Life cycle assessment of energy systems and sustainable energy technologies the italian experience r

Page 1


Life Cycle Assessment of Energy Systems and Sustainable Energy Technologies The Italian Experience Riccardo Basosi

Visit to download the full and correct content document: https://textbookfull.com/product/life-cycle-assessment-of-energy-systems-and-sustain able-energy-technologies-the-italian-experience-riccardo-basosi/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Life Cycle Assessment of Energy Systems Closing the Ethical Loophole of Social Sustainability 1st Edition

Nicholas Sakellariou

https://textbookfull.com/product/life-cycle-assessment-of-energysystems-closing-the-ethical-loophole-of-socialsustainability-1st-edition-nicholas-sakellariou/

Social Life Cycle Assessment Case Studies from the Textile and Energy Sectors Subramanian Senthilkannan Muthu

https://textbookfull.com/product/social-life-cycle-assessmentcase-studies-from-the-textile-and-energy-sectors-subramaniansenthilkannan-muthu/

Sustainable Energy Technologies 1st Edition Eduardo Rincón-Mejía

https://textbookfull.com/product/sustainable-energytechnologies-1st-edition-eduardo-rincon-mejia/

International Scientific Conference Energy Management of Municipal Facilities and Sustainable Energy Technologies EMMFT 2018: Volume 1 Vera Murgul

https://textbookfull.com/product/international-scientificconference-energy-management-of-municipal-facilities-andsustainable-energy-technologies-emmft-2018-volume-1-vera-murgul/

International Scientific Conference Energy Management of Municipal Facilities and Sustainable Energy Technologies EMMFT 2019: Volume 1 Vera Murgul

https://textbookfull.com/product/international-scientificconference-energy-management-of-municipal-facilities-andsustainable-energy-technologies-emmft-2019-volume-1-vera-murgul/

International Scientific Conference Energy Management of Municipal Facilities and Sustainable Energy Technologies EMMFT 2019: Volume 2 Vera Murgul

https://textbookfull.com/product/international-scientificconference-energy-management-of-municipal-facilities-andsustainable-energy-technologies-emmft-2019-volume-2-vera-murgul/

Hydrogen Economy Supply Chain Life Cycle Analysis and Energy Transition for Sustainability Antonio Scipioni

https://textbookfull.com/product/hydrogen-economy-supply-chainlife-cycle-analysis-and-energy-transition-for-sustainabilityantonio-scipioni/

Achieving the Sustainable Development Goals Through Sustainable Food Systems Riccardo Valentini

https://textbookfull.com/product/achieving-the-sustainabledevelopment-goals-through-sustainable-food-systems-riccardovalentini/

Low Carbon Energy Supply Technologies and Systems 1st Edition Atul Sharma

https://textbookfull.com/product/low-carbon-energy-supplytechnologies-and-systems-1st-edition-atul-sharma/

Riccardo Basosi · Maurizio Cellura

Sonia Longo · Maria Laura Parisi Editors

Life Cycle Assessment of Energy Systems and Sustainable Energy Technologies

The Italian Experience

GreenEnergyandTechnology

Moreinformationaboutthisseriesat http://www.springer.com/series/8059

RiccardoBasosi

Editors

LifeCycleAssessment ofEnergySystems andSustainableEnergy Technologies

TheItalianExperience

Editors

RiccardoBasosi DepartmentofBiotechnology, ChemistryandPharmacy UniversityofSiena Siena,Italy

MaurizioCellura DepartmentofEnergy,Information EngineeringandMathematicalModels UniversityofPalermo Palermo,Italy

SoniaLongo DepartmentofEnergy,Information EngineeringandMathematicalModels UniversityofPalermo Palermo,Italy

MariaLauraParisi DepartmentofBiotechnology, ChemistryandPharmacy UniversityofSiena Siena,Italy

ISSN1865-3529ISSN1865-3537(electronic) GreenEnergyandTechnology

ISBN978-3-319-93739-7ISBN978-3-319-93740-3(eBook) https://doi.org/10.1007/978-3-319-93740-3

LibraryofCongressControlNumber:2018960203

© SpringerNatureSwitzerlandAG2019

Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart ofthematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations, recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped.

Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthis publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse.

Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthis bookarebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernorthe authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor foranyerrorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardto jurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations.

ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland

Preface

Energyisoneofthekeyelementsincludedinthe17SustainableDevelopment Goals(SDGs)oftheUnitedNations’ 2030AgendaforSustainableDevelopment. Universalaccesstoenergy,ahighershareofrenewableenergyandmassive improvementsinenergyeffi ciencyarepartofthetopglobalprioritiesforsustainabledevelopmentintheyearstocome.Indetail,ensuringtheaccessto affordable,reliable,sustainable,andmodernenergyisthemainobjectiveofSDG7. StronginteractionsamongenergyandmostofthetopicsoftheotherSDGscanbe foundthatwillbebrieflydiscussedbelow.Enablingpoorcommunitiestouselocal cleanandrenewableenergyresourcesreliesonSDG1 “Nopoverty” andSDG10 “Reducedinequalities”.Inaddition,thereductionofenergy-relatedresourceand waterdepletion,greenhousegasemissions,air–water–soilpollutioncancontribute totheachievementofSDG3 “Goodhealthandwell-being”,SDG6 “Cleanwater andsanitation”,SDG12 “Responsibleproductionandconsumption”,andSDG13 “Climateaction ”.Furthermore,renewableenergyandenergyefficiencycansupport theSDG2 “Zerohunger” andSDG11 “Sustainablecitiesandcommunities” . Thus,energyisanenablingandstrategicfactortowardsustainabledevelopment andforthetransitiontowardalow-carboneconomy.

However,takingsustainability-relateddecisionsintheenergy fieldwould requirescience-basedapproachesfocusingonthewholeenergysystem,including energygeneration,distribution,use,andend-of-life.

TheLifeCycleAssessment(LCA)methodologyispivotalforthispurpose.Itis usefulforassessingenergy-relatedresourcedepletionandenvironmentalimpacts, foravoidingburdentransferfromonelife-cyclesteptoanotherandfromanimpact categorytotheothers.Furthermore,ithelpsinsupportingtheidenti ficationof priorityactionsinpolicymaking,theselectionofthebestlow-carbonsolutionsfor energysupplyanduse,theidenti ficationofthehot-spotsforreducingthecarbon intensityofenergysystemsandthemanagementoftheend-of-lifeofenergy systems.

Inthiscontext,theaimsofthisbookaretosharesomeItalianexperienceson LCAappliedtotheenergysystemsandtechnologiesandprovideanoverview ofthemostrecentoutcomesoftheresearchinthe fieldofenergy,withaspeci fic focusonrenewables,bio-energy,andsustainablesolutions.Thebookconsistsof twoparts:the firstonedescribescasestudiesandreviewstudiesofLCAappliedto differentenergysourcesandenergysystems(geothermal,photovoltaic,biomass, electricityproduction,energy-relatedsystemsasbatteriesandsmartgrids).The secondpartofthebookfocusesonLCAappliedtobio-energiesandbio-energy systems.

Thebookistheoutcomeoftheactivityofseveralmembersoftheworkinggroup “Sustainableenergyandtechnologies” ofthe “ItalianLCANetwork” association.

WewouldliketoacknowledgeallAuthorsforsubmittingtheirvaluablework andthemembersofthe “ItalianLCANetwork” associationforsupporting thiswork.Wehighlightthattheviewsexpressedinthisbookarethoseofthe AuthorsanddonotnecessarilyrepresenttheviewsoftheItalianLCAnetwork association.

WehopethatLCApractitioners,researchers,andstudentswillconsiderthis bookasanopportunitytolearnmoretheapplicationsoftheLCAmethodologyand tounderstandtheenvironmentalimpactofenergysystemsandsustainableenergy technologies,throughtheanalysisoftheirlifecycles.

