Analysis of pseudo differential operators shahla molahajloo - The full ebook with all chapters is av

Page 1


Analysis of Pseudo Differential Operators Shahla Molahajloo

Visit to download the full and correct content document: https://textbookfull.com/product/analysis-of-pseudo-differential-operators-shahla-mola hajloo/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Pricing Derivatives Under Lévy Models Modern Finite Difference and Pseudo Differential Operators Approach

1st Edition Andrey Itkin (Auth.)

https://textbookfull.com/product/pricing-derivatives-under-levymodels-modern-finite-difference-and-pseudo-differentialoperators-approach-1st-edition-andrey-itkin-auth/

Spectral Theory and Differential Operators D.E. Edmunds

https://textbookfull.com/product/spectral-theory-anddifferential-operators-d-e-edmunds/

Semigroups of Bounded Operators and Second-Order

Elliptic and Parabolic Partial Differential Equations

1st Edition Luca Lorenzi

https://textbookfull.com/product/semigroups-of-bounded-operatorsand-second-order-elliptic-and-parabolic-partial-differentialequations-1st-edition-luca-lorenzi/

Analysis of Operators on Function Spaces The Serguei

Shimorin Memorial Volume Alexandru Aleman

https://textbookfull.com/product/analysis-of-operators-onfunction-spaces-the-serguei-shimorin-memorial-volume-alexandrualeman/

Semigroups

of Linear Operators With Applications to Analysis Probability and Physics 1st Edition David Applebaum

https://textbookfull.com/product/semigroups-of-linear-operatorswith-applications-to-analysis-probability-and-physics-1stedition-david-applebaum/

An Introduction to Vectors, Vector Operators and Vector Analysis 1st Edition Pramod S. Joag

https://textbookfull.com/product/an-introduction-to-vectorsvector-operators-and-vector-analysis-1st-edition-pramod-s-joag/

Techniques

of Functional Analysis for Differential and Integral Equations 1st Edition Paul Sacks

https://textbookfull.com/product/techniques-of-functionalanalysis-for-differential-and-integral-equations-1st-editionpaul-sacks/

Functional and impulsive differential equations of fractional order : qualitative analysis and applications 1st Edition Stamov

https://textbookfull.com/product/functional-and-impulsivedifferential-equations-of-fractional-order-qualitative-analysisand-applications-1st-edition-stamov/

Differential Geometry and Global Analysis Contemporary Mathematics 777 777th Edition Bang-Yen Chen

https://textbookfull.com/product/differential-geometry-andglobal-analysis-contemporary-mathematics-777-777th-edition-bangyen-chen/

Analysis of PseudoDifferential Operators

TrendsinMathematics

TrendsinMathematics isaseriesdevotedtothepublicationofvolumesarisingfrom conferencesandlectureseriesfocusingonaparticulartopicfromanyareaof mathematics.Itsaimistomakecurrentdevelopmentsavailabletothecommunityas rapidlyaspossiblewithoutcompromisetoqualityandtoarchivetheseforreference.

ProposalsforvolumescanbesubmittedusingtheOnlineBookProjectSubmission Formatourwebsite www.birkhauser-science.com

Materialsubmittedforpublicationmustbescreenedandpreparedasfollows: Allcontributionsshouldundergoareviewingprocesssimilartothatcarriedoutby journalsandbecheckedforcorrectuseoflanguagewhich,asarule,isEnglish. Articleswithoutproofs,orwhichdonotcontainanysignificantlynewresults, shouldberejected.Highqualitysurveypapers,however,arewelcome.

Weexpecttheorganizerstodelivermanuscriptsinaformthatisessentiallyready fordirectreproduction.AnyversionofTEXisacceptable,buttheentirecollection offilesmustbeinoneparticulardialectofTEXandunifiedaccordingtosimple instructionsavailablefromBirkhäuser.

Furthermore,inordertoguaranteethe timelyappearanceof theproceedingsitis essentialthatthefinalversionoftheentirematerialbesubmittednolaterthanone yearaftertheconference.

Moreinformationaboutthisseriesat http://www.springer.com/series/4961

Analysis ofPseudo-Differential Operators

Zanjan,Iran

YorkUniversity Toronto,ON,Canada

ISSN2297-0215ISSN2297-024X(electronic)

TrendsinMathematics

ISBN978-3-030-05167-9ISBN978-3-030-05168-6(eBook) https://doi.org/10.1007/978-3-030-05168-6

LibraryofCongressControlNumber:2019935501

MathematicsSubjectClassification(2010):47-XX,46-XX

©SpringerNatureSwitzerlandAG2019

Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped.

Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse.

Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations.

ThisbookispublishedundertheimprintBirkhäuser, www.birkhauser-science.com bytheregistered companySpringerNatureSwitzerlandAG.

Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland

Preface

Sincethe2003ISAACCongressatYorkUniversity,ithasbecomeatraditionthata volumebasedonthespecialsessiononpseudo-differentialoperatorsbepublished. Itisnotonlyintendedtodocumenttheevent,butalsotoprovideguidanceforfuture researchonpseudo-differentialoperatorsandrelatedtopics.

The11thISAACCongresswasheldatLinnæusUniversityinSwedenonAugust 14–18,2018.Thisvolume,asasequeltoitspredecessors,isbasedontalksgivenat thecongressandinvitedarticlesbyexpertsinthefield.

