctionalityofasingularidealized“crown”coveringthe nanoparticles,proteinadhesiontotheparticlesurfaceoperatesby competitiveaffinitywhichchangestheproteinmixturesurroundingthenanoparticleandmodifiesitsnewbiologicalidentityover time[14].IllustratedinFig. 2,a“hard”coronaisinitiallyformed bytightlyboundproteinaggregatesandanexterior“soft”corona constantlyexchangesproteinswiththesurroundingplasma[25].

Fig.2 Representativeschematicofafullydevelopedproteincoronasurroundingaforeignnanoparticle. Proteinsinitiallyadheretothesurfacestronglytoformahardcoronafollowedbytransient,competitive adsorptioninanoutersoftcorona.Bindinginthecoronaiskinetically(k)andthermodynamically(K)drivenby serumproteins(withthecommonproteinsalbumin,immunoglobulinG1(IgG1),alpha-2macroglobulin(A2M), andapolipoproteinA-1(apoA1)shown).Reproducedfrom[25].Furtherpermissionsrelatedtothematerial excerptedshouldbedirectedtotheACS. https://pubs.acs.org/doi/10.1021/ar500190q
Thefluxofadsorbedproteinsformingthe“soft”coronaisregulatedbyacontinualstateofaffinitycompetitiontermedtheVromaneffect[14, 26].Thepresenceofashieldingcoronacanreduce toxicitybypreventingthenonspecificcellularinternalizationof cationicparticlesandoffsettingtheirmembranedisruptionand hemolyticcapacitiesorincreasetoxicitybydenaturingattached proteinsandgeneratingaberrationsthatelicitimmunogenicand inflammatoryresponses[14].Mimickingthemyriadofproteins presentinbiologicalmilieuforinvitroexperimentationposesa significantchallengeandcomprisesoneofthemajorsourcesof disparitybetweeninvitroandinvivotoxicityassessments.
Coatingnanoparticleswithprotein-resistantmoietiesor agglomerationinhibitorscanmitigatethebiomodificationenvelopingbarenanoparticlesandcounteracttheirunmodifiedtoxicity. Uncoatednanoparticlesoftensufferfromhydrophobicsurfaces, andtheirpreferencetoaggregatecanformblockagesthatimpeded circulation.Polyethyleneglycol(PEG)isoneofthemostcommonlyemployedsurfacecoatingsfortherapeuticnanoparticles duetoitsabilitytohidetheparticlesfromsurveillanceproteins [27].ThepreventionofopsonizationusingaPEGstericbarrier providesthenanoparticleswith“stealth”propertiesthatgrant
elongatedcirculation[28, 29].Aswithshaperegulatingphagocytoticevents,thelengthenedbiologicalhalf-lifepresentsadoubleedgedsword:asthetimeincirculationextends,theopportunityfor particlestoaffectboththedesiredtarget(e.g.,atumor)and unintendedaccumulationsitesinsusceptibletissuessimultaneously increases[28].Althoughheightenedpayloaddeliverytothetarget regionsignificantlyimprovesdrugefficacy,theparticles’introductiontootherwisehealthyareascangeneratedeleterioussideeffects thatnegatethetherapy’sbenefits.Moietieslikechitosanandpolylacticacid(PLA)havebeencombinedwithPEGtoawardboth “stealth”andtherapeuticpropertiesconcomitantly,andthemodificationofcoatingstoincludeenvironmentallyresponsivedegradationcuescanprompteventherelativelytoxicnanoparticlecoresto actaspseudotherapeuticagents.Protectionagainstreactiveoxygen species(ROS)generationbybaremetallicnanoparticlesusing antioxidant-infusedpolymercoatingslikepoly(troloxester)with controlleddegradationoffersarouteforthecombinatorialsuppressionofundesiredoxidativedamageandlocalizeddeliveryof enzymaticallyhydrolyzedtherapeuticagentswhilemaintainingthe core’scytotoxicpotentialasasecondarymodeoftreatment[30]. Coatingscanalsoharborsurfacechargesthatselectivelytakeadvantageofcationicoranionicbehaviorwithoutaccruingtheirnegative consequences.Acationicnanoparticleneutralizedbyanegatively chargedshellcan,forexample,exploitextendedcirculationfroma netneutralsurfacechargeandtheleakyvascularoftumorsto specificallytargettumorcells[31].Sheddingbroughtaboutby theacidictumormicroenvironmentallowsthenanocarrierto escapelysosomaldestructionandrevealareactivecore.Alternatively,prematurecoatingdeteriorationcanturnaninitiallyinert nanoparticleintoatoxicagentbyincitingimmunogenicorinflammatoryresponsesfromitsunshieldedcorepriortoreachingits intendeddestination[13].Theuntimelyexposureprovokes agglomeration,coronaformation,andunabatedchemicalreactivity whichpotentiallyresultsinharmfulphysiologicaloutcomes.
