AdvancesinExperimentalMedicine andBiology
Volume1093
EditorialBoard
IRUNR.COHEN, TheWeizmannInstituteofScience,Rehovot,Israel
ABELLAJTHA, N.S.KlineInstituteforPsychiatricResearch,Orangeburg, NY,USA
JOHND.LAMBRIS, UniversityofPennsylvania,Philadelphia,PA,USA
RODOLFOPAOLETTI, UniversityofMilan,Milan,Italy
NIMAREZAEI, TehranUniversityofMedicalSciences,Children’sMedical CenterHospital,Tehran,Iran
Moreinformationaboutthisseriesat http://www.springer.com/series/5584
GuoyanZheng • WeiTian • XiahaiZhuang
Editors
IntelligentOrthopaedics
ArtificialIntelligenceandSmart Image-guidedTechnologyfor Orthopaedics
Editor GuoyanZheng UniversityofBern Bern,Switzerland
XiahaiZhuang FudanUniversity Shanghai,China
WeiTian BeijingJishuitanHospital
PekingUniversity
Beijing,Beijing,China
ISSN0065-2598ISSN2214-8019(electronic) AdvancesinExperimentalMedicineandBiology
ISBN978-981-13-1395-0ISBN978-981-13-1396-7(eBook) https://doi.org/10.1007/978-981-13-1396-7
LibraryofCongressControlNumber:2018958708
©SpringerNatureSingaporePteLtd.2018
Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewhole orpartofthematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseof illustrations,recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway, andtransmissionorinformationstorageandretrieval,electronicadaptation,computersoftware, orbysimilarordissimilarmethodologynowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthis publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesare exemptfromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationin thisbookarebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublisher northeauthorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerial containedhereinorforanyerrorsoromissionsthatmayhavebeenmade.Thepublisherremains neutralwithregardtojurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations.
ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSingaporePteLtd. Theregisteredcompanyaddressis:152BeachRoad,#21-01/04GatewayEast,Singapore 189721,Singapore
1Computer-AidedOrthopaedicSurgery:State-of-the-Art andFuturePerspectives ..................................1 GuoyanZhengandLutz-P.Nolte
2Computer-AidedOrthopedicSurgery:IncrementalShift orParadigmChange? ....................................21 LeoJoskowiczandEricJ.Hazan
3CAMISSConceptandItsClinicalApplication ..............31 WeiTian,YajunLiu,MingxingFan,JingweiZhao,PeihaoJin, andChengZeng
4SurgicalNavigationinOrthopedics:WorkflowandSystem Review .................................................47 ChidozieH.Ewurum,YingyingGuo,SeangPagnha,ZhaoFeng, andXiongbiaoLuo
5Multi-objectModel-BasedMulti-atlasSegmentation ConstrainedGridCutforAutomaticSegmentationof LumbarVertebraefromCTImages .......................65 WeiminYu,WenyongLiu,LiwenTan,ShaoxiangZhang, andGuoyanZheng
6DeepLearning-BasedAutomaticSegmentationofthe ProximalFemurfromMRImages .........................73 GuodongZengandGuoyanZheng
7MuscleSegmentationforOrthopedicInterventions ..........81 NaokiKamiya
83X-Knee:ANovelTechnologyfor3DPreoperativePlanning andPostoperativeEvaluationofTKABasedon2DX-Rays ...93 GuoyanZheng,AlperAlcoltekin,BenediktThelen, andLutz-P.Nolte
9Atlas-Based3DIntensityVolumeReconstructionfrom2D LongLegStandingX-Rays:ApplicationtoHardandSoft TissuesinLowerExtremity ...............................105 WeiminYuandGuoyanZheng
103DUltrasoundforOrthopedicInterventions ................113 IlkerHacihaliloglu
11ANovelUltrasound-BasedLowerExtremityMotion TrackingSystem ........................................131 KenanNiu,VictorSluiter,JasperHomminga,AndréSprengers, andNicoVerdonschot
12Computer-AssistedPlanning,Simulation,andNavigation SystemforPeriacetabularOsteotomy .....................143 LiLiu,KlausSiebenrock,Lutz-P.Nolte,andGuoyanZheng
13BiomechanicalOptimization-BasedPlanning ofPeriacetabularOsteotomy .............................157 LiLiu,KlausSiebenrock,Lutz-P.Nolte,andGuoyanZheng
14BiomechanicalGuidanceSystemforPeriacetabular Osteotomy ..............................................169 MehranArmand,RobertGrupp,RyanMurphy,RachelHegman, RobertArmiger,RussellTaylor,BenjaminMcArthur, andJyriLepisto
15Gravity-AssistedNavigationSystemforTotal HipArthroplasty ........................................181 GuoyanZheng
163DVisualizationandAugmentedRealityforOrthopedics ....193 LongfeiMa,ZhenchengFan,GuochenNing,XinranZhang, andHongenLiao
17IntelligentHMIinOrthopedicNavigation .................207 GuangzhiWang,LiangLi,ShuweiXing,andHuiDing
18Patient-SpecificSurgicalGuidanceSystemforIntelligent Orthopaedics ...........................................225 ManuelaKunzandJohnF.Rudan
19IntelligentControlforHuman-RobotCooperation inOrthopedicsSurgery ..................................245 ShaolongKuang,YucunTang,AndiLin,ShumeiYu, andLiningSun
20MultilevelFuzzyControlBasedonForceInformation inRobot-AssistedDecompressiveLaminectomy ............263 XiaozhiQi,YuSun,XiaohangMa,YingHu,JianweiZhang, andWeiTian
21PotentialRiskofIntelligentTechnologiesinClinical Orthopedics ............................................281 YajunLiu
22ClinicalApplicationofNavigationintheSurgicalTreatment ofaPelvicRingInjuryandAcetabularFracture ............289 MasakiTakao,HidetoshiHamada,TakashiSakai, andNobuhikoSugano
23Patient-SpecificSurgicalGuideforTotalHipArthroplasty ...307 TakashiSakai
24ComputerNavigationinOrthopaedicTumourSurgery ......315 Kwok-ChuenWong,XiaohuiNiu,HairongXu,YuanLi, andShekharKumta
25Sensor-BasedSoftTissueBalancinginTotal KneeArthroplasty .......................................327 JimmyChow,TsunYeeLaw,andMartinRoche
26ImplantOrientationMeasurementAfterTHAUsing theEOSX-RayImageAcquisitionSystem ..................335 KunihikoTokunaga,MasashiOkamoto,andKenjiWatanabe
273DPrintinginSpineSurgery ..............................345 HongCai,ZhongjunLiu,FengWei,MiaoYu,NanfangXu, andZiheLi
Computer-AidedOrthopaedic Surgery:State-of-the-ArtandFuture Perspectives
GuoyanZhengandLutz-P.Nolte
Abstract
Introducedmorethantwodecadesago, computer-aidedorthopaedicsurgery(CAOS) hasemergedasanewandindependent area,duetotheimportanceoftreatment ofmusculoskeletaldiseasesinorthopaedics andtraumatology,increasingavailabilityof differentimagingmodalitiesandadvancesin analyticsandnavigationtools.Theaimof thischapteristopresentthebasicelements ofCAOSdevicesandtoreviewstate-of-theartexamplesofdifferentimagingmodalities usedtocreatethevirtualrepresentations, ofdifferentpositiontrackingdevicesfor navigationsystems,ofdifferentsurgical robots,ofdifferentmethodsforregistration andreferencing,andofCAOSmodulesthat havebeenrealizedfordifferentsurgicalprocedures.Futureperspectiveswillbeoutlined. Itisexpectedthattherecentadvancement onsmartinstrumentation,medicalrobotics, artificialintelligence,machinelearning,and deeplearningtechniques,incombinationwith bigdataanalytics,mayleadtosmartCAOS systemsandintelligentorthopaedicsinthe nearfuture.
G.Zheng( )·L.-P.Nolte InstituteforSurgicalTechnologyandBiomechanics, UniversityofBern,Bern,Switzerland e-mail: guoyan.zheng@istb.unibe.ch
©SpringerNatureSingaporePteLtd.2018
Keywords
Computer-aidedorthopaedicsurgery (CAOS)·Smartinstrumentation·Medical robotics·Artificialintelligence·Machine learning·Deeplearning·Bigdataanalytics· Intelligentorthopaedics
1.1Introduction
Thehumanmusculoskeletalsystemisanorgan systemthatincludesthebonesoftheskeletonand thecartilages,ligaments,andotherconnective tissuesthatbindtissuesandorganstogether.The mainfunctionsofthissystemaretoprovideform, support,stability,andmovementtothebody. Bones,besidessupportingtheweightofthebody, worktogetherwithmusclestomaintainbody positionandtoproducecontrolled,precisemovements.Musculoskeletaldiseaseisamongthe mostcommoncausesofseverelong-termdisabilityandpracticalpaininindustrializedsocieties [1].Theimpactandimportanceofmusculoskeletaldiseasesarecriticalnotonlyforindividual healthandmobilitybutalsoforsocialfunctioningandproductivityandeconomicgrowthona largerscale,reflectedbytheproclamationofthe BoneandJointDecade2000–2010[1].
G.Zhengetal.(eds.), IntelligentOrthopaedics,AdvancesinExperimentalMedicine andBiology1093, https://doi.org/10.1007/978-981-13-1396-7_1
Bothtraumatologyandorthopaedicsurgery aimatthetreatmentofmusculoskeletaltissues. Surgicalstepssuchastheplacementofanimplantcomponent,thereductionandfixationof afracture,ligamentreconstruction,osteotomy, tumourresection,andthecuttingordrillingof boneshouldideallybecarriedoutaspreciselyas possible.Notonlywilloptimalprecisionimprove thepost-operativeoutcomeofthetreatment,but itwillalsominimizetheriskfactorsforintraandpost-operativecomplications.Tothisend, alargenumberofpuremechanicalguideshave beendevelopedforvariousclinicalapplications. Thepuremechanicalguides,thougheasytouse andeasytohandle,donotrespecttheindividual patient’smorphology.Thus,theirgeneralbenefithasbeenquestioned(seeforexample[2]). Additionally,surgeonsoftenencounterthechallengeoflimitedvisibilityofthesurgicalsitus, whichmakesitdifficulttoachievetheintended procedureasaccuratelyasdesired.Moreover, therecenttrendtowardsincreasedminimally invasivesurgerymakesitmoreandmoreimportanttogainfeedbackaboutsurgicalactions thattakeplacesubcutaneously.JustasaGlobal PositioningSystem(GPS)-basedcarnavigation providesvisualinstructiontoadriverbydisplayingthelocationofthecaronamap,acomputeraidedorthopaedicsurgery(CAOS)moduleallowsthesurgeontogetreal-timefeedbackabout theperformedsurgicalactionsusinginformation conveyedthroughavirtualsceneofthesitus presentedonadisplaydevice[3, 4].Parallelto theCAOSmoduletopotentiallyimprovesurgical outcomeistheemploymentofsurgicalrobots thatactivelyorsemi-activelyparticipateinthe surgery[5].
