Life Cycle Assessment of Energy Systems and Sustainable Energy Technologies The Italian Experience Riccardo Basosi Visit to download the full and correct content document: https://textbookfull.com/product/life-cycle-assessment-of-energy-systems-and-sustain able-energy-technologies-the-italian-experience-riccardo-basosi/
More products digital (pdf, epub, mobi) instant download maybe you interests ...
Life Cycle Assessment of Energy Systems Closing the Ethical Loophole of Social Sustainability 1st Edition
Nicholas Sakellariou
https://textbookfull.com/product/life-cycle-assessment-of-energysystems-closing-the-ethical-loophole-of-socialsustainability-1st-edition-nicholas-sakellariou/
Social Life Cycle Assessment Case Studies from the Textile and Energy Sectors Subramanian Senthilkannan Muthu
https://textbookfull.com/product/social-life-cycle-assessmentcase-studies-from-the-textile-and-energy-sectors-subramaniansenthilkannan-muthu/
Sustainable Energy Technologies 1st Edition Eduardo Rincón-Mejía
https://textbookfull.com/product/sustainable-energytechnologies-1st-edition-eduardo-rincon-mejia/
International Scientific Conference Energy Management of Municipal Facilities and Sustainable Energy Technologies EMMFT 2018: Volume 1 Vera Murgul
https://textbookfull.com/product/international-scientificconference-energy-management-of-municipal-facilities-andsustainable-energy-technologies-emmft-2018-volume-1-vera-murgul/
International Scientific Conference Energy Management of Municipal Facilities and Sustainable Energy Technologies EMMFT 2019: Volume 1 Vera Murgul
https://textbookfull.com/product/international-scientificconference-energy-management-of-municipal-facilities-andsustainable-energy-technologies-emmft-2019-volume-1-vera-murgul/
International Scientific Conference Energy Management of Municipal Facilities and Sustainable Energy Technologies EMMFT 2019: Volume 2 Vera Murgul
https://textbookfull.com/product/international-scientificconference-energy-management-of-municipal-facilities-andsustainable-energy-technologies-emmft-2019-volume-2-vera-murgul/
Hydrogen Economy Supply Chain Life Cycle Analysis and Energy Transition for Sustainability Antonio Scipioni
https://textbookfull.com/product/hydrogen-economy-supply-chainlife-cycle-analysis-and-energy-transition-for-sustainabilityantonio-scipioni/
Achieving the Sustainable Development Goals Through Sustainable Food Systems Riccardo Valentini
https://textbookfull.com/product/achieving-the-sustainabledevelopment-goals-through-sustainable-food-systems-riccardovalentini/
Low Carbon Energy Supply Technologies and Systems 1st Edition Atul Sharma
https://textbookfull.com/product/low-carbon-energy-supplytechnologies-and-systems-1st-edition-atul-sharma/
Riccardo Basosi · Maurizio Cellura
Sonia Longo · Maria Laura Parisi Editors
Life Cycle Assessment of Energy Systems and Sustainable Energy Technologies The Italian Experience GreenEnergyandTechnology Moreinformationaboutthisseriesat http://www.springer.com/series/8059
RiccardoBasosi
• MaurizioCellura
SoniaLongo • MariaLauraParisi
Editors
LifeCycleAssessment ofEnergySystems andSustainableEnergy Technologies TheItalianExperience
Editors
RiccardoBasosi DepartmentofBiotechnology, ChemistryandPharmacy UniversityofSiena Siena,Italy
MaurizioCellura DepartmentofEnergy,Information EngineeringandMathematicalModels UniversityofPalermo Palermo,Italy
SoniaLongo DepartmentofEnergy,Information EngineeringandMathematicalModels UniversityofPalermo Palermo,Italy
MariaLauraParisi DepartmentofBiotechnology, ChemistryandPharmacy UniversityofSiena Siena,Italy
ISSN1865-3529ISSN1865-3537(electronic) GreenEnergyandTechnology
ISBN978-3-319-93739-7ISBN978-3-319-93740-3(eBook) https://doi.org/10.1007/978-3-319-93740-3
LibraryofCongressControlNumber:2018960203
© SpringerNatureSwitzerlandAG2019
Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart ofthematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations, recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped.
Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthis publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse.
Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthis bookarebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernorthe authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor foranyerrorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardto jurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations.
ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland
Preface Energyisoneofthekeyelementsincludedinthe17SustainableDevelopment Goals(SDGs)oftheUnitedNations’ 2030AgendaforSustainableDevelopment. Universalaccesstoenergy,ahighershareofrenewableenergyandmassive improvementsinenergyeffi ciencyarepartofthetopglobalprioritiesforsustainabledevelopmentintheyearstocome.Indetail,ensuringtheaccessto affordable,reliable,sustainable,andmodernenergyisthemainobjectiveofSDG7. StronginteractionsamongenergyandmostofthetopicsoftheotherSDGscanbe foundthatwillbebrieflydiscussedbelow.Enablingpoorcommunitiestouselocal cleanandrenewableenergyresourcesreliesonSDG1 “Nopoverty” andSDG10 “Reducedinequalities”.Inaddition,thereductionofenergy-relatedresourceand waterdepletion,greenhousegasemissions,air–water–soilpollutioncancontribute totheachievementofSDG3 “Goodhealthandwell-being”,SDG6 “Cleanwater andsanitation”,SDG12 “Responsibleproductionandconsumption”,andSDG13 “Climateaction ”.Furthermore,renewableenergyandenergyefficiencycansupport theSDG2 “Zerohunger” andSDG11 “Sustainablecitiesandcommunities” . Thus,energyisanenablingandstrategicfactortowardsustainabledevelopment andforthetransitiontowardalow-carboneconomy.
However,takingsustainability-relateddecisionsintheenergy fieldwould requirescience-basedapproachesfocusingonthewholeenergysystem,including energygeneration,distribution,use,andend-of-life.
TheLifeCycleAssessment(LCA)methodologyispivotalforthispurpose.Itis usefulforassessingenergy-relatedresourcedepletionandenvironmentalimpacts, foravoidingburdentransferfromonelife-cyclesteptoanotherandfromanimpact categorytotheothers.Furthermore,ithelpsinsupportingtheidenti ficationof priorityactionsinpolicymaking,theselectionofthebestlow-carbonsolutionsfor energysupplyanduse,theidenti ficationofthehot-spotsforreducingthecarbon intensityofenergysystemsandthemanagementoftheend-of-lifeofenergy systems.
Inthiscontext,theaimsofthisbookaretosharesomeItalianexperienceson LCAappliedtotheenergysystemsandtechnologiesandprovideanoverview ofthemostrecentoutcomesoftheresearchinthe fieldofenergy,withaspeci fic focusonrenewables,bio-energy,andsustainablesolutions.Thebookconsistsof twoparts:the firstonedescribescasestudiesandreviewstudiesofLCAappliedto differentenergysourcesandenergysystems(geothermal,photovoltaic,biomass, electricityproduction,energy-relatedsystemsasbatteriesandsmartgrids).The secondpartofthebookfocusesonLCAappliedtobio-energiesandbio-energy systems.
Thebookistheoutcomeoftheactivityofseveralmembersoftheworkinggroup “Sustainableenergyandtechnologies” ofthe “ItalianLCANetwork” association.
WewouldliketoacknowledgeallAuthorsforsubmittingtheirvaluablework andthemembersofthe “ItalianLCANetwork” associationforsupporting thiswork.Wehighlightthattheviewsexpressedinthisbookarethoseofthe AuthorsanddonotnecessarilyrepresenttheviewsoftheItalianLCAnetwork association.
WehopethatLCApractitioners,researchers,andstudentswillconsiderthis bookasanopportunitytolearnmoretheapplicationsoftheLCAmethodologyand tounderstandtheenvironmentalimpactofenergysystemsandsustainableenergy technologies,throughtheanalysisoftheirlifecycles.