Thechemicalcompositionofnanoparticlesgovernstheirinteractionwithcellsandmilieuandshapestheircapacityforoxidative stressproduction.Applyingcomparablesizeregimes,particlesof varyingfundamentalcompositions,especiallyinthecaseofmetal oxidenanoparticles,displaysignificantlydifferenttoxicityprofiles duetoalterationsintheirbaseconstituencies[32].Administered metallicnanoparticlesarepronetodislodgingtoxicmetalionsin thepresenceoffluctuatingpHzonesthroughoutthebody,andthe ions’circulationintoaccumulationsitessuchastheliverandkidney presentconcernsforeventualgenotoxicandcytotoxiceffects[13]. IronoxideandcopperoxidenanoparticlesposeasFentonor Fenton-likecatalystsforradicalgenerationthatcontributetolipid peroxidationanddeoxyribonucleicacid(DNA)cleavage;gold, highlysoughtafterasphotothermaltherapyandcontrastagents,
silver,traditionallyusedinantimicrobialprophylaxis,andzinc oxide,finduseinavarietyofapplicationsrangingfromfiltersto foodadditives,possessdose-dependentcytotoxicity;aluminum oxideandtitaniumdioxide,bothemployedinpolymerandpharmaceuticalindustries,wereinitiallyconsideredinertbuthavesince garneredattentionasoxidativestressandinflammationpromoters [32, 33].Nanosizedsilicaandcarbon-basednanomaterials(e.g., carbonnanotubes,fullerenes,carbonblack)constituteover50%of airbornenanomaterials[34]andhaveextensiveliteraturecharacterizingtheirmetabolicresistanceandsize-dependentcytotoxicity [32, 35].Polymericnanoparticlesproposeadditionalconsiderationsfortheirtoxicityanalysis,namelywhetherthenanoparticles areliabletodegradewithinthebodyandwhethertheirmetabolites arebiocompatible.Althoughmetallicnanoparticlesholdsimilar concernsformetabolicdegradation,therapeuticpolymer-based nanoparticlesoftenhavethedesignedcaveatofundergoinghydrolysisandbreakingintotheirbasemonomersoranalogs[17].The featureallowson-demandreleaseofmedicinalagentsintolocalized deliverysitestoenhancethebioavailablefractionoftherapeuticsat thesiteofactionwhileminimizingsystemiccirculationofdrugs withdeleterioussideeffects.Carefulengineeringis,however, requiredtoensuretoxicdegradantsarepreventedfromentering thebloodstreamandwreakinghavocdownstreamofthematerial’s degradationcue.Theinterplayofbalancingthetherapeuticand toxicpotentialofnanoparticleswiththeirmetabolitesdefinesa foundationalconcernforminimizingROSandinflammationproductionfromtherapeuticadministrationandenvironmentalbioaccumulation,andtheirevaluationthroughinvitrotestingmarksa prerequisitestudyforanynanoparticle-basedtreatment.
3CharacterizationandToxicityAnalysis
Toproperlyevaluatethesafetyandimpactofananomaterial,the fundamentalphysiochemicalpropertiesofthematerialanditsinteractionandimpactuponlivingcellularsystemsmustbeunderstood. Inthissection,themostcommonmethodstocharacterizenanomaterialpropertiesandasetofinvitrotoxicityscreeningsusedto determinematerialsafetyarepresented.Theapproachespresented hereindonotrepresenttheentiretyofallavailabletoolsandmethodsbutratherasufficientlybroadinitialassessmentfortheevaluationofanewnanomaterial.
3.1SizeandSurface ChargeEvaluation
Numerousanalyticaltechniquesareavailabletocharacterizethe toxicologicalaspectsofnanoparticles,buttwomethodsinparticularareregularlyusedtograntcriticalquantitativeinformation: dynamiclightscattering(DLS)andzetapotential(ZP)analysis. WithDLS,therandommovementsofdilutenanoparticles
Fig.3 Schematicscatteringintensityasafunctionoftime(a)andautocorrelationfunctionvariationwithdelay time(b)forlargeandsmallparticlesizes,respectively.Largeparticlesresistrandomforcefluctuationsand maintainsmootherintensityplots;smallerparticlesmoverapidlyinsolutionandcausejitterintheir intensities.Reproducedinpartfrom[37]
dispersedinsolutioncausedbyBrownianmotionaredetectedby monitoringRayleighorMiescatteringgeneratedfromamonochromaticlaser[36].Theintensityfluctuationsrecordedbythe detectoraretranslatedintoanautocorrelationfunctionwhich trackstheintensitydecayasafunctionoftime.Arepresentative imagedisplayingthetranslationofscatteringintensityintoan autocorrelationfunctionisdisplayedinFig. 3.Inthesimplest case,theautocorrelationfunctionisfittoanexponentialdecay wherebythetranslationaldiffusioncoefficientiscalculatedinaccordancewiththewavevectorrelatingtheangleofexcitationusedby theDLSinstrument.ThediffusioncoefficientisusedinconjunctionwiththeStokes-Einsteinequationtoestimatethehydrodynamicradiusoftheparticlesassumingthatthenanoparticles’ morphologyisconfinedtoasphere[37].Averagingthedecay ratepriortoevaluatingthediffusioncoefficientyieldstheensemble translationaldiffusioncoefficientwhichisappliedtodeterminethe commonlyreportedz-averagenanoparticlediameter.Twoprimary analyticalmethodssuccinctlydefinetherelationshipbetweenthe autocorrelationfunctionandthesamplesizedistribution:the
cumulantandCONTINalgorithms[36].Thecumulantalgorithm fitsthebeginningoftheautocorrelationfunctiontoasingleexponentialdecaywhereinthefirstcumulanttermdefinesthez-average diameterandthesecondtermindicatesthepolydispersityindex (PDI).ThePDImarksthehomogeneityofasampleonazeroto onescale;asmallPDI( 0.1)isrepresentativeofamonodisperse samplewhilealargePDI(>0.4)designatesahighlypolydisperse sample[36].TheCONTINalgorithmemploysabroaderfitting timescaletoisolatesizedistributionsformultipleheterogeneous peaksinpolydispersesamples.ModernDLSinstrumentsapply bothmethodstoprovidetheuserwiththe z-averagediameter, PDI,andheterogeneouspeakdistributionssimultaneously.Ifthe particleslackasphericalgeometryandMiescatteringdominates, sampleanisotropywillnoticeablyalterthecalculatedz-average diameterasafunctionoftheirradiationangleusedforthesample analysis.Post-measurementanalysiscantakeadvantageofequationsderivedforestimatingthesample’srotationaldiffusioncoefficienttogetherwithitstranslationaldiffusioncoefficientto approximatetheaspectratioofrod-likeparticles[38, 39].