Introducedmorethantwodecadesago[3–5], CAOShasemergedasanewandindependent areaandstandsforapproachesthatusecomputerenabledtrackingsystemsorroboticdevicesto improvevisibilitytothesurgicalfieldandincreaseapplicationaccuracyinavarietyofsurgicalprocedures.AlthoughCAOSmodulesuse numeroustechnicalmethodstorealizeindividual aspectsofaprocedure,theirbasicconceptual designisverysimilar.Theyallinvolvethreemajorcomponents:atherapeuticobject(TOinab-
breviation,whichisthetargetofthetreatment), avirtualobject(VOinabbreviation,whichis thevirtualrepresentationintheplanningand navigationcomputer),andaso-callednavigator thatlinksbothobjects.Forreasonsofsimplicity, theterm“CAOSsystem”willbeusedwithinthis articletorefertobothnavigationsystemsand roboticdevices.
ThecentralelementofeachCAOSsystemis thenavigator.Itisadevicethatestablishesa global,three-dimensional(3-D)coordinatesystem(COS)inwhichthetargetistobetreated andthecurrentlocationandorientationofthe utilizedendeffectors(EE)aremathematically described.Endeffectorsareusuallypassivesurgicalinstrumentsbutcanalsobesemi-activeor activedevices.Oneofthemainfunctionsof thenavigatoristoenablethetransmissionof positionalinformationbetweentheendeffectors, theTOandtheVO.Forroboticdevices,therobot itselfplaystheroleofthenavigator,whilefor surgicalnavigationapositiontrackingdeviceis used.
ForthepurposeofestablishmentofaCAOS systemthroughcoactionsofthesethreeentities, threekeyproceduralrequirementshavetobe fulfilled.Thefirstisthecalibrationoftheend effectors,whichmeanstodescribetheendeffectors’geometryandshapeinthecoordinate systemofthenavigator.Forthispurpose,itis requiredtoestablishphysicallyalocalcoordinate systemattheendeffectors.Whenanoptical trackerisused,thisisdoneviarigidattachmentofthreeormoreopticalmarkersontoeach endeffector.Thesecondisregistration,which aimstoprovideageometricaltransformation betweentheTOandtheVOinordertodisplay theendeffect’slocalizationwithrespecttothe virtualrepresentation,justlikethedisplayof thelocationofacarinamapinaGPS-based navigationsystem.Thegeometricaltransformationcouldberigidornon-rigid.Inliterature, awidevarietyofregistrationconceptsandassociatedalgorithmsexist(seethenextsection formoredetails).Thethirdkeyingredienttoa CAOSsystemisreferencing,whichisnecessary tocompensateforpossiblemotionofthenavigatorand/ortheTOduringthesurgicalactions
1Computer-AidedOrthopaedicSurgery:State-of-the-ArtandFuturePerspectives3
tobecontrolled.Thisisdonebyeitherattachingaso-calleddynamicreferencebases(DRB) holdingthreeormoreopticalmarkerstothe TOorimmobilizingtheTOwithrespecttothe navigator.
Therestofthechapterisorganizedasfollows. Section 1.2 willreviewthestate-of-the-artexamplesofbasicelementsofCAOSsystems.Section 1.3 willpresentclinicalfieldsofapplications.In Sect. 1.4,futureperspectiveswillbeoutlined, followedbyconclusioninSect. 1.5.
1.2BasicElementsofCAOS
Systems
1.2.1VirtualObject
TheVOineachCAOSsystemisdefinedasa sufficientlyrealisticrepresentationofthemusculoskeletalstructuresthatallowsthesurgeonto plantheintendedintervention,asexemplifiedin Fig. 1.1a Intra-operatively,italsoservesasthe “background”intowhichthemeasuredposition ofasurgicalinstrumentcanbevisualized(see Fig. 1.1b foranexample).Thoughmostofthe timeVOisderivedfromimagedataofthepatient,itcanalsobecreateddirectlyfromintraoperativedigitizationwithoutusinganymedical
imagedata.Belowdetailedexamplesofdifferent formsofVOswillbereviewed.
WhentheVOisderivedfrommedicalimage data,thesedatamaybeacquiredattwopointsin time:eitherpre-operativelyorintra-operatively. Twodecadesago,theVOsofmajorityCAOS systemswerederivedfrompre-operativelyacquiredCTscans,andafewgroupsalsotriedto usemagneticresonanceimaging(MRI)[6, 7].In comparisonwithMRI,CThasclearadvantages ofexcellentbone-softtissuecontrastandnogeometricaldistortiondespiteitsacquisitioninducingradiationexposuretothepatient.Soonafter theintroductionofthefirstCAOSsystems,the limitationsofpre-operativeVOswereobserved, whichledtotheintroductionofintra-operative imagingmodalities.Morespecifically,thebony morphologymayhavechangedbetweenthetime ofimageacquisitionandtheactualsurgicalprocedure.Asaconsequence,theVOmaynotnecessarilycorrespondtotheTOanymoreleading tounpredictableinaccuraciesduringnavigation orroboticprocedures.Thiseffectcanbeparticularlyadversefortraumatologyinthepresenceof unstablefractures.Toovercomethisproblemin thefieldofsurgicalnavigation,theuseofintraoperativeCTscanninghasbeenproposed[8],but theinfrastructuralchangesthatarerequiredfor therealizationofthisapproacharetremendous,

Fig.1.1 ExampleofCT-basednavigationalfeedback. ThesescreenshotsshowaCT-basedCAOSsystemduring pre-operativeplanning(a)andintra-operativenavigation
(b)ofpediclescrewplacement.(CourtesyofBrainlabAG, Munich,Germany)
Fig.1.2 Exampleoffluoroscopy-basednavigation.Thisscreenshotshowsthefluoroscopy-basednavigationfordistal lockingofanintramedullarynail.(CourtesyofBrainlabAG,Munich,Germany)
oftenrequiringconsiderablereconstructionofa hospital’sfacilities.Thishasmotivatedthedevelopmentofnavigationsystemsbasedonfluoroscopicimages[9–11].Theimageintensifieris awell-establisheddeviceduringorthopaedicand traumaproceduresbuthasthelimitationsthatthe imagesgeneratedwithafluoroscopeareusually distortedandthatone-dimensionalinformation getslostduetoimageprojection.Tousethese imagesasVOsthereforerequiresthecalibration ofthefluoroscopewhichaimstocomputetheimageprojectionmodelandtocompensateforthe imagedistortion[9–11].Theresultantsystems arethereforeknownas“fluoroscopy-basednavigationsystems”inliterature[9–11].Additional featureofferedbyafluoroscopy-basednavigation systemisthatmultipleimagesacquiredfrom differentpositionsareco-registeredtoacom-
moncoordinatesystemestablishedonthetarget structureviatheDRBtechnique.Suchasystem canthusprovidevisualfeedbackjustliketheuse ofmultiplefluoroscopesplacedatdifferentpositionsinconstantmodebutwithouttheassociated radiationexposure,whichisaclearadvantage (seeFig. 1.2 foranexample).Thistechnique isthereforealsoknownas“virtualfluoroscopy” [11].Despitethefactthatinsuchasystem,only two-dimensional(2-D)projectedimageswith lowcontrastareavailable,theadvantagesoffered byafluoroscopy-basednavigationsystempreponderateforanumberofclinicalapplications inorthopaedicsandtraumatology.
Inordertoaddressthe2-Dprojectionlimitationofafluoroscopy-basednavigationsystem, anewimagingdevicewasintroduced[12]that enablestheintra-operativegenerationof3-Dflu-
Fig.1.3 Navigationusingsurgeon-definedanatomyapproach.Thisvirtualmodelofapatient’skneeisgeneratedintra-operativelybydigitizingrelevantstructures.
oroscopicimagedata.Itconsistsofamotorized,isocentricC-armthatacquiresseriesof50–1002-Dprojectionsandreconstructsfromthem 13 × 13 × 13cm3 volumetricdatasetswhich arecomparabletoCTscans.Beinginitiallyadvocatedprimarilyforsurgeryattheextremities,this “fluoro-CT”hasbeenadoptedforusagewitha navigationsystemandhasbeenappliedtoseveral anatomicalareasalready[13, 14].Asamajor advantage,thedevicecombinestheavailability of3-Dimagingwiththeintra-operativedataacquisition.“Fluoro-CT”technologyisundercontinuousdevelopmentinvolvingsmallerandnonisocentricC-arms,“closed”C-arm,i.e.O-armTM design[15, 16],fasteracquisitionspeeds,larger fieldofview,andalsoflatpaneltechnology.
AlastcategoryofnavigationsystemsfunctionswithoutanyradiologicalimagesasVOs.Instead,thetrackingcapabilitiesofthesystemare
Althoughaveryabstractrepresentation,itprovidessufficientinformationtoenablenavigatedhightibialosteotomy
usedtoacquireagraphicalrepresentationofthe patient’sanatomybyintra-operativedigitization. Byslidingthetipofatrackedinstrumentonthe surfaceofasurgicalobject,thespatiallocationof pointsonthesurfacecanberecorded.Surfaces canthenbegeneratedfromtherecordedsparse pointcloudsandusedasthevirtualrepresentationofthesurgicalobject.Becausethismodelis generatedbytheoperator,thetechniqueisthereforeknownas“surgeon-definedanatomy”(SDA) (Fig. 1.3).Itisparticularlyusefulwhensoft tissuestructuressuchasligamentsorcartilage boundariesaretobeconsideredthataredifficult toidentifyonCTsorfluoroscopicimages[17]. Moreover,withSDA-basedsystems,somelandmarkscanbeacquiredevenwithoutthedirect accesstotheanatomy.Forinstance,thecentreof thefemoralhead,whichisanimportantlandmark duringtotalhipandkneereplacement,canbe
Fig.1.4 Anexampleofbonemorphing.Screenshots ofdifferentstagesofanintra-operativebonemorphing process.(a)Pointacquisition;(b)calculationofmorphed
model;and(c)verificationoffinalresult.(Courtesyof BrainlabAG,Munich,Germany) calculatedfromarecordedpassiverotationof thelegabouttheacetabulum.Itshouldbenoted thatthegeneratedrepresentationsareoftenrather abstractandnoteasytointerpretasexemplified inFig. 1.3.Thishasmotivatedthedevelopment oftheso-called“bonemorphing”techniques[18, 19],whichaimtoderiveapatient-specificmodel fromagenericstatisticalformsofthetarget anatomicalstructureandasetofsparsepoints thatareacquiredwiththeSDAtechnique[20]. Astheresult,arealisticvirtualmodelofthe targetstructurecanbepresentedandusedasa VOwithoutanyconventionalimageacquisition (Fig. 1.4).