TheItalianLCANetworkandtheWorkingGroup “EnergyandSustainableTechnologies”

TheItalianLCANetworkwascreatedin2006withtheaimtohaveanetworkfor exchanginginformation,methodologies,andgoodpracticesonLCAinItaly.In 2012,theItalianLCANetworkbecameanassociation,foundedbytheItalian NationalAgencyforNewTechnologies,EnergyandSustainableEconomic Development(ENEA);thePolitecnicoofMilano;theUniversitiesofBari, Chieti-Pescara,PadovaandPalermo;andtheNationalInteruniversityConsortium forChemicalReactivityandCatalysis(CIRCC).

Themainobjectivesofthe “ItalianLCANetwork” associationarethefollowing: promotingtheadoptionofthelifecyclethinkingapproachforachievingasustainabledevelopment;promotingthedisseminationoftheLCAmethodologyat nationallevelandtheexchangeofinformationandbestpracticesontheLCAin Italy;encouragingnetworkingprocessesamongdifferentstakeholdersforthe realizationofnationalandinternationalprojects.

Theworkinggroup “Energyandsustainabletechnologies” ofthe “ItalianLCA Network” aimsatassessingtheenergyandenvironmentalperformancesofenergy generation,transformationandusesystems;atpromotingtheeco-efficiencyonany

levelintheenergysector,atfollowingtheapproachfromresourcetowaste;at analyzingthestateoftheartofLCAstudiesonenergyandsustainabletechnologies;atexchangingexperiencesregardingLCAappliedtoenergyandsustainable technologies.

Siena,ItalyRiccardoBasosi Palermo,ItalyMaurizioCellura Palermo,ItalySoniaLongo Siena,ItalyMariaLauraParisi Preface

PartILCAAppliedtotheEnergySector:StateoftheArt andCaseStudies

1LifeCycleAssessmentofElectricityGenerationScenarios inItaly 3

MaurizioCellura,MariaAnnaCusenza,FrancescoGuarino, SoniaLongoandMarinaMistretta

2LCAofPhotovoltaicSolutionsintheItalianContext ........... 17 PierpaoloGirardiandAlessiaGargiulo

3GeothermalEnergyProductioninItaly:AnLCAApproach forEnvironmentalPerformanceOptimization ................ 31 MariaLauraParisiandRiccardoBasosi

4ApplicationofLCAfortheShort-TermManagement ofElectricityConsumption 45 CarloBrondi,SimoneCornago,DarioPiloni,AlessandroBrusaferri andAndreaBallarino

5Small-SizeVanadiumRedoxFlowBatteries:AnEnvironmental SustainabilityAnalysisviaLCA 61 PasquaL’Abbate,MicheleDassistiandAbdulG.Olabi

PartIILCAAppliedtoBio-energy:StateoftheArt andCaseStudies

6LifeCycleAssessmentofRenewableEnergyProduction fromBiomass ......................................... 81 LuciaLijó,SaraGonzález-García,DanielaLovarelli, MariaTeresaMoreira,GumersindoFeijooandJacopoBacenetti

7EnergyandEnvironmentalAssessmentsofAgro-biogasSupply ChainsforEnergyGeneration:AComprehensiveReview 99 CarloIngrao,JacopoBacenetti,GiuseppeIoppolo andAntonioMessineo

8AReviewonPotentialCandidateLignocellulosicFeedstocks forBio-energySupplyChain ............................. 119 AmaliaZucaro,AngeloFierroandAnnachiaraForte

9LifeCycleAssessmentsofWaste-BasedBiorefineries ACritical Review .............................................. 139 SerenaRighi

10LifeCycleAnalysisoftheProductionofBiodiesel fromMicroalgae 155 MassimoCollotta,PascaleChampagne,WarrenMabee, GiuseppeTomasoniandMarcoAlberti

11ComparativeLifeCycleAssessmentStudyonEnvironmental ImpactofOilProductionfromMicro-AlgaeandTerrestrial OilseedCrops 171 SabinaJez,DanieleSpinelli,AngeloFierro,ElenaBusi andRiccardoBasosi

Chapter1

LifeCycleAssessmentofElectricity GenerationScenariosinItaly

MaurizioCellura,MariaAnnaCusenza,FrancescoGuarino,SoniaLongo andMarinaMistretta

Abstract Hinderingglobalwarmingandachievingamorecompetitive,secureand sustainableenergysectoraresomeofthemostrelevantgoalsofthe2030Framework forclimateandenergyoftheEuropeanUnion.Europeancountrieshavetoidentify andimplementstrategiesforcontributingtotheseambitiousgoals.Inthiscontext, theauthorscarriedoutascenarioanalysisontheSicilianelectricitymixinorder toestimatethelifecycleenergyandenvironmentalbenefitsoftheincreaseofthe useofrenewableenergytechnologiesforelectricityproduction,andthepotential contributionofSicilyintheachievementoftheEuropeanenergyandenvironmental targets.Indetail,theauthorsidentifiedtwoelectricitygenerationscenariosfor2030 startingfromtheSicilianelectricitymixin2014,performedassumptionsonthe forecastedelectricitydemandandassessedthepotentialofrenewableenergysources exploitationandthetechnical,political,social,andenvironmentalconstraints.Then, theyappliedtheLifeCycleAssessmentmethodologytoassesstheeco-profilesof theidentifiedelectricitygenerationmixesandcomparedthemwiththeeco-profile ofelectricityproducedin2014.Theresultsofthecomparisonshowedareductionof mostofthe16examinedenvironmentalimpactcategories,exceptforthoserelated tohumantoxicity,particulatematter,ionizingradiationandresourcedepletion.

M.Cellura · M.A.Cusenza(B) · F.Guarino · S.Longo

DipartimentodiEnergia,Ingegneriadell’InformazioneeModelliMatematici, UniversitàdegliStudidiPalermo,VialedelleScienzeEd.9,90128Palermo,Italy

e-mail: mariaanna.cusenza@unipa.it

M.Cellura

e-mail: maurizio.cellura@unipa.it

F.Guarino

e-mail: francesco.guarino@unipa.it

S.Longo

e-mail: sonia.longo@unipa.it

M.Mistretta

DipartimentoPatrimonioArchitettonicoeUrbanistico,UniversitàMediterranea diReggioCalabria,viaMelissari,89124ReggioCalabria,Italy

e-mail: marina.mistretta@unirc.it

©SpringerNatureSwitzerlandAG2019

R.Basosietal.(eds.), LifeCycleAssessmentofEnergySystems andSustainableEnergyTechnologies,GreenEnergyandTechnology, https://doi.org/10.1007/978-3-319-93740-3_1

Keywords Scenarioanalysis · Renewableenergysources · Lifecycleassessment Marginaltechnologies

1.1Introduction

Greenhousegases(GHG)fromhumanactivitiesarethemostsignificantdrivers ofobservedclimatechangesincethemid-twentiethcentury(US—EPA 2017). From1970to2012,theGHGemissionsincreasedsteadilyfrom24.3to46.4Gton CO2eq /year(Janssens-Maenhoutetal. 2017).

Inthepastyears,theawarenessoftheimpactsofhumanactivitiesonclimate hasledtothedefinitionofvariousenvironmentalpoliciesaimedatreducingGHG emissions(e.g.KyotoProtocol,Parisclimateconference—COP21,etc.).

AmongthehumanactivitiesresponsibleforGHG,theenergysector(including powergenerationandenergyconsumingsectors,i.e.buildings,industry,transport andagriculture)representsbyfarthelargestsourceofemissions.Indetail,itaccounts fortwo-thirdsofglobalGHGand80%ofCO2 emissions(IEA 2014a, 2016, 2017). Therefore,effectiveactionsintheenergysectorareessentialtotacklingtheclimate changeproblem(Beccalietal. 2007).MitigationscenariostudiescarriedoutbyIPCC indicatethat,withintheenergysystem,theelectricitysectorcanplayanimportant roleindeepGHGemissionscut,asthedecarbonizationofelectricitygenerationcan beachievedatamuchhigherpacethanintherestoftheenergysystem(IPCC 2014). Avarietyofmitigationoptionsexistsintheelectricitysector,includingrenewable, nuclearpowerplantsorfossilfuelpowerstationsequippedwithcarboncaptureand storage(CCS)technologies(Bruckneretal. 2014).Manyclimatechangemitigation policiesarefocusedonreplacingfossilfuelwithrenewableenergysources(RES) (Dandresetal. 2012).