ZetapotentialidentifiestheapparentsurfacechargeofnanoparticlesandisoftenacomplementarycapabilityofDLSsystems. Particlesdispersedinsolutioninnatelyattractacloselypackedlayer ofoppositelychargedmoleculestotheirsurfaceknownastheStern layer,andtheSternlayerisfurthersurroundedbyanionically mixeddiffuselayerextendingoutwardtowardahypothetical boundarytermedtheslippingplane.Together,theSternlayer andslippingplanerepresenttheelectricdoublelayer(EDL)envelopingananoparticle[40].AsshowninFig. 4,theelectricpotential differencebetweentheoutermostslippingplaneoftheEDLand thepotentialofthedispersantcomprisesthezetapotentialofa colloid.ThemeasuredZPconsequentlydoesnotsignifythesurface chargeatthenanoparticle–Sternlayerinterface;themeasured potentialdifferenceatoptheEDLissubstantiallylowerthanthe potentialdifferencebetweenthesurfaceoftheparticleandthe surroundingmedium[41].Thedecayofelectrostaticforcefollows Debye’slawasaninverseexponential,andthetruesurfacepotential,calledtheNernstpotential,isonlyattainablethroughtheoreticalapproximation[36].TheZPisdeterminedbycorrelatingthe speedofparticlesintransittothedevice’sanodeorcathodetothe magnitudeofanexternallyappliedelectricfield.Thevelocityis assessedbymonitoringtheDopplershift,whichrelatesthefrequencychangebetweenincidentlightshownontoelectrically mobileparticlesandareferencelasertothevelocityofthecolloids inthemedium[40].Theelectrophoreticmobilityofthenanoparticlesisdirectlycalculatedfromtheexperimentallydetermined particlevelocityandelectricfieldstrength,andthemobilityis thereafterrelatedtothedesiredZPwiththeHelmholtz–Smoluchowskiequationforlargeparticles(>100nm)havingrelatively

Fig.4 SchematicrepresentationoftheEDLextendingfromthesurfaceofananionicnanoparticleintothe hypotheticalslippingplane.Thezetapotentialdecreasesexponentiallyfromthesurfaceoutwardtowardthe surroundingmedium.Reproducedfrom[40]
smallEDLswithrespecttotheirsizeortheHu¨ckelequationfor smallparticles( 100nm)withcomparativelylargeEDLs[36]. TheHelmholtz–Smoluchowskiequationisviableforaqueoussolutionswithhighsaltconcentrations(~10 2 M)whiletheHu¨ckel equationrequiresminimalsaltinterference(<10 5 M)[36].The dispersantpHplaysacriticalroleinthestabilityofnanoparticle solutionsbyalteringtheioniccompositionoftheEDLandmodifyingtheelectrostaticrepulsiveforcesbetweenchargedparticles. AsthesolutionpHapproachestheisoelectricpointofthenanoparticles,theelectrostaticrepulsionamongparticlesoflikecharges diminishesandthevanderWaalsattractiveforcesbetweenthe floatingbodiesbeginstodominate[42].Themagnitudeofthe measuredZP,therefore,doesnotprovideaconclusiveverification ofcolloidstability;ZPanalyzesonlyparticlesurfacechargewithout insightintointerparticleattractiveforces.SolutionswithhighZP ( 30mV)areoftenconferredstabilitywhilelowZPsolutions ( 10mV)areconsideredunstable,butthescaleofattractivevan derWaalsforcescan(rarely)revoketraditionalclassifications[43]. Thesolutionionicstrengthalsocontributestothenanoparticles’ stabilitybycompressingtheEDLwithincreasingionicstrength andloweringthemeasuredZP[41].Asmentionedearlierinthis chapter,aparticle’scalculatedZPand,byextension,surfacecharge playasignificantroleindeducingtheirpossibletoxicity,advancing
3.2Cellular InteractionAssays
integratedDLS-ZPsystemsasessentialinstrumentsforprecursor biocompatibilityevaluations.