1.2.2Registration
Positiondatathatisusedintra-operativelytodisplaythecurrenttoollocation(navigationsystem) ortoperformautomatedactionsaccordingtoa pre-operativeplan(robot)areexpressedinthe localcoordinatesystemoftheVO.Ingeneral, thiscoordinatesystemdiffersfromtheonein whichthenavigatoroperatesintra-operatively.In ordertobridgethisgap,themathematicalrelationshipsbetweenbothcoordinatespacesneed tobedetermined.Whenpre-operativeimages areusedasVOs,thisstepisperformedinteractivelybythesurgeonduringtheregistration,also knownasmatching.Awidevarietyofdifferent approacheshavebeendevelopedandrealized followingnumerousmethodologies[21].
EarlyCAOSsystemsimplementedpairedpointmatchingandsurfacematching[22].The operationalprocedureforpaired-pointmatching issimple.PairsofdistinctpointsaredefinedpreoperativelyintheVOandintra-operativelyinthe TO.ThepointsontheVOareusuallyidentified pre-operativelyusingthecomputermouse,while thecorrespondingpointsontheTOareusually doneintra-operativelywithatrackedprobe. Inthecaseofanavigationsystem,theprobe istrackedbythenavigator,andforarobotic surgery,itismountedontotherobot’sactuator [23].Althoughpaired-pointmatchingiseasyto solvemathematically,theaccuracyoftheresultantregistrationislow.Thisisduetothefactthat theaccuracyofpaired-pointmatchingdepends onanoptimalselectionoftheregistrationpoints andtheexactidentificationoftheassociated pairswhichiserrorprone.Oneobvioussolution tothisproblemistoimplantartificialobjectsto createeasilyandexactlyidentifiablefiducials foranaccuratepaired-pointmatching[23]. However,therequirementofimplantingthese objectsbeforetheinterventioncausesextra operationaswellasassociateddiscomfortand infectionriskforthepatient[24].Consequently, noneofthesemethodshavegainedwideclinical acceptance.Theotheralternativethathasbeen widelyadoptedinearlyCAOSsystemsisto complementthepaired-pointmatchingwith surfacematching[25, 26],whichdoesnotrequire implantinganyartificialobjectandonlyusesthe surfacesoftheVOasabasisforregistration.
Othermethodstocomputetheregistration transformationwithouttheneedforextensive pre-operativepreparationutilizeintra-operative imagingsuchascalibratedfluoroscopicimages orcalibratedultrasoundimages.Asdescribed above,alimitednumberoffluoroscopicimages (e.g.two)acquiredatdifferentpositionsarecalibratedandco-registeredtoacommoncoordinate systemestablishedonthetargetstructure.Asocalled“2-D-3-Dregistration”procedurecanthen beusedtofindthegeometricaltransformation betweenthecommoncoordinatesystemanda pre-operativelyacquired3-DCTdatasetbymaximizingasimilaritymeasurementbetweenthe2Dprojectiverepresentationsandtheassociated digitallyreconstructedradiographs(DRRs)that arecreatedbysimulatingX-rayprojections(see Fig. 1.5 foranexample).Intensity-basedaswell asfeature-basedapproacheshavebeenproposed before.Foracomprehensivereviewofdifferent2-D-3-Dregistrationtechniques,wereferto [21].
Anotheralternativeistheemploymentof intra-operativeultrasonography.Ifanultrasound probeistrackedbyanavigatorandits measurementsarecalibrated,itmayserveasa spatialdigitizerwithwhichpointsorlandmarks onthesurfacesofcertainsubcutaneousbony structuresmaybeacquired.Thisisdifferent fromthetouch-baseddigitizationdonewith
aconventionalprobewhichusuallyrequires aninvasiveexposureofthesurfacesofthe targetstructures.Twodifferenttrackedmode ultrasoundprobesareavailable.A(amplitude)modeultrasoundprobescanmeasurethe depthalongtheacousticaxisofthedevice. Placedonthepatient’sskin,theycanmeasure percutaneouslythedistancetotissueborders, andtheresultingpointcoordinatescanbe usedasinputstoanyfeature-basedregistration algorithm.Theapplicabilityofthistechniquehas beendemonstratedpreviouslybutwithcertain limitationswhichpreventitswideusage[27, 28]. Morespecifically,theaccuracyoftheA-mode ultrasoundprobe-baseddigitizationdependson howwelltheprobecanbeplacedperpendicularly tothesurfacesofthetargetbonystructures, whichisnotaneasytaskwhenthesubcutaneous softtissuesarethick.Moreover,thevelocityof soundduringtheprobecalibrationisusually differentfromthevelocityofsoundwhenthe probeisusedfordigitizationasthelatterdepends onthepropertiesofthetraversedtissues.Such avelocitydifferencewillleadtounpredictable inaccuracieswhentheprobeisusedtodigitize deeplylocatedstructures.Asaconsequence, thesuccessfulapplicationofthistechnique remainslimitedtoanarrowfieldofapplication. IncontrasttoanA-modeprobe,aB(brightness)modeultrasoundprobescansafan-shapedarea.

Fig.1.5 AnexampleofCT-fluoromatching.Screenshots ofdifferentstagesofaCT-fluoromatchingprocess.(a) PreregistrationforCT-fluoromatchingand(b)resultsof CT-fluoromatching.(CourtesyofBrainlabAG,Munich, Germany)
Itisthereforeabletodetectalsosurfacesthat areexaminedfromanobliquedirection,though theerrorscausedbythevelocitydifference stillpersist.Inordertoextracttherelevant informationfortheregistrationofpre-operative CTscans,theresulting,usuallynoisyimages needtobeprocessed[29].Asfortheintraoperativeprocessingoffluoroscopicimages,the useofB-modeultrasoundforregistrationisnot reliableineverycaseandconsequentlyremains thesubjectofCAOSresearch[30, 31].
ItisworthtopointoutthatiftheVOis generatedintra-operatively,registrationisaninherentprocess[21].Thisisduetothefactthat sincetheimagingdeviceistrackedduringdata acquisition,thepositionofanyacquiredimage isrecordedwithrespecttothelocalcoordinate systemestablishedontheTO.Therecordeddeviceposition,togetherwiththeadditionalimage calibrationprocess,automaticallyestablishesthe spatialrelationshipbetweentheVOandtheTO duringimageacquisition,whichisaclearadvantageovertheinteractiveregistrationinthecaseof pre-operativeimagesservingasVOs.Therefore, registrationisnotanissuewhenusingintraoperativeCT,2-D,3-DfluoroscopyorO-arm,or theSDAconcept.
Radermacheretal.[32]introducedanalternativewaytomatchpre-operativeplanning withtheintra-operativesituationusingindividual templates.Theprincipleofindividualizedtemplatesistocreatecustomizedtemplatesbased onpatient-specific3-Dbonemodelsthatare normallysegmentedfrompre-operative3-Ddata suchasCTorMRIscan.Onefeatureaboutthe individualtemplatesisthatsmallreferenceareas ofthebonestructuresareintegratedintothe templatesasthecontactfaces.Bythismeans,the plannedpositionandorientationofthetemplate inspatialrelationtothebonearestoredinastructuralwayandcanbereproducedintra-operatively byadjustingthecontactfacesofthetemplates untilanexactfittotheboneisachieved.By integratingholesand/orslots,individualizedtemplatesfunctionastoolguides,e.g.forthepreparationofpediclescrewholes[32]orascuttingjigsusedintotalkneeandhipreplacement surgery[33–35].
1.2.3Navigator
RegistrationclosesthegapbetweenVOandTO. Thenavigatorenablesthisconnectionbyprovidingaglobalcoordinatespace.Inaddition,itlinks thesurgicalendeffectors,withwhichaprocedure iscarriedout,totheTOthattheyactupon.From atheoreticalstandpoint,itistheonlyelementin whichsurgicalnavigationsystemsandsurgical roboticsystemsdiffer.
1.2.3.1Robots
ForthistypeofCAOStechnology,therobot itselfisthenavigator.Intra-operatively,ithasto beregisteredtotheVOinordertorealizethe planthatisdefinedinthepre-operativeimage dataset.Theendeffectorsofarobotareusually designedtocarryoutspecifictasksaspartofthe therapeutictreatment.Dependingonhowtheend effectorsofarobotactonthepatient,twodifferenttypesofrobotscanbefoundinliterature.The so-calledactiverobotsconductaspecifictask autonomouslywithoutadditionalsupportbythe surgeon.Suchasystemhasbeenappliedfortotal jointreplacement[5],buttheirclinicalbenefithas beenstronglyquestioned[36].Fortraumatology applications,theuseofactiverobotshasonly beenexploredinthelaboratorysetting[37, 38]. Onepossibleexplanationisthatthenatureof fracturetreatmentisanindividualizedprocess thatdoesnotincludemanystepsthatanactive robotcanrepetitivelycarryout.
Incontrasttoactiveroboticdevices,passiveor semi-activerobotsdonotcarryoutapartofthe interventionautonomouslybutratherguideorassistthesurgeoninpositioningthesurgicaltools. Atpresenttherearetworepresentativesofthis class,bothforboneresectionduringtotalknee arthroplasty(TKA).TheNaviosystem(BlueBelt TechnologiesInc.Pittsburgh,PA,USA)[39]is ahand-heldsemi-activerobotictechnologyfor boneshapingthatallowsasurgeontomovefreely inordertoresecttheboneaslongasthismotion stayswithinapre-operativelydefinedsafetyvolume.TheMakosystem[40]isapassiverobotic armsystemprovidingorientalandtactileguidance.BoththeNavioandtheMakosystemsrequireadditionaltrackingtechnologyasdescribed
inthenextsub-section.Duringthesurgicalprocedure,thesystemisunderthedirectsurgeon controlandgivesreal-timetactilefeedbacktothe surgeon.Othersemi-activerobotssuchasSpineAssist(MazorRoboticsLtd.,Israel)canbeseen asintelligentgaugesthatplace,forexample,cuttingjigsordrillingguidesautomatically[41, 42].