TheItalianLCANetworkandtheWorkingGroup “EnergyandSustainableTechnologies”
TheItalianLCANetworkwascreatedin2006withtheaimtohaveanetworkfor exchanginginformation,methodologies,andgoodpracticesonLCAinItaly.In 2012,theItalianLCANetworkbecameanassociation,foundedbytheItalian NationalAgencyforNewTechnologies,EnergyandSustainableEconomic Development(ENEA);thePolitecnicoofMilano;theUniversitiesofBari, Chieti-Pescara,PadovaandPalermo;andtheNationalInteruniversityConsortium forChemicalReactivityandCatalysis(CIRCC).
Themainobjectivesofthe “ItalianLCANetwork” associationarethefollowing: promotingtheadoptionofthelifecyclethinkingapproachforachievingasustainabledevelopment;promotingthedisseminationoftheLCAmethodologyat nationallevelandtheexchangeofinformationandbestpracticesontheLCAin Italy;encouragingnetworkingprocessesamongdifferentstakeholdersforthe realizationofnationalandinternationalprojects.
Theworkinggroup “Energyandsustainabletechnologies” ofthe “ItalianLCA Network” aimsatassessingtheenergyandenvironmentalperformancesofenergy generation,transformationandusesystems;atpromotingtheeco-efficiencyonany
levelintheenergysector,atfollowingtheapproachfromresourcetowaste;at analyzingthestateoftheartofLCAstudiesonenergyandsustainabletechnologies;atexchangingexperiencesregardingLCAappliedtoenergyandsustainable technologies.
Siena,ItalyRiccardoBasosi Palermo,ItalyMaurizioCellura Palermo,ItalySoniaLongo Siena,ItalyMariaLauraParisi Preface
PartILCAAppliedtotheEnergySector:StateoftheArt andCaseStudies
1LifeCycleAssessmentofElectricityGenerationScenarios inItaly 3
MaurizioCellura,MariaAnnaCusenza,FrancescoGuarino, SoniaLongoandMarinaMistretta
2LCAofPhotovoltaicSolutionsintheItalianContext ........... 17 PierpaoloGirardiandAlessiaGargiulo
3GeothermalEnergyProductioninItaly:AnLCAApproach forEnvironmentalPerformanceOptimization ................ 31 MariaLauraParisiandRiccardoBasosi
4ApplicationofLCAfortheShort-TermManagement ofElectricityConsumption 45 CarloBrondi,SimoneCornago,DarioPiloni,AlessandroBrusaferri andAndreaBallarino
5Small-SizeVanadiumRedoxFlowBatteries:AnEnvironmental SustainabilityAnalysisviaLCA 61 PasquaL’Abbate,MicheleDassistiandAbdulG.Olabi
PartIILCAAppliedtoBio-energy:StateoftheArt andCaseStudies
6LifeCycleAssessmentofRenewableEnergyProduction fromBiomass ......................................... 81 LuciaLijó,SaraGonzález-García,DanielaLovarelli, MariaTeresaMoreira,GumersindoFeijooandJacopoBacenetti
7EnergyandEnvironmentalAssessmentsofAgro-biogasSupply ChainsforEnergyGeneration:AComprehensiveReview 99 CarloIngrao,JacopoBacenetti,GiuseppeIoppolo andAntonioMessineo
8AReviewonPotentialCandidateLignocellulosicFeedstocks forBio-energySupplyChain ............................. 119 AmaliaZucaro,AngeloFierroandAnnachiaraForte
9LifeCycleAssessmentsofWaste-BasedBiorefineries ACritical Review .............................................. 139 SerenaRighi
10LifeCycleAnalysisoftheProductionofBiodiesel fromMicroalgae 155 MassimoCollotta,PascaleChampagne,WarrenMabee, GiuseppeTomasoniandMarcoAlberti
11ComparativeLifeCycleAssessmentStudyonEnvironmental ImpactofOilProductionfromMicro-AlgaeandTerrestrial OilseedCrops 171 SabinaJez,DanieleSpinelli,AngeloFierro,ElenaBusi andRiccardoBasosi
Chapter1 LifeCycleAssessmentofElectricity GenerationScenariosinItaly MaurizioCellura,MariaAnnaCusenza,FrancescoGuarino,SoniaLongo andMarinaMistretta
Abstract Hinderingglobalwarmingandachievingamorecompetitive,secureand sustainableenergysectoraresomeofthemostrelevantgoalsofthe2030Framework forclimateandenergyoftheEuropeanUnion.Europeancountrieshavetoidentify andimplementstrategiesforcontributingtotheseambitiousgoals.Inthiscontext, theauthorscarriedoutascenarioanalysisontheSicilianelectricitymixinorder toestimatethelifecycleenergyandenvironmentalbenefitsoftheincreaseofthe useofrenewableenergytechnologiesforelectricityproduction,andthepotential contributionofSicilyintheachievementoftheEuropeanenergyandenvironmental targets.Indetail,theauthorsidentifiedtwoelectricitygenerationscenariosfor2030 startingfromtheSicilianelectricitymixin2014,performedassumptionsonthe forecastedelectricitydemandandassessedthepotentialofrenewableenergysources exploitationandthetechnical,political,social,andenvironmentalconstraints.Then, theyappliedtheLifeCycleAssessmentmethodologytoassesstheeco-profilesof theidentifiedelectricitygenerationmixesandcomparedthemwiththeeco-profile ofelectricityproducedin2014.Theresultsofthecomparisonshowedareductionof mostofthe16examinedenvironmentalimpactcategories,exceptforthoserelated tohumantoxicity,particulatematter,ionizingradiationandresourcedepletion.
M.Cellura · M.A.Cusenza(B) · F.Guarino · S.Longo
DipartimentodiEnergia,Ingegneriadell’InformazioneeModelliMatematici, UniversitàdegliStudidiPalermo,VialedelleScienzeEd.9,90128Palermo,Italy
e-mail: mariaanna.cusenza@unipa.it
M.Cellura
e-mail: maurizio.cellura@unipa.it
F.Guarino
e-mail: francesco.guarino@unipa.it
S.Longo
e-mail: sonia.longo@unipa.it
M.Mistretta
DipartimentoPatrimonioArchitettonicoeUrbanistico,UniversitàMediterranea diReggioCalabria,viaMelissari,89124ReggioCalabria,Italy
e-mail: marina.mistretta@unirc.it
©SpringerNatureSwitzerlandAG2019
R.Basosietal.(eds.), LifeCycleAssessmentofEnergySystems andSustainableEnergyTechnologies,GreenEnergyandTechnology, https://doi.org/10.1007/978-3-319-93740-3_1
Keywords Scenarioanalysis · Renewableenergysources · Lifecycleassessment Marginaltechnologies
1.1Introduction
Greenhousegases(GHG)fromhumanactivitiesarethemostsignificantdrivers ofobservedclimatechangesincethemid-twentiethcentury(US—EPA 2017). From1970to2012,theGHGemissionsincreasedsteadilyfrom24.3to46.4Gton CO2eq /year(Janssens-Maenhoutetal. 2017).
Inthepastyears,theawarenessoftheimpactsofhumanactivitiesonclimate hasledtothedefinitionofvariousenvironmentalpoliciesaimedatreducingGHG emissions(e.g.KyotoProtocol,Parisclimateconference—COP21,etc.).
AmongthehumanactivitiesresponsibleforGHG,theenergysector(including powergenerationandenergyconsumingsectors,i.e.buildings,industry,transport andagriculture)representsbyfarthelargestsourceofemissions.Indetail,itaccounts fortwo-thirdsofglobalGHGand80%ofCO2 emissions(IEA 2014a, 2016, 2017). Therefore,effectiveactionsintheenergysectorareessentialtotacklingtheclimate changeproblem(Beccalietal. 2007).MitigationscenariostudiescarriedoutbyIPCC indicatethat,withintheenergysystem,theelectricitysectorcanplayanimportant roleindeepGHGemissionscut,asthedecarbonizationofelectricitygenerationcan beachievedatamuchhigherpacethanintherestoftheenergysystem(IPCC 2014). Avarietyofmitigationoptionsexistsintheelectricitysector,includingrenewable, nuclearpowerplantsorfossilfuelpowerstationsequippedwithcarboncaptureand storage(CCS)technologies(Bruckneretal. 2014).Manyclimatechangemitigation policiesarefocusedonreplacingfossilfuelwithrenewableenergysources(RES) (Dandresetal. 2012).