AlthoughDLSandZPactastheprimarycharacterization techniquesfornanoparticlesbeforetheirintroductiontoinvitro assays,numerousothertechniquesareavailablethatoffercomparableanalysesoradditionalworthwhileinformation.Common practicesincludeelectronmicroscopy(e.g.,transmissionelectron microscopy(TEM)andscanningelectronmicroscopy(SEM)), laserdiffraction,andatomicforcemicroscopy(AFM)forsizing andgeometry,Fourier-transforminfraredspectroscopy(FTIR), X-raydiffraction(XRD),surface-enhancedRamanspectroscopy (SERS),andsolid-statenuclearmagneticresonancespectroscopy (SSNMR)forcompositionanalysis,andultraviolet-visiblespectroscopy(UV-Vis)andfluorometryforphotonicproperties[44]. EmployingmultiplemethodsintandemwithDLSandZPanalysis helpidentifysomeofthemorecriticalparameterscomposing nanoparticles’toxicityprofiles,andtheirevaluationinconcert withinvitrotoxicityassessmentcanrevealtheprimarymechanisms generatingtoxicitythatrequireresolutionpriortotheiruse.
Animportantscreenfornanoparticletoxicityisthedetermination ofananoparticle’sabilitytotransportacrossandinteractwith cellularbarriers.Nanoparticlepermeationacrossthecellmembrane promotedbycationicsurfacechargesandcoatingsenticingactive transport[45]cultivateinteractionbetweentherapeuticortoxic agentsandsusceptibleorganellesinthecytoplasm.Assays surveyingcellularinfiltrationdesirequantitativeanalysisofparticle positioningwithincellsandqualitativeimagingofthematerial’s destination,butcurrentinstrumentationstrugglestobridgethe gapbetweenthetwoanalyticalgoals.Inconventionalprocedures, cultivatedcellsareincubatedwithnanoparticlesfor24hfollowed bystainingandmicroscopicanalysis[46–48].Fluorescentmethods typicallyuseanteriorchemicalmodification[23, 45]orimmunostaining[49]tocoupletagssuchasfluoresceinisothiocyanate (FITC),cyanines,andAlexadyeswithfluorescence-activatedcell sorting(FACS),confocallaserscanningmicroscopy(CLSM),and imagingflowcytometry(IFC)forindependentquantitativeand qualitativeidentificationofnanoparticleinternalizationfollowing sampleincubation.AnexcellentreviewbyOstrowskietal.[50] deliversanoverviewoftraditionalspectroscopicandmicroscopic imagingapproachesfortissueandcellularinternalizationstudies. Alternatively,methodsusinginductivelycoupledplasmamassspectroscopy(ICP-MS)[51],TEM,ortransmissionX-raymicroscopy (TXM)inthecaseofmetallicnanoparticles[52]eliminatetheneed forfluorophoresbyapplyingnonfluorometricinstrumentation. Noneoftheindividualapproachesoffersaprecise,high-resolution measureforinternalization:CLSMandTXMrevealwhethernanoparticlesareinternalizedorexternallyadheredtothesurfaceof
cells,butthemethodsareonlysemiquantitative;FACSand ICP-MSprovidequantitativeresultswithoutvisualresolution; andIFCoffersasemiquantitativebridgebysacrificingthethroughputofFACSandtheresolutionofCLSM[53].Combinationof twoormoretechniquesisrequiredtofullycharacterizethescaleof nanoparticleintrusionwhilemaintainingobservationsoftheir locality.
Alongsidecellularinternalizationassaysevaluatingananomaterial’sproclivitytobypassthecellmembrane,quantifyingthe material’spreferencetolocalizeinthecytosolorinthenucleus providesfurtherunderstandingofthenanoparticle’spotential routesfortherapyandtoxicity.Afterpassageintothecytosol, largemoleculeandparticlemigrationintothenucleusisprimarily regulatedthroughactivetransportmechanismsinvolvingthecytoskeletalmotorproteinskinesinanddyneinalongcellularmicrotubules[54].Kinesin-mediatedtransportexportsagentsfromthe centrosomeandnucleuswhiledyneinshuttlesmoleculesinthe oppositedirection,ultimatelyfacingthenuclearporecomplexas agatewayintothenucleoplasm.Imagingandquantifyingparticles thatpassthesizerestrictionsofthenuclearenvelope( 40nm) [54]aretypicallyperformedwithelectronmicroscopyandfluorometrytovisualizenanoparticlepopulationsinthenucleoplasm andsurroundingcytosol.ImagesofHerceptin-loadedgoldnanoparticlesdepositinginbothlocationsdependinguponthesizeof thenanocarrierarepresentedinFig. 5.Inthecaseofgoldnanoparticles(whichhaveundergoneextensiveexplorationasradiosensitizers),positioningwithinoroutsidethenucleusisdeduced fromTEMwhileuptakeconcentrationsaredeterminedwith ICP-MS[46, 55].Fluorescenttagsforpolymericnanoparticles allowobservationoftheirlocalizationpatternsusingconfocalfluorescencemicroscopy,epifluorescencemicroscopy,andCLSM [47, 48].Beyondtransientanalysisofinternalizationbehavior, real-timeevaluationofnanoparticletransportintocellsisavailable withfluorescencecorrelationspectroscopy(FCS),rasterimage correlationspectroscopy(RICS),andtime-resolvedconfocal microscopy[56].Eachmethodoffersinsightintothepervasiveness ofnanoparticleswithinthecellularinteriorandpossibleexplanationforthecytotoxicorbiocompatiblenatureofspecificparticles. Asacomplementtothecellularinternalizationanddistribution schemesofferedbymicroscopictechniques,transcytosisassays identifytheproficiencyofparticlestopermeatethroughepithelial barrierslikethelungs,gastrointestinaltract,andblood-brainbarrier(BBB).Epithelialcellsgenerallycongregateintotightjunctions onceplated,andmeasurementofthetransepithelialelectricalresistance(TEER)acrossthejunctiondenotestheintegrityofthe barrierasshowninFig. 6.Ifnanoparticlespermeateacrossthe barrierandtearthejunctionsorifconstructionofthejunctionis otherwiseimpaired,theacquiredTEERvalueistypicallyobserved