Inthisframework,theEuropeanUnion(EU)hassetambitioustargetsfor2030 inthefieldofGHGemissionsandrenewableenergygeneration(EuropeanCommission 2011).Indetail,the2030EUenergyandclimateobjectivesaimatcuttingGHG emissionsby40%ifcomparedto1990levels,andatincreasingtheshareofrenewablestoatleast27%ofEUenergyconsumption(EuropeanCommission 2014).In ordertomatchsuchobjectives,allMemberStatesshouldcontributetotheattainment ofthesecommonobjectivesandtargetstodifferentextents(EuropeanCommission 2016).Inthiscontext,theauthorsfocusedtheirattentionontheelectricitysector,and carriedoutascenarioanalysisforitsgenerationinSicilyin2030,consideringahigh exploitationofRES.Theauthorsfollowedalifecycleapproachinordertoassessthe potentialcontributionofSicilyintheachievementofEuropeanenergyandclimate targets.Moreover,asreplacingfossilfuelswithREScouldcausenegativeimpacts, e.g.,intermsofresourcesdepletion,theycarriedoutanenvironmentalevaluationof thescenarios,includingtheassessmentsofawiderangeofenvironmentalimpacts.

1.2ScenarioAnalysis

Inthefollowingsteps,themethodologyemployedinthedefinitionoftheelectricity generationscenariosin2030isbrieflydescribed:

• Step1—ElectricityproductioninSicily:analysisofelectricityproductioninSicily from2009to2014inordertocharacterizetheelectricitymixandtheRESpenetrationinthesystem.

• Step2—Identificationoftherenewableenergytechnologiesthatcanchangetheir capacityproduction(increaseordecrease)inresponsetoachangeinthedemand forelectricity(renewableenergymarginaltechnologies).

• Step3—Electricitygenerationscenarios:definitionoftwoelectricityscenarios consideringadecrease( 0.2%/year)oftheelectricitydemandby2030inthefirst oneandanincrease(+0.6%/year)inthesecondone.Bothforecastedscenariosare characterizedbyanincreaseinelectricityproducedbyRES.

1.2.1ElectricityProductioninSicily

InSicily,electricityisgeneratedbythermalpowerplants,hydroelectricplants,wind turbines,andphotovoltaic(PV)systems(RegionofSicily 2015).Figure 1.1 shows theevolutionsoftheSicilianelectricitymixpertypeofplantandenergysourcefrom 2009to2014(TERNA 2017;GSE 2017).

2014wasassumedasreferencescenario(RS14)duetothehighestavailabilityof data:theannualtotalelectricityproductionwasequalto22,536GWh:75.3%was generatedbyfossilfuelthermalpowerplantsand24.7%byRES(TERNA 2017). ConcerningRESonly2.1%wasgeneratedbyhydroelectricplants(1.4%hydropower atreservoir;0.6%hydropowerrunofriver),8.4%byPVsystems,13.0%bywind turbines,and1.2%bybioenergy.

TheamountofelectricitygeneratedbyRESin2014wasassumedasareferencefor theestimationofRESexploitationinthe2030—scenarios,asdescribedinSect. 1.2.3.

1.2.2IdentificationoftheRenewableEnergyMarginal Technologies

InordertocontributetotheEUenergyandclimategoals,thefutureelectricity productionsectorshouldbecharacterizedbyanincreaseoftheRES.Then,the potentialcapacityproductionofeachrenewableenergytechnologyshouldbeidentified.Atechnologythatcanchangeitscapacityproductioninresponsetoachange indemandinanenergysystem(increaseordecrease)isdefinedasamarginaltechnology(Weidemaetal. 1999).Itisanunconstrainedtechnology,i.e.itscapacitycan beadjustedinresponsetoachangeindemandwithoutbeingsubjectedtonatural

Bioenergy*** (CHP* + Power plants)

Power plants - oil products

Power plants - natural gas

CHP* - other fuels (solid)**

CHP* - oil products

CHP* - natural gas

Wind Photovoltaic

Hydropower - run of river

Fig.1.1 ShareofelectricityproductionpertypeofplantandofenergysourceinSicilyfrom2009 to2014(* CHP:combinedheatandpowerplant; ** otherfuel(solid):coke,browncoalbriquettes, etc.; *** bioenergy:biogas,bioliquidandbiomass)(ownelaborationfromTERNAandGSEdata) [theproductionofelectricityinpumpedstorageunitsfromwaterpreviouslypumpeduphillisnot included,asindicatedin(EuropeanCommission2009)]

capacityconstraints(e.g.theamountofwateravailableinaspecificregion),political constraints(e.g.emissionlimits),etc.(Weidemaetal. 1999).

TheauthorsidentifiedtherenewableenergymarginaltechnologiesfortheSicilian electricitysectorconsideringthefollowingfactors:

1.RESpenetrationintheSicilianelectricitymixin2014; 2.thetechnicalpotential1 fortheexploitationofRESinSicily; 3.theEuropeanenergypoliciesandtheSicilianenergystrategies(RegionofSicily 2008, 2014, 2015).

Asforecastsfor2030werenotavailable,thetechnicalpotentialforRESexploitationin2030wasassessedstartingfromtheestimationsofRESdevelopmentin2020, reportedinnationalandregionalstudies(Beninietal. 2010;Alterachetal. 2011; RegionofSicily 2008, 2014, 2015).

Indetail,consideringthattheRESexploitationinSicilyin2016(TERNA 2017) wasstillfarfromtheforecastedpotentialstobeinstalledwithin2020,theauthors hypothesizedthatthesepotentialsfor2020willbeinstalledinthemedium—long period(fromnowto2030).

1 Theachievableenergygenerationofaparticulartechnologygiventhesystemperformance,topographiclimitations,environmentalandland-useconstraints.

Theonlyexceptionwasrepresentedbythewind-basedsystemsforwhichestimationsfor2030wereavailable(ANEV—AssociazioneNazionaleEnergiadelVento 2017).

Inthefollowing,theprocedurefortheidentificationoftherenewableenergy marginaltechnologiesisdescribed.

Hydropower

Themainconstraintsofhydropowerarelowsocialacceptance,highinitialinvestment costsandtheneedtoconsiderotherwater-usingsectors(e.g.irrigationinagriculture, domesticuses,otherindustrialuses,etc.)whenplanningthehydropowerdevelopment(IEA 2011).IntheSicilian“EnergyMasterPlan”(RegionofSicily 2008), whichistheofficialdocumentdescribingthecurrentenergysectorandthefuture energyplansinSicily,nosignificanthydropoweruseincreaseistakenintoaccount asalmostalltheavailablepotentialisconsideredexploitedandthepotentialofsmall hydroisverylimited.Then,hydropowertechnologiescannotbeconsideredmarginal intheSicilianenergysystemandthefutureincreaseofelectricitygenerationfrom theseplants,duetosmallhydro(RegionofSicily 2008;Cattinietal. 2011)canbe assumedasnegligibleifcomparedtoRS14.

Wind

Barrierstothediffusionofwindpowergenerationincludecapitalcosts,uncertainty regardingpolicysupport,impactsofitsintermittentgenerationonthepowersystems, andlowsocialacceptanceduetothevisualimpact(IEA 2008).

Aninstalledpowerequalto2000MWisforecastedforSicilyin2030(+14% comparedtoRS14)(ANEV—AssociazioneNazionaleEnergiadelVento 2017). Thisestimationisdoneexcludingtheareassubjecttoenvironmentalandtechnicalconstraints(e.g.protectionoffloraandsoilorography).Then,consideringthis potentialandthecurrentinstalledpower,windplantscanbeconsideredasamarginal technologyfortheSicilianenergysystem.Startingfromtheforecastedinstallable power(2000MW)andconsideringanaveragewindplantproductivityequalto 2000MWh/MW(RSE 2017),agenerationof4000GWhisestimatedfor2030.