1.2.3.2Tracker
Thenavigatorofasurgicalnavigationsystemis aspatialpositiontrackingdevice.Itdetermines thelocationandorientationofobjectsandprovidesthesedataas3-Dcoordinatesor3-Drigid transformations.Althoughanumberoftrackingmethodsbasedonvariousphysicalmedia, e.g.acoustic,magnetic,optical,andmechanical methods,havebeenusedintheearlysurgical navigationsystems,mostoftoday’sproductsrely uponopticaltrackingofobjectsusingoperating room(OR)compatibleinfraredlightthatiseither activelyemittedorpassivelyreflectedfromthe trackedobjects.Totracksurgicalendeffectors withthistechnologythenrequiresthetoolstobe adaptedwithreferencebasesholdingeitherlightemittingdiodes(LED,active)orlight-reflecting spheresorplates(passive).Trackingpatterns withknowngeometrybymeansofvideoimages hasbeensuggested[43, 44]asaninexpensive alternativetoaninfrared-lightopticaltracker.
Opticaltrackingofsurgicalendeffectorsrequiresadirectlineofsightbetweenthetracker andtheobservedobjects.ThiscanbeacriticalissueintheORsetting.Theuseofelectromagnetic trackingsystemshasbeenproposedtoovercome thisproblem.Thistechnologyinvolvesahomogeneousmagneticfieldgeneratorthatisusually placedneartothesurgicalsitusandtheattachmentofreceivercoilstoeachoftheinstruments allowingmeasuringtheirpositionandorientation withinthemagneticfield.Thistechniquesenses positionsevenifobjectssuchasthesurgeon’s handareinbetweentheemittercoilandthe trackedinstrument.However,thehomogeneity ofthemagneticfieldcanbeeasilydisturbedby thepresenceofcertainmetallicobjectscausingmeasurementartefactsthatmaydecreasethe achievableaccuracyconsiderably[45, 46].There-
fore,magnetictrackinghasbeenemployedonly inveryfewcommercialnavigationsystemsand withlimitedsuccess.
Recentlyinertialmeasurementunit(IMU)basednavigationdeviceshaveattractedmore andmoreinterests[47–51].Thesedevicesattempttocombinetheaccuracyoflarge-console CAOSsystemswiththefamiliarityofconventionalalignmentmethodsandhavebeensuccessfullyappliedtoapplicationsincludingTKA [47, 48],pediclescrewplacement[49],andperiacetabularosteotomy(PAO)surgery[50, 51]. Withsuchdevices,theline-of-sightissuesin theopticalsurgicalnavigationsystemscanbe completelyeliminated.Technicallimitationsof suchdevicesinclude(a)relativelyloweraccuracy incomparisonwithopticaltrackingtechnique and(b)difficultyinmeasuringtranslations.
1.2.4Referencing
Intra-operatively,itisunavoidablethattherewill berelativemotionsbetweentheTOandthe navigatorduetosurgicalactions.Suchmotions needtobedetectedandcompensatedtosecure surgicalprecision.Forthispurpose,theoperated anatomyislinkedtothenavigator.Forrobotic surgerythisconnectionisestablishedasaphysicallinkage.Largeactiverobots,suchasthe earlymachinesusedfortotaljointreplacement, comewithaboneclampthattightlygripsthe treatedstructureorinvolveanadditionalmultilinkarm,whilesmalleractiveandsemi-active devicesaremounteddirectlyontothebone.For allothertrackertypes,bonemotionisdetermined bytheattachmentofaDRBtotheTO[52], whichisdesignedtohouseinfraredLEDs,reflectingmarkers,acousticsensors,orelectromagneticcoils,dependingontheemployedtracking technology.Figure 1.6 showsanexampleofa DRBforanactiveopticaltrackingsystemthat isattachedtothespinousprocessofalumbar vertebra.SincetheDRBisusedasanindicator toinformthetrackerpreciselyaboutmovements oftheoperatedbone,astablefixationthroughout theentiredurationoftheprocedureisessential.

Fig.1.6 Dynamicreferencebase.Adynamicreference baseallowsanavigationsystemtotracktheanatomical structurethatthesurgeonisoperatingon.Inthecaseof spinalsurgery,thisDRBisusuallyattachedtotheprocessusspinosuswiththehelpofaclampingmechanism.It isessentialthatitremainsrigidlyaffixedduringtheentire usageofthenavigationsystemonthatvertebra
1.3ClinicalFields ofApplications
Sincethemid-1990swhenfirstCAOSsystems weresuccessfullyutilizedfortheinsertionof pediclescrewsatthelumbarandthoracicspine andtotalhipreplacementprocedures[3, 4],a largenumberofmodulescoveringawiderange oftraumatologicalandorthopaedicapplications havebeendeveloped,validatedinthelaboratory andinclinicaltrials.Someofthemneededto beabandoned,becausetheanticipatedbenefit failedtobeachievedorthetechnologyproved tobeunreliableortoocomplextobeusedintraoperatively.Discussingalltheseapplications wouldgobeyondthefocusofthisarticle.Thus, herewefocusonareviewofthemostimportant applicationswiththemostoriginaltechnological approaches.
Whiletherewasclearlyonepioneering exampleofrobot-assistedorthopaedicsurgery–ROBODOC[5]–thefirstspinalnavigation systemswererealizedindependentlybyseveral researchgroups,almostinparallel[3, 4, 52–56]. Thesesystemsusedpre-operativeCTscansas theVO,relieduponpaired-pointandsurface matchingtechniquesforregistration,andwere basedonopticalorelectromagnetictrackers. Theirinitialclinicalsuccess[57–59]boosted thedevelopmentofnewCAOSsystemsand modules.Whilesomegroupstriedtousethe existingpediclescrewplacementsystemsfor otherclinicalapplications,othersaimedtoapply theunderlyingtechnicalprincipletonewclinical challengesbydevelopinghighlyspecialized navigationsystems[60, 61].Withtheadventof alternativeimagingmethodsforthegeneration ofVOs,theindicationfortheuseofoneorthe othermethodwasevaluatedmorecritically.For instance,itbecameevidentthatlumbarpedicle screwinsertioninthestandarddegenerativecase couldbecarriedoutwithfluoroscopy-based navigationsufficientlyaccurate,thusavoiding theneedforapre-operativeCT.
Asimilardevelopmenttookplacefortotal kneereplacement.Initially,thisprocedurewas supportedbyactive[36, 62]andsemi-activeor passive[39, 40]robots,aswellasnavigation systemsusingpre-operativeCTs[63],butwitha fewexceptions,theSDAapproach[64]istoday’s methodofchoice.
Fluoroscopy-basednavigationstillseemsto havealargepotentialtoexplorenewfieldsof application.Thetechnologyhasbeenmainly usedinspinalsurgery[65].Effortstoapplyit tototalhiparthroplasty(THA)[66]andthe treatmentoflong-bonefractures[67]havebeen commerciallylesssuccessful.Theintra-operative 3-DfluoroscopyorO-armhasbeenexplored intensively[13–16].Itisexpectedthatwith theadventoftheflatpaneltechnology,theuse offluoro-CTasavirtualobjectgeneratorwill significantlygrow[16].
Recently,computer-assistedsurgeryusingindividualtemplateshasgainedincreasingattention.Initiallydevelopedforpediclescrewfixation[32],suchatechniquehasbeensuccessfully
Fig.1.7 Patient-specificinstrumentationforpelvictumourresectionsurgery.Theseimagesshowthe applicationofpatient-specificinstrumentationfor pelvictumourtreatment.Implantandtemplate manufacturedbyMobelifeNV,Leuven,Belgium.
reintroducedtothemarketfortotalkneearthroplasty[33, 68, 69],hipresurfacing[34, 70],total hiparthroplasty[35],andpelvictumourresection [71, 72](seeFig. 1.7 foranexample).Itshould benotedthatmostoftheindividualtemplates areproducedusingadditivemanufacturingtechniques,whilemostoftheassociatedimplantsare producedconventionally.
1.4FuturePerspectives
Despiteitstoutedadvantages,suchasdecreased radiationexposuretothepatientandthesurgicalteamforcertainsurgicalproceduresand increasedaccuracyinmostsituations,surgical navigationhasyettogaingeneralacceptance amongorthopaedicsurgeons.Althoughissues relatedtotraining,technicaldifficulty,andlearningcurvearecommonlypresumedtobemajor barrierstotheacceptanceofsurgicalnavigation,
(a)Apre-operativeX-rayradiograph,(b)theimplant;(c)thepatient-specificguide;(d)apostoperativeX-rayradiograph.(CourtesyofProf. Dr.KSiebenrock,Inselspital,UniversityofBern, Switzerland)
arecentstudy[73]suggestedthatsurgeonsdid notselectthemasmajorweaknesses.Ithasbeen indicatedthatbarrierstoadoptionofsurgical navigationareneitherduetoadifficultlearning curvenortoalackoftrainingopportunities. Thebarrierstoadoptionofnavigationaremore intrinsictothetechnologyitself,includingintraoperativeglitches,unreliableaccuracy,frustrationwithintra-operativeregistration,andlineof-sightissues.Thesefindingssuggestthatsignificantimprovementsinthetechnologywillbe requiredtoimprovetheadoptionrateofsurgicalnavigation.Addressingtheseissuesfrom thefollowingperspectivesmayprovidesolutions inthecontinuingefforttoimplementsurgical navigationineverydayclinicalpractice.
• 2-Dor3-Dimagestitching.Long-bonefracturereductionandspinaldeformitycorrectionaretwotypicalclinicalapplicationsthat frequentlyusetheC-arminitsoperation.
Suchasurgeryusuallyinvolvescorrective manoeuverstoimprovethesagittalorcoronal profile.However,intra-operativeestimationof theamountofcorrectionisdifficult,especially inlongerinstrumentation.Mostly,anteroposterior(AP)andlateralfluoroscopicimagesare usedbuthavethedisadvantagetodepictonlya smallportionofthetargetstructureinasingle C-armimageduetothelimitedfieldofview ofaC-armmachine.Assuch,orthopaedic surgeonsnowadaysaremissinganeffective tooltoimagetheentireanatomicalstructure suchasthespineorlongbonesduringsurgery forassessingtheextentofcorrection.Althoughradiographsobtainedeitherbyusing alargefielddetectororbyimagestitching canbeusedtoimagetheentirestructure,they areusuallynotavailableforintra-operative interventions.Onealternativeistodevelop methodstostitchmultipleintra-operatively acquiredsmallfluoroscopicimagestobeable todisplaytheentirestructureatonce[74, 75].
Figure 1.8 showsanimagestitchingexample forspinalintervention.Thesameideacanbe extendedto3-Dimagingtocreateapanoramic conebeamcomputedtomography[76].Atthis moment,fastandeasy-to-use2-Dor3-Dimagestitchingsystemsarestillunderdevelopment,andasthetechnologyevolves,surgical benefitsandimprovedclinicaloutcomesare expected.