Fig.5 HerceptintranscytosisintohumanbreastcancerSK-BR-3cellstreatedfor3hpromotedbyHerceptinfunctionalizedgoldnanoparticles(Her-GNP).Stainsfromlefttoright:anti-ErbB2(Texasred),anti-transferrin receptor(Tfr)antibodies(FITC),andnuclearcounterstain(DAPI).Vehiclesfromtoptobottom:freeHerceptin, 10nmHer-GNP,and40nmHer-GNP.Eachstainwasoverlaidinthefourthpanel.TheHer-GNPvehicles displayenhancedcytosolicuptakeofHerceptin,andthesmaller10nmHer-GNPcarriersdemonstrategreater nuclearinternalizationthantheir40nmcounterparts.Scalebarsare10 μm.Reproducedfrom[20]
todecreasefromtherangeof500–2000 Ω/cm2 tolessthan 500 Ω/cm2 [57].Isolatingtheapicalandbasolateralcompartment concentrationsofnanoparticlesasafunctionoftimefollowing barrierexposureeffectivelyrelatesthepermeabilityoftheepithelial membranewithrespecttothetestednanoparticles[58],andincorporationoftheparticletranslocationtendencywithTEERresults candecidewhethertheparticlesareconstructedtoinnatelybypass thejunctionorwhetherthetransmissionoccursasaresultof nanoparticle-inducedmembranerupture.Basolateralsampling withoneoftheaforementionedfluorescentstainsandfluorometry methods[59]allowsdirectquantificationofthepermeatedparticle

Fig.6 HumanlungepithelialCalu-3cellconfluenceoverasingleweek’sculturein10%FBSimagedusingan invertedmicroscopewith10 magnification(a).MonolayerformationhidesTranswellinsertporesthroughout theculturedurationasseenfromtheinitialimageattimezero(topleft)tothecompletionofmonolayer formationattheconclusionofaweek(bottomright).ConfocalmicroscopyimagesofZO-1(green)andDAPI (blue)stainedjunctionsandnuclei,respectively,displaymonolayerformationasafunctionofincreasedTEER resistance(b).Reproducedfrom[57]. https://creativecommons.org/licenses/by-nc-nd/4.0/
countandtheopportunityforinlinecharacterization.Altogether, datafromTEERandmigratednanoparticlepopulationscompose satisfactoryreportsfortheparticle’stranscytosisperformance,and theassay’scouplingwithotherassaysdescribingcellularcytotoxicitydetailstheexposurehazardforboththerapeuticandenvironmentalnanoparticles.
3.3ViabilityAssays
Lactatedehydrogenase(LDH)isanenzymeproducedbyliving cellstoregulatepyruvateandlactatelevelsthroughnicotinamide adeninedinucleotide(NAD)oxidation.Whencellsundergohemolysisornecrosis,LDHisreleasedintothesurroundingextracellular environmentwhilemaintainingenzymaticactivity.Conversionof pyruvatetolactatefollowsNADH+Pyruvate $ NAD+ +Lactatein thepresenceofLDHwhereNADHandNAD+ representthe
3.4Apoptosis Assays
reducedandoxidizedformsofNAD,respectively,andcomplementaryreactionofNADHwithtetrazoliumsaltspermitsspectroscopic monitoringofLDHenzymaticactivityusingknowninitialconcentrationsoflactateandNAD.Thetime-dependentchangeinspectroscopicabsorbanceofthereducedtetrazoliumcompound measuredbyanenzyme-linkedimmunosorbentassay(ELISA) readerorUV-VisspectrometerisdirectlyproportionaltothesampleLDHconcentration[60]and,byinference,theextentofcellulartrauma.Tetrazoliumsaltswereoriginallyinvestigatedas nonradioactivereplacementsforthetraditionalradioactivechromium(51Cr)assaytechnique[61]andasmethodstoenhancethe sensitivityofdetectingNADHabsorbanceat340nm.Common tetrazoliumsaltsincludeiodonitrotetrazolium(INT), 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT),and3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium(MTS)whichrivalthe throughputofthe 51Crassayandexhibitathreefoldsensitivity increaseoverultravioletNADHassays[62, 63].NumeroussaltbasedcommercialkitslikethePierce™ LDHCytotoxicityAssayKit andCytoTox96® Non-RadioactiveCytotoxicityAssayareavailable,andnonsaltfluorometrickitsutilizingthereductionofresazurin(nonfluorescent)toresorufin(fluorescent)byNADHoffer alternativestocolorimetricassays.Additionally,theluminogenic glycylphenylalanyl-aminofluorocoumarin(GF-AFC)andfirefly luciferaseATPassaysprovidenontoxicandhighlysensitiveoptions forassessingcellviability[64].Regardlessoftheassayemployed, nanoparticlescaninterferewithviabilityassayresultsthroughseveralmechanisms:staticadsorptionofLDHandrelatedproteinsto thenanoparticlesurfacecandenatureafixedamountofenzyme priortosurfacesaturation,dynamicadsorptioncancontinuously inactiveLDHthroughoutthedurationoftheassay,andROS generationcanprematurelyoxidizeNADHtoskewabsorbance values[65].Carefulsamplepreparationisnecessarytominimize perturbationsfromreactiveparticlesthatcanseverelydistortoutcomesfrominvitroLDHanalysis.