Solar

Thepenetrationintheenergysystemofthistechnologymainlydependsonitscost (andrelatedincentives).Photovoltaicscanbeconsideredamarginaltechnology,as withintherenewabletechnologies,solarpowerseemstobethemostpromising, consideringthehighsolarirradiationinSicily(Šúrietal. 2007;Huldetal. 2012) andtheuntappedpotential(RegionofSicily 2008, 2014).

Indetail,theoverallinstalledsolarpowerinSicilywas1295MWinRS14while aPVinstallablecapacityequalto1812MWisforecastedin2020(RegionofSicily 2014).Consideringthattheinstalledpowerin2016wasequalto1344MW(+2.7% comparedto2015)(TERNA 2017),itissupposedthattheestimatedpotentialfor2020 couldbeinstalledby2030.Startingfromtheforecastedinstallablepower(1812MW) andconsideringanaveragePVpowerplantproductivityequalto1500MWh/MW (EC—JRC 2017),agenerationof2718GWhisestimatedfor2030.

Bioenergy

Thepotentialelectricitygenerationfromthermalplantsfuelledwithbioenergyin Sicilyin2020isestimatedas795GWh(Beninietal. 2010),consideringthelimitationsduetootherpotentialusesofbioenergy,e.g.foragriculturalapplications.Asin 2016,theelectricitygenerationbybioenergywas239.9GWh(TERNA 2017),itis assumedthattheestimatedproductionof795GWhwillbereachedinamedium—longperiod(fromnowto2030).Thus,thermalplantsfuelledwithbioenergycanbe consideredasamarginaltechnologyfortheSicilianenergysector.

1.2.3ElectricityGenerationScenariosDefinition

Thedefinitionoftwopossiblescenariosforelectricitydemandin2030isbasedonthe predictionoffutureelectricitydemand(TERNA 2015).Thefirstscenario,named as“Basescenario”(BS30),estimatesadecreaseof 0.2%/yearoftheelectricity demandfortheItalianIslands(SicilyandSardinia)(TERNA 2015),whichresults inavalueof21,512GWhin2030( 3.2%ifcomparedtoRS14).Thesecondone, namedas“Developmentscenario”(DS30),estimatesanincreaseof+0.6%/yearof theelectricitydemand(TERNA 2015)whichresultsinademandof24,443GWhin 2030(+10%ifcomparedtoRS14).

TheexploitationofRESinboththeforecastedscenariosisassumedtobeequal tothetechnicalpotentialdiscussedinSect. 1.2.2.Themainassumptionsonthe renewablemarginaltechnologiesoftheBS30andDS30scenariosaresummarized inTable 1.1

Theassessmentoftheelectricitygenerationfromthermoelectricplantsfuelled withfossilfuelsinthefuturescenariosisbasedonthedifferencebetweentherenewableenergyproductionandtheforecastedenergydemandinthesameyear.Itis 14,062GWhinBS30and16,993GWhintheDS30scenario.Thepercentagedistributionofeachtechnologyinthethermoelectricsectorisconsideredunchanged ifcomparedtoRS14.BothscenariosareincompliancewiththeEuropeanenergy strategiesastheyreducethefossilfuelsdependencebyincreasingRESpenetration.

Table1.1 Mainassumptionsontherenewablemarginaltechnologiesintheforecastedscenarios

Table1.2 Percentagecompositionofthegenerationof1kWhofelectricitypertypeofplantand ofenergysourceinRS14,BS30andDS30scenario(%)

StartingfromtheelectricitymixinRS14andinthetwoscenarios,thepercentage compositionofthegenerationof1kWhofelectricitypertypeofplantandenergy sourcewasidentified(Table 1.2).

1.3LifeCycleAssessment

1.3.1GoalandScopeDefinition

AnLCAapproachhasbeenappliedtoassessthepotentialenergyandenvironmentalbenefits/impactsoftheforecastedelectricitymixeswithrespecttoRS14.The assessmentwascarriedoutincompliancewithISO14040(ISO 2006a)andISO 14044(ISO 2006b).Theproductionof1kWhofgrosselectricitywasselectedasa functionalunit(FU).Thesystemboundariesincludedtheextractionandtransportof rawmaterialsandfuels,theplantconstructionandoperation.Forrenewableenergy systemsalsotheend-of-lifestepwastakenintoaccount.Forthermalpowerplants, theend-of-lifewasnotconsideredduetoalackofreliablesecondarydata.

TheCumulativeEnergyDemand(CED)methodwasusedtoassesstheprimary energyconsumption(Frischknechtetal. 2007a),whiletheimpactassessmentwas performedbymeansoftheILCD2011Midpointmethod(EC—JRC 2012).

1.3.2LifeCycleInventory

Datacollection,dataqualityandassumptions

Thedatacollectionprocessandtheassessmentofthepercentagecompositionof1 kWhofelectricitypertypeofplantandenergysourcearedescribedinSect. 2.2

Theeco-profilesofelectricitygenerationbyeachpowerplantandenergysource weretakenfromEcoinvent(Frischknechtetal. 2007b)bothfor2014and2030. Theauthorsassessedtheenvironmentalimpactsofthefuturescenariosbyusingthe eco-profilereferredtothecurrenttechnologydevelopmentforthefollowingreasons:

• Theeco-profilechangesoftheelectricitygeneratedbythermoelectricplants(poweredbybothfossilfuelsandbioenergy)occurringoverthenextdecadeswere assumednegligibleduetotheuseofmaturetechnologies(StamfordandAzapagic 2014)andduetotheirlifetime(upto50years)(IEA 2014b);

• Theeco-profilesofwindandPVpowerplantsareexpectedtoimprovewithrespect tothecurrentonesthankstotheemploymentofmoreefficientmaterialsand technologies.Thiswillentailahigherelectricityoutputperunitofinput(IEA 2008)and,consequently,thereducedimpactperkWhofelectricitygenerated. However,duetotheuncertaintyonthetechnologicaldevelopmentandonthelife cycledataforfuturetechnologies(StamfordandAzapagic 2014),theauthors, assumingacautiousscenario,considerednegligiblethefuturewindandPVplants eco-profileimprovement.

1.3.3LifeCycleImpactAssessmentandDiscussionofResults

NoconsiderablevariationsarefoundinboththescenariosifcomparedwithRS14. Indetail,CEDperkWhofelectricityproducedis8.9MJprimary intheBS30scenario and9.1MJprimary intheDS30scenario.ThepercentagevariationscomparedtoRS14 areequalto 5.8%inBS30and 3.3%inDS30(Fig. 1.2).Suchadecreaseis essentiallyduetothereducedshareoftheelectricityproducedfromnon-renewable technologiesinthefutureelectricitygenerationmixes.

Therenewableprimaryenergyconsumption(CEDrenewable)increasesinboth thescenarioscomparedtothereferencescenario.Indetail,CEDrenewableis1.7 MJprimary inBS30and1.5MJprimary intheDS30scenario,whileitisequalto1.0 MJprimary intheRS14scenario.TheenvironmentalimpactsareshowninTable 1.3. Bothforecastedscenariosinvolveareductionoftheimpactsinalmostallthe examinedenvironmentalcategories,exceptforhumantoxicity—nocancereffect (HT—nce),ionizingradiation—humanhealth(IR—hh),ionizingradiation—ecosystem(IR—e),particulatematter(PM)andmineral,fossilandrenewableresource depletion(MFRRD).