Inthisframework,theEuropeanUnion(EU)hassetambitioustargetsfor2030 inthefieldofGHGemissionsandrenewableenergygeneration(EuropeanCommission 2011).Indetail,the2030EUenergyandclimateobjectivesaimatcuttingGHG emissionsby40%ifcomparedto1990levels,andatincreasingtheshareofrenewablestoatleast27%ofEUenergyconsumption(EuropeanCommission 2014).In ordertomatchsuchobjectives,allMemberStatesshouldcontributetotheattainment ofthesecommonobjectivesandtargetstodifferentextents(EuropeanCommission 2016).Inthiscontext,theauthorsfocusedtheirattentionontheelectricitysector,and carriedoutascenarioanalysisforitsgenerationinSicilyin2030,consideringahigh exploitationofRES.Theauthorsfollowedalifecycleapproachinordertoassessthe potentialcontributionofSicilyintheachievementofEuropeanenergyandclimate targets.Moreover,asreplacingfossilfuelswithREScouldcausenegativeimpacts, e.g.,intermsofresourcesdepletion,theycarriedoutanenvironmentalevaluationof thescenarios,includingtheassessmentsofawiderangeofenvironmentalimpacts.
1.2ScenarioAnalysis Inthefollowingsteps,themethodologyemployedinthedefinitionoftheelectricity generationscenariosin2030isbrieflydescribed:
• Step1—ElectricityproductioninSicily:analysisofelectricityproductioninSicily from2009to2014inordertocharacterizetheelectricitymixandtheRESpenetrationinthesystem.
• Step2—Identificationoftherenewableenergytechnologiesthatcanchangetheir capacityproduction(increaseordecrease)inresponsetoachangeinthedemand forelectricity(renewableenergymarginaltechnologies).
• Step3—Electricitygenerationscenarios:definitionoftwoelectricityscenarios consideringadecrease( 0.2%/year)oftheelectricitydemandby2030inthefirst oneandanincrease(+0.6%/year)inthesecondone.Bothforecastedscenariosare characterizedbyanincreaseinelectricityproducedbyRES.
1.2.1ElectricityProductioninSicily InSicily,electricityisgeneratedbythermalpowerplants,hydroelectricplants,wind turbines,andphotovoltaic(PV)systems(RegionofSicily 2015).Figure 1.1 shows theevolutionsoftheSicilianelectricitymixpertypeofplantandenergysourcefrom 2009to2014(TERNA 2017;GSE 2017).
2014wasassumedasreferencescenario(RS14)duetothehighestavailabilityof data:theannualtotalelectricityproductionwasequalto22,536GWh:75.3%was generatedbyfossilfuelthermalpowerplantsand24.7%byRES(TERNA 2017). ConcerningRESonly2.1%wasgeneratedbyhydroelectricplants(1.4%hydropower atreservoir;0.6%hydropowerrunofriver),8.4%byPVsystems,13.0%bywind turbines,and1.2%bybioenergy.
TheamountofelectricitygeneratedbyRESin2014wasassumedasareferencefor theestimationofRESexploitationinthe2030—scenarios,asdescribedinSect. 1.2.3.
1.2.2IdentificationoftheRenewableEnergyMarginal Technologies InordertocontributetotheEUenergyandclimategoals,thefutureelectricity productionsectorshouldbecharacterizedbyanincreaseoftheRES.Then,the potentialcapacityproductionofeachrenewableenergytechnologyshouldbeidentified.Atechnologythatcanchangeitscapacityproductioninresponsetoachange indemandinanenergysystem(increaseordecrease)isdefinedasamarginaltechnology(Weidemaetal. 1999).Itisanunconstrainedtechnology,i.e.itscapacitycan beadjustedinresponsetoachangeindemandwithoutbeingsubjectedtonatural
Bioenergy*** (CHP* + Power plants)
Power plants - oil products
Power plants - natural gas
CHP* - other fuels (solid)**
CHP* - oil products
CHP* - natural gas
Wind Photovoltaic
Hydropower - run of river
Fig.1.1 ShareofelectricityproductionpertypeofplantandofenergysourceinSicilyfrom2009 to2014(* CHP:combinedheatandpowerplant; ** otherfuel(solid):coke,browncoalbriquettes, etc.; *** bioenergy:biogas,bioliquidandbiomass)(ownelaborationfromTERNAandGSEdata) [theproductionofelectricityinpumpedstorageunitsfromwaterpreviouslypumpeduphillisnot included,asindicatedin(EuropeanCommission2009)]
capacityconstraints(e.g.theamountofwateravailableinaspecificregion),political constraints(e.g.emissionlimits),etc.(Weidemaetal. 1999).
TheauthorsidentifiedtherenewableenergymarginaltechnologiesfortheSicilian electricitysectorconsideringthefollowingfactors:
1.RESpenetrationintheSicilianelectricitymixin2014; 2.thetechnicalpotential1 fortheexploitationofRESinSicily; 3.theEuropeanenergypoliciesandtheSicilianenergystrategies(RegionofSicily 2008, 2014, 2015).
Asforecastsfor2030werenotavailable,thetechnicalpotentialforRESexploitationin2030wasassessedstartingfromtheestimationsofRESdevelopmentin2020, reportedinnationalandregionalstudies(Beninietal. 2010;Alterachetal. 2011; RegionofSicily 2008, 2014, 2015).
Indetail,consideringthattheRESexploitationinSicilyin2016(TERNA 2017) wasstillfarfromtheforecastedpotentialstobeinstalledwithin2020,theauthors hypothesizedthatthesepotentialsfor2020willbeinstalledinthemedium—long period(fromnowto2030).
1 Theachievableenergygenerationofaparticulartechnologygiventhesystemperformance,topographiclimitations,environmentalandland-useconstraints.
Theonlyexceptionwasrepresentedbythewind-basedsystemsforwhichestimationsfor2030wereavailable(ANEV—AssociazioneNazionaleEnergiadelVento 2017).
Inthefollowing,theprocedurefortheidentificationoftherenewableenergy marginaltechnologiesisdescribed.
Hydropower Themainconstraintsofhydropowerarelowsocialacceptance,highinitialinvestment costsandtheneedtoconsiderotherwater-usingsectors(e.g.irrigationinagriculture, domesticuses,otherindustrialuses,etc.)whenplanningthehydropowerdevelopment(IEA 2011).IntheSicilian“EnergyMasterPlan”(RegionofSicily 2008), whichistheofficialdocumentdescribingthecurrentenergysectorandthefuture energyplansinSicily,nosignificanthydropoweruseincreaseistakenintoaccount asalmostalltheavailablepotentialisconsideredexploitedandthepotentialofsmall hydroisverylimited.Then,hydropowertechnologiescannotbeconsideredmarginal intheSicilianenergysystemandthefutureincreaseofelectricitygenerationfrom theseplants,duetosmallhydro(RegionofSicily 2008;Cattinietal. 2011)canbe assumedasnegligibleifcomparedtoRS14.
Wind Barrierstothediffusionofwindpowergenerationincludecapitalcosts,uncertainty regardingpolicysupport,impactsofitsintermittentgenerationonthepowersystems, andlowsocialacceptanceduetothevisualimpact(IEA 2008).
Aninstalledpowerequalto2000MWisforecastedforSicilyin2030(+14% comparedtoRS14)(ANEV—AssociazioneNazionaleEnergiadelVento 2017). Thisestimationisdoneexcludingtheareassubjecttoenvironmentalandtechnicalconstraints(e.g.protectionoffloraandsoilorography).Then,consideringthis potentialandthecurrentinstalledpower,windplantscanbeconsideredasamarginal technologyfortheSicilianenergysystem.Startingfromtheforecastedinstallable power(2000MW)andconsideringanaveragewindplantproductivityequalto 2000MWh/MW(RSE 2017),agenerationof4000GWhisestimatedfor2030.
