Artificial intelligence on fashion and textiles proceedings of the artificial intelligence on fashio

Page 1


Artificial Intelligence on Fashion and Textiles Proceedings of the Artificial Intelligence on

Fashion and Textiles

AIFT Conference 2018 Hong Kong July 3 6 2018 Wai Keung Wong

Visit to download the full and correct content document: https://textbookfull.com/product/artificial-intelligence-on-fashion-and-textiles-proceedi ngs-of-the-artificial-intelligence-on-fashion-and-textiles-aift-conference-2018-hong-ko ng-july-3-6-2018-wai-keung-wong/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

PRICAI 2018 Trends in Artificial Intelligence 15th

Pacific Rim International Conference on Artificial

Intelligence Nanjing China August 28 31 2018

Proceedings Part II Xin Geng

https://textbookfull.com/product/pricai-2018-trends-inartificial-intelligence-15th-pacific-rim-internationalconference-on-artificial-intelligence-nanjing-chinaaugust-28-31-2018-proceedings-part-ii-xin-geng/

Artificial Intelligence Design Law and Fashion 1st Edition Yilmaztekin

https://textbookfull.com/product/artificial-intelligence-designlaw-and-fashion-1st-edition-yilmaztekin/

Advances in Artificial Intelligence 18th Conference of the Spanish Association for Artificial Intelligence

CAEPIA 2018 Granada Spain October 23 26 2018

Proceedings Francisco Herrera

https://textbookfull.com/product/advances-in-artificialintelligence-18th-conference-of-the-spanish-association-forartificial-intelligence-caepia-2018-granada-spainoctober-23-26-2018-proceedings-francisco-herrera/

Advances in Computational Intelligence 17th Mexican

International Conference on Artificial Intelligence MICAI 2018 Guadalajara Mexico October 22 27 2018

Proceedings Part II Ildar Batyrshin

https://textbookfull.com/product/advances-in-computationalintelligence-17th-mexican-international-conference-on-artificialintelligence-micai-2018-guadalajara-mexicooctober-22-27-2018-proceedings-part-ii-ildar-batyrshin/

Artificial Intelligence for Fashion Industry in the Big Data Era Sébastien Thomassey

https://textbookfull.com/product/artificial-intelligence-forfashion-industry-in-the-big-data-era-sebastien-thomassey/ Proceedings of International Conference on Artificial Intelligence and Applications ICAIA 2020 Poonam Bansal

https://textbookfull.com/product/proceedings-of-internationalconference-on-artificial-intelligence-and-applicationsicaia-2020-poonam-bansal/

Advances in Artificial Intelligence IBERAMIA 2018 16th Ibero American Conference on AI Trujillo Peru November 13 16 2018 Proceedings Guillermo R. Simari

https://textbookfull.com/product/advances-in-artificialintelligence-iberamia-2018-16th-ibero-american-conference-on-aitrujillo-peru-november-13-16-2018-proceedings-guillermo-r-simari/

Advances in Soft Computing 17th Mexican International Conference on Artificial Intelligence MICAI 2018 Guadalajara Mexico October 22 27 2018 Proceedings Part I Ildar Batyrshin

https://textbookfull.com/product/advances-in-soft-computing-17thmexican-international-conference-on-artificial-intelligencemicai-2018-guadalajara-mexico-october-22-27-2018-proceedingspart-i-ildar-batyrshin/

Artificial Intelligence XXXVI 39th SGAI International Conference on Artificial Intelligence AI 2019 Cambridge UK December 17 19 2019 Proceedings Max Bramer

https://textbookfull.com/product/artificial-intelligencexxxvi-39th-sgai-international-conference-on-artificialintelligence-ai-2019-cambridge-ukdecember-17-19-2019-proceedings-max-bramer/

Artificial Intelligence on Fashion and Textiles

Proceedings of the Artificial Intelligence on Fashion and Textiles (AIFT) Conference 2018, Hong Kong, July 3–6, 2018

AdvancesinIntelligentSystemsandComputing

Volume849

Serieseditor

JanuszKacprzyk,PolishAcademyofSciences,Warsaw,Poland

e-mail:kacprzyk@ibspan.waw.pl

Theseries “AdvancesinIntelligentSystemsandComputing” containspublicationsontheory, applications,anddesignmethodsofIntelligentSystemsandIntelligentComputing.Virtuallyall disciplinessuchasengineering,naturalsciences,computerandinformationscience,ICT,economics, business,e-commerce,environment,healthcare,lifesciencearecovered.Thelistoftopicsspansallthe areasofmodernintelligentsystemsandcomputingsuchas:computationalintelligence,softcomputing includingneuralnetworks,fuzzysystems,evolutionarycomputingandthefusionoftheseparadigms, socialintelligence,ambientintelligence,computationalneuroscience,artificiallife,virtualworldsand society,cognitivescienceandsystems,PerceptionandVision,DNAandimmunebasedsystems, self-organizingandadaptivesystems,e-Learningandteaching,human-centeredandhuman-centric computing,recommendersystems,intelligentcontrol,roboticsandmechatronicsincluding human-machineteaming,knowledge-basedparadigms,learningparadigms,machineethics,intelligent dataanalysis,knowledgemanagement,intelligentagents,intelligentdecisionmakingandsupport, intelligentnetworksecurity,trustmanagement,interactiveentertainment,Webintelligenceandmultimedia.

Thepublicationswithin “AdvancesinIntelligentSystemsandComputing” areprimarilyproceedings ofimportantconferences,symposiaandcongresses.Theycoversignificantrecentdevelopmentsinthe field,bothofafoundationalandapplicablecharacter.Animportantcharacteristicfeatureoftheseriesis theshortpublicationtimeandworld-widedistribution.Thispermitsarapidandbroaddisseminationof researchresults.

AdvisoryBoard

Chairman

NikhilR.Pal,IndianStatisticalInstitute,Kolkata,India e-mail:nikhil@isical.ac.in

Members

RafaelBelloPerez,UniversidadCentral “MartaAbreu” deLasVillas,SantaClara,Cuba e-mail:rbellop@uclv.edu.cu

EmilioS.Corchado,UniversityofSalamanca,Salamanca,Spain e-mail:escorchado@usal.es

HaniHagras,UniversityofEssex,Colchester,UK e-mail:hani@essex.ac.uk

László T.Kóczy,SzéchenyiIstvánUniversity,Győr,Hungary e-mail:koczy@sze.hu

VladikKreinovich,UniversityofTexasatElPaso,ElPaso,USA e-mail:vladik@utep.edu

Chin-TengLin,NationalChiaoTungUniversity,Hsinchu,Taiwan e-mail:ctlin@mail.nctu.edu.tw

JieLu,UniversityofTechnology,Sydney,Australia e-mail:Jie.Lu@uts.edu.au

PatriciaMelin,TijuanaInstituteofTechnology,Tijuana,Mexico e-mail:epmelin@hafsamx.org