Accelerationofapoptosisduetonanoparticleexposurecanjeopardizecellularregenerationandhastenaginginmammalianhosts. Markersofprogrammedcelldeathincludetwomajortrackable factorsforinvitroanalysis:phosphatidylserine(PS)migrationto theouterleafletofthecellmembraneandcaspaseactivationinto initiatorandeffectorenzymes.Priortoapoptosisinitiation,flippasesholdPSexclusivelyonthecytosolicfaceoftheasymmetriccell membrane;duringtheexecutionphaseofapoptosis,scramblases transportPSfromtheinnerleaflettotheexoplasmicface[66].The lossofphospholipidasymmetryaccompanyingPSexchangemaintainsmembraneintegritywhilesignalingformacrophageconsumptionandplateletaggregation.Topreventrampantblood
3.5OxidativeStress/
coagulationoccurringfromthenaturalcellcycle,calcium-mediated annexinVbindstoexposedPSasashieldfromcoagulationcascades.Attachinghaptenmoieties(e.g.,FITC)toannexinVpermits apoptoticcelllabeling,andsecondarystainsthatidentifycellular necrosissuchasmembraneimpermeablepropidiumiodide (PI)combinedwithfluorescencemicroscopyorflowcytometry constitutetheannexinV-affinityassay,whichiscapableofquantifyinghealthy(FITCandPInegative),apoptotic(FITCpositiveand PInegative),anddead(FITCandPIpositive)cellssimultaneously [67].TheannexinVassaymonitorsaseeminglyubiquitousapoptoticeventinPStranslocationresultingfromanumberofcausal factors[66],establishingthemethodasareliablemeasurefor apoptosissignaling.Caspaseactivationis,however,aprecedentto PStransportandacomplementaryeventforverificationofprematureapoptosisonset.Caspasesrepresentafamilyof14cysteine proteasesinitiallylodgedasinactivezymogens(procaspases)within thecellularcytoplasm[68].Followingahostofstimuli-induced signalingpathways,procaspasesareoligomerizedfromencoded prodomainscontaininglargeandsmallsubunitsthroughintrinsic orextrinsicpathways.Activecaspasesofferseveralassayanalysis approaches,including:cleavablesubstrateswithfluorogenand chromogenlabels,immunoblotting,immunofluorescence,and affinityassayswithattachedreportermoieties.ReadersareencouragedtorefertotheinformativereviewbyKaufmannetal.[69]for detailedexplanationsandmethodologiesoneachprocedure.None ofthecaspaseassaysofferdefinitiveevidenceforindividualquantitativecaspaseactivity,andmultipleassaysarerequiredforfull characterization.Themultimodalcapabilityofcaspasestocleave theirunpreferredsubstrateshindersisolationwithlabels;immunoblotsarenotquantitativeandcannotdiscernnon-cleavage-based enzymaticactivity;immunofluorescencenecessitatesspecificconformationalantibodieswiththepotentialforcross-reactivity;and affinitylabelsoftenuseexpensivereagentsthataresusceptibleto nucleophiliccompetition[69].Nonetheless,thecaspaseassays provideausefultechniqueforidentifyingcellularapoptosissignals precedingPStranslocation.