FortheHT—nce,IR—hh,IR—eandPM,theincreaseoftheimpactismainly duetothehigherpenetrationofCHP—biomassandPVplantsintheforecasted2030

Fig.1.2 Non-renewableand renewableCEDinreference andinforecastedscenarios

Table1.3 Environmentalimpactof1kWhofelectricityinRS14,BS30andDS30scenarios

Impactcategories

GWP(kgCO2eq ) 5.75E 01 4.93E 01 5.22E 01

ODP(kgCFC-11 eq ) 5.58E 08 4.79E 08 5.07E 08

HT—ce(CTUh) 1.39E 08 1.28E 08 1.32E 08

HT—nce(CTUh) 3.91E 08 3.91E 08 3.98E 08

PM(kgPM2.5 eq ) 2.06E 04 2.88E 04 2.77E 04

IR—hh(kBqU235 eq ) 8.22E 03 8.89E 03 8.75E 03

IR—e(CTUe) 2.52E 08 2.72E 08 2.68E 08

POFP(kgNMVOCeq ) 1.53E 03 1.35E 03 1.42E 03

AP(molH+eq ) 2.79E 03 2.42E 03 2.56E 03

T—EU(molNeq ) 5.24E 03 4.65E 03 4.89E 03

F—EU(kgPeq ) 1.21E 04 1.06E 04 1.11E 04

M—EU(kgNeq ) 4.90E 04 4.33E 04 4.56E 04

F—E(CTUe) 9.44E 01 8.29E 01 8.70E 01

LU(kgCdeficit ) 5.89E 01 5.12E 01 5.40E 01

WRD(m3 watereq ) 6.33E 03 5.34E 03 5.69E 03

MFRD(kgSbeq ) 2.65E 05 3.92E 05 3.45E 05

energysystems.Theincreaserangesfrom+1.8%forHT—nceinDS30to+39.6% forPMinBS30.Inbothscenarios,thehighpenetrationofPVintheelectricitymix isresponsibleforarelevantincreaseinMFRRDimpactcategory(+47.9%inBS30 and+30.2%inDS30).

Thereducedshareoffossilfuelsthermalpowerplantsintheelectricitymixes ( 12.1%inBS30and 7.8%inDS30comparedtoRS14)involvesareductionof globalwarmingpotential(GWP)( 14.4%inBS30, 9.2%inDS30),humantoxicity—cancereffects(HT—ce)( 7.6%inBS30, 4.9%inDS30)andphotochemical ozoneformationpotential(POFP)( 12.0%inBS30, 7.3%inDS30),inbothsce-

Table1.4 GWPintheRS14andintheforecastedscenarios

Scenarios

01

narios.Indetail,thereducedimpactinthesecategoriesisduetothelowerproduction frompowerplants—naturalgasandCHPotherfuels,whicharethetwoplantswith thehighestimpactintheseenvironmentalcategories.

Thereductionoftheozonedepletionpotential(ODP)inbothscenarios( 14.0% inBS30and 9.0%inDS30)ismainlyduetothelowergenerationfromthermal powerplantsfuelledwithnaturalgas.ThereducedshareofCHPotherfuelsandpower plant—oilintheelectricitymixesismainlyresponsibleforthedecreaseofterrestrial eutrophication(T-EU),freshwatereutrophication(F-EU),marineeutrophication(MEU),acidificationpotential(AP)andfreshwaterecotoxicity(F-E).Thedecrease rangesfrom 6.6%forT-EUinDS30to 12.4%forF-EUinBS30.

Thelowercontributionofpowerplantspoweredwithnaturalgasandoilproducts inbothfutureelectricitymixcausesareductionintheimpactonlanduse(LU) ( 13.1%inBS30and 8.4%inDS30),whilethereducedcontributionfromCHP otherfuelsgenerationisresponsibleforwaterresourcedepletiondecrease(WRD) ( 15.7%inBS30and 10.1%inDS30).

1.3.4PotentialContributionofSicilyintheAchievement ofthe2030EuropeanClimateTarget

InordertoassessthepotentialcontributionoftheSicilianelectricitysectorinthe achievementofthe2030Europeanclimatetarget,startingfromtheimpactof1kWh ofelectricityontheGWPimpactcategory,theauthorscalculatedtheGHGemissions relatedtothetotalelectricitydemandintheforecastedscenarios(Table 1.4).

TheresultsofTable 1.4 showthattheSicilianelectricitysectorcouldcontributeto theEuropeanclimatepolicyfor2030,reducingGHGemissionsof2.2E 06tonCO2eq ( 17%)intheBS30scenario,whileintheDS30thevariationsintheenergygenerationmixallowtomaintainthesamelevelofemissions,withasmalldecreaseequal to 0.1%,eventhoughtheelectricitydemandhasincreasedby10%withrespectto RS14.

1.4Conclusions

ThestudypresentedanintegrationoftheLCAapproachandscenarioanalysissuitablefortheevaluationofenvironmentalstrategiesonapolicylevel.

Indetail,theauthorsshowedthepotentialcontributionoftwoforecastedelectricity scenariosinSicilytothe2030Europeclimateandenergypolicy.

Theanalysisofawiderangeofenvironmentalaspectsofsustainabilitythroughthe multi-indicatorapproachofLCAwascarriedout.Boththeassessedscenariosinvolve anoverallreductioninalmostalltheenvironmentalimpactcategories,incomparison withthereferencescenario(RS14),confirmingthatthehighpenetrationofRES couldimprovetheelectricityeco-profilesignificantly.However,withthecurrent stateofdevelopmentoftheelectricitytechnologiesgeneration,itisnotpossibleto achieveimprovementsinthewholesetofenvironmentalimpactscategories.Then, theintegrationoftheLCAmethodologywiththescenarioanalysiscouldbeauseful toolforidentifyingthepotentialnegativeimpactsconnectedtotheimplemented strategiesandcouldprovideausefulsupporttopolicymakersintheidentificationof themoresuitablestrategiestakingintoaccountboththesite-specificcharacteristics oftheterritoryandthemostpressingenvironmentalissues.

Withreferencetotheclimatetarget,onlytheBS30scenario,characterizedby thereductionintheelectricitydemandandtheincreaseofRESexploitation,could involveareductionoftheGWP.IntheDS30scenario,thebenefitsduetotheincrease oftheRESareoffsetbytheimpactscausedbytheelectricitydemandincrease.In ordertomatchtheEuropeanclimategoalsstrategiesaimedatpromotingRES,the focusonenergyefficiencyandonthefinalconsumer’sbehavioursismandatory.

References

AlterachJ,MaranS,StellaGetal(2011)StudisullepotenzialitàenergetichedelleRegioniitaliane, conriferimentoallefontiidroelettricaedeolica.ReportRSEn.11001465

ANEV—AssociazioneNazionaleEnergiadelVento(2017)Brochure2017. http://www.anev.org/ wp-content/uploads/2017/06/Anev_brochure_2017_10.pdf.Accessed16Oct2017

BeccaliM,CelluraM,MistrettaM(2007)Environmentaleffectsofenergypolicyinsicily:therole ofrenewableenergy.RenewSustainEnergyRev11:282–298

BeniniM,BorgarelloM,BrignoliV,GelminiA(2010)Burdensharingregionaledell’obiettivodi sviluppodellefontirinnovabiliePianod’AzioneNazionaleperl’EnergiaRinnovabile.Report ERSEno.09004631

BrucknerT,BashmakovI,MulugettaYetal(2014)Energysystems.In:EdenhoferO,PichsMadrugaR,SokonaY,FarahaniE,KadnerS(eds)Climatechange2014:mitigationofclimate change.ContributionofworkinggroupIIItothefifthassessmentreportoftheintergovernmental panelonclimatechange

CattiniA,DelZottoL,D’OrazioM,FrancoR(2011)Allegatoalvolume:Lefontirinnovabiliin Italia–Schederegionalisullapianificazioneenergetica,iterautorizzativieriferimentinormativi. Ministerodell’AmbienteedellaTuteladelTerritorioedelMare

DandresT,GaudreaultC,Tirado-SecoP,SamsonR(2012)Macroanalysisoftheeconomicand environmentalimpactsofa2005–2025EuropeanUnionbioenergypolicyusingtheGTAPmodel andlifecycleassessment.RenewSustainEnergyRev16:1180–1192. https://doi.org/10.1016/j. rser.2011.11.003

14M.Celluraetal.