NadiaNedjah,StateUniversityofRiodeJaneiro,RiodeJaneiro,Brazil e-mail:nadia@eng.uerj.br

NgocThanhNguyen,WroclawUniversityofTechnology,Wroclaw,Poland e-mail:Ngoc-Thanh.Nguyen@pwr.edu.pl

JunWang,TheChineseUniversityofHongKong,Shatin,HongKong e-mail:jwang@mae.cuhk.edu.hk

Moreinformationaboutthisseriesathttp://www.springer.com/series/11156

Arti ficialIntelligence onFashionandTextiles

ProceedingsoftheArti ficialIntelligence onFashionandTextiles(AIFT)Conference

2018,HongKong,July3–6,2018

InstituteofTextilesandClothing

TheHongKongPolytechnicUniversity Hunghom,HongKong

ISSN2194-5357ISSN2194-5365(electronic) AdvancesinIntelligentSystemsandComputing

ISBN978-3-319-99694-3ISBN978-3-319-99695-0(eBook) https://doi.org/10.1007/978-3-319-99695-0

LibraryofCongressControlNumber:2018952621

© SpringerNatureSwitzerlandAG2019

Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart ofthematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations, recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped.

Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthis publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse.

Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthis bookarebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernorthe authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor foranyerrorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardto jurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations.

ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland

AClothingRecommendationSystemBasedonExpertKnowledge 1 TaoYang,JiaoFeng,JieChen,ChunyanDong,YouqunShiandRanTao

CoordinatedOptimizationofProductionandDeliveryOperationsin ApparelSupplyChainsUsingaHybridIntelligentAlgorithm 9 ZhaoxiaGuo,JingjieChen,GuangxinOuandHaitaoLiu

IntelligentCashmere/WoolClassificationwithConvolutionalNeural Network

FeiWang,XiangyuJinandWeiLuo

YarnQualityPredictionforSpinningProductionUsingtheImproved AprioriAlgorithms .........................................

XianhuiZengandPengchengXing

BingWei,KuangrongHao,Xue-songTangandLihongRen WovenLight:AnInvestigationofWovenPhotonicTextiles

LanGe,JeanneTan,RichardSorgerandZiqianBai

WenyingCao,WeidongYuandWeiHuang

Surrogate-BasedModelingandOptimizationoftheBleachWashing forDenimFabrics .........................................

WenboKe,JieXu,MingYangandChanghaiYi

CostumeExpertRecommendationSystemBasedonPhysical Features

AihuaDong,QinLi,QingqingMaoandYuxuanTang

CognitiveCharacteristicsBasedAutonomousDevelopmentof ClothingStyle

JiyunLiandXiaodongZhong

FabricIdenti ficationUsingConvolutionalNeuralNetwork 93 XinWang,GeWuandYueqiZhong

DiscreteHashingBasedSupervisedMatrixFactorization forCross-ModalRetrieval ................................... 101 BaodongTang,XiaozhaoFang,ShaohuaTeng,WeiZhang andPeipeiKang

SparseDiscriminantPrincipleComponentAnalysis ................ 111 ZhihuiLai,MangqiChen,DongmeiMo,XingxingZouandHengKong

NewProductDesignwithPopularFashionStyleDiscoveryUsing MachineLearning 121

JiatingZhu,YuYang,JiannongCaoandEstherChakFungMei ChallengesinKnittedE-textiles

AmyChen,JeanneTan,XiaomingTao,PhilipHenryandZiqianBai

TheCF+TF-IDFTV-ProgramRecommendation ..................

LiYan,CuiJinrong,XinLiu,YuJiaHaoandHeMingkai

MinimizetheCostFunctioninMultipleObjectiveOptimizationby UsingNSGA-II ............................................

HayderH.Safi ,TareqAbedMohammedandZenaFawziAl-Qubbanchi

Two-LayerMixtureNetworkEnsembleforApparelAttributes Classi

TianqiHan,ZhihuiFuandHongyuLi

3DDigitalModelingandDesignofCustom-FitFunctional CompressionGarment

RongLiuandBoXu

Fine-GrainedApparelImageRecognitionBasedonDeepLearning 171 JiaHe,XiJia,JunliLi,ShiqiYuandLinlinShen

LearningaDiscriminativeProjectionandRepresentationforImage Classi fication .............................................

ZuofengZhong,JiajunWen,CanGaoandJieZhou

FashionOut fitStyleRetrievalBasedonHashingMethod ...........

YujuanDingandWaiKeungWong

SupervisedLocalityPreservingHashing .........................

XiaoZhou,ZhihuiLaiandYudongChen

Co-designingInteractiveTextileforMultisensoryEnvironments

H.Y.Kim,J.TanandA.Toomey

ParametricStitching:Co-designingwithMachines 213 JennyUnderwood

Live:ScapeBLOOM:ConnectingSmartFashion totheIoTEcology .........................................

CarolineMcMillan

TrapsinMultisourceHeterogeneousBigDataProcessing ...........

YanLiu

ConvolutionalNeuralNetworksforFinanceImageClassifi cation

XingjieZhu,YanLiu,XingwangLiuandChiLi

RoughPossibilisticClusteringforFabricImageSegmentation

JieZhou,CanGaoandJiaYin

FashionMeetsAITechnology

XingxingZou,WaiKeungWongandDongmeiMo

FashionStyleRecognitionwithGraph-BasedDeepConvolutional NeuralNetworks .......................................... 269 ChengZhang,XiaodongYue,WeiLiuandCanGao

FabricDefectDetectionwithCartoon–TextureDecomposition ....... 277 YingLv,XiaodongYue,QiangChenandMeiqianWang

FabricTextureRemovalwithDeepConvolutionalNeuralNetworks ...

LiHou,XiaodongYue,XiaoXiaoandWeiXu

OptimalGaborFilteringfortheInspectionofStripedFabric 291 LeTong,XiaopingZhou,JiajunWenandCanGao

RobustFeatureExtractionforMaterialImageRetrievalinFashion AccessoryManagement 299 YuyangMeng,DongmeiMo,XiaotangGuo,YanCui,JiajunWen andWaiKeungWong

WovenFabricDefectDetectionBasedonConvolutionalNeural NetworkforBinaryClassification .............................

CanGao,JieZhou,WaiKeungWongandTianyuGao

ComplexTextileProductsandReducingConsumerWaste .......... 315 ColinGale

AFastParallelandMulti-populationFrameworkwith Single-ObjectiveGuideforMany-ObjectiveOptimization 321 HaitaoLiu,WeiweiLeandZhaoxiaGuo

MultipleCriteriaGroupDecision-MakingBasedonHesitantFuzzy

ProbabilisticLinguisticLinearLeastAbsoluteRegression

LishengJiang,HuchangLiaoandZhiLi

AClothingRecommendationSystem BasedonExpertKnowledge

TaoYang,JiaoFeng,JieChen,ChunyanDong,YouqunShiandRanTao

Abstract Throughsummarizingexpertexperienceandknowledgeofclothing,the clothingrecommendationsystemisdevelopedbasedonakindofclothingrecommendationmethod.Accordingtocolormatchingrules,thismethodhasrefinedthe sixfactorsthataffectthecustomer’schoiceofclothing,establishtheclothingknowledgebaseandclarifytherecommendationrules.Consideringthecharacteristicsof thecustomersandtheselectioncriteria,thissystemcanmakepersonalizedclothing recommendationschemeforcustomersandensuretherationalityoftherecommendationresults.