• Imagefusion.FusionofmultimodalitypreoperativeimagesuchasvariousMRIorCT datasetswithintra-operativeimageswould allowforvisualizationofcriticalstructures suchasnerverootsorvascularstructures duringsurgicalnavigation.Differentimaging modalitiesprovidecomplementaryinformationregardingbothanatomyandphysiology. Theevidencesupportingthiscomplementarity hasbeengainedoverthelastfewyears withincreasedinterestinthedevelopment ofplatformhardwareformultimodality imaging.Becausemultimodalityimagesby definitioncontaininformationobtainedusing differentimagingmethods,theyintroduce newdegreesoffreedom,raisingquestions beyondthoserelatedtoexploitingeachsingle modalityseparately.Processingmultimodality imagesisthenallaboutenablingmodalities tofullyinteractandinformeachother.It isimportanttochooseananalyticalmodel thatfaithfullyrepresentsthelinkbetween themodalitieswithoutimposingphantom connectionsorsuppressingexistingones. Henceitisimportanttobeasdatadriven aspossible.Inpractice,thismeansmaking thefewestassumptionsandusingthesimplest model,bothwithinandacrossmodalities. Examplemodelsincludelinearrelationships betweenunderlyinglatentvariables;useof model-independentpriorssuchassparsity,

Fig.1.8
Fig.1.9 Anexampleof statisticalshape model-based2-D-3-D reconstruction. Reconstructionofbone surfacefromtwocalibrated fluoroscopicimagesanda statisticalshapemodel usingdeformable registration
non-negativity,statisticalindependence,low rank,andsmoothness;orboth.Sucha principlehasbeensuccessfullyappliedto solvingchallengingproblemsinavariety ofapplications[77].Despitetheevident potentialbenefit,theknowledgeofhowto actuallyexploittheadditionaldiversitythat multimodalityimagesofferiscurrentlyat itspreliminarystageandremainsopenfor exploration.
• Statisticalshapeanddeformationanalysis. Statisticalshapeanddeformationanalysis [78]hasbeenshowntobeusefulforpredicting 3-Danatomicalshapeandstructuresfrom sparsepointsetsthatareacquiredwith theSDAtechnique.Suchatechniqueis heavilyemployedinso-called“image-free” navigationsystemsthatarecommercially availableinthemarket,mainlyforkneeand hipsurgery.However,withtheavailabilityof statisticalshapemodelsofotheranatomical regions,thetechniquecouldbeappliedtoany partoftheskeleton.Suchapproachesbear significantpotentialforfuturedevelopment ofcomputernavigationtechnologysince theyarenotatallboundtotheclassical pointer-basedacquisitionofbonyfeatures. Inprinciple,thereconstructionalgorithmscan betunedtoanytypeofpatient-specificinput, e.g.intra-operativelyacquiredfluoroscopic images[79]ortrackedultrasound[30], therebypotentiallyenablingnewminimally invasiveprocedures.Figure 1.9 showsan
exampleofbonesurfacereconstruction fromcalibratedfluoroscopicimagesanda statisticalshapemodel.Moreover,prediction fromstatisticalshapemodelsispossiblenot onlyforthegeometricshapeofanobject. Givenstatisticalshapeandintensitymodels, “syntheticCTscans”couldbepredictedfrom intra-operativelyrecordeddataafteratimeconsumingcomputation.Withmoreandmore computationsshiftedfromCPUstographics processingunits(GPUs),itisexpectedthat statisticalshapeanddeformationanalysisbasedtechniqueswillbeusedinmoreand moreCAOSsystems[80].
• Biomechanicalmodelling.Numericalmodels ofhumananatomicalstructuresmayhelp thesurgeonduringtheplanning,simulation, andintra-operativephaseswiththefinal goaltooptimizetheoutcomeoforthopaedic surgicalinterventions.Theterms“physical”or “biomechanical”areoftenused.Whilemost ofexistingbiomechanicalmodelsserveforthe basicunderstandingofphysicalphenomena, onlyafewhavebeenvalidatedforthe generalpredictionofconsequencesofsurgical interventions.
Thesituationforpatient-specificmodels isevenmorecomplex.Tobeusedinclinical practice,ideallytheexactknowledgeofthe underlyinggeometricaltissueconfiguration andassociatedmechanicalpropertiesaswell astheloadingregimeisrequiredasinput forappropriatemathematicalframeworks.
Inadditionthesemodelswillnotonlybe usedpre-operativelybutneedtofunction alsoinnearrealtimeintheoperating theatre.
Firstattemptshavebeenmadetoincorporatebiomechanicalsimulationandmodellingintothesurgicaldecision-makingprocessfororthopaedicinterventions.Forexample,alargespectrumofmedicaldevices existsforcorrectingdeformitiesassociated withspinaldisorders.Driscolletal.[81]developedadetailedvolumetricfiniteelement modelofthespinetosimulatesurgicalcorrectionofspinaldeformitiesandtoassess, compare,andoptimizespinaldevices.Anotherexamplewaspresentedin[82]where theauthorsshowedthatwithbiomechanical modellingtheinstrumentationconfiguration canbeoptimizedbasedonclinicalobjectives. Murphyetal.[83]presentedthedevelopment ofabiomechanicalguidancesystem(BGS) forperiacetabularosteotomy.TheBGSaims toprovidenotonlyreal-timefeedbackofthe jointrepositioningbutalsothesimulatedjoint contactpressures.
Anotherapproachisthecombineduse ofintra-operativesensingdeviceswith simplifiedbiomechanicalmodels.Crottet etal.[84]introducedadevicethatintraoperativelymeasureskneejointforcesand momentsandevaluateditsperformanceand surgicaladvantagesoncadavericspecimens usingakneejointloadingapparatus.Large variationamongspecimensreflectedthe difficultyofligamentreleaseandtheneed forintra-operativeforcemonitoring.A commercialversionofsuchadevice(eLIBRADynamicKneeBalancingSystem, SynvasiveTechnology,ElDoradoHills, CA,USA)becameavailableinrecentyears andisclinicallyused(see,e.g.[85]).Itis expectedthatincorporationofpatient-specific biomechanicalmodellingintoCAOSsystems withorwithouttheuseofintra-operative sensingdevicesmayeventuallyincreasethe qualityofsurgicaloutcomes[86].Research activitiesmustfocusonexistingtechnology
limitationsandmodelsofthemusculoskeletal apparatusthatarenotonlyanatomicallybut alsofunctionallycorrectandaccurate.
• Musculoskeletalimaging. Musculoskeletal imagingisdefinedastheimagingofbones, joints,andconnectedsofttissueswithan extensivearrayofmodalitiessuchasXrayradiography,CT,ultrasonography,and MRI.Forthepasttwodecades,rapidbut cumulativeadvancescanbeobservedin thisfield,notonlyforimprovingdiagnostic capabilitieswiththerecentadvancementon low-doseX-rayimaging,cartilageimaging, diffusiontensorimaging,MRarthrography, andhigh-resolutionultrasoundbutalsofor enablingimage-guidedinterventionswith theintroductionofreal-timeMRIorCT fluoroscopy,molecularimagingwithPET/CT, andopticalimagingintooperatingroom[87].
Onerecentadvancementthathasfound alotofclinicalapplicationsistheEOS2D/3-Dimagesystem(EOSimaging,Paris, France),whichwasintroducedtothemarketin2007.TheEOS2-D/3-Dimagingsystem[88]isbasedontheNobelPrize-winning workofFrenchphysicistGeorgesCharpak onmultiwireproportionalchamber,whichis placedbetweentheX-raysemergingfromthe radiographedobjectandthedistaldetectors. EachoftheemergingX-raysgeneratesasecondaryflowofphotonswithinthechamber, whichinturnstimulatethedistaldetectorsthat giverisetothedigitalimage.Thiselectronic avalancheeffectexplainswhyalowdoseof primaryX-raybeamissufficienttogenerate ahigh-quality2-Ddigitalradiograph,making itpossibletocoverafieldofviewof175cm by45cminasingleacquisitionofabout 20sduration[89].Withanorthogonallycolinked,verticallymovable,slot-scanningXraytube/detectorpairs,EOShasthebenefit thatitcantakeapairofcalibratedposteroanterior(PA)andlateral(LAT)imagessimultaneously[90].EOSallowstheacquisition ofimageswhilethepatientisinanupright, weight-bearing(standing,seated,orsquatting) positionandcanimagethefulllengthofthe
body,removingtheneedfordigitalstitching/manualjoiningofmultipleimages[91]. ThequalityandnatureoftheimagegeneratedbyEOSsystemarecomparableoreven betterthancomputedradiography(CR)and digitalradiography(DR)butwithmuchlower radiationdosage[90].ItwasreportedbyIllés etal.[90]thatabsorbedradiationdoseby variousorgansduringafull-bodyEOS2-D/3Dexaminationrequiredtoperformasurface 3-Dreconstructionwas800–1000timesless thantheamountofradiationduringatypical CTscanrequiredforavolumetric3-Dreconstruction.Whencomparedwithconventional ordigitalizedradiographs[92],EOSsystem allowsareductionoftheX-raydoseofan order80–90%.TheuniquefeatureofsimultaneouslycapturingapairofcalibratedPA andLATimagesofthepatientallowsafull 3-Dreconstructionofthesubject’sskeleton [90, 93, 94].Thisinturnprovidesover100 clinicalparametersforpre-andpost-operative surgicalplanning[90].Withaphantomstudy, Glaseretal.[95]assessedtheaccuracyofEOS 3-Dreconstructionbycomparingitwith3-D CT.Theyreportedameanshapereconstructionaccuracyof1.1±0.2mm(maximum4.7 mm)with95%confidenceintervalof1.7mm. Theyalsofoundthattherewasnosignificant differenceineachoftheiranalysedparameters (p>0.05)whenthephantomwasplacedin differentorientationsintheEOSmachine. Thereconstructionof3-Dbonemodelsallows analysisofsubject-specificmorphologyina weight-bearingsituationfordifferentapplicationstoalevelofaccuracywhichwasnot previouslypossible.Forexample,Lazennec etal.[96]usedtheEOSsystemtomeasure pelvisandacetabularcomponentorientations insittingandstandingpositions.FurtherapplicationsofEOSsysteminplanningtotal hiparthroplastyincludeaccurateevaluationof femoraloffset[97]androtationalalignment [98].Thelowdoseandbiplanarinformation oftheEOS2-D/3-Dimagingsystemintroduce keybenefitsincontemporaryradiologyand
opennumerousandimportantperspectivesin CAOSresearch.