EC—JRC(2012)EuropeanCommission—JointResearchCentre—InstituteforEnvironmentand Sustainability.CharacterizationfactoroftheILCDrecommendedlifecycleimpactassessment methods.Databaseandsupportinginformation,1stedn,February2012,EUR25167

EC—JRC(2017)EuropeanCommission—JointResearchCentre—InstituteforEnvironmentand Sustainability.Solarradiationandphotovoltaicelectricitypotentialcountryandregionalmaps forEurope. http://re.jrc.ec.europa.eu/pvgis/cmaps/eu_opt/pvgis_solar_optimum_IT.p

EuropeanCommission(2011)CommunicationfromtheCommissiontotheEuropeanParliament, theCouncil,theEuropeanEconomicandSocialCommitteeandthecommitteeoftheregions energyroadmap2050,COM/2011/885final

EuropeanCommission(2014)CommunicationfromtheCommissiontotheEuropeanParliament, theCouncil,theEuropeanEconomicandSocialCommitteeandthecommitteeoftheregionsa policyframe-workforclimateandenergyintheperiodfrom2020to2030,COM/2014/015final

EuropeanCommission(2016)ProposalforaregulationoftheEuropeanParliamentandoftheCouncilontheGovernanceoftheEnergyUnion,amendingDirective94/22/EC,Directive98/70/EC, Directive2009/31/EC,Regulation(EC)No663/2009,Regulation(EC)No715/2009,Directive 2009

FrischknechtR,JungbluthN,AlthausHetal(2007a)Implementationoflifecycleimpactassessment methods.EcoinventreportNo.3,v2.0,SwissCentreforLifeCycleInventories,Dübendorf FrischknechtR,JungbluthN,AlthausHetal(2007b)Overviewandmethodology.Ecoinvent reportno.1,ver.2.0,SwissCentreforLifeCycleInventories.Dübendorf,CH,Descriptionofthe Ecoinventdatabaseincludedinthesoft-wareSimaProver.7.1. http://www.pre.nl/simapro/ GSE(2017)Statisticalreport. www.gse.it.Accessed20Sept2017

HuldT,MüllerR,GambardellaA(2012)AnewsolarradiationdatabaseforestimatingPVperformanceinEuropeandAfrica.SolEnergy86:1803–1815. https://doi.org/10.1016/j.solener.2012. 03.006

IEA(2008)InternationalEnergyAgency.Renewableenergyessential:wind,OECD/IEA. www. iea.org/publications/freepublications/publication/Wind_Brochure.pdf.Accessed13Sept2017

IEA(2011)InternationalEnergyAgency.Renewableenergy.Marketsandprospectsbytechnology, OECD/IEA. www.iea.org/publications/freepublications/publication/Renew_Tech.pdf.Accessed 13Sept2017

IEA(2014a)InternationalEnergyAgency.Energyandclimatechange—Worldenergyoutlook specialreport.OECD/IEA,Paris

IEA(2014b)InternationalEnergyAgency.Emissionsreductionthroughupgradeofcoal-firedpower plants—learningfromChineseexperience.OECD/IEA,Paris

IEA(2016)InternationalEnergyAgency.Energy,climatechangeandenvironment:2016insights. OECD/IEA,Paris

IEA(2017)InternationalEnergyAgency.Climatechange. https://www.iea.org/topics/ climatechange/.Accessed13Sept2017

IPCC(2014)Climatechange2014:mitigationofclimatechange.In:EdenhoferO,Pichs-Madruga R,SokonaY,FarahaniE,KadnerS,SeybothK,AdlA(eds)ContributionofworkinggroupIII tothefifthassessmentreportoftheintergovernmentalpanelonclimatechange

ISO(2006a)ISO14040:environmentalmanagement—lifecycleassessment—principlesandframework

ISO(2006b)ISO14044:environmentalmanagement—lifecycleassessment—requirementsand guidelines

Janssens-MaenhoutG,CrippaM,GuizzardiDetal(2017)FossilCO2 andGHGemissionsofall worldcountries,EUR28766EN,PublicationsOfficeoftheEuropeanUnion,Luxembourg,2017, ISBN978-92-79-73207-2, https://doi.org/10.2760/709792,JRC107877 RegionofSicily(2008)AssessoratoIndustria–SchemadelPianoEnergetico RegionaledellaRegioneSicilia. http://pti.regione.sicilia.it/portal/page/portal/ PIR_PORTALE/PIR_LaStrutturaRegionale/PIR_AssEnergia/PIR_DipEnergia/PIR_ PianoEnergeticoAmbientaledellaRegioneSicilianaPEAR

RegionofSicily(2014)RapportoEnergia2014–Monitoraggiosull’energiainSicilia.Assessorato dell’EnergiaedeiServizidiPubblicaUtilità-Dipartimentodell’Energia RegionofSicily(2015)RapportoEnergia2015–Monitoraggiosull’energiainSicilia.Assessorato dell’EnergiaedeiServizidiPubblicaUtilità-Dipartimentodell’Energia, http://pti.regione.sicilia. it/portal/page/portal/PIR_PORTALE/PIR_LaStrutturaRegionale/PIR_AssEnergia/PIR_ RSE(2017)Atlanteeolicointerattivo. http://atlanteeolico.rse-web.it/.Accessed13Sept2017 StamfordL,AzapagicA(2014)LifecyclesustainabilityassessmentofUKelectricityscenariosto 2070.EnergySustainDev23:194–211. https://doi.org/10.1016/j.esd.2014.09.008

ŠúriM,HuldTA,DunlopED,OssenbrinkHA(2007)Potentialofsolarelectricitygenerationin theEuropeanUnionmemberstatesandcandidatecountries.SolEnergy81:1295–1305. https:// doi.org/10.1016/j.solener.2006.12.007

TERNA(2015)PrevisionidelladomandaelettricainItaliaedelfabbisognodipotenzanecessario 2015–2025.(http://download.terna.it/terna/0000/0744/15.PDF)

TERNA(2017)Statistics. http://www.terna.it/it-it/sistemaelettrico/statisticheeprevisioni.aspx Accessed20Sept2017

US—EPA(2017)UnitedStatesEnvironmentalProtectionAgency. https://www.epa.gov/climateindicators/greenhouse-gases.Accessed13Nov2017

WeidemaB,FreesN,NielsenA-M(1999)Marginalproductiontechnologiesforlifecycleinventories.IntJLifeCycleAssess4:48–56. https://doi.org/10.1007/BF02979395

Chapter2

LCAofPhotovoltaicSolutions intheItalianContext

Abstract InthepresentstudythemainenvironmentalimpactsofdifferentsolutionsforphotovoltaicelectricityproductionintheItaliancontextarediscussed.For solutionwemeanthecombinationbetweenthecelltechnology(CdTe,singleor multi-crystallinesilicon,etc.)andtheinstallationoption(roof,ground,etc.).EnvironmentalimpactsareanalyzedbymeansoftheLifeCycleAssessmentapproach accordingtoISO14040standard.Thelifecycleenvironmentalimpactsofthedifferentsolutionsare,also,comparedwiththeimpactsofanaturalgascombinedcycle plantwhichis,inItaly,themaintechnologyreplacedbynewphotovoltaicinstalled power.Resultsshowthatthereisn’taphotovoltaicsolutionwhichisthebestforall theimpactcategories.Allthesolutionshaveseveralenvironmentaladvantagescomparedtofossilfueltechnologies,evencomparedtonaturalgascombinedcycle.The mainnegativeeffectisarelevantlanduseforgroundinstallations,whichrepresent inItalyalmostthe40%ofthephotovoltaicinstalledpower.Moreovercriticalities forwhatconcernshumantoxicityimpactcategorieshavetobeunderlined.Allthe photovoltaicsolutions,inthecaseofnon-cancereffect,andfiveoutofeleven,inthe caseofcancereffectsshowhigherimpactsthannaturalgascombinedcycleplant.

2.1Introduction

ThepromotionofRenewableEnergySources(RES)isapillaroftheEuropean strategyforclimateandenergy(EC—COM/2014/015)andingeneralofEuropean sustainabledevelopment.