Keywords Expertsystem · Clothrecommendation · Knowledgebase

1Introduction

Withtheincreaseofindividualizedwearableconsciousness,clothingisnotonlythe basiclivingdemand,butalsotheimportantcarriertoenhanceself-tasteandimage.

T.Yang(B) · J.Feng · J.Chen · C.Dong · Y.Shi · R.Tao DonghuaUniversity,Shanghai200051,China e-mail:yangtao@dhu.edu.cn

J.Feng e-mail:shirleyjiao@outlook.com

J.Chen e-mail:heroxiaowanzi@qq.com

C.Dong

e-mail:1210017759@qq.com

Y.Shi e-mail:yqshi@dhu.edu.cn

R.Tao

e-mail:taoran@dhu.edu.cn

©SpringerNatureSwitzerlandAG2019

W.K.Wong(ed.), ArtificialIntelligenceonFashionandTextiles, AdvancesinIntelligentSystemsandComputing849, https://doi.org/10.1007/978-3-319-99695-0_1

Inthedailyshopping,thevariousclothesonthee-commerceplatformoftenmake customersregretconsumption[1].

Basedontheabovebackground,apersonalizedclothingrecommendationsystem basedonexpertsystemhasbeendesignedanddevelopedinthispaper,whichaims toguideconsumerstochoosethesuitableclothingontheperspectiveofprofessional match.Themainworkistheapplicationofclothingrecommendationandmatch experienceprovidedbyexpertsinpersonalizedclothrecommendation.Wehave refinedsixfactorsaffectingcustomerdress,transformedthethinkingmodeofexperts intotheelectronicknowledgebaseandrecommendationprocessthatcomputercan handle.

2ClothingRecommendationKnowledgeBase

Theknowledgebaseintheclothingrecommendationsystemmainlyreferstotheset ofrulesusedbythesystemruntime,includingthedatainformationcorresponding totherulesandthestoragemodethatrulescanbetransformedandprocessedby computersaftersummarizingexperts’experience[2].

2.1CustomerCharacteristicsandClothingElements

Recommendationbasedonexpertrulesusesexperts’knowledgewhichcanmap customers’needstoproductfeaturesandtakecustomers’attributesasthemain consideration[3].Therecommendationsystemdependsontwopartsofcustomers andclothing,asshowninFig. 1.Integratingwithexperts’yearsofexperienceto identifycustomercharacteristicsandclothingelementsisthebasisofknowledge baseestablishmentandclothingrecommendationrealization.

CustomerCharacteristicsExtraction.Whenexpertsdesigncustomer’simage, thefirstconsiderationisthecustomer’sskincolorwhichinfluencesthecustomer’s suitablecolorrange.Thesecondpointistoconsiderthebodytype.Thecorrectuse ofclothingversioncanmakeupbodydefects.Inordertoclarifythecustomer’s preferences,thestylefactorisconsidered.Eachstylehasacorrespondingtheme color.Finally,therecommendedresultsaregivenbasedoncustomerdemandfor clothingcategoriesandspecificcolors[4].

Thecustomers’informationwecollectaredividedintotwoparts:objectivefactors andsubjectivefactors,asshowninFig. 1.Objectivefactorsrefertothebasicattributes ofcustomers,includingage,height,skincolor,andmeasurementsofchest,waist, andhips.Heightandweightmeasurementsareusedtodeterminethecustomer’s bodytype.Subjectiveelementsareupdatedasthepreferencesofcustomerchange, includingstyle,preferencecolorandcategory.Basedontheabove-mentionedrules, customerfactorscanbethefollowingfouroptions:

• Agerange.Inadditiontoasmallnumberofbasicstylesofclothing,clothinghas itsagerangewhichissuitableforcustomers,theageofthecustomerdetermines thechoiceofclothingA4.

• Versionrange.Clothingversioncanhelpcustomershighlighttheadvantagesof figurewhileconcealingdefects,soobtainingcustomersizedatameansthatsystem canchoosetheappropriaterangeofclothingversionA2.

• Colorrange.Incustomercharacteristics,thethreefactorsincludingskincolor, style,andpreferencecolorarerelatedtocolor.Skincolorinfluencesthecolorrange ofthecustomer.Styledeterminesthethemecolor.Preferencecolordefinescolor selectionrange.Thecombinationofthethreefactorscangeneratethecustomer clothing’sbestcolorrangeA3.

• Categoryrange.Customer’sdemandforaparticularcategoryisthemostintuitive clothingconditionswhichcanobtainthecategoryrangeA1.

ClothingElementsExtraction

.Clothingdescriptionisinseparablefromtheclothingname,fabric,composition,brandandotherinformation,showninFig. 1,we considerthisinformationasthebasicelements.Whenthesystemrecommendsthe clothing,thebasicinformationisfarfromenough.Inordertobeconsistentwith customerfactors,wejointhefourextendedelementswhichcontaincategory,age range,themaincolor,andclothingversion.Expandedelementsneedtomeetthe system-specificclassificationanddatarequirements[5].Asanexample,theprimary classificationofclothingistheclothofupperbody.Thesecondclassificationfor thisprimaryclassificationisT-shirt,shirt,sweaterandsoon.Maincolorrefersto thelargestproportionoffabriccolor.Theclothingversionreferstotheoutercontouroftheclothing.Whenmatchingtheclothingforthecustomer,thecustomer’s rangeofchoiceforclothingandclothingelementsarebeconsistentone-to-one[6]. Theclothing’scategoryelementsA1 correspondtothecustomer’scategoryrange. Theclothing’ssuitableagerangeelementsA4 correspondstothecustomer’sage

Fig.1 Customercharacteristicsandclothingelements

rangeA4.Theclothing’smaincolorelementsA3 correspondstothecustomer’s colorrangeA3.Theclothing’sversionelementsA2 correspondstothecustomer’s versionrangeA2.

2.2KnowledgeBase

Clothingknowledgebaseconsistsofthreeparts,includingelementlibrary,color library,andrecommendationrulesalgorithm,asshowninFig. 2.Theelementlibrary isdividedintocustomerelementsandclothingelementswhichstoretheclassificationofeachfactorandthecorrespondingcolorrange.Colorlibraryincludesthe correspondenceofPantoneandRGB,colorsimilaritycalculationmethod,andbasic colorexpansion.Therulealgorithmincludestheclothing’smaincoloridentification algorithmandclothingmatchingrules.Thematchingrulesareusedtodeterminethe matchingbetweenthecustomerandtheclothing。Therecommendationresultsare sortedaccordingtothematchingdegree.