Solar
Thepenetrationintheenergysystemofthistechnologymainlydependsonitscost (andrelatedincentives).Photovoltaicscanbeconsideredamarginaltechnology,as withintherenewabletechnologies,solarpowerseemstobethemostpromising, consideringthehighsolarirradiationinSicily(Šúrietal. 2007;Huldetal. 2012) andtheuntappedpotential(RegionofSicily 2008, 2014).
Indetail,theoverallinstalledsolarpowerinSicilywas1295MWinRS14while aPVinstallablecapacityequalto1812MWisforecastedin2020(RegionofSicily 2014).Consideringthattheinstalledpowerin2016wasequalto1344MW(+2.7% comparedto2015)(TERNA 2017),itissupposedthattheestimatedpotentialfor2020 couldbeinstalledby2030.Startingfromtheforecastedinstallablepower(1812MW) andconsideringanaveragePVpowerplantproductivityequalto1500MWh/MW (EC—JRC 2017),agenerationof2718GWhisestimatedfor2030.
Bioenergy Thepotentialelectricitygenerationfromthermalplantsfuelledwithbioenergyin Sicilyin2020isestimatedas795GWh(Beninietal. 2010),consideringthelimitationsduetootherpotentialusesofbioenergy,e.g.foragriculturalapplications.Asin 2016,theelectricitygenerationbybioenergywas239.9GWh(TERNA 2017),itis assumedthattheestimatedproductionof795GWhwillbereachedinamedium—longperiod(fromnowto2030).Thus,thermalplantsfuelledwithbioenergycanbe consideredasamarginaltechnologyfortheSicilianenergysector.
1.2.3ElectricityGenerationScenariosDefinition Thedefinitionoftwopossiblescenariosforelectricitydemandin2030isbasedonthe predictionoffutureelectricitydemand(TERNA 2015).Thefirstscenario,named as“Basescenario”(BS30),estimatesadecreaseof 0.2%/yearoftheelectricity demandfortheItalianIslands(SicilyandSardinia)(TERNA 2015),whichresults inavalueof21,512GWhin2030( 3.2%ifcomparedtoRS14).Thesecondone, namedas“Developmentscenario”(DS30),estimatesanincreaseof+0.6%/yearof theelectricitydemand(TERNA 2015)whichresultsinademandof24,443GWhin 2030(+10%ifcomparedtoRS14).
TheexploitationofRESinboththeforecastedscenariosisassumedtobeequal tothetechnicalpotentialdiscussedinSect. 1.2.2.Themainassumptionsonthe renewablemarginaltechnologiesoftheBS30andDS30scenariosaresummarized inTable 1.1
Theassessmentoftheelectricitygenerationfromthermoelectricplantsfuelled withfossilfuelsinthefuturescenariosisbasedonthedifferencebetweentherenewableenergyproductionandtheforecastedenergydemandinthesameyear.Itis 14,062GWhinBS30and16,993GWhintheDS30scenario.Thepercentagedistributionofeachtechnologyinthethermoelectricsectorisconsideredunchanged ifcomparedtoRS14.BothscenariosareincompliancewiththeEuropeanenergy strategiesastheyreducethefossilfuelsdependencebyincreasingRESpenetration.
Table1.1 Mainassumptionsontherenewablemarginaltechnologiesintheforecastedscenarios
Table1.2 Percentagecompositionofthegenerationof1kWhofelectricitypertypeofplantand ofenergysourceinRS14,BS30andDS30scenario(%)
StartingfromtheelectricitymixinRS14andinthetwoscenarios,thepercentage compositionofthegenerationof1kWhofelectricitypertypeofplantandenergy sourcewasidentified(Table 1.2).
1.3LifeCycleAssessment 1.3.1GoalandScopeDefinition AnLCAapproachhasbeenappliedtoassessthepotentialenergyandenvironmentalbenefits/impactsoftheforecastedelectricitymixeswithrespecttoRS14.The assessmentwascarriedoutincompliancewithISO14040(ISO 2006a)andISO 14044(ISO 2006b).Theproductionof1kWhofgrosselectricitywasselectedasa functionalunit(FU).Thesystemboundariesincludedtheextractionandtransportof rawmaterialsandfuels,theplantconstructionandoperation.Forrenewableenergy systemsalsotheend-of-lifestepwastakenintoaccount.Forthermalpowerplants, theend-of-lifewasnotconsideredduetoalackofreliablesecondarydata.
TheCumulativeEnergyDemand(CED)methodwasusedtoassesstheprimary energyconsumption(Frischknechtetal. 2007a),whiletheimpactassessmentwas performedbymeansoftheILCD2011Midpointmethod(EC—JRC 2012).
1.3.2LifeCycleInventory Datacollection,dataqualityandassumptions
Thedatacollectionprocessandtheassessmentofthepercentagecompositionof1 kWhofelectricitypertypeofplantandenergysourcearedescribedinSect. 2.2
Theeco-profilesofelectricitygenerationbyeachpowerplantandenergysource weretakenfromEcoinvent(Frischknechtetal. 2007b)bothfor2014and2030. Theauthorsassessedtheenvironmentalimpactsofthefuturescenariosbyusingthe eco-profilereferredtothecurrenttechnologydevelopmentforthefollowingreasons:
• Theeco-profilechangesoftheelectricitygeneratedbythermoelectricplants(poweredbybothfossilfuelsandbioenergy)occurringoverthenextdecadeswere assumednegligibleduetotheuseofmaturetechnologies(StamfordandAzapagic 2014)andduetotheirlifetime(upto50years)(IEA 2014b);
• Theeco-profilesofwindandPVpowerplantsareexpectedtoimprovewithrespect tothecurrentonesthankstotheemploymentofmoreefficientmaterialsand technologies.Thiswillentailahigherelectricityoutputperunitofinput(IEA 2008)and,consequently,thereducedimpactperkWhofelectricitygenerated. However,duetotheuncertaintyonthetechnologicaldevelopmentandonthelife cycledataforfuturetechnologies(StamfordandAzapagic 2014),theauthors, assumingacautiousscenario,considerednegligiblethefuturewindandPVplants eco-profileimprovement.
1.3.3LifeCycleImpactAssessmentandDiscussionofResults NoconsiderablevariationsarefoundinboththescenariosifcomparedwithRS14. Indetail,CEDperkWhofelectricityproducedis8.9MJprimary intheBS30scenario and9.1MJprimary intheDS30scenario.ThepercentagevariationscomparedtoRS14 areequalto 5.8%inBS30and 3.3%inDS30(Fig. 1.2).Suchadecreaseis essentiallyduetothereducedshareoftheelectricityproducedfromnon-renewable technologiesinthefutureelectricitygenerationmixes.
Therenewableprimaryenergyconsumption(CEDrenewable)increasesinboth thescenarioscomparedtothereferencescenario.Indetail,CEDrenewableis1.7 MJprimary inBS30and1.5MJprimary intheDS30scenario,whileitisequalto1.0 MJprimary intheRS14scenario.TheenvironmentalimpactsareshowninTable 1.3. Bothforecastedscenariosinvolveareductionoftheimpactsinalmostallthe examinedenvironmentalcategories,exceptforhumantoxicity—nocancereffect (HT—nce),ionizingradiation—humanhealth(IR—hh),ionizingradiation—ecosystem(IR—e),particulatematter(PM)andmineral,fossilandrenewableresource depletion(MFRRD).