P.Girardi(B) A.Gargiulo

RSERicercaSistemaEnergetico,Milan,Italy

e-mail: pierpaolo.girardi@rse-web.it

A.Gargiulo

e-mail: alessia.gargiulo@rse-web.it

©SpringerNatureSwitzerlandAG2019

R.Basosietal.(eds.), LifeCycleAssessmentofEnergySystems andSustainableEnergyTechnologies,GreenEnergyandTechnology, https://doi.org/10.1007/978-3-319-93740-3_2

AmongRES,photovoltaicis,inItaly,theonewiththehighestgrowthinthelast decade.Duetostrongnationalpromotionpolicy,onlyinfouryears(2008–2011)the averageincreaseofphotovoltaicproductionwasaround300%.In2016photovoltaic withaproductionofmorethan22TWhcoveredalmostthe8%ofthetotalnational electricityproduction.

InthisframeworkitisessentialtounderstandifRES,andinparticularphotovoltaicsolutions,whereascontributingtoclimatechangemitigationhavethepotentialtoreduceortoincreasethecontributionofenergysystemtootherenvironmentalimpactcategories(e.g.airacidification,particulatematterformationpotential). AsuitablemethodologytofacethisproblemisofcoursetheLCA—LifeCycle Assessment—(Sumperetal. 2011).LCAhasbeenwidelyappliedinthefieldof photovoltaicsystemsassessmentasdemonstratedbyseveralliteraturereviewstudies(Pengetal. 2013).However,thesamereviewstudieshaveunderlinedtheneed forfurtherresearch.Inparticularthereistheneedtoenlargethesystemboundaries becauseoftenendoflifeimpactsarenotinvestigated.Moreoverthereistheneedto increasethenumberoftheconsideredenvironmentalimpactcategoriessince,usually,theyareonlylimitedtogreenhouseeffectandtoenergypaybacktime(Gerbinet etal. 2014).

Inthefollowingparagraphs,afterabriefdescriptionoftheItalianphotovoltaic systemevolution,wewilldiscusstheLCAofdifferentphotovoltaicsolutionsfollowingtheISO14040scheme.

2.2EvolutionofPhotovoltaicProductioninItaly

TheproductionofelectricityfromphotovoltaicincreasedinItalyinthelastdecade (Fig. 2.1).Duetostrongnationalpromotionpolicy,onlyinfouryears(between2008 and2011)theaverageincreaseofphotovoltaicproductionwasaround300%.Photovoltaichascovered18.5%in2014and20%in2016oftheelectricityproducedby renewables(GSE 2015),comparedtolessthan1%in2009.In2016withaproductionofmorethan22TWh(almostthe8%ofthenationalelectricityproduction)it wasthesecondrenewableenergysources,afterhydropower.

Asregardsthesizeoftheplants,recentyearsshowatrendtowardssmallerplants. During2014forexample,newinstallationswereessentiallyresidentialwithanaveragepowerof8.1kW,considerablylowerthanthepastyears.Theaverageplantsize, infact,wasthreetimeshigherin2012andsixtimehigherin2011.Asregardthe installationoptions,almost40%oftheinstalledpowerisgroundmounted,almost 50%isonbuildings(mainlyonroof)and6%ismountedongreenhousesorcanopies (suchasincarparking).Theremaining4%coversdifferentinstallationoptions, sometimereallyinterestinglikethoseonthehighwaynoisebarriers(GSE 2015).

Concerningcellstechnologiesandmaterials,single-crystallinesiliconpanelshave decreasedinfavourofmulti-crystallinepanels.InalltheItalianregionsthemulticrystallinesiliconpanelscoverthemajorityoftheinstalledpower,followedby single-crystallinesilicon.Othertechnologieslikethinfilmcoveralittlepercentage

oftheinstalledpower.AccordingtoGSE(2015),in2014morethan72%ofthe installedpoweratnationallevelisinmulti-crystallinesiliconpanels,21%insinglecrystallinesiliconpanels,whileremainingtechnologiesaccountsforonly7%ofthe installedpower.

Fromatechnologypointofviewadecisiveevolutiontowardsmoreefficientand lowimpactsolutionsislikelyinthecomingyears.

ForexampletheresultsofAPOLLON,arecentEUresearchprojectonconcentratedphotovoltaicoutlinethatthissolutioncouldemitperkWhonlythe5%ofCO2 eqemittedbyanaturalgascombinedcycleplant(RSE 2014).Similarresultscome fromotherstudies(FthenakisandKim 2013).Alsowithoutswitchingtoconcentrated photovoltaic,othersolutionsareavailabletoincreasephotovoltaicsystemsperformance.Forexamplesiliconheterojunction(SHJ)cellsofferhighefficienciesand severaladvantagesintheproductionprocesscomparedtoconventionalcrystalline siliconsolarcells(Louwenetal. 2015).Theuseofbifacialmodulescanreduceupto 38%thelifecycleCO2 emissionofasingle-crystallinesystem(Gazbouretal. 2016).

Shiftingfromtheconventionalcelltechnologytothestate-of-the-artPERC(PassivatedEmitterandRearCell)technologywillreducetheenergypaybacktimeand greenhousegasemissionsforphotovoltaicelectricitygeneration(Luoetal. 2018). Finally,one-axistrackinginstallationscanimprovetheenvironmentalprofileofphotovoltaicsystemsbyapproximately10%formostimpactcategories(Leccisietal. 2016).

2.3GoalandScope

Thegoalofthepresentstudyistocompare,fromanenvironmentalpointofview, differentexistingtechnologiesandinstallationoptionsforelectricityproductionfrom photovoltaicpanels.

Fig.2.1 Productionfromphotovoltaicplant. Source GSE(2015)

Tobetterunderstandtheroleofphotovoltaicinsustainabledevelopmentofthe nationalelectricsystem,thedifferentphotovoltaic(PV)solutionsarealsocompared withaNaturalGasCombinedCycle(NGCC)powerplant.Asmatteroffact,NGCC is(intermsofefficiency,greenhousegasandparticulatematteremissions)thebest fossilfueltechnologyforelectricityproduction.Moreoveritisthemaintechnology pushedoutofthemarketbythenewphotovoltaicinstalledpower(GME 2014).

Thefunctionalunitis1kWhdeliveredtotheItaliandistributionnetwork.System boundariesincludealllifecyclephases,includingend-of-life.

Theconsideredtechnologiesare:amorphoussilicon(a-Si),copperindium–gallium-seleniumthinfilm(CIS),cadmiumtelluridethinfilm(CdTe), single-crystallinesilicon(single-Si),multi-crystallinesilicon(multi-Si),ribbonsilicon(ribbon-Si).

Theconsideredinstallationoptionsare:onroof-integrated,onroof-notintegrated, groundmounted.Thecombinationbetweentechnologiesandinstallationoptions givestheelevensolutions,illustratedinTable 2.1.

Concerningimpactcategories,wefollowedtheindicationsoftheworkinggroup ofEuropeanCommissiononProductEnvironmentalFootprintCategoryRules (PEFCR)1 forphotovoltaic.

Inparticular,althoughotherdocumentsandupdateshavefollowed,wereferred totheinterimreportofJuly2014(FrischknechtandItten 2014)inwhichtheimpact categoriesareclassifiedbyrelevance.Impactcategoriesclassifiedashighlyrelevant havebeenselected.Amongthemweexcludedthe“waterscarcity”sinceitistoomuch dependentonlocalconditionsforthescopeofthepresentanalysis.Moreoverthe characterizationmethodselectedbyJRC’sguidelinesforlifecycleimpactassessment (EC-JRC 2011)isfarfrombeingreliable(ithas“tobeappliedwithcaution”).