Anothernoveltechnologyon2-D/3Dimagingwasintroducedin[99],which hadtheadvantageofbeingintegratedwith anyconventionalX-raymachine.Amean reconstructionparameterof1.06±0.20mm wasreported.Thistechnologyhasbeenused forconducting3-Dpre-operativeplanning andpost-operativetreatmentevaluationof TKAbasedononly2-Dlonglegstanding X-rayradiographs[100].
• Artificialintelligence,machinelearning,and deeplearning.Recentlyartificialintelligence andmachinelearning-basedmethodshave gainedincreasinginterestinmanydifferent fieldsincludingmusculoskeletalimagingand surgicalnavigation.Mostofthesemethodsare basedonensemblelearningprinciplesthatcan aggregatepredictionsofmultipleclassifiers anddemonstratesuperiorperformancein variouschallengingproblems[77, 101, 102]. Acrucialstepinthedesignofsuchsystems istheextractionofdiscriminantfeatures fromtheimages[103].Incontrast,many deeplearningalgorithmsthathavebeen proposedrecently,whicharebasedonmodels (networks)composedofmanylayersthat transforminputdata(e.g.images)tooutputs (e.g.segmentation),letcomputerslearnthe featuresthatoptimallyrepresentthedatafor theproblemathand.Themostsuccessful typeofmodelsforimageanalysistodateare convolutionalneuralnetworks(CNN)[104], whichcontainmanylayersthattransformtheir inputwithconvolutionfiltersofasmallextent. Deeplearning-basedmethodshavebeen successfullyusedtosolvemanychallenging problemsincomputer-aidedorthopaedic surgery[105–108].Figure 1.10 showsan exampleoftheapplicationofcascadedfully convolutionalnetworks(FCN)forautomatic segmentationoflumbarvertebraefromCT images[108].Itisexpectedthatmoreand moresolutionswillbedevelopedbasedon differenttypesofdeeplearningtechniques.

Fig.1.10 Aschematicviewofusingcascadedfullyconvolutionalnetworks(FCN),whichconsistsofalocalization netandasegmentationnetforautomaticsegmentationoflumbarvertebraefromCTimages
1.5Conclusions
Morethantwodecadeshavepassedsincethe firstrobotandnavigationsystemsforCAOSwere introduced.Todaythistechnologyhasemerged fromthelaboratoryandisbeingroutinelyused intheoperatingtheatreandmightbeaboutto becomestateoftheartforcertainorthopaedic procedures.
Stillweareatthebeginningofarapidprocess ofevolution.Existingtechniquesarebeingsystematicallyoptimized,andnewtechniqueswill constantlybeintegratedintoexistingsystems. HybridCAOSsystemsareunderdevelopment, whichwillallowthesurgeontouseanycombinationsoftheabove-describedconceptstoestablish virtualobjectinformation.Newgenerationsof mobileimagingsystems,inherentlyregistered, willsoonbeavailable.Howeverresearchfocusshouldparticularlybeonalternativetracking technologies,whichremovedrawbacksofthe currentlyavailableopticaltrackingandmagnetic devices.Thisinturnwillstimulatethedevelopmentoflessorevennon-invasiveregistration methodsandreferencingtools.Force-sensingdevicesandreal-timecomputationalmodelsmay allowestablishinganewgenerationofCAOS systemsbygoingbeyondpurekinematiccontrol ofthesurgicalactions.Forkeyholeprocedures thereisdistinctneedforsmartendeffectorsto complementthesurgeoninitsabilitytoperform asurgicalaction.Therecentadvancementon smartinstrumentation,medicalrobotics,artificial intelligence,machinelearning,anddeeplearning techniques,incombinationwithbigdataanalytics,mayleadtosmartCAOSsystemsand intelligentorthopaedicsinthenearfuture.
Acknowledgements Thischapterwasmodifiedfromthe paperpublishedbyourgroupin FrontiersinSurgery (ZhengandNolte2016;2:66).Therelatedcontentswere reusedwiththepermission.
References
1.WHO(2003)Theburdenofmusculoskeletalconditionsatthestartofthenewmillennium.Reportof aWHOScientificGroup.WHOTechnicalReport Series,919,Geneva,2003,pp218.ISBN:92-4120919-4
2.DigioiaAM3rd,JaramazB,PlakseychukAY, MoodyJEJr,NikouC,LabarcaRS,LevisonTJ, PicardF(2002)Comparisonofamechanicalacetabularalignmentguidewithcomputerplacement ofthesocket.JArthroplast17:359–364
3.AmiotLP,LabelleH,DeGuiseJA,SatiM, BrodeurP,RivardCH(1995)Image-guidedpedicle screwfixation–afeasibilitystudy.Spine20(10): 1208–1212
4.NolteLP,ZamoranoLJ,JiangZ,WangQ,Langlotz F,BerlemannU(1995)Image-guidedinsertionof transpedicularscrews.Alaboratoryset-up.Spine (PhilaPa1976)20(4):497–500
5.MittelstadtB,KazanzidesP,ZuharsJ,Williamson B,CainP,SmithF,BargarWL(1996)Theevolution ofasurgicalrobotfromprototypetohumanclinical use.In:TaylorRH,LavalléeS,BurdeaGC,MösgesR(eds)Computerintegratedsurgery.TheMIT Press,Cambridge,pp397–407
6.MartelAL,HeidO,SlomczykowskiM,KerslakeR, NolteLP(1998)Assessmentof3-dimensionalmagneticresonanceimagingfastlowangleshotimages forcomputerassistedspinalsurgery.ComputAided Surg3:40–44
7.ChoHS,ParkIH,JeonIH,KimYG,HanI,Kim HS(2011)DirectapplicationofMRimagesto computer-assistedbonetumorsurgery.JOrthopSci 16:190–195
8.JacobAL,MessmerP,KaimA,SuhmN,Regazzoni P,BaumannB(2000)Awhole-bodyregistrationfreenavigationsystemforimage-guidedsurgery andinterventionalradiology.InvestRadiol35: 279–288
9.HofstetterR,SlomczykowskiM,BourquinY,Nolte LP(1997)Fluoroscopybasedsurgicalnavigation: conceptandclinicalapplications.In:LemkeHU, VannierMW,InamuraK(eds)Computerassisted radiologyandsurgery.ElsevierScience,Amsterdam,pp956–960
10.JoskowiczL,MilgromC,SimkinA,TockusL, YanivZ(1998)FRACAS:asystemforcomputeraidedimage-guidedlongbonefracturesurgery. ComputAidedSurg36:271–288
11.FoleyKT,SimonDA,RampersaudYR(2001)Virtualfluoroscopy:image-guidedfluoroscopicnavigation.Spine26:347–351
12.RitterD,MitschkeM,GraumannR(2002)Markerlessnavigationwiththeintra-operativeimagingmodalitySIREMOBILIso-C3D.Electromedica 70:47–52
13.GrütznerPA,WaeltiH,VockB,HebeckerA,Nolte L-P,WentzensenA(2004)NavigationusingfluoroCTtechnology.EurJTrauma30:161–170
14.RajasekaranS,KarthikK,ChandraVR,Rajkumar N,DheenadhayalanJ(2010)Roleofintraoperative 3DC-arm-basednavigationinpercutaneousexcisionofosteoidosteomaoflonebonesinchildren. JPediatrOrthop19:195–200
15.LinEL,ParkDK,WhangPG,AnHS,Phillips FM(2008)O-Armsurgicalimagingsystem.Semin SpineSurg20:209–213
16.QureshiS,LuY,McAnanyS,BairdE(2014)Threedimensionalintraoperativeimagingmodalitiesin orthopaedicsurgery:anarrativereview.JAmAcad OrthopSurg22(12):800–809
17.SatiM,StäubliHU,BourquinY,KunzM,Nolte LP(2002)Real-timecomputerizedinsituguidance systemforACLgraftplacement.ComputAided Surg7:25–40
18.FleuteM,LavalléeS,JulliardR(1999)Incorporatingastatisticallybasedshapemodelintoasystem forcomputerassistedanteriorcruciateligament surgery.MedImageAnal3:209–222
19.StindelE,BriardJL,MerlozP,PlaweskiS,Dubrana F,LefevreC,TroccazJ(2002)Bonemorphing: 3Dmorphologicaldatafortotalkneearthroplasty. ComputAidedSurg7:156–168
20.ZhengG,DongX,RajamaniKT,ZhangX,Styner M,ThoranaghatteRU,NolteL-P,BallesterMA (2007)Accurateandrobustreconstructionofa surfacemodeloftheproximalfemurfromsparsepointdataandadense-pointdistributionmodel forsurgicalnavigation.IEEETransBiomedEng 54:2109–2122
21.ZhengG,KowalJ,GonzalezBallesterMA,CaversaccioM,NolteL-P(2007)Registrationtechnique forcomputernavigation.CurrOrthop21:170–179
22.LavalléeS(1996)Registrationforcomputerintegratedsurgery:methodology,startoftheart. In:TaylorRH,LavalléeS,BurdeaGC,MösgesR (eds)Computerintegratedsurgery.TheMITPress, Cambridge,pp77–97
23.BargarWL,BauerA,BörnerM(1998)Primaryand revisiontotalhipreplacementusingtheRobodoc system.ClinOrthop354:82–91
24.NoglerM,MaurerH,WimmerC,GegenhuberC, BachC,KrismerM(2001)Kneepaincausedby afiducialmarkerinthemedialfemoralcondyle:a clinicalandanatomicstudyof20cases.ActaOrthop Scand72:477–480
25.BeslPJ,McKayND(1992)Amethodforregistrationof3-Dshapes.IEEETransPatternAnal 14(2):239–256
26.BaechlerR,BunkeH,NolteL-P(2001)Restrictedsurfacematching–numericaloptimizationandtechnicalevaluation.ComputAidSurg6: 143–152
27.MaurerCR,GastonRP,HillDLG,GleesonMJ, TaylorMG,FenlonMR,EdwardsPJ,HawkesDJ (1999)AcouStick:atrackedA-modeultrasonographysystemforregistrationinimage-guidedsurgery. In:TaylorC,ColchesterA(eds)Medicalimage computingandimage-guidedintervention–MICCAI’99.Springer,Berlin,pp953–962