FortheHT—nce,IR—hh,IR—eandPM,theincreaseoftheimpactismainly duetothehigherpenetrationofCHP—biomassandPVplantsintheforecasted2030
Fig.1.2 Non-renewableand renewableCEDinreference andinforecastedscenarios
Table1.3 Environmentalimpactof1kWhofelectricityinRS14,BS30andDS30scenarios
Impactcategories
GWP(kgCO2eq ) 5.75E 01 4.93E 01 5.22E 01
ODP(kgCFC-11 eq ) 5.58E 08 4.79E 08 5.07E 08
HT—ce(CTUh) 1.39E 08 1.28E 08 1.32E 08
HT—nce(CTUh) 3.91E 08 3.91E 08 3.98E 08
PM(kgPM2.5 eq ) 2.06E 04 2.88E 04 2.77E 04
IR—hh(kBqU235 eq ) 8.22E 03 8.89E 03 8.75E 03
IR—e(CTUe) 2.52E 08 2.72E 08 2.68E 08
POFP(kgNMVOCeq ) 1.53E 03 1.35E 03 1.42E 03
AP(molH+eq ) 2.79E 03 2.42E 03 2.56E 03
T—EU(molNeq ) 5.24E 03 4.65E 03 4.89E 03
F—EU(kgPeq ) 1.21E 04 1.06E 04 1.11E 04
M—EU(kgNeq ) 4.90E 04 4.33E 04 4.56E 04
F—E(CTUe) 9.44E 01 8.29E 01 8.70E 01
LU(kgCdeficit ) 5.89E 01 5.12E 01 5.40E 01
WRD(m3 watereq ) 6.33E 03 5.34E 03 5.69E 03
MFRD(kgSbeq ) 2.65E 05 3.92E 05 3.45E 05
energysystems.Theincreaserangesfrom+1.8%forHT—nceinDS30to+39.6% forPMinBS30.Inbothscenarios,thehighpenetrationofPVintheelectricitymix isresponsibleforarelevantincreaseinMFRRDimpactcategory(+47.9%inBS30 and+30.2%inDS30).
Thereducedshareoffossilfuelsthermalpowerplantsintheelectricitymixes ( 12.1%inBS30and 7.8%inDS30comparedtoRS14)involvesareductionof globalwarmingpotential(GWP)( 14.4%inBS30, 9.2%inDS30),humantoxicity—cancereffects(HT—ce)( 7.6%inBS30, 4.9%inDS30)andphotochemical ozoneformationpotential(POFP)( 12.0%inBS30, 7.3%inDS30),inbothsce-
Table1.4 GWPintheRS14andintheforecastedscenarios
Scenarios
01
narios.Indetail,thereducedimpactinthesecategoriesisduetothelowerproduction frompowerplants—naturalgasandCHPotherfuels,whicharethetwoplantswith thehighestimpactintheseenvironmentalcategories.
Thereductionoftheozonedepletionpotential(ODP)inbothscenarios( 14.0% inBS30and 9.0%inDS30)ismainlyduetothelowergenerationfromthermal powerplantsfuelledwithnaturalgas.ThereducedshareofCHPotherfuelsandpower plant—oilintheelectricitymixesismainlyresponsibleforthedecreaseofterrestrial eutrophication(T-EU),freshwatereutrophication(F-EU),marineeutrophication(MEU),acidificationpotential(AP)andfreshwaterecotoxicity(F-E).Thedecrease rangesfrom 6.6%forT-EUinDS30to 12.4%forF-EUinBS30.
Thelowercontributionofpowerplantspoweredwithnaturalgasandoilproducts inbothfutureelectricitymixcausesareductionintheimpactonlanduse(LU) ( 13.1%inBS30and 8.4%inDS30),whilethereducedcontributionfromCHP otherfuelsgenerationisresponsibleforwaterresourcedepletiondecrease(WRD) ( 15.7%inBS30and 10.1%inDS30).
1.3.4PotentialContributionofSicilyintheAchievement ofthe2030EuropeanClimateTarget
InordertoassessthepotentialcontributionoftheSicilianelectricitysectorinthe achievementofthe2030Europeanclimatetarget,startingfromtheimpactof1kWh ofelectricityontheGWPimpactcategory,theauthorscalculatedtheGHGemissions relatedtothetotalelectricitydemandintheforecastedscenarios(Table 1.4).
TheresultsofTable 1.4 showthattheSicilianelectricitysectorcouldcontributeto theEuropeanclimatepolicyfor2030,reducingGHGemissionsof2.2E 06tonCO2eq ( 17%)intheBS30scenario,whileintheDS30thevariationsintheenergygenerationmixallowtomaintainthesamelevelofemissions,withasmalldecreaseequal to 0.1%,eventhoughtheelectricitydemandhasincreasedby10%withrespectto RS14.
1.4Conclusions ThestudypresentedanintegrationoftheLCAapproachandscenarioanalysissuitablefortheevaluationofenvironmentalstrategiesonapolicylevel.
Indetail,theauthorsshowedthepotentialcontributionoftwoforecastedelectricity scenariosinSicilytothe2030Europeclimateandenergypolicy.
Theanalysisofawiderangeofenvironmentalaspectsofsustainabilitythroughthe multi-indicatorapproachofLCAwascarriedout.Boththeassessedscenariosinvolve anoverallreductioninalmostalltheenvironmentalimpactcategories,incomparison withthereferencescenario(RS14),confirmingthatthehighpenetrationofRES couldimprovetheelectricityeco-profilesignificantly.However,withthecurrent stateofdevelopmentoftheelectricitytechnologiesgeneration,itisnotpossibleto achieveimprovementsinthewholesetofenvironmentalimpactscategories.Then, theintegrationoftheLCAmethodologywiththescenarioanalysiscouldbeauseful toolforidentifyingthepotentialnegativeimpactsconnectedtotheimplemented strategiesandcouldprovideausefulsupporttopolicymakersintheidentificationof themoresuitablestrategiestakingintoaccountboththesite-specificcharacteristics oftheterritoryandthemostpressingenvironmentalissues.
Withreferencetotheclimatetarget,onlytheBS30scenario,characterizedby thereductionintheelectricitydemandandtheincreaseofRESexploitation,could involveareductionoftheGWP.IntheDS30scenario,thebenefitsduetotheincrease oftheRESareoffsetbytheimpactscausedbytheelectricitydemandincrease.In ordertomatchtheEuropeanclimategoalsstrategiesaimedatpromotingRES,the focusonenergyefficiencyandonthefinalconsumer’sbehavioursismandatory.
References
AlterachJ,MaranS,StellaGetal(2011)StudisullepotenzialitàenergetichedelleRegioniitaliane, conriferimentoallefontiidroelettricaedeolica.ReportRSEn.11001465
ANEV—AssociazioneNazionaleEnergiadelVento(2017)Brochure2017. http://www.anev.org/ wp-content/uploads/2017/06/Anev_brochure_2017_10.pdf.Accessed16Oct2017
BeccaliM,CelluraM,MistrettaM(2007)Environmentaleffectsofenergypolicyinsicily:therole ofrenewableenergy.RenewSustainEnergyRev11:282–298
BeniniM,BorgarelloM,BrignoliV,GelminiA(2010)Burdensharingregionaledell’obiettivodi sviluppodellefontirinnovabiliePianod’AzioneNazionaleperl’EnergiaRinnovabile.Report ERSEno.09004631
BrucknerT,BashmakovI,MulugettaYetal(2014)Energysystems.In:EdenhoferO,PichsMadrugaR,SokonaY,FarahaniE,KadnerS(eds)Climatechange2014:mitigationofclimate change.ContributionofworkinggroupIIItothefifthassessmentreportoftheintergovernmental panelonclimatechange
CattiniA,DelZottoL,D’OrazioM,FrancoR(2011)Allegatoalvolume:Lefontirinnovabiliin Italia–Schederegionalisullapianificazioneenergetica,iterautorizzativieriferimentinormativi. Ministerodell’AmbienteedellaTuteladelTerritorioedelMare
DandresT,GaudreaultC,Tirado-SecoP,SamsonR(2012)Macroanalysisoftheeconomicand environmentalimpactsofa2005–2025EuropeanUnionbioenergypolicyusingtheGTAPmodel andlifecycleassessment.RenewSustainEnergyRev16:1180–1192. https://doi.org/10.1016/j. rser.2011.11.003
14M.Celluraetal.