Table2.1 Solutionstakenintoaccountintheanalysis

Solution

Peakpower(kWp)

Slanted-roofinstallation,a-Si,laminated,integrated 3

Slanted-roofinstallation,a-Si,panel,mounted 3

Slanted-roofinstallation,CdTe,laminated,integrated 3

Slanted-roofinstallation,CIS,panel,mounted 3

Slanted-roofinstallation,multi-Si,laminated,integrated 3

Slanted-roofinstallation,multi-Si,panel,mounted 3

Slanted-roofinstallation,ribbon-Si,laminated,integrated 3

Slanted-roofinstallation,ribbon-Si,panel,mounted 3

Slanted-roofinstallation,single-Si,laminated,integrated 3

Slanted-roofinstallation,single-Si,panel,mounted 3

Opengroundinstallation,multi-Si 570

1 ProductEnvironmentalFootprintCategoryRules(PEFCRs)providespecificguidanceforcalculatingandreportinglifecycleenvironmentalimpacts.

InordertocomparethePVsystemwithNGCCwehaveincludedtwoimpact categories(acidificationpotential,photochemicalozoneformationpotential),that, eventhoughwithmediumrelevanceforPVsystems,arerelevantforconventional fossilfuelpowerplant.FinallyweincludedtheCumulativeEnergyDemand(CED) bothrenewableandnon-renewableasitisrelevantforestimatingtheenergypayback timeofPVsolutions.

2.4LifeCycleInventory

Asregardtheinventoryanalysis,thedatausedforbackgroundsystemscamefrom Ecoinventversion3(Wernetetal. 2016).WhendealingwithPVsystems,environmentalimpactsaremainlyrelatedtothematerialsusedformoduleproductionand installationandtoefficiencyinelectricityproduction.

Givenaninstalledpower(atpeak),theproductiondependsonseveralfactors suchassolarradiation,modulesinclinationandcellefficiency.Thisfactorscanbe expressedbytheso-calledyieldfactor(inhours)whichistheratiobetweenthe annualproductionofaPVplantanditsinstalledpeakpower.

Inthisstudy,onthebasisofGSE’sstatistics(GSE 2014)anaverageyieldfactor of1140hwasestimated.

Lifetimeofphotovoltaicsystemhasbeenassumedequalto30years.

ThePVsystemincludesthepanel,themountingstructureandtheinverter.

2.5LifeCycleImpactAssessment

Asdiscussedabovetheimpactassessmenthasbeencarriedoutusingeightimpact categories(seeTable 2.2)andtheCED(bothrenewableandnot).Besidesbeing comparedtoeachothers,thePVsolutionsimpactsarecomparedtotheelectricity productionfromaNGCCplant.Allimpactsarereferredtothefunctionalunit,that is1kWhdeliveredintothedistributionnetwork,withthehypothesisthatthePV panelsareconnectedtothedistributionnetwork,whiletheNGCCpowerplantis connectedtothehighvoltagegrid.ForthisreasontheimpactsofthekWhdelivered bytheNGCCinclude6.3%ofgridlosses.

InTables 2.3 and 2.4 theresultsofimpactassessmentarereportedfortheeleven PVsolutions.Valueshigherthantheaveragearehighlightedinred.

AsregardsthecomparisonamongthedifferentPVsolutions,resultsshowthat thereisnotabetteroraworsesolutionforalltheimpactcategoriestakeninto consideration(Fig. 2.2).

Ontheotherhanditcanbenoticedthatthesingle-Si,slantedroofinstallation mounted(i.e.notintegrated)showsimpactshigherthanaverageforsixcategories anditisthesolutionwiththeworstenvironmentalperformanceforfourimpact categoriesoutofeight.

Another random document with no related content on Scribd:

The Project Gutenberg eBook of Christmas carols

This ebook is for the use of anyone anywhere in the United States and most other parts of the world at no cost and with almost no restrictions whatsoever. You may copy it, give it away or re-use it under the terms of the Project Gutenberg License included with this ebook or online at www.gutenberg.org. If you are not located in the United States, you will have to check the laws of the country where you are located before using this eBook.

Title: Christmas carols

Old English carols for Christmas and other festivals

Contributor: Lucy Etheldred Broadwood

Editor: L. Edna Walter

Illustrator: J. H. Hartley

Release date: December 23, 2023 [eBook #72492]

Language: English

Original publication: New York: The MacMillian Company, 1922

Credits: Robin Monks, Linda Cantoni, and the Online Distributed Proofreading Team at https://www.pgdp.net (This file was produced from images generously made available by The Internet Archive) *** START OF THE PROJECT GUTENBERG EBOOK CHRISTMAS CAROLS ***

Transcriber’s Note: In the HTML version of this e-book, you can click on the [Listen] link to hear an mp3 audio file of the carol. Click on the [MusicXML] link to download the notation in MusicXML format. These music files are the music transcriber’s interpretation of the printed notation and are placed in the public domain.

CHRISTMAS CAROLS

CONTENTS

IN THE SAME SERIES.

ENGLISH NURSERY

RHYMES.

Selected and Edited by L. EDNA WALTER. B.Sc.

Harmonized by LUCY E. BROADWOOD.

Illustrated by DOROTHY M. WHEELER.

Containing 32 full-page illustrations in colour, decorative borders, and about 60 decorative headings and tailpieces. Demy 4to (11½ × 8¾ inches).

SONGS FROM ALICE IN WONDERLAND AND

THROUGH THE LOOKING-GLASS.

Words by LEWIS CARROLL. Music by LUCY E. BROADWOOD. Illustrations by CHARLES FOLKARD.

Containing 12 full-page illustrations in colour, decorative borders, and many small illustrations. Demy 4to, cloth.

Published by A. & C. BLACK, Ltd., 4, 5, & 6, Soho Square, London, W.1.

CHRISTMAS CAROLS

Old English Carols for Christmas and other Festivals.

SELECTED AND EDITED BY

HARMONISED BY LUCY E. BROADWOOD

ILLUSTRATED BY J.H. HARTLEY

NEW YORK: THE MACMILLAN COMPANY, FIFTH AVENUE.

LONDON: A. & C. BLACK, LIMITED, 4, 5, & 6, SOHO SQUARE.

This book is dedicated to

ELIZABETH

because she rather liked it.

Published, Autumn, 1922.

FOREWORD

S times or events have been celebrated from time immemorial by feasting, dancing, and singing. Often the dancers formed a ring and sang as they danced, first the dance and later the song being called a carol. The carol was not always strictly religious, although in the old times both the singing and dancing often took place in cathedrals and churches. Some of the carols that we still know are connected with times before the Christian era. They have now lost their dance and the melody has changed, but the ideas are very ancient. The Holly and the Ivy suggest the old Druids, and we still put up Holly and Ivy in our houses just as people did before the time of Christ. We put them up at Christmas, and we sing the carol at Christmas—but the idea at the back of it is older than Christmas, for the Church accepted all that was found to be of value in the old customs, and adapted them to set forth the newer faith. The carrying in of the Boar’s Head is an old ceremony, too. It was considered a Royal Dish, and Henry II. ordered it to appear at a special feast which he gave in honour of his son.

In the old days people thought of the New Year as the time when the trees and flowers began to come out—that is about May Day—so the May Day Carols celebrate the New Year’s Day of ever so long ago. Gradually, however, carols have centred more and more round events in the life of Christ, and especially round the wonderful story of His Birth. Many of them have just been handed on from one person to another through hundreds of years, some have only been

written down at all during the last century For example, the version given here of the “Black Decree” was sung into my phonograph by an old man of seventy-five. All the carols chosen for this book are those which have been sung through many, many years at times of festival and mirth (note how often food and drink are referred to), so don’t expect them to be pious in the modern way or to be at all like our present-day hymns.

The Publishers desire to acknowledge their indebtedness to Miss Lucy E. Broadwood for kindly permitting them to reproduce in this collection the following carols from her ENGLISH TRADITIONAL SONGS AND CAROLS: “King Pharaoh,” “The Moon Shines Bright,” “The Sussex Mummers’ Carol,” and “I’ve been Rambling all the Night.” Also to Miss A.G. Gilchrist for the “Pace Egging Song” and “The Seven Joys of Mary,” and to the Rev. S. Baring-Gould and his publishers (Messrs. Methuen & Co., Ltd.) for the “Somersetshire Wassail” from A GARLAND OF COUNTRY SONG.

CONTENTS

ILLUSTRATIONS IN COLOUR

Good King Wenceslas

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.