28.OszwaldM,CitakM,KendoffD,KowalJ,Amstutz C,KirchhoffT,NolteL-P,KrettekC,HüfnerT (2008)Accuracyofnavigatedsurgeryofthepelvis aftersurfacematchingwithana-modeultrasound proble.JOrthopRes26:860–864
29.KowalJ,AmstutzC,LanglotzF,TalibH,Gonzalez BallesterMA(2007)AutomatedbonecontourdetectioninultrasoundB-modeimagesforminimally invasiveregistrationinimage-guidedsurgery–an invitroevaluation.IntJMedRobComputAssisted Surg3:341–348
30.SchumannS,NolteL-P,ZhengG(2012)Compensationofsoundspeeddeviationsin3DB-modeultrasoundforintraoperativedeterminationoftheanteriorpelvicplane.IEEETransInfTechnolBiomed 16(1):88–97
31.WeinW,KaramalisA,BaumgarthnerA,Navab N(2015)Automaticbonedetectionandsofttissueawareultrasound-CTregistrationforcomputeraidedorthopedicsurgery.IntJComputAssistRadiolSurg10(6):971–979
32.RadermacherK,PortheineF,AntonMetal(1998) Computerassistedorthopaedicsurgerywithimage basedindividualtemplates.ClinOrthopRelatRes 354:28–38
33.HafezMA,CheluleKL,SeedhomBB,ShermanKP (2006)Computer-assistedtotalkneearthroplasty usingpatient-specifictemplating.ClinOrthopRelat Res444:184–192
34.KunzM,RudanJF,XenoyannisGL,EllisRE(2010) Computer-assistedhipresurfacingusingindividualizeddrilltemplates.JArthroplast25:600–606
35.ShandizMA,MacKenzieJR,HuntS,AnglinC (2014Sept)Accuracyofanadjustablepatientspecificguideforacetabularalignmentinhipreplacementsurgery(Optihip).ProcInstMechEngH 228(9):876–889
36.HonlM,DierkO,GauckC,CarreroV,LampeF, DriesS,QuanteM,SchwiegerK,HilleE,MorlockMM(2003)Comparisonofrobotic-assisted andmanualimplantationofaprimarytotalhip replacement.Aprospectivestudy.JBoneJointSurg 85A8:1470–1478
37.OszwaldM,RuanZ,WestphalR,O’Loughlin PF,KendoffD,HüfnerT,WahlF,KrettekC, GoslingT(2008)Aratmodelforevaluatingphysiologicalresponsestofemoralshaftfracturereductionusingasurgicalrobot.JOrthopRes26: 1656–1659
38.OszwaldM,WestphalR,BredowJ,CalafiA, HüfnerT,WahlF,KrettekC,GoslingT(2010) Robot-assistedfracturereductionusingthreedimensionalintraoperativefracturevisualization:an experimentalstudyonhumancadaverfemora.J OrthopRes28:1240–1244
39.JaramazB,NikouC(2012)Precisionfreehand sculptingforunicondylarkneereplacement:designandexperimentalvalidation.BiomedTech 57(4):293–299
40.CondittMA,RocheMW(2009)Minimallyinvasive robotic-arm-guidedunicompartmentalkneearthroplasty.JBoneJointSurg91(Suppl1):63–68
41.RitschlP,MachacekF,FuikoR(2003)ComputerassistedligamentbalancinginTKRusingthe Galileosystem.In:LanglotzF,DaviesBL,BauerA (eds)Computerassistedorthopaedicsurgery–3rd annualmeetingofCAOS-International(Proceedings).Steinkopff,Darmstadt,pp304–305
42.ShohamM,BurmanM,ZehaviE,Joskowicz L,BatkilinE,KunicherY(2003)Bone-mounted miniaturerobotforsurgicalprocedures:concept andclinicalapplications.IEEETransRobAutom 19:893–901
43.deSiebenthalJ,GruetznerPA,ZimolongA,Rohrer U,LanglotzF(2004)Assessmentofvideotrackingusabilityfortrainingsimulators.ComputAided Surg9:59–69
44.ClarkeJV,DeakinAH,NicolAC,PicardF(2010) Measuringthepositionalaccuracyofcomputerassistedsurgicaltrackingsystems.ComputAided Surg15:13–18
45.MeskersCG,FratermanH,vanderHelmFC,VermeulenHM,RozingPM(1999)Calibrationofthe “FlockofBirds”electromagnetictrackingdevice anditsapplicationinshouldermotionstudies.J Biomech32:629–633
46.WagnerA,SchichoK,BirkfellnerW,FiglM,SeemannR,KonigF,KainbergerF,EwersR(2002) Quantitativeanalysisoffactorsaffectingintraoperativeprecisionandstabilityofoptoelectronic andelectromagnetictrackingsystems.MedPhys 29:905–912
47.NamD,CodyEA,NguyenJT,FiggieMP,Mayman DJ(2014)Extramedullaryguidesversusportable, accelerometer-basednavigationfortibialalignment intotalkneearthroplasty:arandomized,controlled trial:winnerofthe2013HapPaulAward.JArthroplast29(2):288–294
48.HuangEH,CoppSN,BugbeeWD(2015)Accuracyofahandheldaccelerometer-basednavigation systemforfemoralandtibialresectionintotalknee arthroplasty.JArthroplast30(11):1906–1910
49.WaltiJ,JostGF,CattinPC(2014)Anewcosteffectiveapproachtopedicularscrewplacement.In: AE-CAI2014,LNCS8678.Springer,Heidelberg, pp90–97
50.PflugiS,LiuL,EckerTM,SchumannS,Cullmann JL,SiebenrockK,ZhengG(2016)Acost-effective surgicalnavigationsolutionforperiacetabularosteotomy(PAO)surgery.IntJComputAssistRadiol Surg11(2):271–280
51.PflugiS,VasireddyR,LerchT,EckerTM,Tannast T,BoemakeN,SiebenrockK,ZhengG(2018)A cost-effectivesurgicalnavigationsolutionforperiacetabularosteotomy(PAO)surgery.IntJComput AssistRadiolSurg13(2):291–304
52.NolteLP,VisariusH,ArmE,LanglotzF, SchwarzenbachO,ZamoranoL(1995)Computeraidedfixationofspinalimplants.JImagGuidSurg 1:88–93
53.FoleyKT,SmithMM(1996)Image-guidedspine surgery.NeurosurgClinNAm7:171–186
54.GlossopND,HuRW,RandleJA(1996)Computeraidedpediclescrewplacementusingframeless stereotaxis.Spine21:2026–2034
55.KalfasIH,KormosDW,MurphyMA,McKenzie RL,BarnettGH,BellGR,SteinerCP,TrimbleMB, WeisenbergerJP(1995)Applicationofframeless stereotaxytopediclescrewfixationofthespine.J Neurosurg83:641–647
56.MerlozP,TonettiJ,PittetL,CoulombM,Lavallée S,SautotP(1998)Pediclescrewplacementusing imageguidedtechniques.ClinOrthop354:39–48
57.AmiotLP,LangK,PutzierM,ZippelH,Labelle H(2000)Comparativeresultsbetweenconventionalandimage-guidedpediclescrewinstallation inthethoracic,lumbar,andsacralspine.Spine25: 606–614
58.LaineT,LundT,YlikoskiM,LohikoskiJ,SchlenzkaD(2000)Accuracyofpediclescrewinsertion withandwithoutcomputerassistance:arandomised controlledclinicalstudyin100consecutivepatients. EurSpineJ9:235–240
59.SchwarzenbachO,BerlemannU,JostB,Visarius H,ArmE,LanglotzF,NolteLP,OzdobaC(1997) Accuracyofimage-guidedpediclescrewplacement. Aninvivocomputedtomographyanalysis.Spine 22:452–458
60.DigioiaAM3rd,SimonDA,JaramazBetal(1999) HipNav:pre-operativeplanningandintra-operative navigationalguidanceforacetabularimplantplacementintotalhipreplacementsurgery.In:Nolte LP,GanzE(eds)ComputerAssistedOrthopaedic Surgery(CAOS).Hogrefe&Huber,Seattle,pp 134–140
61.CroitoruH,EllisRE,PriharR,SmallCF,Pichora DR(2001)Fixationbasedsurgery:anewtechnique fordistalradiusosteotomy.ComputAidedSurg 6:160–169
62.SiebertW,MaiS,KoberR,HeecktPF(2002) Techniqueandfirstclinicalresultsofrobot-assisted totalkneereplacement.Knee9:173–180
63.DelpSL,StulbergSD,DaviesB,PicardF,Leitner F(1998)Computerassistedkneereplacement.Clin Orthop354:49–56
64.DessenneV,LavalléeS,JulliardR,OrtiR,Martelli S,CinquinP(1995)Computerassistedkneeanteriorcruciateligamentreconstruction:firstclinical tests.JImageGuidSurg1:59–64
65.NolteLP,SlomczykowskiMA,BerlemannU, StraussMJ,HofstetterR,SchlenzkaD,LaineT, LundT(2000)Anewapproachtocomputer-aided spinesurgery:fluoroscopy-basedsurgicalnavigation.EurSpineJ9:S78–S88
66.ZhengG,MarxA,LanglotzU,WidmerKH,Buttaro M,NolteLP(2002)AhybridCT-freenavigation systemfortotalhiparthroplasty.ComputAided Surg7:129–145
67.SuhmN,JacobAL,NolteLP,RegazzoniP,MessmerP(2000)Surgicalnavigationbasedonfluoroscopy–clinicalapplicationforimage-guided distallockingofintramedullaryimplants.Comput AidedSurg5:391–400
68.SadoghiP(2015)Currentconceptsintotalknee arthroplasty:patientspecificinstrumentation.World JOrthop6(6):446–448
69.CamardaL,D’ArienzoA,MorelloS,PeriG, ValentinoB,D’ArienzoM(2015Apr)Patientspecificinstrumentationfortotalkneearthroplasty: aliteraturereview.MusculoskeletSurg99(1):11–18
70.OlsenM,NaudieDD,EdwardsMR,SellanME, McCaldenRW,SchemitschEH(2014Mar)Evaluationofapatientspecificfemoralalignmentguide forhipresurfacing.JArthroplasty29(3):590–595
71.CartiauxO,PaulL,FrancqBG,BanseX,Docquier PL(2014)Improvedaccuracywith3Dplanningand patient-specificinstrumentsduringsimulatedpelvic bonetumorstudy.AnnBiomedEng42(1):205–213
72.PersonalcommunicationwithProf.Dr.K.Siebenrock,Inselspital,UniversityofBern
73.RahmathullaG,NottmeierE,PirrisS,DeenH, PichelmannM(2014)Intraoperativeimage-guided spinalnavigation:technicalpitfallsandtheiravoidance.NeurosurgFocus36(3):E3
74.WangL,TraubJ,WeidertS,HeiningSM,EulerE, NavabN(2010)Parallax-freeintra-operativex-ray imagestitching.MedImageAnal14(5):674–686
75.ChenC,KojcevR,HaschtmannD,FeketeT,Nolte L,ZhengG(2015)RulerbasedautomaticC-arm imagestitchingwithoutoverlappingconstraint.J DigitImaging28(4):474–480