EC—JRC(2012)EuropeanCommission—JointResearchCentre—InstituteforEnvironmentand Sustainability.CharacterizationfactoroftheILCDrecommendedlifecycleimpactassessment methods.Databaseandsupportinginformation,1stedn,February2012,EUR25167
EC—JRC(2017)EuropeanCommission—JointResearchCentre—InstituteforEnvironmentand Sustainability.Solarradiationandphotovoltaicelectricitypotentialcountryandregionalmaps forEurope. http://re.jrc.ec.europa.eu/pvgis/cmaps/eu_opt/pvgis_solar_optimum_IT.p
EuropeanCommission(2011)CommunicationfromtheCommissiontotheEuropeanParliament, theCouncil,theEuropeanEconomicandSocialCommitteeandthecommitteeoftheregions energyroadmap2050,COM/2011/885final
EuropeanCommission(2014)CommunicationfromtheCommissiontotheEuropeanParliament, theCouncil,theEuropeanEconomicandSocialCommitteeandthecommitteeoftheregionsa policyframe-workforclimateandenergyintheperiodfrom2020to2030,COM/2014/015final
EuropeanCommission(2016)ProposalforaregulationoftheEuropeanParliamentandoftheCouncilontheGovernanceoftheEnergyUnion,amendingDirective94/22/EC,Directive98/70/EC, Directive2009/31/EC,Regulation(EC)No663/2009,Regulation(EC)No715/2009,Directive 2009
FrischknechtR,JungbluthN,AlthausHetal(2007a)Implementationoflifecycleimpactassessment methods.EcoinventreportNo.3,v2.0,SwissCentreforLifeCycleInventories,Dübendorf FrischknechtR,JungbluthN,AlthausHetal(2007b)Overviewandmethodology.Ecoinvent reportno.1,ver.2.0,SwissCentreforLifeCycleInventories.Dübendorf,CH,Descriptionofthe Ecoinventdatabaseincludedinthesoft-wareSimaProver.7.1. http://www.pre.nl/simapro/ GSE(2017)Statisticalreport. www.gse.it.Accessed20Sept2017
HuldT,MüllerR,GambardellaA(2012)AnewsolarradiationdatabaseforestimatingPVperformanceinEuropeandAfrica.SolEnergy86:1803–1815. https://doi.org/10.1016/j.solener.2012. 03.006
IEA(2008)InternationalEnergyAgency.Renewableenergyessential:wind,OECD/IEA. www. iea.org/publications/freepublications/publication/Wind_Brochure.pdf.Accessed13Sept2017
IEA(2011)InternationalEnergyAgency.Renewableenergy.Marketsandprospectsbytechnology, OECD/IEA. www.iea.org/publications/freepublications/publication/Renew_Tech.pdf.Accessed 13Sept2017
IEA(2014a)InternationalEnergyAgency.Energyandclimatechange—Worldenergyoutlook specialreport.OECD/IEA,Paris
IEA(2014b)InternationalEnergyAgency.Emissionsreductionthroughupgradeofcoal-firedpower plants—learningfromChineseexperience.OECD/IEA,Paris
IEA(2016)InternationalEnergyAgency.Energy,climatechangeandenvironment:2016insights. OECD/IEA,Paris
IEA(2017)InternationalEnergyAgency.Climatechange. https://www.iea.org/topics/ climatechange/.Accessed13Sept2017
IPCC(2014)Climatechange2014:mitigationofclimatechange.In:EdenhoferO,Pichs-Madruga R,SokonaY,FarahaniE,KadnerS,SeybothK,AdlA(eds)ContributionofworkinggroupIII tothefifthassessmentreportoftheintergovernmentalpanelonclimatechange
ISO(2006a)ISO14040:environmentalmanagement—lifecycleassessment—principlesandframework
ISO(2006b)ISO14044:environmentalmanagement—lifecycleassessment—requirementsand guidelines
Janssens-MaenhoutG,CrippaM,GuizzardiDetal(2017)FossilCO2 andGHGemissionsofall worldcountries,EUR28766EN,PublicationsOfficeoftheEuropeanUnion,Luxembourg,2017, ISBN978-92-79-73207-2, https://doi.org/10.2760/709792,JRC107877 RegionofSicily(2008)AssessoratoIndustria–SchemadelPianoEnergetico RegionaledellaRegioneSicilia. http://pti.regione.sicilia.it/portal/page/portal/ PIR_PORTALE/PIR_LaStrutturaRegionale/PIR_AssEnergia/PIR_DipEnergia/PIR_ PianoEnergeticoAmbientaledellaRegioneSicilianaPEAR
RegionofSicily(2014)RapportoEnergia2014–Monitoraggiosull’energiainSicilia.Assessorato dell’EnergiaedeiServizidiPubblicaUtilità-Dipartimentodell’Energia RegionofSicily(2015)RapportoEnergia2015–Monitoraggiosull’energiainSicilia.Assessorato dell’EnergiaedeiServizidiPubblicaUtilità-Dipartimentodell’Energia, http://pti.regione.sicilia. it/portal/page/portal/PIR_PORTALE/PIR_LaStrutturaRegionale/PIR_AssEnergia/PIR_ RSE(2017)Atlanteeolicointerattivo. http://atlanteeolico.rse-web.it/.Accessed13Sept2017 StamfordL,AzapagicA(2014)LifecyclesustainabilityassessmentofUKelectricityscenariosto 2070.EnergySustainDev23:194–211. https://doi.org/10.1016/j.esd.2014.09.008
ŠúriM,HuldTA,DunlopED,OssenbrinkHA(2007)Potentialofsolarelectricitygenerationin theEuropeanUnionmemberstatesandcandidatecountries.SolEnergy81:1295–1305. https:// doi.org/10.1016/j.solener.2006.12.007
TERNA(2015)PrevisionidelladomandaelettricainItaliaedelfabbisognodipotenzanecessario 2015–2025.(http://download.terna.it/terna/0000/0744/15.PDF)
TERNA(2017)Statistics. http://www.terna.it/it-it/sistemaelettrico/statisticheeprevisioni.aspx Accessed20Sept2017
US—EPA(2017)UnitedStatesEnvironmentalProtectionAgency. https://www.epa.gov/climateindicators/greenhouse-gases.Accessed13Nov2017
WeidemaB,FreesN,NielsenA-M(1999)Marginalproductiontechnologiesforlifecycleinventories.IntJLifeCycleAssess4:48–56. https://doi.org/10.1007/BF02979395
Chapter2 LCAofPhotovoltaicSolutions intheItalianContext PierpaoloGirardiandAlessiaGargiulo
Abstract InthepresentstudythemainenvironmentalimpactsofdifferentsolutionsforphotovoltaicelectricityproductionintheItaliancontextarediscussed.For solutionwemeanthecombinationbetweenthecelltechnology(CdTe,singleor multi-crystallinesilicon,etc.)andtheinstallationoption(roof,ground,etc.).EnvironmentalimpactsareanalyzedbymeansoftheLifeCycleAssessmentapproach accordingtoISO14040standard.Thelifecycleenvironmentalimpactsofthedifferentsolutionsare,also,comparedwiththeimpactsofanaturalgascombinedcycle plantwhichis,inItaly,themaintechnologyreplacedbynewphotovoltaicinstalled power.Resultsshowthatthereisn’taphotovoltaicsolutionwhichisthebestforall theimpactcategories.Allthesolutionshaveseveralenvironmentaladvantagescomparedtofossilfueltechnologies,evencomparedtonaturalgascombinedcycle.The mainnegativeeffectisarelevantlanduseforgroundinstallations,whichrepresent inItalyalmostthe40%ofthephotovoltaicinstalledpower.Moreovercriticalities forwhatconcernshumantoxicityimpactcategorieshavetobeunderlined.Allthe photovoltaicsolutions,inthecaseofnon-cancereffect,andfiveoutofeleven,inthe caseofcancereffectsshowhigherimpactsthannaturalgascombinedcycleplant.
2.1Introduction
ThepromotionofRenewableEnergySources(RES)isapillaroftheEuropean strategyforclimateandenergy(EC—COM/2014/015)andingeneralofEuropean sustainabledevelopment.