Theenhancedreactivityofnanoparticlesimposedbytheirhigh surfaceareatovolumeratioboostscellularoxidativestressand promotesintracellulardamage.Detectionofoxidationevents throughdirectmeasurementofROS,indicatorsofoxidativedamagesuchasproteincarbonylcontentandgenotoxicity,andinflammatorymarkersrevealstheinvitropotentialofnanoparticlesto producedetrimentalcellularoxidants.GenerationofROSwithin thecytoplasmbeyondnaturallevelsisquantifiableviaintroduction ofROSsensitivedyessuchasthenonionic,nonpolar,membranepermeablefluorophore20 ,70 -dichlorofluoresceindiacetate(DCFHDA)asdescribedbyKestonandBrandt[70].Uponcellular
InflammationAssays
internalizationofnonfluorescentDCFH-DA,thefluorophoreis enzymaticallyhydrolyzedbycytosolicesterasesintoitsnonfluorescentpolaranalogdichlorofluorescein(DCFH),wherebytheanalog becomestrappedwithinthecytosol.HydroxylradicalsandcomparablecellularROSoxidizeDCFHintohighlyfluorescentdichlorofluorescein(DCF)whichismonitoredusingfluorescence microscopyorflowcytometry[71].Albeitrelativelyeasytoimplementandquantitative,theDCFH-DAmethodforevaluatingROS contentissusceptibletoinaccuracyduetononspecificenzymatic oxidationandphotooxidation[71, 72].Catalaseofferspossible inhibitionforenzymaticoxidation,buttheresultsfromDCFassays must,nevertheless,beinterpretedwithcautiontoavoidoverestimatingnanoparticles’ROSgenerationcapability.Inacomparable methodforanalyzingmitochondrialrespiration,commercialSeahorseExtracellularFlux(XF)Analyzersmeasuretheoxygenconsumptionrate(OCR)andenergyproductionpotentialofcells subjectedtochemicalinhibitorsasmarkersofmitochondrialoxidativestress.CheckingtheOCRfollowingincubationwithantioxidantsandsubsequentoxidizerstracksoxidation-induced mitochondrialdamageinhibitioncapacity,andtheoffsetinOCR declineobservedbytheintroductionofatherapeuticagentcan signifytheefficacyofatreatment[73].Post-analysistreatmentwith cellviabilitykitscanverifyROSmitigationandtheinherentsafety ofproposedtreatmentsasinthecaseofcurcuminversuscurcumin nanogelsdisplayedinFig. 7
ThecarbonylcontentofproteinsincreasesinresponsetooxidationfromROSandprovidesageneralindicatorofoxidative damage.Severalapproachesareavailableformeasuringprotein carbonyllevels,buttwoareparticularlynotable:tritiatedborohydrideand2,4-dinitrophenylhydrazine(DNPH).Borohydride reducesproteincarbonylstoalcoholswithstabletritiumlabels detectablebyspectrophotometricabsorbanceat340nm[74].As withothercarbonylreagents,extraneousnucleicacidsnecessitate removalpriortolabeling;streptomycintreatmentistypically recommendedasapretreatmenttoprecipitatenucleicacids[75]. EmployingDNPHasthecarbonylreagentoffersanonradiochemicallabelingmethod,butlargerquantitiesofsampledproteinare requiredforsuccessfulanalysis.Reactionoftheproteincarbonyl groupwithDNPHgeneratesastable2,4-dinitrophenyl(DNP) hydrazoneproductthatisdetectedfromitsmaximumabsorbance between360and390nmandtranslatedtoacarbonylcontent valueusingamolarabsorptioncoefficientof22,000M 1 cm 1 [74].Bothassaysproduceidenticalvaluesfortheevaluatedcarbonylcontentassumingprotein-boundchromophoreswithabsorbancesintherangeoftheappliedreagentaresubtractedviaablank. ThesensitivityandspecificityoftheDNPHassayisfurther improvedwhileeliminatingtheexpenditureofexcesssampleby applyinghigh-performanceliquidchromatography(HPLC)or
Another random document with no related content on Scribd:
SECTION 1.
The duke of Santa Fé to the King, Paris, June 20, 1810.
(Translation from the Spanish.)
“Will your majesty believe that some politicians of Paris have arrived at saying that in Spain there is preparing a new revolution, very dangerous for the French; and they assert that the Spaniards attached to your majesty will rise against them. Let your majesty consider if ever was heard a more absurd chimera, and how prejudicial it might be to us if it succeeded in gaining any credit. I hope that such an idea will not be believed by any person of judgement, and that it will soon subside, being void of probability.”
SECTION 2.
Ministerial letter from the King to the marquis of Almenara.
(Translation from the Spanish )
“September 21, 1810
“The impolitic violence of the military governors has attacked not only men, and fields, and animals, but even the most sacred things in the nation, as the memorials and the actions of families, in whose preservation those only are interested to whom they belong, and from which strangers cannot reap the least fruit In this class are the general archives of the kingdom, called the archives of Simancas, which are found in the province of Valladolid, the governor, Kellerman, has taken possession of them ” “Those archives, from the time of their institution, for centuries past, have contained the treaties of the kings since they were known in Castile; also, ancient manuscripts of the kindred of the princes, the descents and titles of families, pleadings in the tribunals, decisions of the Cortes; in short, all that is publicly interesting to the history of the nation, and privately to individuals.”
SECTION 3
The Spanish secretary of state to the duke of Santa Fé
“Madrid, September 12, 1812.
“——Si l’Andalusie n’est pas entièrement pacifiée; si la junte de Cadiz exista encore et si les Anglais y exercent leur fatale influence, on doit l’attribuer en grande partie aux machinations, et aux-trames ourdies par la junta et l’Angleterre au moment où parvint à leur connaissance le décret du 8 Febrier, qui établit des governmens militaire dans la Navarre, la Biscaye, l’Arragon, et la Catalogne. Quelques governeur Françaises ayant traité ces provinces comme si elles étaient absolument détachées de la monarchie.”