Therearetenchaptersinthisvolume, titled“AnalysisofPseudo-Differential Operators.”Thefirstfourchaptersaddressthefunctionalanalysisofpseudodifferentialoperatorsinabroadrangeofsettings,from Z to Rn ,tocompactand Hausdorffgroups.Chapters5and6focusonoperatorsonLiegroupsandmanifolds withedge.Thenexttwochaptersdiscusstopicsinprobability,whilethelasttwo chapterscovertopicsindifferentialequations.

Itishopedthatthesevolumesonpseudo-differentialoperatorspublishedby BirkhäuserinBaseloveraspanoffifteenyearshaveservedandwillcontinue toserveasusefulreferenceguidesforyoungmathematiciansaspiringtoexplore newdirectionsinpseudo-differentialoperators.Itisalsoourfirmbeliefthatthese volumesonpseudo-differentialoperatorswillcontinuetogrowanddevelopin unforeseendirections,thankstotheinputofnewgenerationsofmathematicians.

Zanjan,IranShahlaMolahajloo Toronto,ON,CanadaM.W.Wong

Contents

DiscreteAnalogsofWignerTransformsandWeylTransforms ............1

ShahlaMolahajlooandM.W.Wong

CharacterizationandSpectralInvarianceofNon-Smooth PseudodifferentialOperatorswithHölderContinuousCoefficients .......21

HelmutAbelsandChristinePfeuffer

FredholmnessandEllipticityof DOs on B s pq (Rn ) and F s pq (Rn ) ........63 PedroT.P.Lopes

CharacterizationsofSelf-Adjointness,Normality,Invertibility, andUnitarityofPseudo-DifferentialOperatorsonCompact andHausdorffGroups ...........................................................79

MajidJamalpourbirganiandM.W.Wong

MultilinearCommutatorsinVariableLebesgueSpacesonStratified Groups .............................................................................97

DongliLiu,JianTan,andJimanZhao

VolterraOperatorswithAsymptoticsonManifoldswithEdge .............121 M.HedayatMahmoudiandB.-W.Schulze

Bismut’sWayoftheMalliavinCalculusforNon-Markovian Semi-groups:AnIntroduction ..................................................157 RémiLéandre

OperatorTransformationofProbabilityDensities ...........................181 LeonCohen

TheTime-FrequencyInterferenceTermsoftheGreen’sFunction fortheHarmonicOscillator .....................................................215 LorenzoGalleani

OntheSolvabilityintheSenseofSequencesforSome Non-FredholmOperatorsRelatedtotheAnomalousDiffusion ............229 VitaliVougalterandVitalyVolpert

DiscreteAnalogsofWignerTransforms andWeylTransforms

Abstract WefirstintroducethediscreteFourier–Wignertransformandthediscrete Wignertransformactingonfunctionsin L2 (Z).Weprovethatpropertiesofthe standardWignertransformoffunctionsin L2 (Rn ) suchastheMoyalidentity,the inversionformula,time-frequencymarginalconditions,andtheresolutionformula holdfortheWignertransformsoffunctionsin L2 (Z).UsingthediscreteWigner transform,wedefinethediscreteWeyltransformcorrespondingtoasuitablesymbol on Z × S1 .Wegiveanecessaryandsufficientconditionfortheself-adjointnessof thediscreteWeyltransform.Moreover,wegiveanecessaryandsufficientcondition foradiscreteWeyltransformtobeaHilbert–Schmidtoperator.Thenweshowhow wecanreconstructthesymbolfromitscorrespondingWeyltransform.Weprove thattheproductoftwoWeyltransformsisagainaWeyltransformandanexplicit formulaforthesymboloftheproductoftwoWeyltransformsisgiven.Thisresult givesanecessaryandsufficientconditionfortheWeyltransformtobeinthetrace class.

Keywords Fourier–Wignertransform·Wignertransform·Weyltransform· Moyalidentity·Time-frequencymarginalconditions·Wignerinversion formula·Weylinversionformula·Kernels·Hilbert–Schmidtoperators·Trace classoperators·Twistedconvolution·Weylcalculus

MathematicsSubjectClassification(2000) 47F05,47G30

ThisresearchhasbeensupportedbytheNaturalSciencesandEngineeringResearchCouncil ofCanadaunderDiscoveryGrant0008562.

S.Molahajloo DepartmentofMathematics,InstituteforAdvancedStudiesinBasicSciences,Zanjan,Iran

M.W.Wong( ) DepartmentofMathematicsandStatistics,YorkUniversity,Toronto,ON,Canada e-mail: mwwong@mathstat.yorku.ca

©SpringerNatureSwitzerlandAG2019

S.Molahajloo,M.W.Wong(eds.), AnalysisofPseudo-DifferentialOperators, TrendsinMathematics, https://doi.org/10.1007/978-3-030-05168-6_1

1Introduction

Toputthispaperinperspective,wefirstrecalltheWignertransformandtheWeyl transformmappingfunctionsin L2 (Rn ) intofunctionson,respectively, Rn × Rn and Rn

Let σ ∈ L2 (Rn × Rn ).ThentheWeyltransform Wσ : L2 (Rn ) → L2 (Rn ) correspondingtothesymbol σ isdefinedby

(Wσ f,g)L2 (Rn ) = (2π) n/2 Rn Rn σ(x,ξ)W(f,g)(x,ξ)dxdξ

forall f and g in L2 (Rn ), where W(f,g) istheWignertransformof f and g definedby

W(f,g)(x,ξ) = (2π) n/2

.