P.Girardi(B) A.Gargiulo
RSERicercaSistemaEnergetico,Milan,Italy
e-mail: pierpaolo.girardi@rse-web.it
A.Gargiulo
e-mail: alessia.gargiulo@rse-web.it
©SpringerNatureSwitzerlandAG2019
R.Basosietal.(eds.), LifeCycleAssessmentofEnergySystems andSustainableEnergyTechnologies,GreenEnergyandTechnology, https://doi.org/10.1007/978-3-319-93740-3_2
AmongRES,photovoltaicis,inItaly,theonewiththehighestgrowthinthelast decade.Duetostrongnationalpromotionpolicy,onlyinfouryears(2008–2011)the averageincreaseofphotovoltaicproductionwasaround300%.In2016photovoltaic withaproductionofmorethan22TWhcoveredalmostthe8%ofthetotalnational electricityproduction.
InthisframeworkitisessentialtounderstandifRES,andinparticularphotovoltaicsolutions,whereascontributingtoclimatechangemitigationhavethepotentialtoreduceortoincreasethecontributionofenergysystemtootherenvironmentalimpactcategories(e.g.airacidification,particulatematterformationpotential). AsuitablemethodologytofacethisproblemisofcoursetheLCA—LifeCycle Assessment—(Sumperetal. 2011).LCAhasbeenwidelyappliedinthefieldof photovoltaicsystemsassessmentasdemonstratedbyseveralliteraturereviewstudies(Pengetal. 2013).However,thesamereviewstudieshaveunderlinedtheneed forfurtherresearch.Inparticularthereistheneedtoenlargethesystemboundaries becauseoftenendoflifeimpactsarenotinvestigated.Moreoverthereistheneedto increasethenumberoftheconsideredenvironmentalimpactcategoriessince,usually,theyareonlylimitedtogreenhouseeffectandtoenergypaybacktime(Gerbinet etal. 2014).
Inthefollowingparagraphs,afterabriefdescriptionoftheItalianphotovoltaic systemevolution,wewilldiscusstheLCAofdifferentphotovoltaicsolutionsfollowingtheISO14040scheme.
2.2EvolutionofPhotovoltaicProductioninItaly TheproductionofelectricityfromphotovoltaicincreasedinItalyinthelastdecade (Fig. 2.1).Duetostrongnationalpromotionpolicy,onlyinfouryears(between2008 and2011)theaverageincreaseofphotovoltaicproductionwasaround300%.Photovoltaichascovered18.5%in2014and20%in2016oftheelectricityproducedby renewables(GSE 2015),comparedtolessthan1%in2009.In2016withaproductionofmorethan22TWh(almostthe8%ofthenationalelectricityproduction)it wasthesecondrenewableenergysources,afterhydropower.
Asregardsthesizeoftheplants,recentyearsshowatrendtowardssmallerplants. During2014forexample,newinstallationswereessentiallyresidentialwithanaveragepowerof8.1kW,considerablylowerthanthepastyears.Theaverageplantsize, infact,wasthreetimeshigherin2012andsixtimehigherin2011.Asregardthe installationoptions,almost40%oftheinstalledpowerisgroundmounted,almost 50%isonbuildings(mainlyonroof)and6%ismountedongreenhousesorcanopies (suchasincarparking).Theremaining4%coversdifferentinstallationoptions, sometimereallyinterestinglikethoseonthehighwaynoisebarriers(GSE 2015).
Concerningcellstechnologiesandmaterials,single-crystallinesiliconpanelshave decreasedinfavourofmulti-crystallinepanels.InalltheItalianregionsthemulticrystallinesiliconpanelscoverthemajorityoftheinstalledpower,followedby single-crystallinesilicon.Othertechnologieslikethinfilmcoveralittlepercentage
oftheinstalledpower.AccordingtoGSE(2015),in2014morethan72%ofthe installedpoweratnationallevelisinmulti-crystallinesiliconpanels,21%insinglecrystallinesiliconpanels,whileremainingtechnologiesaccountsforonly7%ofthe installedpower.
Fromatechnologypointofviewadecisiveevolutiontowardsmoreefficientand lowimpactsolutionsislikelyinthecomingyears.
ForexampletheresultsofAPOLLON,arecentEUresearchprojectonconcentratedphotovoltaicoutlinethatthissolutioncouldemitperkWhonlythe5%ofCO2 eqemittedbyanaturalgascombinedcycleplant(RSE 2014).Similarresultscome fromotherstudies(FthenakisandKim 2013).Alsowithoutswitchingtoconcentrated photovoltaic,othersolutionsareavailabletoincreasephotovoltaicsystemsperformance.Forexamplesiliconheterojunction(SHJ)cellsofferhighefficienciesand severaladvantagesintheproductionprocesscomparedtoconventionalcrystalline siliconsolarcells(Louwenetal. 2015).Theuseofbifacialmodulescanreduceupto 38%thelifecycleCO2 emissionofasingle-crystallinesystem(Gazbouretal. 2016).
Shiftingfromtheconventionalcelltechnologytothestate-of-the-artPERC(PassivatedEmitterandRearCell)technologywillreducetheenergypaybacktimeand greenhousegasemissionsforphotovoltaicelectricitygeneration(Luoetal. 2018). Finally,one-axistrackinginstallationscanimprovetheenvironmentalprofileofphotovoltaicsystemsbyapproximately10%formostimpactcategories(Leccisietal. 2016).
2.3GoalandScope Thegoalofthepresentstudyistocompare,fromanenvironmentalpointofview, differentexistingtechnologiesandinstallationoptionsforelectricityproductionfrom photovoltaicpanels.
Fig.2.1 Productionfromphotovoltaicplant. Source GSE(2015)
Tobetterunderstandtheroleofphotovoltaicinsustainabledevelopmentofthe nationalelectricsystem,thedifferentphotovoltaic(PV)solutionsarealsocompared withaNaturalGasCombinedCycle(NGCC)powerplant.Asmatteroffact,NGCC is(intermsofefficiency,greenhousegasandparticulatematteremissions)thebest fossilfueltechnologyforelectricityproduction.Moreoveritisthemaintechnology pushedoutofthemarketbythenewphotovoltaicinstalledpower(GME 2014).
Thefunctionalunitis1kWhdeliveredtotheItaliandistributionnetwork.System boundariesincludealllifecyclephases,includingend-of-life.
Theconsideredtechnologiesare:amorphoussilicon(a-Si),copperindium–gallium-seleniumthinfilm(CIS),cadmiumtelluridethinfilm(CdTe), single-crystallinesilicon(single-Si),multi-crystallinesilicon(multi-Si),ribbonsilicon(ribbon-Si).
Theconsideredinstallationoptionsare:onroof-integrated,onroof-notintegrated, groundmounted.Thecombinationbetweentechnologiesandinstallationoptions givestheelevensolutions,illustratedinTable 2.1.
Concerningimpactcategories,wefollowedtheindicationsoftheworkinggroup ofEuropeanCommissiononProductEnvironmentalFootprintCategoryRules (PEFCR)1 forphotovoltaic.
Inparticular,althoughotherdocumentsandupdateshavefollowed,wereferred totheinterimreportofJuly2014(FrischknechtandItten 2014)inwhichtheimpact categoriesareclassifiedbyrelevance.Impactcategoriesclassifiedashighlyrelevant havebeenselected.Amongthemweexcludedthe“waterscarcity”sinceitistoomuch dependentonlocalconditionsforthescopeofthepresentanalysis.Moreoverthe characterizationmethodselectedbyJRC’sguidelinesforlifecycleimpactassessment (EC-JRC 2011)isfarfrombeingreliable(ithas“tobeappliedwithcaution”).
Table2.1 Solutionstakenintoaccountintheanalysis
Solution
Peakpower(kWp)
Slanted-roofinstallation,a-Si,laminated,integrated 3
Slanted-roofinstallation,a-Si,panel,mounted 3
Slanted-roofinstallation,CdTe,laminated,integrated 3
Slanted-roofinstallation,CIS,panel,mounted 3
Slanted-roofinstallation,multi-Si,laminated,integrated 3
Slanted-roofinstallation,multi-Si,panel,mounted 3
Slanted-roofinstallation,ribbon-Si,laminated,integrated 3
Slanted-roofinstallation,ribbon-Si,panel,mounted 3
Slanted-roofinstallation,single-Si,laminated,integrated 3
Slanted-roofinstallation,single-Si,panel,mounted 3
Opengroundinstallation,multi-Si 570
1 ProductEnvironmentalFootprintCategoryRules(PEFCRs)providespecificguidanceforcalculatingandreportinglifecycleenvironmentalimpacts.