3ClothingRecommendation

Aftertheknowledgebasesaredecided,thesystemneedstosearchtheclothing databasefortheclothingwhichmeetstherequirementsaccordingtothecustomer’s physicalcharacteristics.

3.1MatchingDegreeCalculation

Thematchingdegreequantifiesthesuitabilityofthegarmentundertheuserfactor throughaspecificscore.Thehightotalmatchingdegreeindicatesthatthegarment ismoresuitablefortheuserandwillberecommendedpreferentially.Thesingle clothingmatchingdegreesetC {C1,C2,C3,C4}correspondstothematching degreeofstyle,skincolor,bodytype,andagerespectively,withintherangeof[0,1]. Thetotalmatchingdegreeofclothingformulaisasfollows[7]:

C C1+C2+C3+C4(1)

Forexample,theagematchingdegreeisusedtodeterminethematchbetweena userofacertainageandasuitforacertainage.Theagematchingdegreeisdivided intofourlevels,asshowninTable 1.Takinga26-year-olduserasanexample,the clothwithanagerangeof25–29isthebestchoicewhichmatchingdegreeis1; theclothwithanagerangeof18–24or30–34isthesecondchoicewhichmatching

Fig.2 Expertknowledgebase

degreeis0.6andsoon,theclothwhichagerangeisolderthan40isnotrecommended, andthematchdegreeiszero.

Table1 Agematching degreedivision(26-year-old user)

3.2ClothingRecommendationProcess

Figure 3 showstheclothingfilterprocess.Arepresentsthesystem’sclothing database.First,accordingtothefilterofcategoryfactors,clothingdataA1isachieved. A1excludesclothingwhichdoesnotmeetthecategory.OnthebasisofA1,thestyle isselected.ThematchingdegreeC1oftheclothingforthestyleiscalculated.The clothingwhichisunsuitabletothisstyleisexcluded.TheclothingdataA2isobtained. Afterpreferencecolor,skincolor,bodytype,andagefactorsareselected,skincolor matchingdegreeC2,bodyshapematchingdegreeC3andagematchingdegreeC4 arecalculated.Datawithamatchingdegreeofzeroisexcluded.Thefinalclothing dataA7isobtainedwhichneedtobesortedbythesumofC1,C2,C3,C4.The Top-NclothingcanberecommendedbasedonA7.

3.3ClothingRecommendationResult

Takingintoaccountthecurrentuser’susagehabits,thesystemisdevelopedbased onmobileplatform.Forexample,userAhasawarmskinandanH-shapedfigure. Sheis23yearsoldandprefersvintagestyle.Inthespringsheneedsashirtwithblue andpurplecolor.TheresultsareshowninFig. 4.Therecommendedclothingneeds tomeetthedirectfilterconditionsoftheshirtcategoryandblue-violetpreference color.Thelooseclothescanmakeupfortheshortcomingsofherthinupperbody. Themaincolorsofbothgarmentsconformtotheuserstyleandthebasiccolorof theskincolor.

Fig.3 Clothingfilterprocess

4Conclusion

Thisarticleputsforwardaclothingrecommendationsystembasedonexpertrules fortheproblemofdifficulttobuyclothing.Comparedwiththetraditionalclothing recommendationsystem,therecommendationsystembasedonexpertrulescanprovidewell-directedrecommendationservicestoguidecustomerstopurchasesuitable clothing.Combinedwiththeknowledgebase,personalizedrecommendationresults willbeobtainedaftermultiplefactorsscreening.

Acknowledgments ThisworkissponsoredbyDongguanCityprofessionaltowninnovationserviceplatformconstructionproject“DongguanCityHumengarmentCollaborativeInnovationCenter”andGuangdongProvincecollaborativeinnovationandplatformEnvironmentalSciencebuild ofspecialfundsNO.2014B090908004.

References

1.Alfian,A.:Thedevelopmentframeworkofexpertsystemapplicationonindonesiangovernmentalaccountingsystem.In:InternationalConferenceonComputerScienceandArtificial Intelligence,pp.60–64(2017)

2.Zhong,X.,Liu,Z.,Ding,P.:Constructionandapplicationofknowledgebasebasedonhybrid reasoning.J.Comput. 35,761–766(2012)

3.Cai,Z.:Advancedexpertsystem:principlesdesignandapplications.BeijingSciencePress, Beijing(2005)

4.Ying,Ni.:ClothingImageDesign.ChinaTextilePress(2012)

5.Salim,N.:Recommendationsystems:areview.Int.J.Comput.Eng.Res.(2013)

6.Tewari,A.S.:Sequencingofitemsinpersonalizedrecommendationsusingmultiplerecommendationtechniques.ExpertSyst.Appl. 97,70–82(2018)

7.Wagner,W.P.:Trendsinexpertsystemdevelopment:alongitudinalcontentanalysisofover thirtyyearsofexpertsystemcasestudies.ExpertSyst.Appl. 76,85–96(2017)

Fig.4 Clothingrecommendresultinmobile

CoordinatedOptimizationofProduction andDeliveryOperationsinApparel SupplyChainsUsingaHybridIntelligent Algorithm

ZhaoxiaGuo,JingjieChen,GuangxinOuandHaitaoLiu

Abstract Thispaperaddressesacoordinatedoptimizationproblemofproduction anddeliveryoperationsinapparelsupplychains.Afleetofheterogeneousvehicles areusedtodelivertheaccessoriesproducedonparallelmachinestoanumberof apparelproductionplants.Weconsidertheflexiblevehicledeparturetimebetween theproductionanddistribution.Anovelhybridintelligentsolutionframeworkis proposedtosolvethisproblem,bydecompositiontheoptimum-seekingprocessis simplifiedandthecomputationalcomplexityisreduced.Theeffectivenessofproposedframeworkisevaluatedbynumericalexperiments.Experimentalresultsshow thattheproposedsolutionframeworkexhibitsbetteroptimizationperformancein termsofthesolutionqualityandcomputationaltimethanotherstate-of-the-artalgorithms.

Keywords Apparelsupplychain · Productionscheduling · Vehiclerouting Intelligentalgorithm

1Introduction

Intime-intensiveapparelsupplychains,garmentaccessorysuppliers,suchasembroideryplantsandprintingplants,needtoprocesstheembroideryorprintingorders, andthendeliverthefinishedorderstodifferentlocalcustomers(garmentplants) accordingtothecustomers’requirements.Inordertoreduceoperatingcostsand enhancecustomerservicelevels,theproductionschedulinganddeliveryoperations shouldbecoordinated.Motivatedbythesepracticalapplications,thisstudyinvestigatesanintegratedoptimizationproblemofproductionanddistributionoperations, calledastheintegratedproductionschedulingandvehicleroutingwithtimewindows (IPS-VR).