CloselyrelatedtotheWignertransform W(f,g) of f and g in L2 (Rn ) isthe Fourier–Wignertransform V(f,g) givenby

V(f,g)(q,p) = (2π) n/2 Rn e iq y f y + p 2 g y p 2 dy,q,p ∈ Rn

WeyltransformsandWignertransformson Rn havebeenextensivelystudiedin [5, 13]amongothers.

WeyltransformsongroupssuchastheHeisenberggroup,theupperhalfplane, andthePoincaréunitdiskareinvestigatedin[8, 10–12].CloselyrelatedtoWeyl transformsarepseudo-differentialoperatorsongroups.See,forinstance,[4, 7, 9, 15].

ThestrategythatweusetodeveloptheWeyltransformon Z istohavealook atthecaseof Rn ,wherethesymbol σ isafunctionon Rn × Rn .Recentworksin pseudo-differentialoperatorsandWeyltransformsontopologicalgroups G suggest thatthecorrectphasespacetoworkinis G × G,where G isthedualgroupof G. Thatthedualgroupof Rn isthesameas Rn isthereasonwhythephasespaceon whichsymbolsaredefinedis Rn × Rn .

Inthecaseofthegroup Z inthispaper,thedualgroupistheunitcircle S1 centeredattheoriginandthephasespace G × G isthen Z × S1 .

For1 ≤ p< ∞, thesetofallmeasurablefunctions F on Z suchthat

isdenotedby Lp (Z).Wedefine Lp (S1 ) tobethesetofallmeasurablefunctions f ontheunitcircle S1 withcenterattheoriginforwhich f p Lp (S1 ) = 1 2π π π |f(θ)|p dθ< ∞.

WedefinetheFouriertransform FZ F of F ∈ L1 (Z) tobethefunctionon S1 by

(FZ F ) (θ) = n∈Z e inθ F(n),θ ∈[−π,π ].

If f isasuitablefunctionon S1 ,thenwedefinetheFouriertransform FS1 f of f to bethefunctionon Z by

FS1 f (n) = 1 2π π π e inθ f(θ)dθ,n ∈ Z.

Notethat FZ : L2 (Z) → L2 (S1 ) isasurjectiveisomorphism.Infact, FZ = F 1 S1 = F ∗ S1 and FZ F L2 (S1 ) = F L2 (Z) ,F ∈ L2 (Z).

Let H beasuitablefunctionon S1 × Z.ThenwedefinetheFouriertransform FS1 ×Z H of H tobethefunctionon Z × S1 by

FS1 ×Z H (m,θ) = 1 2π π π n

Z e imφ +inθ H(φ,n)dφ,(m,θ) ∈ Z × S1

Similarly,forallsuitablefunctions K on Z × S1 ,wedefinetheFouriertransform

FZ×S1 K of K tobethefunctionon S1 × Z by

(FZ×S1 K)(θ,m) = 1 2π π π n∈Z e imφ +inθ K(n,φ)dφ,(θ,m) ∈ S1 × Z.

For1 ≤ p< ∞,wedefine Lp (Z× S1 ) tobethespaceofallmeasurablefunctions h on Z × S1 suchthat h p Lp (Z×S1 ) = 1 2π n∈Z π π |h(n,θ)|p dθ< ∞

InSect. 2,wedefinetheFourier–WignertransformandtheWignertransformas mappingsfrom L2 (Z) into,respectively, L2 (Z × S1 ) and L2 (S1 × Z).Thenwe showthatthediscreteFourier–WignertransformandthediscreteWignertransform satisfytheMoyalidentity.Wegiveaninversionformulatoreconstructafunction fromitsdiscreteWignertransformuptoaconstantfactor.Thenwegivethetimeand frequencymarginalconditionsandaconvolutiontheoremforthediscreteWigner transform.TheresultsinthissectionareanalogsoftheresultsfortheWigner transformson Rn givenin[1, 13].InSect. 3,weusethediscreteWignertransform todefinetheWeyltransformon Z.AcharacterizationofHilbert–Schmidtdiscrete Weyltransformsisalsogiven.TheWeylinversionformularecoveringasymbol fromthecorrespondingdiscreteWeyltransformisgiven.InSect. 4,wepresentthe WeylcalculusgivingthesymboloftheadjointofadiscreteWeyltransformon L2 (Z) andthesymboloftheproductoftwodiscreteWeyltransforms.Theadjoint formulagivesacharacterizationofself-adjointdiscreteWeyltransformsandthe productformulagivesacharacterizationoftraceclassdiscreteWeyltransforms.

Weuse Ze and Zo todenote,respectively,thesetofallevenintegersandtheset ofalloddintegers.

2DiscreteFourier–WignerTransformsandDiscreteWigner

Transforms

Let F ∈ L2 (Z).Thenforall (n,θ) ∈ Z × S1 ,wedefine ρ(n,θ)F tobethefunction on Z by

i(k + n 2 )θ F(k + n),

(ρ(n,θ)F ) (k) =

i(k + n 1 2 )θ F(k + n), n ∈ Ze , n ∈ Zo ,

forall k ∈ Z. Notethatforall (n,θ) ∈ Z × S1 , ρ(n,θ) : L2 (Z) → L2 (Z) isa unitaryoperatorand

ρ(n,θ)∗ = ρ( n, θ).

Forallfunctions F and G in L2 (Z),wedefinetheFourier–Wignertransform V(F,G) of F and G tobethefunctionon Z × S1 by

V(F,G)(n,θ) = (ρ(n,θ)F,G)L2 (Z) ,(n,θ) ∈ Z × S1

Thereforeforall (n,θ) ∈ Z × S1 ,

V(F,G)(n,θ) = k ∈Z e i(k + n 2 )θ F(k + n)G(k), k ∈Z e i(k + n 1 2 )θ F(k + n)G(k), n ∈ Ze , n ∈ Zo

Bythechangeofvariablesfrom k to m using m = k + n 2 , m = k + n 1 2 , n ∈ Ze , n ∈ Zo ,

weget

V(F,G)(n,θ) = m∈Z e imθ F(m + n 2 )G(m n 2 ), m∈Z e imθ F(m + n+1 2 )G(m n 1 2 ), n ∈ Ze , n ∈ Zo .

Infact,ifwelet

Hn (m) = F(m + n 2 )G(m n 2 ), F(m + n+1 2 )G(m n 1 2 ), n ∈ Ze , n ∈ Zo

Then

V(F,G)(n,θ) = (FZ Hn ) (θ). (2.1)

WehavethefollowingMoyalidentityforthediscreteFourier–Wignertransform.

Theorem2.1 Let F1 ,F2 ,G1 ,and G2 befunctionsin L2 (Z).Then V(F1 ,G1 ),V(F2 ,G2 ) L2 (Z×S1 ) = F1 ,F

Proof For j = 1, 2,welet

(m)

Thenby(2.1)andtheParsevalidentity,

Therefore (V(F1 ,G1 ),V(F2 ,G2 ))L

If n ∈ Ze ,thenwemakethechangeofvariablesfrom (m,n) to (k1 ,l1 ) by k1 = m + n 2 and l1 = m n 2 .If n ∈ Zo ,thenthechangeofvariablesfrom (m,n) to (k2 ,l2 ) isgivenby k2 =

.Weget

Let F and G befunctionsin L2 (Z).ThenwedefinetheWignertransform W(F,G) of F and G tobethefunctionon S1 × Z by W(F,G) = FZ×S1 V(F,G).

Theorem2.2 Forall (φ,m) ∈ S1 × Z,

Proof WebeginwiththedefinitionofthediscreteWignertransformtotheeffect that W(F,G)(θ,m)

(FZ×S1 V(F,G))(θ,m)

Wecarryoutthesumover n ∈ Z byfirstperformingthesumover n ∈ Ze andthen over n ∈ Zo Summingoverallevenintegersgives

forall (θ,m) ∈ S1 × Z Thesumover n ∈ Zo canbecalculatedsimilarly. Similarly,wehavetheMoyalidentityfortheWignertransform.

Theorem2.3 Let F1 ,F2 ,G1 ,and G2 befunctionsin L2 (Z).Then W(F1 ,G1 ),W(F2 ,G2 ) L2 (S1 ×

AsinthecaseofWignertransformson Rn ,thefollowingpropositionguarantees thatforall F ∈ L2 (Z), W(F,F) isreal.

Proposition2.4 Let F and G befunctionsin L2 (Z).Then

W(F,G) = W(G,F).

Inparticular, W(F,F) isareal-valuedfunctionon S1 × Z.

Proof Forall (φ,m) ∈ S1 × Z, wegetby(2.2)

W(F,G)(φ,m)

Ifwechangetheindexofsummationfrom n to k by n =−k, thenforall (φ,m) ∈ S1 × Z, W(F,G)(φ,m)

= W(G,F)(φ,m).

Thiscompletestheproof.

Forsimplicity,wedenote W(F,F) by W(F) forallfunctions F ∈ L2 (Z).The followingtheoremstatesthatwecanreconstructtheoriginalfunction F fromits Wignertransform W(F) uptoaconstantfactor.

Theorem2.5 Let F ∈ L2 (Z).Thenforall n ∈ Z, F(n)F(0) =

W(F)(φ, n 2 )dφ,n ∈ Ze ,

W(F)(φ, n 1 2 )dφ,n ∈ Zo .

Proof By(2.1)andthedefinitionoftheWignertransform,forall m and n in Z,we have Hn (m) = (FS1 (W(F)( ,m)) )(n).

First,weassumethat n ∈ Ze .Thenforall m ∈ Z,weget

Now,let m = n 2 .Then

F(n)F(0) =

inφ W(F) φ, n 2 dφ.

Similarly,weobtain F(n)F(0),for n ∈ Zo byletting m = n 1 2 . WehavethetimeandfrequencymarginalconditionsforthediscreteWigner transform.

Proposition2.6 Let F ∈ L2 (Z).Then

(i) Forall m ∈ Z,

= 2π |F(m)|2 .

(ii) Forall φ ∈[−π,π ], m∈Z W(F)(φ,m) =| (FZ F ) (φ)|2 .

Proof Let n = 0in(2.3).Thenwegetpart(i).Toprovepart(ii),wehaveforall φ ∈[−π,π ],

W(F)(φ,m)

m∈Z

= (FZ (W(F)(φ, ·)) )(0)

Forall n ∈ Ze , wemakethechangeofvariablesfrom (m,n) to (k1 ,l1 ) by k1 = m + n 2 and l1 = m n 2 .Thenweget

(2.4)

andforall n ∈ Zo ,usingthechangeofvariablesfrom (m,n) to (k2 ,l2 ) givenby k2 = m + n+1 2 and l2 = m n 1 2 ,weget

(2.5)

Thereforeweget

W(F)(φ,m)dφ

m∈Z

k ∈Z l ∈Z e i(k l)φ F(k)F(l) =| (FZ F ) (φ)|2 andtheproofiscomplete.

F(k

)F(l

Let T : L2 (Z × Z) → L2 (Z × Z) bethetwistingoperatordefinedby (TF)(n,m) = F(m + n

forall F ∈ L2 (Z × Z) andall (n,m) ∈ Z × Z.Infact, T : L2 (Z × Z) → L2 (Z × Z) isaunitaryoperatoranditsinverse T 1 isgivenby

(T 1 F)(n,m) = F(n m, m+n 2 ),n + m ∈ Ze , F(n m, m+n 1 2 ),n + m ∈ Zo

Moreover,forall F and G in L2 (Z),

W(F,G)(φ,m) = F1,Z T(F ⊗ G) (φ,m),(φ,m) ∈ S1 × Z, (2.6)

where F ⊗ G isthetensorproductof F and G givenby

(F ⊗ G)(n,m) = F(n)G(m),(n,m) ∈ Z × Z, and F1,Z T(F ⊗ G) isthepartialFouriertransformof T(F ⊗ G) withrespectto thefirstvariable.Thefollowingpropositiongivestheshift-invarianceoftheWigner transformandtheproofisstraightforward.

Proposition2.7 Let F ∈ L2 (Z).For θ ∈[−π,π ] and k ∈ Z,wedefinethefunction G on Z by

G(n) = e inθ F(n k),n ∈ Z

Then

W(G)(φ,m) = W(F)(φ + θ,m k),(φ,m) ∈ S1 × Z

WecannowgivearesultontheWignertransformoftheproductoftwofunctions on Z

Proposition2.8 Let F and G befunctionsin L2 (Z).Thenforall (φ,m) in S1 × Z,

W(FG)(φ,m) = W(F)( ,m) ∗ W(G)( ,m) (φ),

where ∗ istheconvolutionon S1 definedby (f ∗ g)(φ) = 1 2π π π f(φ θ)g(θ)dθ

forall f and g in L2 (S1 ).

Proof Let (φ,m) ∈ S1 × Z. Then

(W(F)(·,m) ∗ W(G)(·,m))(φ) = 1 2π π π W(F)(φ θ,m)W(G)(θ,m)dθ

itfollowsthat (W(F)(·,m) ∗ W(G)(·,m))(φ)

= W(FG)(φ,m) forall (φ,m) ∈ S1 × Z.

3DiscreteWeylTransforms Let σ ∈ L2 (Z×S1 ).Thenforallfunctions F in L2 (Z),wedefinetheWeyltransform Wσ F correspondingtothesymbol σ by (Wσ F,G) L

forall G ∈ L2 (Z).Infact,

(Wσ F,G) L2 (Z)

1

If n ∈ Ze ,thenwemakethechangeofvariablesfrom (m,n) to (k1 ,l1 ) by k1 = m + n 2 and l1 = m n 2 .If n ∈ Zo , thechangefrom (m,n) to (k2 ,l2 ) iseffectedby k2 = m + n+1 2 and l2 = m n 1 2 .(See(2.4)and(2.5)inthisconnection.)Therefore weobtain

2π (Wσ F,G) L2 (Z)

l2 ∈Z

Thereforeforall l ∈ Z, (Wσ F ) (l) = 1

(k l)+1)φ σ(k,φ)F(2k + 1 l)G(l)dφ.

i(2(k l)+1)φ σ(k,φ)F(2k + 1 l)dφ.

Byanotherchangeofvariables,weget (Wσ F ) (l) = m∈Z kσ (l,m)F(m),

where kσ isthekernelof Wσ givenby

(l,m) =

Therefore

where F2,S1 σ istheFouriertransformon S1 of σ withrespecttothesecondvariable. ThefollowingtheoremisaninversionformulafordiscreteWeyltransforms.It showshowwecanreconstructthesymbolfromthecorrespondingWeyltransform. ForWeyltransformson Rn ,thecorrespondingformulaandotherrelatedformulas canbefoundin[2, 3, 6].

Theorem3.1 Let σ ∈ L2 (Z × S1 ) besuchthat ρ(n,θ)Wσ isatraceclassoperator forall (n,θ) ∈ Z × S1 .Thenforall (θ,n) ∈ S1 × Z,wehave (FZ×S1 σ)(θ,n) = tr(ρ(n,θ)Wσ ).

Proof Let F ∈ L2 (Z).Firstweassumethat n ∈ Ze .Thenforall l ∈ Z,

(ρ(n,θ)Wσ F ) (l) = e i(l + n 2 )θ (Wσ F ) (l + n) = e i(l + n 2 )θ m∈Z kσ (l + n,m)F(m),

where kσ isthekernelof Wσ . So,forall l ∈ Z,

(ρ(n,θ)Wσ F ) (l) = m∈Z k θ (l,m)F(m), where k θ (l,m) = e i(l + n 2 )θ kσ (l + n,m).

Hence

tr(ρ(n,θ)Wσ ) = l ∈Z k θ (l,l)

Bythechangeofvariablesfrom l to k by k = l + n 2 ,wegetforall (θ,n) ∈ S1 × Z, tr(ρ(n,θ)Wσ ) = FZ×S1 σ (θ,n).

Similarly,theaboveformulaholdsforall n ∈ Zo

4Hilbert–SchmidtDiscreteWeylTransforms

Thefollowingpropositiongivesaclass ofboundedandHilbert–SchmidtWeyl transformson L2 (Z).

Proposition4.1 Let σ ∈ L2 (Z × S1 ).Then Wσ : L2 (Z) → L2 (Z) isabounded linearoperatorand

where · ∗ isthenorminthe C ∗ -algebraofallboundedlinearoperatorson L2 (Z) Moreover, Wσ isaHilbert–Schmidtoperatoron L2 (Z) and Wσ HS(L

Proof Ifwedefinethefunction ˜ σ on S1 × Z by ˜ σ(θ,n) = σ(n,θ),(θ,n) ∈ S1 × Z, then ˜ σ ∈ L2 (S1 × Z) and

Let F and G befunctionsin L2 (Z).ThenbySchwarz’sinequalityandtheMoyal identityfortheWignertransform,wehave |(Wσ F,G)L2 (Z) |=|( ˜ σ,W(G,F))L2 (S1 ×Z) |

Hence

Therefore

By(3.1),

BythechangeofvariablesandtheParsevalidentity,weget

AHilbert–Schmidtoperatoron A : L2 (Z) → L2 (Z) isoftheform

(AF)(n) = m∈Z h(n,m)F(m),F ∈ L2 (Z),

where h isafunctionin L2 (Z × Z).Thefunction h iscalledthekerneloftheHilbert–Schmidtoperator A on L2 (Z). ThefollowingtheoremstatesthateveryHilbert–Schmidtoperatoron L2 (Z) isaWeyltransformwithsymbolin L2 (Z × S1 ).

Theorem4.2 Let A : L2 (Z) → L2 (Z) beaHilbert–Schmidtoperator.Thenthere existsauniquesymbol σ in L2 (Z × S1 ) suchthat A = Wσ .

Proof Let h ∈ L2 (Z × Z) besuchthat

(AF ) (n) = m∈Z

h(n,m)F(m),F ∈ L2 (Z).

Thenforall F,G ∈ L2 (Z),

(AF,G) L2 (Z) = n∈Z m∈Z

h(n,m)F(m)G(n) = n∈Z m∈Z ˜ h(m,n) F ⊗ G (m,n) = (F ⊗ G, h)L2 (Z×Z) ,

where ˜ h isthefunctionin L2 (Z × Z) suchthat

h(m,n) = h(n,m),(m,n) ∈ Z × Z.

Wedefinethefunction σ on Z × S1 by σ = F1,Z T ˜ h ∼ ,

where T : L2 (Z × Z) → L2 (Z × Z) isthetwistingoperatordefinedearlier.Then ˜ h = T 1 F1,S1 ˜ σ .Hencewehave

(AF,G)L2 (Z) = F ⊗ G,T 1 F1,S1 σ L2 (Z×Z) = F1,Z T(F ⊗ G), ˜ σ L2 (S1 ×Z) = W(F,G), ˜ σ L2 (S1 ×Z) = (Wσ F,G)L2 (Z) .

5TheWeylCalculus

ThefollowingpropositionontheadjointofadiscreteWeyltransformon L2 (Z) followsdirectlyfromthedefinitionoftheWeyltransformandProposition 2.4.

Proposition5.1 Let σ ∈ L2 (Z × S1 ).Then W ∗ σ = Wσ ,where W ∗ σ : L2 (Z) → L2 (Z) istheadjointof Wσ : L2 (Z) → L2 (Z).Inparticular, Wσ isself-adjointif andonlyif σ isreal-valued.

Proof Let σ ∈ L2 (Z × S1 ). Then (W ∗ σ F,G)L2 (Z) = (F,Wσ G)L2 (Z) = (Wσ G,F)L2 (Z) = 1

ByProposition 2.4, W(G,F) = W(F,G), andhenceby(5.1), (W ∗ σ F,G)L2 (Z) = 1

So, (W ∗ σ F,G)L2 (Z) = (Wσ F,G)L2 (Z) andtheproofiscomplete.

Let σ ∈ L2 (Z × S1 ).Forsimplicity,wedenote FZ×S1 σ by σ .

Lemma5.2 Let σ ∈ L2 (Z × S1 ).Thenforall F ∈ L2 (Z), (Wσ F ) (m) = 1

(ρ(n,θ)F ) (m)dθ,m ∈ Z.

Proof Let F and G bein L2 (Z). Thenusingtheadjointformula, (Wσ F,G) L2 (Z) =

(ρ(n,θ)F,G) L2 (Z) dθ = 1

σ(θ,n) (ρ(n,θ)F ) (m)G(m)dθ.

(5.1)

Hence

(Wσ F ) (m) = 1 2π π π n∈Z σ(θ,n) (ρ(n,θ)F ) (m)dθ,m ∈ Z.

Lemma5.3 Forall (n,θ) and (k,φ) in Z × S1 ,wehave

ρ(n,θ)ρ(k,φ) = e i [(n,θ);(k,φ)] ρ(n + k,θ + φ), where [(n,θ); (k,φ)] =

Theproofofthelemmaisstraightforward.Let F and G besuitablefunctionson S1 × Z.Thenwedefinethetwistedconvolution F G of F and G tobethefunction on S1 × Z by (F G) (γ,l) = 1 2π π π k ∈Z e i [(l k,γ φ);(k,φ)] F(γ φ,l k)G(φ,k)dφ,(γ,l) ∈ S1 × Z.

Let σ ∈ L2 (Z × S1 ).Thefollowingtheoremguaranteesthattheproductoftwo WeyltransformsisstillaWeyltransform.

Theorem5.4 Let σ and τ besymbolsin L2 (Z × S1 ). Then Wσ Wτ = Wω , where

Proof Let F ∈ L2 (Z). Thenforall m ∈ Z,wegetbyLemma 5.2 (Wσ Wτ F ) (m) = 1 2π π π n∈Z σ(θ,n) (ρ(n,θ)Wτ F ) (m)dθ = 1 (2π)2 π π n∈Z π π k ∈Z σ(θ,n)τ(φ,k) (ρ(n,θ)ρ(k,φ)F ) (m)dφdθ.

Now,byLemma 5.3,wehave

(Wσ Wτ F ) (m) = 1 (2π)2

σ(θ,n)τ(φ,k)e i [(n,θ);(k,φ)] × (ρ(n + k,θ + φ)F ) (m)dφdθ.

Let l = n + k and γ = θ + φ .Thenweget

(Wσ Wτ F ) (m) = 1 (2π)2

Let ω ∈ L2 (Z × S1 ) besuchthat

φ,l k)τ(φ,k)e i [(l k,γ φ);(k,φ)] × (ρ(l,γ)F ) (m)dφdγ.

Then (Wσ Wτ F ) (m) = 1 2

forall m ∈ Z.

(ρ(l,γ)F ) (m)dγ = (Wω F ) (m)

Asanapplicationoftheproductformula,wegiveacharacterizationoftrace classdiscreteWeyltransforms.ItisananalogforthediscreteWeyltransformof thecharacterizationoftraceclassWeyltransformson Rn in[14].Let W betheset definedby W = FS1 ×Z ( ˆ

ˆ τ) : σ,τ ∈ L2 (Z × S1 ) .

Let S1 (L2 (Z)) bethespaceofalltraceclassoperatorson L2 (Z).Thefollowing theoremgivesacharacterizationoftraceclassdiscreteWeyltransformson L2 (Z)

Theorem5.5 Let σ ∈ L2 (Z × S1 ).Then Wσ : L2 (Z) → L2 (Z) isin S1 (L2 (Z)) if andonlyif σ ∈ W .Moreover,if σ = FS1 ×Z ( ˆ α ˆ β) with α and β in L2 (Z × S1 ), then

S1 (L2 (Z))

L2 (Z×S1 )

L2 (Z×S1 )

Proof Firstweassumethat σ ∈ W .Then

= FS1 ×Z (

forsome α and β in L2 (Z × S1 ). ByTheorem 5.4,

Wσ = Wα Wβ

Moreover,byProposition 4.1, Wα and Wβ areHilbert–Schmidtoperators.Hence Wσ istheproductoftwoHilbert–Schmidtoperatorson L2 (Z) andthereforeisin S1 (L2 (Z)).Conversely,assumethat Wσ ∈ S1 (L2 (Z)). Then Wσ istheproduct oftwoHilbert–Schmidtoperatorson L2 (Z).HencebyTheorem 4.2,thereexist symbols α and β in L2 (Z × S1 ) suchthat

Wσ = Wα Wβ

So,byTheorem 5.4, σ ∈ W.

References

1.L.Cohen, Time-FrequencyAnalysis (Prentice-HallPTR,UpperSaddleRiver,1995)

2.L.Cohen, TheWeylOperatorandItsGeneralization (Birkhäuser,Basel,2013)

3.L.Cohen,InverseWeyltransform/operator.J.Pseudo-Differ.Oper.Appl. 8,661–678(2017)

4.A.Dasgupta,M.W.Wong,Pseudo-differentialoperatorsontheaffinegroup,in PseudoDifferentialOperators:Groups,GeometryandApplications.TrendsinMathematics (Birkhäuser,Basel,2017),pp.1–14

5.M.deGosson, TheWignerTransform (WorldScientific,Singapore,2017)

6.X.Duan,M.W.Wong,Pseudo-differentialoperatorsforWeyltransforms. Politehn.Univ. BucharestSci.Bull.Ser.A:Appl.Math.Phys. 75,3–12(2013)

7.S.Molahajloo,Pseudo-differentialoperatorson Z,in NewDevelopmentsinPseudoDifferentialOperators.OperatorTheory:AdvancesandApplications,vol.205(Birkhäuser, Basel,2009),pp.213–221

8.S.Molahajloo,Pseudo-differentialoperators,WignertransformsandWeyltransformsonthe Poincaréunitdisk.Compl.Anal.Oper.Theory 12,811–833(2018)

9.S.Molahajloo,M.W.Wong,Ellipticity,Fredholmnessandspectralinvarianceofpseudodifferentialoperatorson S1 .J.Pseudo-Differ.Oper.Appl. 1,183–205(2010)

10.L.Peng,J.Zhao,WeyltransformsassociatedwiththeHeisenberggroup.Bull.Sci.Math. 132, 78–86(2008)

11.L.Peng,J.Zhao,Weyltransformsontheupperhalfplane.Rev.Mat.Complut. 23,77–95 (2010)

12.T.Tate,Weylpseudo-differentialoperatorandWignertransformonthePoincarédisk.Ann. GlobalAnal.Geom 22,29–48(2002)

13.M.W.Wong, WeylTransforms (Springer,NewYork,1998)

14.M.W.Wong,TraceclassWeyltransforms,in RecentAdvancesinOperatorTheoryand itsApplications.OperatorTheory:AdvancesandApplications,vol.160(Birkhäuser,Basel, 2005),pp.469–478

15.M.W.Wong, DiscreteFourierAnalysis (Birkhäuser,Basel,2011)

CharacterizationandSpectralInvariance ofNon-SmoothPseudodifferential OperatorswithHölderContinuous

Coefficients

Abstract Smoothpseudodifferentialoperatorson Rn canbecharacterizedbytheir mappingpropertiesbetween Lp SobolevspacesduetoBealsandUeberberg.In applicationssuchacharacterizationwouldalsobeusefulinthenon-smoothcase, forexampletoshowtheregularityofsolutionsofapartialdifferentialequation. Therefore,wewillshowth ateverylinearoperator P ,whichsatisfiessomespecific continuityassumptions,isanon-smoothpseudodifferentialoperatorofthesymbolclass C τ S m 1,0 (Rn × Rn ).Themainnewdifficultiesarethelimitedmappingproperties ofpseudodifferentialoperatorswithnon-smoothsymbols.

Keywords Non-smoothpseudodifferentialoperators·Characterizationby mappingproperties

MathematicsSubjectClassification(2000) 35S05,47G30

Inthischapterwestudypseudodifferentialoperatorsoftheform

:= p(x,Dx )u(x)

where S (Rn ) denotestheSchwartzspaceofallrapidlydecreasingsmoothfunctions, ˆ u = F [u] istheFouriertransformationof u, d ξ = (2π) n dξ ,and p : Rn × Rn → C isagivenfunction,calledthesymbolofthepseudodifferential operator.Inthecasethat p isasmoothfunctioncontainedinasuitablesymbol class,thepseudodifferentialoperatorshavealotofniceandimportantalgebraic properties,e.g.theyareclosedunderarbitrarycompositionsandadjointsand havenaturalmappingpropertiesbetween Sobolevspacesofarbitraryhighorder. Moreover,suitableclassesofpseudodifferentialoperatorswithsmoothsymbolscan

H.Abels·C.Pfeuffer( )

FakultätfürMathematik,UniversitätRegensburg,Regensburg,Germany

e-mail: Helmut.Abels@mathematik.uni-regensburg.de; Christine.Pfeuffer@mathematik.uni-halle.de

©SpringerNatureSwitzerlandAG2019

S.Molahajloo,M.W.Wong(eds.), AnalysisofPseudo-DifferentialOperators, TrendsinMathematics, https://doi.org/10.1007/978-3-030-05168-6_2

becharacterizedintermsoftheirmappingpropertiesandthemappingproperties ofcertainiteratedcommutators.But,unfortunately,allthisingeneralbreaksdown, whenworkingwithsymbolsoflimitedsmoothness,e.g.,withlimitedsmoothness inthe“space”variable x .Suchoperatorsarisenaturallyinthestudiesofnonlinear partialdifferentialequations,wherethesymboldependsonthesolution,whichhas apriorionlylimitedsmoothness.Inthecaseoflimitedsmoothnessinthespatial variable x ,theorderoftheSobolevspaces,inwhichsuchapseudodifferential operatormapscontinuouslyinto,islimitedbythesmoothnessofthesymbol.As aconsequencethecompositionoftwonon-smoothpseudodifferentialoperatorsis onlywelldefinedundersomerestrictions.Moreover,thecompositionisingeneral notapseudodifferentialoperatoranymore(atleastnotofthesameclass).But thereareresultsoncompositionsuptocertainoperatorsoflowerorderintermsof theirmappingproperties.Allthismakesthecharacterizationofpseudodifferential operatorsmuchmoredifficultinthenon-smooththaninthesmoothcase.Inthis chapterwewillpresentandreviewsomefirstresultsinthisdirectionanddiscussan applicationofthemtothespectralinvarianceoftheseoperators.

Nowletuscommentontheknownresultsinthecaseofsmoothsymbols. Firstcharacterizationsofpseudodifferentialoperatorsbytheirmappingproperties between L2 -SobolevspaceswereprovenbyBeals[5].Theseresultsincludea characterizationoftheHörmanderclasses S m ρ,δ (Rn × Rn ) with0 ≤ δ ≤ ρ ≤ 1 and δ< 1.Hereasmooth p : Rn × Rn → C belongsto S m ρ,δ (Rn × Rn ) for m ∈ R and0 ≤ δ ≤ ρ ≤ 1ifandonlyif

forall k ∈ N0 .Moreover, OPS m ρ,δ (Rn × Rn ) isthesetofallpseudodifferential operatorswithsymbolsin S m ρ,δ (Rn × Rn ).Acharacterizationofthelatterclasses bymappingpropertiesbetween Lp -SobolevspaceswasfirstprovedbyUeberberg [22].FurthercharacterizationswereobtainedbyKryakvin[14],Leopoldand Schrohe[16]andSchrohe[19].

InthefollowingwewillusetheapproachbyUeberberg[22]inordertoobtain acharacterizationofnon-smoothpseudodifferentialoperators.Letusnotethatitis basedonthemethodforcharacterizingalgebrasofpseudodifferentialoperatorsby Beals[5, 6],CoifmanandMeyer[10]andCordes[8, 9].

Afirstcharacterizationofpseudodifferentialoperatorswithnon-smoothsymbols wasobtainedin[3],wheresymbolsin C τ ∗ S m ρ,0 (Rn × Rn ; M), ρ ∈{0, 1},are considered.Thischaracterizationwasextendedandrefinedin[2]andappliedto obtainresultsonspectralinvariance.TheseresultsarebasedonthePhD-thesis ofthesecondauthor.Itisthegoalofthiscontributiontopresenttheseresultson characterizationandspectralinvarianceinthecaseofsymbolsin C τ ∗ S m ρ,0 (Rn × Rn ; M) inaself-containedway.Wewillfollow[2, 3, 18],respectively,closely, leavingoutsomeproofsoftechnicalresults,generalizingsomeresultsandadding

Another random document with no related content on Scribd:

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Analysis of pseudo differential operators shahla molahajloo - The full ebook with all chapters is av by Ebook Home - Issuu