InordertocomparethePVsystemwithNGCCwehaveincludedtwoimpact categories(acidificationpotential,photochemicalozoneformationpotential),that, eventhoughwithmediumrelevanceforPVsystems,arerelevantforconventional fossilfuelpowerplant.FinallyweincludedtheCumulativeEnergyDemand(CED) bothrenewableandnon-renewableasitisrelevantforestimatingtheenergypayback timeofPVsolutions.
2.4LifeCycleInventory Asregardtheinventoryanalysis,thedatausedforbackgroundsystemscamefrom Ecoinventversion3(Wernetetal. 2016).WhendealingwithPVsystems,environmentalimpactsaremainlyrelatedtothematerialsusedformoduleproductionand installationandtoefficiencyinelectricityproduction.
Givenaninstalledpower(atpeak),theproductiondependsonseveralfactors suchassolarradiation,modulesinclinationandcellefficiency.Thisfactorscanbe expressedbytheso-calledyieldfactor(inhours)whichistheratiobetweenthe annualproductionofaPVplantanditsinstalledpeakpower.
Inthisstudy,onthebasisofGSE’sstatistics(GSE 2014)anaverageyieldfactor of1140hwasestimated.
Lifetimeofphotovoltaicsystemhasbeenassumedequalto30years.
ThePVsystemincludesthepanel,themountingstructureandtheinverter.
2.5LifeCycleImpactAssessment Asdiscussedabovetheimpactassessmenthasbeencarriedoutusingeightimpact categories(seeTable 2.2)andtheCED(bothrenewableandnot).Besidesbeing comparedtoeachothers,thePVsolutionsimpactsarecomparedtotheelectricity productionfromaNGCCplant.Allimpactsarereferredtothefunctionalunit,that is1kWhdeliveredintothedistributionnetwork,withthehypothesisthatthePV panelsareconnectedtothedistributionnetwork,whiletheNGCCpowerplantis connectedtothehighvoltagegrid.ForthisreasontheimpactsofthekWhdelivered bytheNGCCinclude6.3%ofgridlosses.
InTables 2.3 and 2.4 theresultsofimpactassessmentarereportedfortheeleven PVsolutions.Valueshigherthantheaveragearehighlightedinred.
AsregardsthecomparisonamongthedifferentPVsolutions,resultsshowthat thereisnotabetteroraworsesolutionforalltheimpactcategoriestakeninto consideration(Fig. 2.2).
Ontheotherhanditcanbenoticedthatthesingle-Si,slantedroofinstallation mounted(i.e.notintegrated)showsimpactshigherthanaverageforsixcategories anditisthesolutionwiththeworstenvironmentalperformanceforfourimpact categoriesoutofeight.
Another random document with no related content on Scribd:
The Project Gutenberg eBook of Christmas carols This ebook is for the use of anyone anywhere in the United States and most other parts of the world at no cost and with almost no restrictions whatsoever. You may copy it, give it away or re-use it under the terms of the Project Gutenberg License included with this ebook or online at www.gutenberg.org. If you are not located in the United States, you will have to check the laws of the country where you are located before using this eBook.
Title: Christmas carols
Old English carols for Christmas and other festivals
Contributor: Lucy Etheldred Broadwood
Editor: L. Edna Walter
Illustrator: J. H. Hartley
Release date: December 23, 2023 [eBook #72492]
Language: English
Original publication: New York: The MacMillian Company, 1922
Credits: Robin Monks, Linda Cantoni, and the Online Distributed Proofreading Team at https://www.pgdp.net (This file was produced from images generously made available by The Internet Archive) *** START OF THE PROJECT GUTENBERG EBOOK CHRISTMAS CAROLS ***
Transcriber’s Note: In the HTML version of this e-book, you can click on the [Listen] link to hear an mp3 audio file of the carol. Click on the [MusicXML] link to download the notation in MusicXML format. These music files are the music transcriber’s interpretation of the printed notation and are placed in the public domain.
CHRISTMAS CAROLS CONTENTS IN THE SAME SERIES.
ENGLISH NURSERY RHYMES. Selected and Edited by L. EDNA WALTER. B.Sc.
Harmonized by LUCY E. BROADWOOD.
Illustrated by DOROTHY M. WHEELER.
Containing 32 full-page illustrations in colour, decorative borders, and about 60 decorative headings and tailpieces. Demy 4to (11½ × 8¾ inches).
SONGS FROM ALICE IN WONDERLAND AND THROUGH THE LOOKING-GLASS. Words by LEWIS CARROLL. Music by LUCY E. BROADWOOD. Illustrations by CHARLES FOLKARD.
Containing 12 full-page illustrations in colour, decorative borders, and many small illustrations. Demy 4to, cloth.
Published by A. & C. BLACK, Ltd., 4, 5, & 6, Soho Square, London, W.1.
CHRISTMAS CAROLS Old English Carols for Christmas and other Festivals. SELECTED AND EDITED BY L. EDNA WALTER M.B.E., B.Sc., A.C.G.I.
HARMONISED BY LUCY E. BROADWOOD ILLUSTRATED BY J.H. HARTLEY
NEW YORK: THE MACMILLAN COMPANY, FIFTH AVENUE.
LONDON: A. & C. BLACK, LIMITED, 4, 5, & 6, SOHO SQUARE.
This book is dedicated to
ELIZABETH because she rather liked it.
Published, Autumn, 1922.
FOREWORD S times or events have been celebrated from time immemorial by feasting, dancing, and singing. Often the dancers formed a ring and sang as they danced, first the dance and later the song being called a carol. The carol was not always strictly religious, although in the old times both the singing and dancing often took place in cathedrals and churches. Some of the carols that we still know are connected with times before the Christian era. They have now lost their dance and the melody has changed, but the ideas are very ancient. The Holly and the Ivy suggest the old Druids, and we still put up Holly and Ivy in our houses just as people did before the time of Christ. We put them up at Christmas, and we sing the carol at Christmas—but the idea at the back of it is older than Christmas, for the Church accepted all that was found to be of value in the old customs, and adapted them to set forth the newer faith. The carrying in of the Boar’s Head is an old ceremony, too. It was considered a Royal Dish, and Henry II. ordered it to appear at a special feast which he gave in honour of his son.
In the old days people thought of the New Year as the time when the trees and flowers began to come out—that is about May Day—so the May Day Carols celebrate the New Year’s Day of ever so long ago. Gradually, however, carols have centred more and more round events in the life of Christ, and especially round the wonderful story of His Birth. Many of them have just been handed on from one person to another through hundreds of years, some have only been
written down at all during the last century For example, the version given here of the “Black Decree” was sung into my phonograph by an old man of seventy-five. All the carols chosen for this book are those which have been sung through many, many years at times of festival and mirth (note how often food and drink are referred to), so don’t expect them to be pious in the modern way or to be at all like our present-day hymns.
The Publishers desire to acknowledge their indebtedness to Miss Lucy E. Broadwood for kindly permitting them to reproduce in this collection the following carols from her ENGLISH TRADITIONAL SONGS AND CAROLS: “King Pharaoh,” “The Moon Shines Bright,” “The Sussex Mummers’ Carol,” and “I’ve been Rambling all the Night.” Also to Miss A.G. Gilchrist for the “Pace Egging Song” and “The Seven Joys of Mary,” and to the Rev. S. Baring-Gould and his publishers (Messrs. Methuen & Co., Ltd.) for the “Somersetshire Wassail” from A GARLAND OF COUNTRY SONG.
CONTENTS ILLUSTRATIONS IN COLOUR BY J.H. HARTLEY
Good King Wenceslas