Z.Guo J.Chen G.Ou H.Liu(B) BusinessSchool,SichuanUniversity, Chengdu610065,People’sRepublicofChina e-mail:haitaoliuch@gmail.com

©SpringerNatureSwitzerlandAG2019

W.K.Wong(ed.), ArtificialIntelligenceonFashionandTextiles, AdvancesinIntelligentSystemsandComputing849, https://doi.org/10.1007/978-3-319-99695-0_2

Inrecentyears,theIPS-VRproblemshavegainedmoreandmoreresearchers’ attention[1–4].Previousstudiesusuallyassumethatordersneedtobedelivered immediatelyoratthefixeddeparturetimeafterordersarefinished[5–7].These assumptionscouldleadtopenaltycostsofviolatingtimewindowsofcustomersin practice.Comparedtotheimmediateorfixedvehicledeparturetime,theflexible vehicledeparturetimecanmeeteffectivelytherequirementsofcustomertimewindowsbecauseoftheflexibilityofvehicledeparturetime[7].However,researchon IPS-VRproblemswithflexibledeparturetimesinparallelmachineshasnotbeen reportedsofar,althoughtheseproblemsexistwidelyinapparelsupplychains.This studythusaimstoinvestigateanIPS-VRproblemwithflexiblevehicledeparture timesinapparelsupplychains.

2ProblemDescription

Inanapparelsupplychainenvironment,thesupplier(accessoryproducer)receives variousorders(indexedby i ∈ {1, 2,..., I },alias j )fromitslocalcustomers (garmentproducer,indexedby i aswellsinceeachgarmentproducerplacesone orderonly).Theseordersareprocessedonidenticalparallelmachines(indexedby m ∈ {1, 2,..., M }).Thefinishedordersaredeliveredtolocalcustomersbyafleet ofvehicles(indexedby v ∈ {1, 2,..., V })accordingtothegiventimewindowsof allcustomers.Differentvehiclescouldhavedifferentloadingcapacities.Weuse qv todenotetheloadingcapacityofvehicle v .Iftheactualdeliverytime Di oforder i is lessthanthelowerbound l i ofitstimewindow,anearlinesspenaltycostwillincur andweuse E i todenotetheamountofearlydeliverytime.Iftheactualdelivery time Di isgreaterthantheupperbound u i ,atardinesspenaltycostwillincurandwe use Ti todenotetheamountoflatedeliverytime.Let c denotethetransportcostper unittime, e and t denotetheunitearlinessandtardinesspenaltycostforoneorder respectively.TheinvestigatedIPS-VRproblemaimstodeterminethevaluesoffive decisionvariablessothatthetotalsupplychaincostisminimized.Thecostisthe summationofdirecttransportcostsandtheearlinessandtardinesspenaltycostsof allorders.Thefivedecisionvariablesinclude: omi (itis1iforder i isprocessedon machine m ;otherwiseitis0); x ijm (itis1iforder j isprocessedimmediatelyafter order i onmachine m ;otherwiseitis0); yv i (itis1iforder i istransportedbyvehicle v ;otherwiseitis0); z ij v (itis1ifcustomer j isvisitedimmediatelyaftervisiting customer i byvehicle v ;otherwiseitis0);and dv (itdenotestheflexiblevehicle departuretimeofthevehicle v ).Theobjectiveofthisproblemistominimizethe totalsupplychaincost.

3HybridIntelligentOptimizationFramework

TheinvestigatedIPS-VRproblemneedstodeterminethevaluesoffivedecision variables: omi , x ijm , yv i , z ij v and dv .Thisproblemisactuallyamulti-leveloptimizationproblem,whichcanbetackledbysolvingtwosub-problemsinanintegrated andnestedmanner:aparallelmachineschedulingsub-problemfordeterminingthe valuesofvariables omi and x ijm ,andadistributionschedulingsub-problemfordeterminingthevaluesofvariables yv i , z ij v and dv .Boththesub-problemsareintractable whenproblemsizesarelarge,becausebothofthemareNP-hard.

ThisstudytacklestheinvestigatedproblembydecomposingthisIPS-VRproblem intosub-problemswithsmallerproblemsizes.Theorderstransportedbyeachvehicle needtobeproducedinturnintheproductionplant.Therefore,wecansolvea vehicleassignmentsub-problemfirst,whichdeterminesthevalues{ yv i }oforder assignmenttovehicles.Itisequivalenttothegeneralassignmentproblem.Then weonlyneedtohandleparallelmachineschedulingsub-problemthatdetermines thevaluesofvariables omi and x ijm ,whichismucheasiertosolvethantheoriginal parallelmachineschedulingsub-problembecauselessordersneedtobeconsideredin eachsub-problem.Next,wesolveanewdistributionschedulingsub-problem,which determinesthevaluesofvariables z ij v and dv .Bysodoing,theinvestigatedIPS-VR problemisdecomposedintothreesimplersub-problemswithsmallerproblemsizes.

Thisstudyproposesahybridintelligentoptimization(HIO)frameworktosolve thethreesub-problemsinacoordinatedandnestedmannerbycombiningintelligent optimizationtechniqueswithheuristicprocedures.Thisframeworkconsistsofan outerleveloptimizationprocessandaninner-leveloptimizationprocess.Theouterleveloptimizationprocessaimstoseekthebestvehicleassignment{ yv i }byusingan intelligentoptimizationtechniques,whiletheinner-leveloptimizationprocessaims toseekthebestvaluesofotherfourvariables omi , x ijm , z ij v and dv .Theflowchart ofHIOframeworkisshowninFig. 1.ThefirststepistoinitializealgorithmparametersusedinHIOframework.Theseparametersincludepopulationsizeandother parametersusedintheframework,suchascrossoverand(or)mutationprobabilitiesinevolutionaryalgorithms.Step2generatestheinitialpopulationbyrandomly assigningallorderstovehicles.Eachindividualinthepopulationrepresentsavehicle assignmentsolution { yv i },whichisasequenceoforderstobetransportedbyvehicle v .Step3istoevaluatetheperformanceofeachindividualintheinitialpopulation basedontheinnerleveloptimizationprocess.Sinceeachindividualonlydetermines decisionvariable yv i ,thecorrespondingotherdecisionvariables(omi , x ijm , z ij v and dv )aretobedeterminedbysub-stepsshowninFig. 1b.Step3aistodeterminethe productionassignment{omi }andtheprocessingsequences{ x ijm }oforders.Then themakespansofordersdeliveredbyeachvehiclearecalculated,afterwhichitis tohandlethedistributionschedulingbydeterminingthevehicledeparturetime dv androutes z ij v ofvehicle v .Theproceduresinvolvedinstep3areskippeddueto pagelimit.Steps4–7constitutetheiterativeprocessofHIOframework.Eachiterationdenotesanewgenerationoftheouter-leveloptimizationprocess.Thenewchild individualisgeneratedandevaluatedrespectivelyinsteps4and5.Theprocedure

START END

1.Algorithm parameter initialization

2.Generate initial population consisting of candidate vehicleassignment solutions

3.Evaluate each new individual using an intelligent inner-level optimization process

No

8.Return the best solution

Yes

7.Meet termination criteria?

3a.Production scheduling: determine production assignment sequencing of orders for each vehicle

6.Form new population

4.Generate new individual

5.Evaluate each new individual using an intelligent inner-level optimization process

3b.Set v=1and calculate the makespan of the orders delivered by vehicle v

3c.Distribution scheduling: determine the departure time and routes of vehicle v by integrating intelligent optimization techniques and heuristics

3d.Set v=v+1

3e.If v>V,calculate the total cost by accumulating the cost of each vehicle

(a)Main process:outer-level optimization(b)Procedure of step 3:inner-level optimization

Fig.1 Hybridmulti-levelintelligentoptimizationframework

instep6isthesameastheprocedureinstep3.Step6formsthenewpopulation basedonthefitnessofparentandoffspringindividuals.Theterminationcriterion ischeckedinstep7ineachiteration.Ifthespecifiedmaximumiterations gmax is reached,theiterativeprocessoftheHIOframeworkisterminated;otherwise,the processreturnstostep4andcontinuestogeneratethenewindividual.Step8returns thebestsolutionindividualinthecurrentpopulationasthebestsolutionfoundby theproposedHIOframework.

TheHIOframeworkisageneralsolutionframeworkfortheinvestigatedIPS-VR problem.UndertheHIOframework,variousintelligentoptimizationtechniques[8], suchasgeneticalgorithm(GA),tabusearch(TS),evolutionstrategyandmemetic algorithm,canbeusedtoseekthebestsolutions.ThetraditionalGA[9]isused astheouterleveloptimizationprocessinthispaper.UndertheHIOframework, theobjectiveofparallelmachineschedulingsub-problemissettominimizethe makespanofallorders,whichdoesnotaffectthefinalsolutionstotheinvestigated IPS-VRproblem.TheBFD-LPTheuristicdevelopedbyXuetal.[10]isadopted toobtainthevaluesof omi and x ijm ,becauseitcanhandleeffectivelytheparallel machineschedulingproblemwiththeminimalmakespanobjective.Wecombinean intelligentoptimizationtechniquewithheuristicrulestoobtainthevaluesof z ij v and dv ,sinceseekingtheoptimalvaluesofvariable z ij v isequivalenttosolvinga travelingsalesmanproblemswiththeobjectiveofminimizingtotaltransportcost

andpenaltycostofviolatingtimewindows.ThisstudyadoptstheTS,proposedby Fiechter[11],toobtainthebestvaluesofvariables z ij v .

4ExperimentsandComparison

ToevaluatetheeffectivenessoftheproposedHIOframeworkforinvestigatedIPS-VR problem,aseriesofnumericalexperimentshavebeenperformed.Duetopagelimit, thissectionhighlightsonetypicalexperimentonly,whichconsider35customers, fourvehiclesandtwomachines.

Theexperimentdataaregeneratedbasedonthebenchmarkinstancesofthevehicle routingproblemwithtimewindowspresentedbySolomon[12].Theloadingcapacity qv ofeachvehicleissetto100.Forsimplicity,thetransporttimeamongcustomers equalsthecorrespondingEuclideandistance.Thecoordinateoftheplantis(40,50).

Thepenaltyparameters e and t areequalto1and3respectively.Thetransport costofperunittime c isequalto2.Theparametersincludingcrossoverprobability, mutationprobability,populationsizeandmaximaliterationnumberinGAareset to0.8,0.4,150,and100respectively.Theparametersincludingthetabutenure,the lengthoftabulist,thenumberofcandidatesolutionsandmaximaliterationnumber intheTSaresetto10,10,20,and80respectively.

Table 1 showsthatthebestsolutionsandthecorrespondingresultsgeneratedby theproposedHIOframework.Thesecondcolumnshowsthemakespanoftheorders deliveredbyeachvehicle.Thethirdcolumnshowstheflexiblevehicledeparture timesofeachvehicle.Thefourthcolumnshowstherouteofeachvehicle,inwhich “0”denotestheplantandothernumbersdenotethecorrespondingcustomerororder number.Thefifthcolumnshowseachroute’scostsgenerated,whicharethesummationoftheearlinessandtardiness(E/T)penaltycostandthetransportcostof eachvehicle.Thesixthcolumnshowsthetotalcostswhichareequaltotheobjective functionvalue.Itcanbeseenthatsomevehicles(e.g.,vehicle3)departfromthe plantimmediatelyaftertheordersarefinished,whilethedeparturetimesofmost vehiclesarerescheduledandgreaterthanthemakespanoftheirorders.Itindicates thenecessityofsettingthevehicledeparturetimeflexibly.

ToevaluatetheoptimizationperformanceoftheproposedHIOframework,this studycomparedtheperformancesoftheproposedHIOframeworkwiththegenetic algorithm-basedapproach(calledasUGAinthisstudy)proposedbyUllrich[1].The experimentalsettingissimilartothatsetbyUllrich[1],andtheonlydifferenceisthat thevehicledeparturetimeissettothemakespanoforderstransportedbythisvehicle intheUGA.TheparametersintheUGAaresetaccordingtotherecommendations fromUllrich[1].TheHIOframeworkreducedthetotalcostsby23.34%compared withtheUGA.Withtheincreaseinproblemsizes,theproposedHIOframework showsahighersuperiorityovertheUGA.

5Conclusion

Thispaperaddressedacoordinatedoptimizationproblemofproductionanddelivery operationsinapparelsupplychains.Ahybridintelligentoptimizationframework wasproposedtosolvetheinvestigatedproblem.Experimentalcomparisonswere performedtovalidatetheeffectivenessoftheproposedHIOframework.Theresults showedthattheHIOframeworkwasabletotackletheIPS-VRproblemeffectivelyby providingthebettersolutionsthantheUllrich’sapproach[1].Differentoptimization techniquescouldbeembeddedinthisframeworktoconstructotheralgorithmswith betteroptimizationperformancesforIPS-VRproblemsinfuture.

References

1.Ullrich,C.A.:Integratedmachineschedulingandvehicleroutingwithtimewindows.Eur.J. Oper.Res. 227,152–165(2013). https://doi.org/10.1016/j.ejor.2012.11.049

2.Pundoor,G.,Chen,Z.L.:Schedulingaproduction–distributionsystemtooptimizethetradeoff betweendeliverytardinessanddistributioncost.NavalRes.Logist. 52,571–589(2005). https:// doi.org/10.1002/nav.20100

3.Moons,S.,Ramaekers,K.,An,C.,Arda,Y.:Integratingproductionschedulingandvehicle routingdecisionsattheoperationaldecisionlevel:areviewanddiscussion.Comput.Ind.Eng. 104,224–245(2017). https://doi.org/10.1016/j.cie.2016.12.010

4.Chen,Z.-L.:Integratedproductionandoutbounddistributionscheduling:Reviewandextensions.Oper.Res. 58,130–148(2010). https://doi.org/10.1287/opre.1080.0688

5.Gao,S.,Qi,L.,Lei,L.:Integratedbatchproductionanddistributionschedulingwithlimited vehiclecapacity.Int.J.Prod.Econ. 160,13–25(2015). https://doi.org/10.1016/j.ijpe.2014.0 8.017

6.Amorim,P.,Guenther,H.O.,Almada-Lobo,B.:Multi-objectiveintegratedproductionand distributionplanningofperishableproducts.Int.J.Prod.Econ. 138,89–101(2012). https://d oi.org/10.1016/j.ijpe.2012.03.005

7.Agnetis,A.,Aloulou,M.A.,Fu,L.-L.:Coordinationofproductionandinterstagebatchdelivery withoutsourceddistribution.Eur.J.Oper.Res. 238,130–142(2014). https://doi.org/10.1016/ j.ejor.2014.03.039

8.Eiben,A.E.,Smith,J.:Fromevolutionarycomputationtotheevolutionofthings.Nature 521, 476–482(2015). https://doi.org/10.1038/nature14544

9.Goldberg,D.E.:GeneticAlgorithmsinSearch,OptimizationandMachineLearning.AddisonWesleyPub.Co.,Boston,MA(1989)

10.Xu,D.,Sun,K.,Li,H.:Parallelmachineschedulingwithalmostperiodicmaintenanceandnonpreemptivejobstominimizemakespan.Comput.Oper.Res. 35,1344–1349(2008). https://do i.org/10.1016/j.cor.2006.08.015

11.Fiechter,C.N.:Aparalleltabusearchalgorithmforlargetravelingsalesmanproblems.Discret. Appl.Math. 51,243–267(1994). https://doi.org/10.1016/0166-218x(92)00033-i

12.VRPTWBenchmarkProblems. http://w.cba.neu.edu/msolomon/problems.htm

IntelligentCashmere/WoolClassification withConvolutionalNeuralNetwork

Abstract Itisgenerallybelievedthattherearesubtledifferencesintexturesand diameters,betweencashmereandwoolfibers.Thus,automaticallyclassifyingthe cashmere/woolfiberimagesremainsamajorchallengetothetextileindustry.Inthis proposal,weintroducedamethodthatusesConvolutionalNeuralNetworks(CNNs) toidentifythetwokindsofanimalfibers.Specifically,atypicalCNNwasusedto extractimagefeaturesatfirststep.Thenaregionproposalstrategy(RPS)wasused tolocalizethefine-grainedfeaturesfromtheimages.Wefine-tunedtheCNNmodel byusingthefeaturesselectedbyRPS.Experimentsoncashmere/woolimageset comparedtodifferentmodelsverifiedtheeffectivenessoftheproposedmethodfor featureextraction.

Keywords Cashmere/wool · Subtledifferences · Classification Convolutionalneuralnetworks

1Introduction

Historically,theidentificationofcashmereandwoolhasbeenamajorissuefor consumersandtextilemanufacturers.Cashmere,isakindofluxuryanimalfibers [1]becausetheyaredifficulttoobtainlargequantities.Owingtothefactofthe fibers’softness,luster,andscarcity,cashmereisoneofthefinestandpopularanimal hairfiberamongtheabove-mentionedfibers[2, 3].However,fine-descaledwoolor stretchedwoolisusedtoadulteratecashmere[4].Thus,theresearchforclassifying

F.Wang X.Jin(B) DonghuaUniversity,Shanghai201620,China e-mail:jinxy@dhu.edu.cn

W.Luo

SouthChinaAgriculturalUniversity,Guangzhou510642,China

W.Luo

KeyLaboratoryofIntelligentPerceptionandSystemsforHigh-DimensionalInformationof MinistryofEducation,NanjingUniversityofScienceandTechnology,Nanjing210094,China

©SpringerNatureSwitzerlandAG2019

W.K.Wong(ed.), ArtificialIntelligenceonFashionandTextiles, AdvancesinIntelligentSystemsandComputing849, https://doi.org/10.1007/978-3-319-99695-0_3

(a) Original cashmere fiber(b) Original wool fiber

Fig.1 Originalmicroscopeimagesofcashmereandwoolfiber

cashmereandwoolunderconsiderationofmodeldesignhasfundamentaltheoretical andpracticalmeaning.

Thehigh-qualitycashmerefiberisordinarilywhite,35–50mminlength,witha meandiameterof15–19mm.Bycontrast,Merinosheep’swoolisusually50–90mm inlength,withameanfiberdiameterof18–25mm[5].Figure 1 showsrawimages ofcashmereandwool.

Wecanfindthatwoolhasadeepertexturethancashmere,andthetwofibershave subtledifferentcross-sectionaldiameters.

However,theinterestedpartiesusephosphorusremovalorstretchwoolasacashmereadulterant;andthediameterandthelengthofthecashmerefibersaresignificantlychanged[6].

Traditionally,cashmere/woolfiberidentificationiscarriedoutbyexpertsonhighpowerOpticalmicroscopy(OM)orscanningelectronmicroscopy(SEM)[7, 8].OM andSEMmethodsareconsideredasthemostpracticalmethodsduetoitshigh efficiency,andtheycostlittleaswell.Theothertypemethodsthatreceivealarge audienceandbecomepracticablemethodsareDNAtechniques[1, 9].TheDNA analysismethodisreliableandobjectiveaswellasitcanachievemasstesting. However,thewholeprocesswillcostoneday,andtheentiresettingsandinstruments arerelativelyexpensivecomparedtoopticalmicroscopy.

Variousmethodsaimtoclassifycashmere/woolarebasedonComputerVision (CV)technique[4, 10–12]theyobtainthehighestaccuracyof94.6%.Untilrecently, wehavewitnessedthegreatsuccessofCNNsinfine-grainedimageclassification, [13–18](FIC)whichreferstothetaskofclassifyingobjectsthatbelongtothesame basic-levelcategory.AlexKrizhevskyetal.[19]intheImageNetLSVRC-2010 contest,trainedalarge,deepconvolutionalneuralnetworktoclassifythe1.2million high-resolutionimagesintothe1000differentclasses.Theyachieveaperformance oftop-1andtop-5errorratesof37.5and17.0%.

Inspiredbytheliteratureabove,thispapercontributestothefieldofcashmere/woolidentificationbydevelopingamodeloftheCNNwhichextractsthe featuresautomaticallyandintroducesaregionproposalstrategy(RPS)topredict objectboundsandmakescoresateachpositionoftheimage.

2Method

ThewoolfibersandthecashmerefibersweresupportedbyOrdosGroup.Theexperimentalimageswereacquiredbyusinganopticalmeasuringinstrument.Theoptical microscopysystem(CU-5)tookphotographsofthefibersat10 × 50magnifications. Thedatasetconsistedof2938full-sizefiberimages(cashmereandwool),including 1705cashmereimagesand2082woolimages.Thelabelsofthefiberhavebeengiven byseasonedexpertsofOrdosGroupaswellMethod.

2.1OverallMethod

Inourmethod,thecashmere/woolidentificationwascarriedoutinthreesteps.First, fiberimagesweresegmentedtoenhancefeaturesandremovenoises.Second,we constructedaregionproposalstrategywhichchosecandidatesfromthesub-images thatcutbytheindividualwholeanimalfibers.Finally,weemployedsub-images selectedbyRPSasanenhancementinputfortheentirefiberimagestotheCNN classifier.Figure 2 presentstheoverviewofthearchitectureofourCNNclassifier. Logisticregressionfunctionwaschosenastheclassifiertoobtaintheidentification results.Fortheconvenienceofexplanation,inthefollowingsections,ourmodelis abbreviatedasCNN.TheregionproposalstrategywhichusedforourCNNmodel isabbreviatedasRPS.

Fig.2 ThearchitectureofproposedCNNmodel

2.2ModelSelected

Throughtheobservationofthefibersampleimages(asshowninFig. 1aandb),itcan befoundthateachfiberimagecontainsalargeareaofinvalidbackgroundfill.And thefeaturesextractedbyCNNarecalculatedbypixels,thusthelargeareaofinvalid backgroundpixelsnegativelyaffectsthecalculationanddeliveryoffeatures.Region ProposalMethodextractsthefeaturesofthefiberimagefromthefourparameters ofcolor,texture,size,andspaceoverlapped.Bythisway,wecanobtainthemost effectivefeatureexpressionregionsintheabovefouraspects.Inordertoenhance theweightsofthevalidfeatures,weconstructaCNNmethodwithRegionProposal Strategy(RPS).However,themodelselectedachievedabetterperformancethan withoutusingit.

2.3RegionProposalStrategy

Weusetheselectivesearchalgorithmtoobtainthemostcharacteristicsub-image asanenhancedsampleoffiberfeatures.Thissectiondescribeseachstepofthe procedureindetail

1.Calculatethevariouscolorspaceoftheimageastheoriginalcandidateregion(We consider(1)RGB,(2)gradationI,(3)Lab,(4)rgI(normalizedrgchannelplus gradation),(5)HSV,(6)rgb(normalizedRGB),(7)C,(8)H(HchannelofHSV) tocalculate).Theoriginalcandidateregionsrecordas R

2.Initializethesimilarityset S ∅ (Hereweuse S tosavetheselectedregion proposalset).

3.Calculateasimilaritybetweenthetwoadjacentregions R (r i , r j ),andadditto theset S whichstandsforthesimilarityoftheregion R.Thetotalsimilaritiesare calculatedasshowninformula 1.

Intheformula 1, Scolor (r i , r j )hereindicatesColorSimilarity(CS). Stexture (r i , r j ) indicatesTextureSimilarity(TS). Ssize (r i , r j )standsforSizeSimilarity(SS)and Sfill (r i , r j )standsforFitSimilarity(FS).

4.Thetworegions r i and r j whichhasthehighestsimilaritythatfoundoutfromthe similarityset S ,aremergedintooneregion r t .Inthemeantime,thesimilarities originallycalculatedbetweenadjacentregions r i and r j areremovedfromthe similarityset S .Calculatethesimilaritybetween r i and r j itsneighboringregions. Theresultsareaddedtothesimilarityset S .Atthesametime,addthenewregion

Fig.3 Regionproposal selectedbyselectivesearch algorithm

r t .totheareaset R.Iteratethroughtheprocessaboveuntiltheset S isremoved to ∅,whichindicatingthatallthemergeableregionshavebeenmerged.

5.Obtainthelocationofeachregion r inset R,whichisshowninFig. 3.Thefive redboundingboxesareselectedtorepresentthefiber’sfeatures.

Sincetheregionproposalselectedbythealgorithmaboveiscalculatedfromthe color,texture,sizeandthefit,itcanbeconsideredasthemostdistinctivefeatures oftheentirefiberimage.Thus,wetakeadvantageofthesefeaturesandtraining theclassifierbystretchtheRPS-image(SelectedbyRegionProposal)tothesame dimensionsastheoriginalimageandfeedthemtoCNN.

3ExperimentsandResults

Aftertheknowledgebasearedecided,thesystemneedstosearchtheclothing databasefortheclothingwhichmeetstherequirementsaccordingtothecustomer’s physicalcharacteristics.

3.1ExperimentalSetup

Thematchingdegreequantifiesthesuitabilityofthegarmentundertheuserfactor throughaspecificscore.Thehightotalmatchingdegreeindicatesthatthegarment ismoresuitablefortheuserandwillberecommendedpreferentially.Thesingle clothingmatchingdegreeset C {C 1, C 2, C 3, C 4}correspondstothematching degreeofAsamplesetcontains1980fiberimages(cashmere,Chinesfinenative wool,andMerinowool)areprepared.Intermsofclassificationproblem,keraswitha theano(1.0)backendareutilizedtobuildamodelforclassifyingthecashmere/wool imagesbyPythonlanguage.Thekeyparametersofthecomputer,calculatingthe proposedmodel,areIntel(R)Xeon(R)E3-1231v3CPU@3.4GHzandGPUof NvidiaGTX960with4GRam,andtheoperatingsystemwasUbuntu14.04LTS (64bit).

Table1 ComparisonbetweenfourCNNmodels

ThefirstexperimentanalysisbyusingourCNNmodelandothermodelisexecuted separately.Inaddition,wealsochangethetrainingandvalidationset’srationtoverify therobustnessoftheproposedalgorithm.

3.2PerformanceEvaluation

3.2.1ResultsonDifferentModels

ToanalyzetheeffectoftheCNNarchitectureusedtoextractfeaturesateachstep, wecomparetoAlex-Net[19].Table 1 showntheexperimentresultsindetails.Inall cases,usingourproposedRPScouldsignificantlyimprovetheaccuracy.

Table 1 representsthecomparisonoftypicalAlex-NetanduseofourCNNstructure(madeuseofstep1orstep2orentireprocess)separatelyoverthefivetimestests. TheresultsindicatedthattheindividualuseRPSorentire-imagefeaturescouldnot getthebestperformance.Also,thetraditionalarchitectureneededstructuralmodificationtosuitableforfibertexturesensitivitycashmere/woolclassification.Withthe helpofRPSextractedfeaturesofstep2,theaccuracyachievesthebestperformance at94.5%.Thesamesituationisalsoobservedintheperformanceofthef-measure. Theaccuracyandthef-measurehavesomefluctuationsineachnetworkandarchitecture,butthenumberoffluctuationswithintheintervalof5%whichindicatethe method’sstability.However,comparingofusingfeaturesextractedbystep1orstep 2separately,ourentireprocessemployedthefeaturesofboth,thatcanenhanceeach other’sperformance.Thetheoryandexperimentsindicatedthatcashmere/woolcontainedthesubtledifferenceintexturefeatures.However,thetextureisthegoodfactor fortheclassificationofcashmere/wool.

Another random document with no related content on Scribd:

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.