“ Mais combiens n’est il pas dementi par la conduite de certains governeurs qui paraissent s’obstiner a prolonger l’insurrection d’Espagne plutôt qu’a la soumettre! Car dans plusieurs endroits on ne se contente pas d’exclure toute idée de l’autorité du roi, en faisant administrer la justice au nom de l’empereur mais ce qui est pire, on à exigé que les tribunaux civils de Valladolid et de Palencia, pretassent serment de fidelité et d’obeisance à sa majesté impériale comme si la nation Espagnole n’avoit pas de roi.”
SECTION 4.
Memorial from the duke of Santa Fé and marquis of Almenara to the prince of Wagram.
(Translated from the Spanish.)
“Paris, September 16, 1810
“ The decrees of his majesty the emperor are the same for all the generals. The prince of Esling, who has traversed all the provinces to the borders of Portugal, who appears to be forming immense magazines, and has much greater necessities than the governors of provinces, has applied to the Spanish prefects, who have made the arrangements, and supplied him with even more than he required; and this speaks in favour of the Spanish people, for the prince of Esling receives the blessings of the inhabitants of the provinces through which his troops pass Such is the effect of good order and humanity amongst a people who know the rules of justice, and that war demands sacrifices, but who will not suffer dilapidations and useless vexations.”
SECTION 5
Intercepted letter of comte de Casa Valencia, counsellor of state, written to his wife, June 18, 1810
“Il y a six mois que l’on ne nous paie point, et nous perissons.
“ Avant hier j’écrivis à Almenara lui peignant ma situation et le pryant de m’accorder quelque argent pour vivre; de me secourir, si non comme ministre, du moins comme ami Hier je restai trois heures dans son antichambre esperant un reponse, je le vis enfin et elle fut qu’il n’avait rien ”
“ Rien que la faim m’attend aujourd’hui.”
SECTION 1.
“Celerico, May 11, 1810.
“——I observe that the minister Don Miguel Forjas considers the inconvenience, on which I had the honour of addressing you, as of ordinary occurrence, and he entertains no doubt that inconveniences of this description will not induce me to desist from making the movements which I might think the defence of the country would require. It frequently happens that an army in operation cannot procure the number of carriages which it requires, either from the unwillingness of the inhabitants to supply them, or from the deficiency of the number of carriages in the country. But it has rarely happened that an army, thus unprovided with carriages, has been obliged to carry on its operations in a country in which there is literally no food, and in which, if there was food, there is no money to purchase it; and, whenever that has been the case, the army has been obliged to withdraw to the magazines which the country had refused or been unable to remove to the army. This is precisely the case of the allied armies in this part of the country; and, however trifling the difficulty may be deemed by the regency and the ministers, I consider a starving army to be so useless in any situation, that I shall certainly not pretend to hold a position or to make any movement in which the food of the troops is not secured I have no doubt of the ability or of the willingness of the country to do all that can be required of them, if the authority of the government is properly exerted to force individuals to attend to their public duties rather than to their private interests in this time of trial. I have written this same sentiment to the government so frequently, that they must be as tired of reading it as I am of writing it. But if they expect that individuals of the lower orders are to relinquish the pursuit of their private interests and business to serve the public, and mean to punish them for any omission in this important duty, they must begin with the higher classes of society. These must be forced to perform their duty, and no name, however illustrious, and no protection, however powerful, should shield from punishment those who neglect the performance of their duty to the public in these times. Unless these measures are strictly and invariably followed, it is vain to expect any serious or continued exertion in the country, and the regency ought to be aware, from the sentiments of his majesty’s government, which I have communicated to them that the continuance of his majesty’s assistance depends not on the ability or the inclination, but on the actual effectual exertions of the people of Portugal in their own cause I have thought it proper to trouble you so much at length upon this subject, in consequence of the light manner in which the
difficulties which I had stated to exist were noticed by Monsieur de Forjas. I have to mention, however, that, since I wrote to you, although there exist several causes of complaint of different kinds, and that some examples must be made, we have received such assistance as has enabled me to continue till this time in our positions, and I hope to be able to continue as long as may be necessary I concur entirely in the measure of appointing a special commission to attend the head quarters of the Portuguese army, and I hope that it will be adopted without delay I enclose a proclamation which I have issued, which I hope will have some effect It describes nearly the crimes, or rather the omissions, of which the people may be guilty in respect to the transport of the army; these may be as follow:—1st, refusing to supply carts, boats, or beasts of burthen, when required; 2dly, refusing to remove their articles or animals out of the reach of the enemy; 3dly, disobedience of the orders of the magistrates to proceed to and remain at any station with carriages, boats, &c.; 4th, desertion from the service, either with or without carriages, &c.; 5th, embezzlement of provisions or stores which they may be employed to transport. The crimes or omissions of the inferior magistrates may be classed as follows: 1st, disobedience of the orders of their superiors; 2d, inactivity in the execution of them; 3d, receiving bribes, to excuse certain persons from the execution of requisitions upon them.”
SECTION 2.
Lord Wellington to M. Forjas.
Gouvea, September 6, 1810.