76.ChangJ,ZhouL,WangS,CliffordChaoKS(2012) Panoramicconebeamcomputedtomography.Med Phys39(5):2930–2946
77.ChenC,BelavyD,YuW,ChuC,ArmbrechtG, BansmannM,FelsenbergD(2015Aug)GZheng. LocalizationandsegmentationofLocalizationand
Segmentationof3DIntervertebralDiscsinMR ImagesbyDataDrivenEstimation.IEEETransMed Imaging34(8):1719–1729
78.ZhengG,LiS,SzékelyG(2017)Statisticalshape anddeformationanalysis:methods,implementation andapplications.Elesvier,London
79.ZhengG,GollmerS,SchumannS,DongX,Feilkas T,GonzálezBallesterMA(2009Dec)A2D/3D correspondencebuildingmethodforreconstruction ofapatient-specific3Dbonesurfacemodelusing pointdistributionmodelsandcalibratedX-rayimages.MedImageAnal13(6):883–899
80.YuW,TannastM,ZhengG(2017)Non-rigidfreeform2D-3Dregistrationusingb-spline-basedstatisticaldeformationmodel.PatternRecongn63: 689–699
81.DriscollM,Mac-ThiongJM,LabelleH,ParentS (2013)Developmentofadetailedvolumetricfinite elementmodelofthespinetosimulatesurgical correctionofspinaldeformities.BiomedResInt 2013:931741
82.MajdoulineY,AubinCE,WangX,SangoleA,LabelleH(2012Nov26)Preoperativeassessmentand evaluationofinstrumentationstrategiesforthetreatmentofadolescentidiopathicscoliosis:computer simulationandoptimization.Scoliosis7(1):21
83.MurphyRJ,ArmigerRS,LepistöJ,MearsSC, TaylorRH,ArmandM(2015Apr)Development ofabiomechanicalguidancesystemforperiacetabularosteotomy.IntJComputAssistRadiolSurg 10(4):497–508
84.CrottetD,KowalJ,SarfertSA,MaederT,Bleuler H,NolteLP,DürselenL(2007)LigamentbalancinginTKA:Evaluationofaforce-sensingdevice andtheinfluenceofpatellareversionandligament release.JBiomech40(8):1709–1715
85.DeKeyserW,BeckersL(2010Dec)Influenceof patellarsubluxationonligamentbalancingintotal kneearthroplastythroughasubvastusapproach.An invivostudy.ActaOrthopBelg76(6):799–805
86.deSteigerRN,LiuYL,GravesSE(2015Apr 15)Computernavigationfortotalkneearthroplasty reducesrevisionrateforpatientslessthansixty-five yearsofage.JBoneJointSurgAm97(8):635–642
87.JoleszFA(2014)Introduction.In:JoleszFA(ed) Intraoperativeimagingandimage-guidedtherapy. Springer,London,pp1–23
88.DuboussetJ,CharpakG,SkalliW,DeguiseJ,Kalifa G(2010)EOS:Anewimagingsystemwithlow doseradiationinstandingpositionforspineand bone&jointdisorders.JMusculoskeletaRes13: 1–12
89.WybierM,BossardP(2013May)Musculoskeletal imaginginprogress:theEOSimagingsystem.Joint BoneSpine80(3):238–243
90.IllésT,SomoskeöyS(2012)TheEOSimaging systemanditsuseindailyorthopaedicpractice.Int Orthop36:1325–1331
91.WadeR,YangH,McKennaCetal(2013)A systematicreviewoftheclinicaleffectivenssof EOS2D/3Dx-rayimagingsystem.EurSpineJ22: 296–304
92.DeschenesS,CharronG,BeaudoinGetal(2010) Diagnosticimagingofspinaldeformities–Reducingpatientsradiationdosewithanewslot-scanning x-rayimager.Spine35:989–994
93.LangloisK,PilletH,LavasteF,RochcongarG, RouchP,ThoreuxP,SkalliW(2015Oct)Assessing theaccuracyandprecisionofmanualregistration ofbothfemurandtibiausingEOSimagingsystem withmultipleviews.ComputMethodsBiomech BiomedEng18(Suppl1):1972–1973
94.FerreroE,LafageR,ChallierV,DieboB,Guigui P,MazdaK,SchwabF,SkalliW,LafageV(2015 Sept)Clinicalandstereoradiographicanalysisof adultspinaldeformitywithandwithoutrotatory subluxation.OrthopTraumatolSurgRes101(5): 613–618
95.GlaserDA,DoanJ,NewtonPO(2012)Comparison of3-Dimensionalspinalreconstructionaccuracy. Spine37:1391–1397
96.LazennecJY,RousseauMA,RangelA,GorinM, BelicourtC,BrussonA,CatonneY(2011)Pelvis andtotalhiparthroplastyacetabularcomponentorientationinsittingandstandingpositions:measurementsreproductibilitywithEOSimagingsystem versusconventionalradiographies.OrthopTraumatolSurgRes97:373–380
97.LazennecJY,BrussonA,DominiqueF,Rousseau MA,PourAE(2015)Offsetandanteversionreconstructionaftercementedanduncementedtotal hiparthroplasty:anevaluationwiththelow-dose EOSsystemcomaringtwo-andthree-dimensional imaging.IntOrthop.39(7):1259–1267
98.FolinaisD,ThelenP,DelinC,RadierC,Catonne Y,LazennecJY(2011)Measuringfemoraland rotationalalignment:EOSsystemversuscomputedtomography.OrthopTraumatolSurgRes99: 509–516
99.ZhengG,SchumannS,AlcoltekinA,JaramazB, NolteL-P(2016)Patient-specific3Dreconstruction ofacompletelowerextremityfrom2DX-rays.In:
ProceedingsofMIAR2016,LNCS9805.Springer, Heidelberg,pp404–414
100.HommelH,AlcoltekinA,ThelenB,StifterJ, SchwägliT,ZhengG(2017)3X-Plan:Anovel technologyfor3Dprosthesisplanningusing2DXrayradiographs.ProcCAOS2017:93–95
101.GlockerB,FeulnerJ,CriminisiA,HaynorDR, KonukogluE(2012)Automaticlocalizationand identificationofvertebraeinarbitraryfield-ofviewCTscans.In:ProceedingsofMICCAI2012; 15(Pt3).Springer,Heidelberg,pp590–598
102.LiuQ,WangQ,ZhangL,GaoY,ShengD(2015) Multi-atlascontextforestsforkneeMRimagesegmentation.MLMI@MICCAI2015:186–193
103.LitjensG,KooiT,BejnordiBE,SetioAAA,Ciompi F,GhafoorianM,vanderLaakJAWM,vanGinnekenB,SánchezCI(2017)Asurveyondeep learninginmedicalimageanalysis.MedImage Anal42:60–88
104.KrizhevskyA,SutskeverI,HintonGE(2012)ImageNetclassificationwithdeepconvolutionalneural networks.AdvancesinNeuralInformationProcessingSystems25,CurranAssociates,Inc.,2012, 1097–1105
105.PrasoonA,PetersenK,IgelC,LauzeF,Dam E,NielsenM(2013)Deepfeaturelearningfor kneecartilagesegmentationusingatriplanarconvolutionalneuralnetwork.MICCAI201316(Pt2): 246–253
106.ZengG,YangX,LiJ,YuL,HengP-A,Zheng G(2017)3DU-netwithmulti-leveldeepsupervision:fullyautomaticsegmentationofproximal femurin3DMRimages.MLMI@MICCAI2017: 274–282
107.LiX,DouQ,ChenH,FuCW,QiX,BelavýDL, ArmbrechtG,FelsenbergD,ZhengG,HengPA (2018)3Dmulti-scaleFCNwithrandommodality voxeldropoutlearningforintervertebraldisclocalizationandsegmentationfrommulti-modalityMR images.MedImageAnal45:41–54
108.JanssensR,ZengG,ZhengG(2017)FullyautomaticsegmentationoflumbarvertebraefromCT imagesusingcascaded3Dfullyconvolutionalnetworks.arXiv:1712.01509
Computer-AidedOrthopedicSurgery: IncrementalShiftorParadigm Change?
LeoJoskowiczandEricJ.Hazan
Abstract
Computer-aidedorthopedicsurgery(CAOS) isnowabout25yearsold.Unlikeneurosurgery,computer-aidedsurgeryhasnot becomethestandardofcareinorthopedic surgery.Inthispaper,weprovidethetechnical andclinicalcontextraisedbythisobservation inanattempttoelucidatethereasonsfor thisstateofaffairs.Westartwithabrief outlineofthehistoryofCAOS,reviewthe mainCAOStechnologies,anddescribehow theyareevaluated.Wethenidentifysome ofthecurrentpublicationsinthefieldand presenttheopposingviewsontheirclinical impactandtheiracceptancebytheorthopedic communityworldwide.Wefocusontotal kneereplacementsurgeryasacasestudyand presentcurrentclinicalresultsandcontrasting opinionsonCAOStechnologies.Wethen discussthechallengesandopportunities forresearchinmedicalimageanalysisin CAOSandinmusculoskeletalradiology.We concludewithasuggestionthatwhileCAOS
L.Joskowicz( )
SchoolofComputerScienceandEngineering,The HebrewUniversityofJerusalem,Jerusalem,ISRAEL e-mail: josko@cs.huji.ac.il
E.J.Hazan
TraumatologyandEmergencyDepartments,Instituto NacionaldeRehabilitacion,MexicoCity,MEXICO
acceptancemaybemoremoderatethanthatof otherfieldsinsurgery,itstillhasaplaceinthe arsenalofusefultoolsavailabletoorthopedic surgeons.
Keywords
Computer-aidedorthopedicsurgery· Image-guidedsurgery·Medicalrobotics
2.1Introduction
Computer-basedtechnologies,includingboth softwareandhardware,areplayinganincreasinglylargerandmoreimportantroleindefining howsurgeryisperformedtoday.Orthopedic surgerywas,togetherwithneurosurgery, thefirstclinicalspecialtyforwhichimageguidednavigationandroboticsystemswere developed.Computer-aidedorthopedicsurgery (CAOS)isnowabout25yearsold.Duringthis time,awidevarietyofnovelandingenious systemshavebeenproposed,prototyped,and commercializedformostofthemainorthopedic surgeryprocedures,includingkneeandhip jointreplacement,cruciateligamentsurgery,
©SpringerNatureSingaporePteLtd.2018 G.Zhengetal.(eds.), IntelligentOrthopaedics,AdvancesinExperimentalMedicine andBiology1093, https://doi.org/10.1007/978-981-13-1396-7_2
Another random document with no related content on Scribd: