Preface
TheInternationalConferenceonAd-HocNetworksandWireless(AdHoc-Now)isone ofthemostpopularseriesofeventsdedicatedtoresearchonad-hoc,mobileand wirelesssensornetworks,andcomputing.Sinceitsinceptionin2002,theconference hasbeenheld16timesin6differentcountriesandthe17theditionin2018washeldin Saint-Malo,France,duringSeptember5–7.
Wewishtothankalloftheauthorswhosubmittedtheirwork.Thisyear, AdHoc-Nowreceived52submissionsand21paperswereacceptedforpresentationas fullcontributionsafterarigorousreviewprocessinvolvingtheTechnicalProgram Committee(TPC)members,someexternalreviewers,andtheTPCchairs.Moreover, duetothehighqualityofthereceivedsubmissions,6paperswereacceptedasshort contributions.Finally,AdHoc-Now2018hadtwopapersbyinvitedspeakers.
TheAdHoc-Now2018programwasorganizedinsixsessionsgroupingthecontributionsintothefollowingtopics:RoutinginLowPowerNetworks;5Gand mmWave;LowPowerWideAreaNetworks;MobileCommunicationsandNetworks; DistributedSystemsandArchitectures;TestbedsandReal-WorldDeployments.In eachofthesesessions,newideasanddirectionswerediscussedamongattendeesfrom bothacademiaandindustry,thus,providinganindepthandstimulatingviewonthe newfrontiersinthe fieldofmobile,adhocandwirelesscomputing.
Theconferencewasalsoenrichedbythefollowingsixdistinguishedkeynotespeakers thatcompletedahigh-levelscientificprogram:PascalThubert,GeorgeOikonomou, LaurentToutain,LuigiAlfredoGrieco,AntonioSkarmeta,Marc-OliverPahl.
WewouldliketothankallofthepeopleinvolvedinAdHoc-Now2018.Firstofall, wearegratefultotheTPCmembersandtheexternalreviewersfortheirhelpin providingdetailedreviewsofthesubmissions,toMaddalenaNurchis,ourproceedings chair,toXenofonFafoutis,JulienMontavont,GeorgiosZ.Papadopoulos,Tanguy RopitaultandMarc-OliverPahl,ourTPCchairs,toYannBusnelandPeriklisChatzimisios,ourpublicitychairs,toTanguyKerdoncuffandRemous-ArisKoutsiamanis, ourweb,submissionandregistrationchairs.AspecialthanksgoestoFrédéricWeisfor hisvaluablesupportinthelocalorganizationandthearrangementsoftheevent.We alsothanktheteamatSpringerfortheirgreatsupportthroughouttheentireprocess, fromthesubmissiontilltheproceedingsproduction.
Finally,theorganizationwasmadepossiblethroughthestrongsupportofour sponsors:IMTAtlantiqueBretagnePaysdelaLoire,IRISAresearchcenter,Technical UniversityofMunich(TUM),German-FrenchAcademyfortheIndustryoftheFuture, TexasInstruments(TI),SpringerandSpringer ’s LectureNotesinComputerScience (LNCS),AdministrativeRegionofBrittany,France,Pracom,Université Bretagne Loire.Aspecialthankyougoestothem.
September2018NicolasMontavont GeorgiosZ.Papadopoulos
Organization
ADHOC-NOW2018wasorganizedbyIMTAtlantique,France.
GeneralCo-chairs
NicolasMontavontIMTAtlantique,France
GeorgiosZ.PapadopoulosIMTAtlantique,France
TechnicalProgramCommitteeChairs
Xenofon(Fontas)FafoutisUniversityofBristol,UK
JulienMontavontUniversityofStrasbourg,France
GeorgiosZ.PapadopoulosIMTAtlantique,France
TanguyRopitaultNationalInstituteofStandardsandTechnology,USA
Marc-OliverPahlTechnischeUniversitätMünchen,Germany
PublicityArrangementsChairs
YannBusnelIMTAtlantique,France
PeriklisChatzimisiosAlexanderTechnologicalEducationalInstitute ofThessaloniki,Greece
ProceedingsChair
MaddalenaNurchisUniversityofPompeuFabra,Spain
SubmissionandRegistrationChairs
TanguyKerdoncuffIMTAtlantique,France
Remous-ArisKoutsiamanisIMTAtlantique,France
LocalArrangementsChair
FrédéricWeisIUTdeSaint-Malo,France
WebChairs
TanguyKerdoncuffIMTAtlantique,France
Remous-ArisKoutsiamanisIMTAtlantique,France
TechnicalProgramCommitteeMembers
MohamedAymenChaloufIRISA,France
EleniStaiNationalTechnicalUniversityofAthens,Greece FrancescoLongoUniversityofMessina,Italy
PierreLeoneUniversityofGeneva,Switzerland
NathalieMittonInriaLilleEurope,France
JamesPopeUniversityofBristol,UK IvanMezeiUniversityofNoviSad,Serbia
GiovanniSteaUniversityofPisa,Italy
FabriceTheoleyreUniversityofStrasbourg,France
MarcoLucioScarpaUniversityofMessina,Italy
SymeonPapavassiliouNationalTechnicalUniversityofAthens,Greece
EiriniEleniTsiropoulouUniversityofNewMexico,USA
JuanCarlosCanoEscribá UniversitatPolitècnicadeValència,Spain
FlávioAssisFederalUniversityofBahia,Brazil
CarloPuliafitoUniversityofPisa,Italy
FabioPostiglioneUniversityofSalerno,Italy
TayebLemloumaIRISA,France
JacekCichoń WrocławUniversityofScienceandTechnology, Poland
RalfKlasingCNRSandUniversityofBordeaux,France
AtisElstsUniversityofBristol,UK
Xenofon(Fontas)FafoutisUniversityofBristol,UK
Remous-ArisKoutsiamanisIMTAtlantique,France
GeorgiosZ.PapadopoulosIMTAtlantique,France
NicolasMontavontIMTAtlantique,France
DimitriosZorbasUniversityofPiraeus,Greece KonradWronaNCIAgency,TheNetherlands CarloVallatiUniversityofPisa,Italy
RustemDautovKazanFederalUniversity,Russia
ChrysaPapagianniUniversityofMaryland,USA
CarlosMiguelTavares
Calafate
UniversitatPolitècnicadeValència,Spain
FranciscoJ.MartinezUniversityofZaragoza,Spain
WeifaLiangAustralianNationalUniversity,Australia GermanCastignaniMotion-SandUniversité deLuxembourg,Luxembourg
AndreasHerkersdorfTechnischeUniversitätMünchen,Germany
JoseM.Barcelo-OrdinasPolytechnicUniversityofCatalonia,Spain
VasileiosKaryotisNationalTechnicalUniversityofAthens,Greece AlessandraDePaolaUniversità degliStudidiPalermo,Italy
VioletSyrotiukArizonaStateUniversity,USA
QinXinUniversityoftheFaroeIslands,FaroeIslands
JulienMontavontUniversityofStrasbourg,France
ThomasNoelUniversityofStrasbourg,France
GiovanniMerlinoUniversityofMessina,Italy
OrazioTomarchioUniversityofCatania,Italy
VolkerTurauHamburgUniversityofTechnology,Germany
EnricoNatalizioUniversityofTechnologyofCompiègne,France
TanguyRopitaultNationalInstituteofStandardsandTechnology,USA
FrancoisLermercierIMTAtlantique,France
AntoineGallaisUniversityofStrasbourg,France
DiegoDujovneDiegoPortalesUniversity,Chile
AlexandrosFragkiadakisFoundationforResearchandTechnology – Hellas, Greece
MarcMoskoPaloAltoResearchCenter,USA
SoumayaElBarrakAbdelmalekEssaâdiUniversity,Morocco
IoannisMavromatisUniversityofBristol,UK
TanguyKerdoncuffIMTAtlantique,France
AlexandrosMavromatisUniversityofBristol,UK
PatrickMaillé IMTAtlantique,France
GéraldineTexierIMTAtlantique,France
MaurizioGiacobbeUniversityofMessina,Italy
DarioBruneoUniversityofMessina,Italy
OanaIovaINSALyon,France
RiccardoDiPietroUniversityofMessina,Italy
AhmedBouabdallahIMTAtlantique,France
SaadElJaouhariIMTAtlantique,France
PeriklisChatzimisiosAlexanderTechnologicalEducationalInstituteof Thessaloniki,Greece
AlessioBottaUniversityofNaplesFedericoII,Italy
RoutinginLowPowerNetworks
Adaptivek-castSchedulingforHigh-ReliabilityandLow-Latency inIEEE802.15.4-TSCH......................................3
InèsHosniandFabriceThéoleyre
Multi-pathSelectioninRPLBasedonReplicationandElimination........15
TomásLagosJenschke,Remous-ArisKoutsiamanis, GeorgiosZ.Papadopoulos,andNicolasMontavont
PerformanceEvaluationofaRPLHybridObjectiveFunction fortheSmartGridNetwork...................................27
FrançoisLemercierandNicolasMontavont
LatencyandLifetimeOptimizationfork-AnycastRoutingAlgorithm inWirelessSensorNetworks..................................39 LucasLeãoandVioletaFelea
5GandmmWave
ACity-ScaleITS-G5NetworkforNext-GenerationIntelligent TransportationSystems:DesignInsightsandChallenges...............53 IoannisMavromatis,AndreaTassi,RobertJ.Piechocki,andAndrewNix
ThePotentialofmmWavesinSmartIndustry:Manufacturingat60GHz....64 ChiaraPielli,TanguyRopitault,andMicheleZorzi
5GRadioResourceManagementApproachforInternet ofThingsCommunications....................................77 AhlemSaddoud,WaelDoghri,EmnaCharfi,andLamiaChaariFourati
DynamicJointResourceAllocationandFemtocellSelectionfor5GHetNet...90 AmalBouaziz,AhlemSaddoud,LamiaChaariFourati, andHakimaChaouchi
DemoandPosters
BenchmarkingSmartphonePerformancesforCooperativeDisaster AlertDiffusion............................................105 FaroukMezghaniandNathalieMitton
AnEvaluationToolforPhysicalAttacks..........................112
HélèneLeBouder,GaëlThomas,RonanLashermes,YanisLinge, BrunoRobisson,andAssiaTria
Demo:DoNotTrustYourNeighbors!ASmallIoTPlatformIllustrating aMan-in-the-MiddleAttack...................................120
RenzoE.Navas,HélèneLeBouder,NoraCuppens,FrédéricCuppens, andGeorgiosZ.Papadopoulos
AFuzzyBasedEnergyAwareUnequalClusteringforWireless SensorNetworks...........................................126
SabrineKhriji,DhouhaElHoussaini,InesKammoun,andOlfaKanoun
TheTrade-OffsofCellOver-ProvisioninginIEEE802.15.4 TSCHNetworks...........................................132
XenofonFafoutisandGeorgiosZ.Papadopoulos
WirelessNetworkforIn-CarCommunication.......................138
CristianAlderete,GuillaumeLeGall,AlexandreMarquet, GeorgiosZ.Papadopoulos,andNicolasMontavont
LowPowerWideAreaNetworks
EnhancedDynamicDutyCycleinLoRaWANNetwork................147
NorhaneBenkahla,HajerTounsi,Ye-QiongSong,andMounirFrikha
SpecificitiesoftheLoRa™ PhysicalLayerfortheDevelopmentofNew AdHocMACLayers.......................................163
NicolasGonzalez,AdrienVanDenBossche,andThierryVal
AComparativeEvaluationofthePerformanceoftheMulti-hop IoB-DTNRoutingProtocol...................................175
YosraZguira,Hervé Rivano,andArefMeddeb
PerformanceofSelectionCombiningMacroDiversitywithOutage ProbabilityConstraintinLPWAN...............................188
QipengSong,XavierLagrange,andLoutfiNuaymi
AuthenticatedPreamblesforDenialofServiceMitigationinLPWANs.....199
IoanaSuciu,JoseCarlosPacho,AndreaBartoli,andXavierVilajosana
MobileCommunicationsandNetworks
CommunicationArchitectureforUnmannedAerialVehicleSystem........213 LobnaKrichen,MohamedFourati,andLamiaChaariFourati
DACAR:Distributed&AdaptableCrosslayerAnticollision andRoutingProtocolforRFID.................................226 AbdoulAzizMbacke,NathalieMitton,andHerveRivano
LowFrequencyMobileCommunicationsinUnderwaterNetworks........239 Abdel-MehsenAhmad,MichelBarbeau,JoaquinGarcia-Alfaro, JamilKassem,EvangelosKranakis,andStevenPorretta
FPMIPv6-S:AnEnhancedMobilityProtocolfor6LoWPAN-Based WirelessMobileSensorNetworks...............................252 AbdelwahedBerguiga,AhlemHarchay,MohamedKassab, andHabibYoussef
DistributedSystemsandArchitectures
CollaborativeStateEstimationandActuatorScheduling forCyber-PhysicalSystemsUnderRandomMultipleEvents............267 LeiMo,AngelikiKritikakou,andXianghuiCao
Game-BasedDataMulingasaServiceinInfrastructurelessArea.........280 MohamedJacemGuezguez,SlimRekhis,andNoureddineBoudriga
DistributedComputationsinWirelessSensorNetworks byLocalInteractions........................................293 EmnaTaktak,MohamedTounsi,MohamedMosbah, andAhmedHadjKacem
TestbedsandReal-WorldDeployments
SPHEREDeploymentManager:AToolforDeployingIoTSensor NetworksatLargeScale.....................................307 XenofonFafoutis,AtisElsts,GeorgeOikonomou,andRobertPiechocki
ConstructingCustomizedMulti-hopTopologiesinDenseWireless NetworkTestbeds..........................................319 FlorianKauerandVolkerTurau
F-InteropPlatformandTools:ValidatingIoTImplementationsFaster......332 MariaRitaPalattella,FedericoSismondi,TengfeiChang,LoicBaron, MališaVučinić,PabloModernell,XavierVilajosana, andThomasWatteyne
RoutinginLowPowerNetworks
In`esHosni1 andFabriceTh´eoleyre2(B)
1 LSC,UniversityofTunisElManar,Tunis,Tunisia ines.hosni@hotmail.fr
2 ICubelab,CNRS/UniversityofStrasbourg,Strasbourg,France theoleyre@unistra.fr
Abstract. TheIndustrialInternetofThingstendsnowtoemergeas akeyparadigmtointerconnectacollectionofwirelessdevices.However,mostindustrialapplicationshavestrictrequirements,especially concerningthereliabilityandthelatency.IEEE802.15.4-TSCHrepresentscurrentlyapromisingstandardrelyingonastrictscheduleofthe transmissionstoprovidesuchguarantees.ThestandardISA-100.11a2011hasproposedtheconceptofduocast,whereapairofreceiversare allocatedtothesametransmissionopportunitytoincreasethereliability. Inthispaper,wegeneralizethisapproachtoinvolvekdifferentreceivers, andweexploretheimpactofthistechniqueontheperformanceofthe network.Weproposeanalgorithmassigningseveralreceiversforeach transmissiontoincreasetheprobabilitythatatleastonedevicereceives correctlythepacket.Byexploitingamultipathtopologycreatedbythe routinglayer,weareabletoreducethenumberoftransmissionswhile stillachievingthesamereliability.Weconsequentlyincreasethenetwork capacity,andreducesignificantlythejitter.Oursimulationresultshighlighttherelevanceofthisk-casttechniqueinTSCHfortheIndustrial InternetofThings.
Keywords: IEEE802.15.4-TSCH · k-casttransmissions · Duocast Schedulingalgorithms · High-reliability · Lowjitter
1Introduction
Industry4.0ispromisedasthenextindustrialrevolution,wheredigitalautomationaimstoreducethecostandtomaximizetheflexibility[11].Inparticular, theIndustrialInternetofThings(IIoT)aimstoconnectalargesetofindustrial objectstotheInternet.Inthiscontext,areal-timeinfrastructurehastoprovide high-reliabilityforthewirelesstransmissions.
WhiletheInternetofThingsfocusedsofaron best-effort solutions,industrial applicationshaveoftenstrictrequirementsconcerningthereliabilityandthe delay[2].WeneedconsequentlyspecificMACprotocolsabletoprovidestrict c SpringerNatureSwitzerlandAG2018 N.MontavontandG.Z.Papadopoulos(Eds.):ADHOC-NOW2018,LNCS11104,pp.3–14,2018. https://doi.org/10.1007/978-3-030-00247-3 1
guarantees.Deterministicapproachesareparticularlyrelevant,allocatingafixed bandwidthtoeachdeviceorflow.Thesesolutionscanprovidealsoflowisolation, whereeachflowreceivesacertainbandwidth,dedicatedfor its transmissions.
IEEE802.15.4-TSCHreliesonchannelhoppingtoincreasetherobustnessto externalinterferenceandfading[1].TSCHadoptsadeterministicapproach,and schedulescarefullythetransmissionstoavoidthecollisions.Moreprecisely,it allocatesasetofdifferent cells forinterferingtransmitterstoreducethecontentionwhilestillavoidingcollisions.Acellisdefinedbyapairoftimeslotand channeloffset.Thechanneloffsetistranslatedintoaphysicalfrequencyatthe beginningofthetimeslot,tofollowapseudo-randomsequence.
Manycentralizedanddistributedschedulingalgorithms[6]havebeenproposedsofarforTSCH.Tocopewithunreliablelinks,theschedulingprocess oftenusesoverprovisionning,andreservesseveralofcellssothatapacketcan beretransmitted.Unfortunately,morecellsmeanthatthedelayandthejitter mayincrease[13].Thisover-provisioningalsoreducesthenetworkcapacityif thetrafficislargeand/orthelinksareveryunreliablebecauseofe.g.external interference.
IEEE802.15.4-TSCHislargelyinspiredfromISA-100.11a-2011[9].ISAhas proposeda duocast mechanismtoincreasethereliability:tworeceiversare assignedtoagiventransmission.Atransmissionisconsideredafailureonly if both receiversfailedtodecodecorrectlythepacket.
Inthispaper,weaimtoinvestigatetherelevanceofusingk-castscheduling, i.e.acellisassignedtoonetransmitter,andkpossiblereceivers(orderedby theirpriority).Subslotsalloweachreceivertoacknowledgethetransmissionif noneofthereceiverswithalargerprioritysentanack.Thecontributionsofthis paperarethreefold:
1.Weproposeaschedulingalgorithmtailoredfork-casttransmissions.Weproposetominimizetheenergyconsumptionforbothtransmittingandreceiving thepackets.Eachnodeselectsthesetofparentstoassigntoagivencellto minimizethisenergyconsumption;
2.Weinvestigatetheimpactofthek-casttechniqueontheamountofduplicated packets.Indeed,thereceiversmayreceiveallthepackets,butnotthe ack theytransmit.Inthiscase,thepacketsareduplicatedwastingenergyand bandwidth;
3.Weimplementedourschedulingalgorithmandthek-casttechniquetoevaluateitsperformance.Wehighlightedthistechniquehelpstoimprovethe reliabilitywithalimitedimpactontheenergyconsumption.
2RelatedWork
IEEE802.15.4-2015hasproposedtheTSCHmode,whichreliesonastrictscheduleofthetransmissions[1].The slotframe containsafixednumberoftimeslots, duringwhichatmostoneframeanditsacknowledgmentaretransmitted.Each timeslotislabelledwithanAbsoluteSequenceNumber(ASN)whichcountsthe numberoftimeslotssincethePANcoordinatorstarted.Basedontheschedule,
Adaptivek-castSchedulingforHigh-ReliabilityandLow-Latency5
anodecandecideitsrole(transmitter/receiver/sleepingmode)atthebeginning ofeachtimeslot.
IEEE802.15.4-2015TSCHimplementsachannelhoppingapproachtocombatexternalinterferenceandsignalfadingand,thus,toachievehighreliability[18].Forthispurpose,each cell inthescheduleisdefinedbyapairoftimeslot andchanneloffset.Atthebeginningofeachtimeslot,theactualfrequencyto useisderivedfromthechanneloffsetandtheASN.
IEEE802.15.4-TSCHsupportstwomediumaccessapproaches:
Sharedcells areallocatedtoagroupofnodes(e.g.forbroadcast).Apacket isforthefirsttimetransmittedwithoutcontention.Ifitcorrespondstoa unicastpacket,andno ack isreceived,arandombackoffisthenused.This backoffcorrespondstothenumberofcellsto skip beforetheretransmission; Dedicatedcells areallocatedtonon-interferingtransmitters.Thus,thetransmitterjuststartsthetransmissionafterafixedoffsetfromthebeginningof thetimeslot.
2.1ImprovingtheReliability
Severaltechniqueshavebeenproposedtoimprovethereliabilityinthiskind ofdeterministicarchitecture.Over-provisioningconsistsinreservingadditional cellstoretransmitthepacketsifthetransmissionhasfailed.Forinstance,the numberofcellsmaybeinverselyproportionaltothePacketDeliveryRatiofor theconsideredradiolink[16].Dobslaw etal. [3]proposerathertofortifya centralizedschedulebyallocatingadditionalcellstothemostunreliablelinks untilthedeadlineconstraintcannotbeanymorerespected.Hashimoto etal. [5] proposetoallocatesharedcellsfortheretransmissions.However,sharedcells arepronetocollisions,impactingnegativelythereliabilityofretransmissions.
Multipathalsohelpstoimprovetheend-to-endreliability[10].Papadopoulos etal. [13]proposetousemultipleparents,replicatingthepacketsoverthetwo paths.Withoverhearing,severalreceiverstrytodecodeapacket,increasingthe reliability.Anodewhichreceivesseveraltimesthesamepacket(identifiedwitha sequencenumber)mustdropthesubsequentcopies.However,theauthorsfocus onafault-tolerancescenario:thelinkqualitydropssuddenlyontheprimary path.Weproposerathertoaddressthe normal case,whereradiolinksmaybe unreliable onaverage.
Opportunisticroutingconsistsinchoosingseveralnexthops.Thedestinationaddressistransformedinanycastsothatthesametransmissioncanbe receivedbyanyreceiver.Typically,opportunisticroutinghelpstoimprovethe efficiencyinasynchronouswirelessnetworks[17].InIEEE802.15.4-TSCH,all thereceiverswake-upsynchronously.However,opportunisticroutingisstillefficienttoimprovethereliability:itissufficientthat one ofthereceiversdecodes correctlythepacket.Huynh etal. demonstratedthatopportunisticscheduling helpstoimprovetheoreticallythereliabilitywhenexploitingaRayleighfading channel[7].
2.26TiSCH
6TiSCHhasdefinedasetofprotocolstoexecuteIPv6aboveIEEE802.15.4TSCH.ItreliesonRPL(RoutingoverLow-PowerLossyNetworks)toconstruct theroutingtopology[15].Anodeusesalinkqualitymetricandtherankof itsparenttocomputeitsownrank,denotingitsvirtualdistancefromthesink. Typically,thelinkqualityisestimatedviaETX(ExpectedTransmissionCount), theaveragenumberoftransmissionsbeforethepacketisacknowledgedbythe receiver.Bydefault,RPLusesonlyonepreferredparent(nexthoptowardthe sink),buthasbeenextendedtosupportalsomulti-parentrouting[8].
Schedulingthetransmissionshasattractedmuchattentioninthepast[6]. The6Pprotocol[14]isinchargeofnegotiatingthecellstouse.Thetransmitter sendsarequesttothereceivertodecidehowmany,andwhichcellstouse. Then,6TiSCHreliesonaso-calledSchedulingFunction(SF)todecidewhich andhowmanycellstousebetweeneachpairofnodes.6TiSChsupportsboth centralized(e.g.TASA[12])anddistributed(e.g.SFx[4])schedulingalgorithms. Forinstance,SFx[4]maintainsthenumberofcellsatleastequaltothenumber ofpacketstoforward,andreliesonanhysteresisfunctiontolimitthenumber ofoscillations.
3k-castScheduling:ChoosingtheRightSetofParents
LetusconsidertheexampleillustratedinFig. 1.AnodeAhastwoordered parents P1 and P2 .Duringthefirsttimeslot, P1 receivescorrectlythepacket andacknowledgesit.Duringthesecondone,thetransmissionto P1 fails,but P2 isabletodecodethepacket:itshouldbeabletoacknowledgeittoavoidanother transmission.Typically,the ack of P2 istransmittedifthemediumisstillidle afteratimeout:itmeans P1 isnotcurrentlytransmittingan ack
Fig.1. Duocasttransmission(withtwodifferentparents)
Weaimheretoinvestigatewhichstrategytoadopttoassignseveralreceivers tothesamecell(k-cast)toimprovethereliability.Withperfectlinks,k-cast transmissionsareuselesssincetheprimaryparent always receivesthepacket correctly.Theotherparentswillhavetoawakentoreceivethepacketalthough theyareuseless.Ontheotherhand,unreliablelinksmaybecombattedwhen severalreceiverscanalldecodethesamepacket.
Besides,opportunisticschedulingwouldbeinefficientiftheradiolink among parentsisveryunreliable.Inthatcase,aparentmaynothearthataprevious parentiscurrentlytransmittingan ack:itwillstarttotransmititsown ack, whichwillcreateacollision,andretransmissions.Moreover,bothparentsare convincedtheybothhavetoforwardthepacket:a duplicated packethasbeen created.
3.1NumberofCellstoProvisionforaGivenSetofParents
Letusfirstcomputethenumberofcellsanodehastoreservewithitsparent. WerelyonRPLtoconstructtheroutes[15](cfSect. 2.2).Then,thescheduling algorithmhastodecidehowmanycellstoreservewithitsparent.Wedecidehere tominimizetheenergyconsumption,i.e.energyforreceptionandtransmission sothatatleastoneparenthasreceivedcorrectlythedatapacket.
Letdenoteby P thesetofparentsselectedbythenode n toforwardits packets.WecomputethePacketDeliveryRatio(PDR)forthisnode,i.e.averagenumberoftransmissionsbeforeoneparenthasacknowledgedcorrectlythe packet.Inmostimplementations,eachnodedividesthenumberofpacketsit transmitsbythenumberofacksitreceives.Whenapacketistransmittedtoseveralreceivers/parents,thetransmissionhasfailedifnoneisabletosendanack:
where PDR(p)denotestheaveragePacketDeliveryRatiotowardtheparent p, i.e.ratioofunicastpacketsreceivedcorrectlyby p.
Weforcetheschedulingfunctiontoreserveasufficientnumberofcellsto achieveagivenminimumreliability(e.g. PDRth =99%)withinthecurrent slotframe.Thenumberoftransmissionopportunities(ntxop (n →P ))Wedenote by ntxop (n →P )thenumberoftransmissionopportunitiestoreservetoguaranteeaminimumreliability.Typically, ntxop (n →P )mustcontainonecopyand allitsretransmissionstohaveaminimumPacketDeliveryRatio:
Finally,wehavetoprovisionenoughcellstoforward all thepackets:
= ntxop (n →P ) ∗ npkts (n →P )(4)
where nbCells denotesthenumberofcellsreservefrom n toitsparents,and npk (n →P )denotestheaveragenumberofpacketsthatthenode n hasto forwardtoitsparentswithinaslotframe.
Cellsarethenremovedandinserteddynamicallyinthescheduletorespect thisreliability.Toavoidoscillations,weuseanhysteresisfunction,similarlyto theschedulingfunctionSFx[4].
3.2EnergyConsumptiontoChoosetheRightSetofParents
Weshouldnotallocatesystematicallyalltheparentstoagivencell.Indeed, mediumlinkqualitiesdonotrequiretohavesomanyreceivers:onlythefirst parentswillbeactuallyuseful,theotheroneswillwastetheirenergyforidle listening.Inversely,allocatinganinsufficientnumberofreceivershasanegative impactonthereliabilityandthedelay:thesourcenodeneedsmoreretransmissionstodeliverthepacketandtoreceivean ack.
Letuscomputetheenergyconsumptionassociatedtoacorrectreceptionof apackettransmittedbyanode n.Forasakeofsimplicity,anodeassumesthe linkqualitywithitsdifferentparentsmaydiffer,butalltheparentshavepaths withsimilarqualitiestowardtheborderrouter. P keepsondenotingthesetof parentsselectedbythenode n toforwarditspackets.
Thus,theenergyconsumption(intransmissionmode)isfinally:
where Etx denotestheenergyinTXmodeforonecell.
Eachparenthastobeawakeduringallthesecells.However,onlysomeof themareactuallybusy,theotheronesonlycorrespondtoidlelistening.Thus, theenergytoreceivethepacketsofncanbeestimatedas:
where Erx (resp. Eidle )denotestheenergyinRX(resp.IDLE)modeforone cell.
Wehaveconsequentlytocomputethesetofparentswhichminimizesthe energyconsumption
total (n)= Erx (n)+ Etx (n)(7)
Thus,theenergyconsumedbyanodedependsonthePacketDeliveryRatio towarditsparents,andonthenumberofcellstoprovisiontoguaranteeagiven reliability.InsertingmoreparentsincreasesthePacketDeliveryRatioandthus decreasestheenergytotransmitonepacket.Onthecontrary,italsoincreasesthe energyconsumedtoreceivethepackets(idleandrx)fortheparents.Wewillproposeinthenextsectionastrategytodecidewhichandhowmanyparentstoselect.
3.3AdaptiveandLocalizedSchedulingStrategy
Weproposehereaschedulingalgorithmadaptedfork-cast.Inparticular,wehave todecidehowmanyandwhichparentsshouldbeallocatedforeachtransmitting cell.Usingabadlinkinsteadofagoodlinkisneverrelevant:anodeshould alwaysuseitsbestparents.
Weproposeagreedyapproachtodecidewhichcellstoschedule(Algorithm 1).Anode n appliesthefollowingapproach:
1. n ranksitsparentsaccordingtotheirPDRindescendingorder(line2); 2.greedily,itinsertsthenextbestparentinthelistofforwarders(lines5–6);
Algorithm1. ParentSelectionforScheduling
Data:setofparents(Parents)
Result:setofforwarders(FW )
//initialization
1 FW ←∅;
2 rank(Parents,PDR);
3 energy ←∞; //addsanewparentintheforwarderset
4 repeat //picksthefirstparentinthelist
5 p ← popFirst(Parents);
6 FW ← FW ∪{p}; //updatestheenergycostaccordingtoeq.7
7 energyOld ← energy ;
8 energy ← computeEnergy (FW); //repeatuntiltheenergystartstoincrease
9 until energy>energyOld; //removesthelastforwarderaddedinthelist
10 removeLast(FW);
11 return (FW );
3.iftheenergyconsumption(forbothRXandTX)isreduced,thenwecontinue thegreedyallocation,andweconsiderthenextparent.Else,thenode n finally assignsthecurrentlistofforwarders(exceptthelastparent)toitscells.
Inotherwords,thealgorithmstopswhenalocalminimumisachieved.Todecide howmanycellshavetobeallocated,thenode n usestheEq. 4
Theorem1. Thisgreedystrategyallocatesthesetofparentswhichminimizes theenergyconsumption.
Proof. Letusfollowhereaproofbycontradiction.Weordertheparentsbytheir decreasingPDRvalue.OuralgorithmterminateswiththesetP.IfthesetPis notoptimal,wereplaceoneparent p of P byanotherparent p withasmaller energyconsumption.Thereceptionenergyof p isatleastequaltothoseof p sincethenumberofcellswith p cannotbesmaller(Eq. 6)since p providesa largerPDRthan p
Wecanprovesimilarlythatwhenthealgorithmdiscardsthe k th parent becauseitstartstoincreasetheenergyconsumption,anotherparentwitha lowerPDRcannotdecreasefurthertheenergyconsumption.
4PerformanceEvaluation
WeevaluateheretheperformanceofIEEE802.15.4TSCHwithk-castrelying onopenwsn1 .Were-useheretheapproachofSFx[4]todefinehowmanycells
1 http://openwsn.org providesanopensourceimplementationofIEEE802.15.4TSCH.
10I.HosniandF.Th´eoleyre
Table1. Defaultvaluesoftheparametersinoursimulations.
Parameter
Defaultvalue
Duration 60s
Traffictype 100packets
Datapacketsize 127bytes
Numberofnodes 20nodes
Numberofreceivers 2parents(inthesameslot)
Destination 1sink(convergecast)
MAClayer IEEE802.15.4-TSCH
Schedule Distributed
Timeslotduration 15ms
Slotframelength 101slots
PHYmodelphysicalPDR FixedphysicalPDRforeachradiolink uniformlypickedbetween20and90%
havetobereserved.Eachnodecomputesdynamicallythenumberofcellstouse accordingtothenumberofpacketstoforward,andthePacketDeliveryRatioin thecells.Then,wedecidehowmanyparentshavetobeallocatedtoagivencell. Ourimplementationisfullyavailableat https://github.com/ineshos/6TSCH/ tree/master/python/ScheduleSimulator/simulator.
Werelyhereonsimulations,andcontrolthephysicalPacketDeliveryRatio (complementofthePER)ofthelinks(Table 1).WeassumethephysicalPDR remainsfixedforthewholesimulation.Wefirstfocusonasimpletopology toevaluatethebehaviorofoneflow,andthenwestudytheperformanceina randomtopology.
Fig.2. Simpletopologywithmultipleforwardingnodeswithdifferentlinkqualities.
4.1SimpleForwardingScenario
WefirstconsiderthetopologyillustratedinFig. 2,wherethephysicalPacket DeliveryRatio(i.e.thecomplementofthePacketErrorRate)hasbeenfixed statically.Thesourcegenerates100packetsforthesink,2hops away.
Fig.3. Performanceofasourcewithmultipleparentswithdifferentlinkqualities.
Usingmoreparentsallowsthenetworktoincreasethereliability:asingle transmissionmaybereceivedbyanyoftheparents(Fig. 3a).However,using morethan6parentsseemstobeinefficient.Indeed,thebadparentshaveonlya marginalimpact:theyreceiveseldomthepacketscorrectly.Besides,suchparents wouldforwardapacketonlyifallthepreviousparents(withabetterlinkquality) havenottransmittedanack.Thiswilloccurveryinfrequently,andtheirimpact onthereliabilityisverylimited.
Figure 3billustratesthenumberofduplicatedpackets(thepacketswhich arereceivedseveraltimesbythesink).Withonlytworeceivers,theamountof duplicatescanbeneglected(lessthan2%ofthepackets).Withmanyreceivers, thenumberofduplicatesbecomessignificant,andhasanegativeimpacton theenergyconsumption:redundantanduselesspacketsareforwardedbythe differentparents.
Figure 3cillustratesthedelay.Becauseoftheanycasttransmission,welet any receiverforwardthepacket.Thus,thedelaydecreaseswithmorereceivers. Selectingmanyreceivershasalwaysapositiveimpactonthedelay,evenifit alsoincreasestheenergyconsumption.
Finally,wemeasuredthenumberofcellsthatSFxreservesintheschedule (Fig. 4).Thenumberofsharedcellsvariesbetween12andonly3cellsforthe wholenetwork(20devices),dependingonthevolumeoftraffictoforward.We remindthatusingdedicatedcellsrequirestoreserveatleastonecellforeach
Fig.4. Impactofthetrafficloadonthenumberofallocatedcells.
device(thus20cells).Someadditionalcellswouldevenberequiredtocopewith retransmissionswithnonperfectradiolinks,whichisthecasehereformostof theradiolinks.Thus,usingsharedcellsisparticularlyefficienttoreducethe numberofallocatedcells.
4.2RandomTopology
Wenowconsiderarandomtopologyof20nodes,andassignaphysicalPDR toeachradiolink,uniformlydistributedbetween20and90%.Thisway,weverify thatk-casttransmissionshelptoimprovetheefficiencyeveninmorecomplex topologies.
Wefirstmeasurethenumberofpacketsreceivedwhentransmitting100packets(Fig. 5a).Wemakethesameremarksasforthesimpletopologycase:k-cast keepsonimprovingthereliability,tothesameextent.Thus,thek-castapproachhelpstoimprovegloballythenetwork-layerPDR:almostallpacketsare correctlydeliveredtothesink.
Wemeasurethentheamountofduplicatedpacketswithavariabletraffic (Fig. 5b).Theamountofduplicatedpacketsislinearwiththeinter-packettime. Thus,thesolutionisscalableandrobusttothetrafficconditions.
Finally,weconsidertheenergyconsumptioninFig. 5c.Usingmorereceivers decreasesatthebeginningtheenergyconsumptionsincelessretransmissions arerequiredtodeliverapacket.Inparticular,selecting3parentsallowsthe networktoreduceitsenergyconsumptionbyalmost30%comparedwiththe unicastapproach.Onthecontrarytoomanyreceiversmeansthatweincrease idlelistening,whichhasanegativeimpactontheenergyconsumptionwhenthe parenthasamarginalcontributiononthedelivery(i.e.itisseldominvolved inthetransmission).Weobtaintheoptimalenergyefficiencywith5parents. Obviously,thisoptimalnumberofreceiversdependsontheabilityofthedevice toturnfastitsradiooffwhenacellisunused.Thus,itdependsontheradio chipsetspecifications.
Fig.5. Randomtopology–20nodes,physicalPDRpickeduniformlybetween10and 90%.
5ConclusionandPerspectives
Weproposeadistributedalgorithmtoexploitk-castscheduling:severalreceivers areassignedtothesametransmission,toimprovetheprobabilityofsuccess.Our algorithmcomputesthesetofparentstoschedulesothattheenergyconsumption isminimized,consideringboththeRXandTXmode.Oursimulationsshowkcasthelpstoimprovethereliabilitywithalowenergyconsumption.Theamount ofduplicatedpacketsisreasonablewhenasmallnumberofparents(e.g.2or3) areassignedtothesamecell.
Inthefuture,weplantoinvestigatetheactualcostofimplementingsuch k-castfeatureinTSCH.Inparticular,alargernumberof acks meansoften alongertimeslot,whichmaywasteenergy.Besides,wealsoplantoinvestigate thenumberofduplicatedpacketswhichmaybegeneratedbycomplextopologies (hiddenterminals,asymmetricallinks,etc.)
References
1.IEEEStandardforLow-RateWirelessPersonalAreaNetworks(LR-WPANs). IEEEStd802.15.4-2015(RevisionofIEEEStd802.15.4-2011),April2016. https:// doi.org/10.1109/IEEESTD.2016.7460875
2.Al-Anbagi,I.,Erol-Kantarci,M.,Mouftah,H.T.:Asurveyoncross-layerqualityof-serviceapproachesinWSNsfordelayandreliability-awareapplications. IEEECommun.Surv.Tutorials 18(1),525–552(2016). https://doi.org/10.1109/ COMST.2014.2363950
3.Dobslaw,F.,Zhang,T.,Gidlund,M.:End-to-endreliability-awarescheduling forwirelesssensornetworks.IEEETrans.Indus.Inform. 12(2),758–767(2014). https://doi.org/10.1109/TII.2014.2382335
4.Dujovne,D.,Grieco,L.A.,Palattella,M.R.,Accettura,N.:6TiSCHExperimental SchedulingFunction(SFX).draft1,IETF,March2018
5.Hashimoto,M.,Wakamiya,N.,Murata,M.,Kawamoto,Y.,Fukui,K.:End-toendreliability-anddelay-awareschedulingwithslotsharingforwirelesssensornetworks.In:COMSNETS,pp.1–8,January2016. https://doi.org/10.1109/ COMSNETS.2016.7439984
6.Hermeto,R.T.,Gallais,A.,Theoleyre,F.:SchedulingforIEEE802.15.4-TSCHand slowchannelhoppingMACinlowpowerindustrialwirelessnetworks:asurvey. Comput.Commun. 114,84–105(2017). https://doi.org/10.1016/j.comcom.2017. 10.004
7.Huynh,T.,Theoleyre,F.,Hwang,W.J.:Ontheinterestofopportunisticanycast schedulingforwirelesslowpowerlossynetworks.Comput.Commun. 104,55–66 (2017). https://doi.org/10.1016/j.comcom.2016.06.001
8.Iova,O.,Theoleyre,F.,Noel,T.:UsingmultiparentroutinginRPLtoincreasethe stabilityandthelifetimeofthenetwork.AdHocNetw. 29,45–62(2015). https:// doi.org/10.1016/j.adhoc.2015.01.020
9.ISA-100.11a-2011:Wirelesssystemsforindustrialautomation:processcontroland relatedapplications.InternationalSocietyofAutomation(ISA)Std.1,May2011
10.Kafi,M.A.,Othman,J.B.,Badache,N.:Asurveyonreliabilityprotocolsinwireless sensornetworks.ACMComput.Surv. 50(2),31:1–31:47(2017). https://doi.org/ 10.1145/3064004
11.Li,X.,Li,D.,Wan,J.,Vasilakos,A.V.,Lai,C.F.,Wang,S.:AreviewofindustrialwirelessnetworksinthecontextofIndustry4.0.WirelessNetw. 23(1),23–41 (2017). https://doi.org/10.1007/s11276-015-1133-7
12.Palattella,M.R.,Accettura,N.,Grieco,L.A.,Boggia,G.,Dohler,M.,Engel,T.:On optimalschedulinginduty-cycledindustrialIoTapplicationsusingIEEE802.15.4e TSCH.IEEESens.J. 13(10),3655–3666(2013). https://doi.org/10.1109/JSEN. 2013.2266417
13.Papadopoulos,G.,Matsui,T.,Thubert,P.,Watteyne,T.,Montavont,N.,Texier, G.:Leapfrogcollaboration:towarddeterminismandpredictabilityinindustrialIoTapplications.In:ICC,pp.1–6.IEEE(2017). https://doi.org/10.1109/ICC. 2017.7997160
14.Wang,Q.,etal.:6topprotocol(6p).draft12,IETF,June2018
15.Winter,T.,etal.:Rpl:Ipv6routingprotocolforlow-powerandlossynetworks.rfc 6550,IETF(2012). https://doi.org/10.17487/RFC6550
16.Theoleyre,F.,Papadopoulos,G.Z.:Experimentalvalidationofadistributedselfconfigured6TiSCHwithtrafficisolationinlowpowerlossynetworks.In:MSWiM, pp.102–110.ACM(2016). https://doi.org/10.1145/2988287.2989133
17.Wang,X.,Wu,X.,Zhang,X.:Optimizingopportunisticroutinginasynchronous wirelesssensornetworks.IEEECommun.Lett. 21(10),2302–2305(2017). https:// doi.org/10.1109/LCOMM.2017.2729557
18.Watteyne,T.,Mehta,A.,Pister,K.:Reliabilitythroughfrequencydiversity:why channelhoppingmakessense.In:PE-WASUN,pp.116–123.ACM(2009). https:// doi.org/10.1145/1641876.1641898
Multi-pathSelectioninRPLBased onReplicationandElimination
Tom´asLagosJenschke(B) ,Remous-ArisKoutsiamanis, GeorgiosZ.Papadopoulos,andNicolasMontavont
IMTAtlantique,Irisa,UBL,Cesson-S´evign´e,France {tomas.lagos-jenschke,remous-aris.koutsiamanis,georgios.papadopoulo, nicolas.montavont}@imt-atlantique.fr
Abstract. IPv6RoutingProtocolforLow-PowerandLossyNetworks (RPL)isadistancevectorroutingprotocolespeciallydesignedforthe InternetofThings(IoT).RPLusesbroadcastDODAGInformation Object(DIO)messagestobuildaDestinationOrientedDirectedAcyclic Graph(DODAG)towardaroot.Eachnodeselectsaparentnodetoward therootusingacommonObjectiveFunction(OF).However,theuseofa singleroutecanaffectthenetworkreliabilityandtheend-to-endlatency. Inthisstudy,weproposetoemploythePacketReplicationandElimination(PRE)principlestouseparallelpathstowardtheDODAGroot,over theIEEE802.15.4Time-SlottedChannelHopping(TSCH)asamedium access.Tothisaim,weproposenumberofalgorithmstoselectthesecond orthealternativeparentinRPL.Furthermore,westudytheadvantages ofusingoverhearingfeatureovercorrelatedpaths.OursimulationcampaignconductedoverCooja,thesimulatorofContikiOS,demonstrate thattheuseofoverhearinginconjunctionwithPREinRPLconsiderablyimprovestherobustnessofawirelessnetworkbyprovidinggreater opportunitytoapackettoreachitsdestination.
Keywords: Multi-pathrouting · RPL · TSCH Leapfrogcollaboration
1Introduction
TheIoTaresetofstandardsandtechnologiesdevelopedtoconnectembedded andsmartobjectstotheInternet.Itslowcost,environmentadaptabilityand easydevelopmenthaveallowedthemassiveintegrationofthesetechnologiesin differentapplicationdomains,suchasthesmartgrid,IntelligentTransportSystem(ITS)ortheIndustry4.0.TheuseoftheIoTinthesevariousapplications howeverrequiresdifferentqualityofservice,whichisnotaninherentfeatures providedbyIoTtechnologies.Forexample,theIndustry4.0isespeciallyconcernedwiththedeterministicnatureofthenetwork,i.e.,torelyonbounded delayandveryhighdeliveryratio.
Manystandardsolutionshaveappearedduringthelastdecadeforwireless technologiesforembeddeddevices.IEEE802.15.4[4]isastandardforlowenergy c SpringerNatureSwitzerlandAG2018
N.MontavontandG.Z.Papadopoulos(Eds.):ADHOC-NOW2018,LNCS11104,pp.15–26,2018. https://doi.org/10.1007/978-3-030-00247-3 2
powerdevicesfocusedontheindustry.Thisstandardishistoricallybasedon TimeDivisionMultipleAccess(TDMA)andFrequencyDivisionMultipleAccess (FDMA).Fewyearsago,theconceptcalledTSCH[1]hasemerged,whichreduces theMulti-pathfadingbyusingfrequencyhopping.Forextendednetworkswhere adestinationnodeisoutoftheradiorangeofthesourcenode,aroutingprotocol mightbeusedontopoftheLayer2technology.RPLisoneofthemostpopular routingprotocolfortheIoTandisadistancevectorroutingprotocol,which distributesthenodeswithinatreehierarchycalledDODAG.Bydefault,each nodehasanoption(route)totransmitapackettoapreferrednodeuntilit reachesthetarget.Howeverishasbeenshownthatreliabilityperformancecanbe mitigatedinrealenvironment,andtheretransmissionschemesemployedwhen apacketislossintroducesignificantdelayandjitter.Inourpreviousworks, weintroducedLeapfrogCollaboration(LFC)[3, 7]whichallowsnodestoselect additionalparentstocreatealternatepaths.Todoso,weusedthePREconcept, inwhichseveralcopiesofadatapacketareintroducedinanetworktoincrease theprobabilityofreceptionattherootnode.Inthispaper,wefurtherinvestigate LFCandstudytheeffectoftheparentselectionalgorithm.Weintroducefive algorithmsforanodetoselectalternateparents,andcomparetheirperformance intheCoojasimulator.
Thedocumentisorganizedintofivesectionsasfollows.InSect. 2 theRPL protocol,TSCHtechniqueandthePREmechanismarebrieflyexplained.In Sect. 3,thedifferenttechniquesproposedfortheAlternativeParent(AP)selectiontobeevaluatedareexplained.InSect. 4 containstheresultsobtainedfrom thedifferentmethodsproposedinSect. 3.InSect. 5,wefindthedifferentworks carriedoutonmulti-pathinRPLbeforeourwork.Finally,Sect. 6 concludesour paper.
2Background
2.1IEEE802.15.4
TSCHisarecentchannelaccesstechniquedevelopedforIEEE802.15.4.Itsmain objectiveistoreducetheimpactofwirelessfadingonanetworktransmission. TSCHiscomposedofmanytimeslotsthat,inturn,aregroupedintoslotframes. Inordertomakethiswork,TSCHschedulesanodetodowhatithastodoina timeslot.TheformulathatusesTSCHtodoitschannelhoppingisrepresented intheEq. 1.
f = F (ASN + chOF )mod nch (1) where ASN istheslotoffset, chOF isthechanneloffset, F isthechannelinput and f istheresultantfrequency.TSCHisfocusedexclusivelyontheMAClayer, allowingtheadjustmentoftimeintervalsinawiderangeofprotocolsenabled forIPv6.IEEE802.15.4ecurrentlydefinesthemechanismsnecessarytocarry outacommunicationthroughTSCHbutdoesnotestablishtheconstruction andmaintenancepoliciesofthis,sothereisafreeinterpretation.
2.2RPL
RPLisadistancevectorroutingprotocoldesignedanddevelopedbytheIETF workinggroupROLL[11].ThisprotocolorganizesthenodesinaDODAGto allowupwardtrafficfromleafstosensors,andproposedifferentoptionsforthe downwardroutes.TobuildaDODAG,aDODAGrootsendsmulticastDIO packetswiththenecessaryinformationsothatanodecanjointhenetwork. AunicastDODAGAdvertisementObject(DAO)messageissentupwardto propagatedestinationinformationandconstructdownwardroutes.Withina RPLinstance,thereisanOFwhichdefineshowtocombinedifferentmetrics toperformparentselection,i.e.choosewhichneighborwillbethedefaultrelay nodetowardtheroot.Bydefault,anodehasasinglePreferredParent(PP) selectedfromitsparentlist.Differentmetricscanbeused:
–HopCounting(HC):Thismetricconsistsoftheminimumamountofhops necessaryforthemessagetoreachitsdestination.IncontikiOS[6],theOF0 isdesignedtofindthenearestroot.i.e,theminimumnumberofrelaynodes. –ExpectedTransmissionCount(ETX):ETXconsistsofalinkqualitymetric, basedontheaveragenumberofretransmissionsneededtoreachagiven neighbor.Thisdoesnotmeanthatitwillbetheshortestroute,butitensures thequalityofthetransmissionlinks.Toreachthisobjective,theOFusesthe followingformuladefinedby[9]:
Where Ntxdata isthenumberoftransmittedmessages, Nrxdata isthenumber ofreceivedmessages, NtxACK isthenumberoftransmittedACKsand Nrxdata isthenumberofreceivedACKs.
2.36TiSCH
TheIETFworkinggroup6TiSCH[10]isinchargeoftheinterworkingbetween theIEEE802.15.4TSCHandtheIETFupperstack6LoWPAN,RPLandCoAP. Tomakethispossible,theyareimplementinganextralayeroverTSCHMAC layertoadapttheschedulingtechniquetothespecificitiesandrequirementsof theupperlayers.Asisexplainedin[10]LLNneedsto:
1.Provideamechanismfortwodevicestonegotiatetheallocationanddeallocationofcellsbetweenthem.
2.Provideamechanismforthedevicetomonitorandmanagethecapabilities ofanodeseveralhopsaway.
3.Defineamechanismforthesedifferentschedulingmechanismstocoexistin thesamenetwork.
Inthispaperweassumeacentralizedschedulingwherecontrollerestablishesthe transmissionandreceptionslotsforallRPLnodes.
2.4PRE
WepreviouslyproposedLFCwhichincreasesthereliabilityandthedeterminism featureofamulti-hopnetworkbyusingPREconcept.Replicationmeansthat severalcopiesofasinglepacketaregeneratedinthenetwork(eitherbythe source,byintermediatenodes,orboth),andEliminationmeansthateachnode thatreceivesaduplicateswilldiscardit.InRPL,bydefault,anodecanhave onepreferredrouteidentifiedbyitsPP.Todothereplication,LFCaddsthe useofanalternativeroutebychoosinganAPfromitsparentsetexceptforits chosenPP.
OnceanodehaschosentwoPPs,itduplicatesapackettobothitsparents, andthensendtwocopiesofthesamedatapackets.Notethatthetwoparentsmay benefitfromoverhearingthetransmissiontotheotherparent,everincreasingthe probabilityofreceivingthepacket.AnodemayselectitsPPinmanydifferent ways,andinthenextsectionswepresentfivepossiblealgorithms.
3AlgorithmsforMultipleParentSelection
Bydefault,RPLperformsroutingbyforwardingpacketsviatheselectedPP. TheselectionofaPPamongstmultiplecandidateparentsismadethroughits OF.Thisselectionconsistsmainlyoftherankinghierarchy,whichincreasesas theDODAGtreebecomesdeeper.Thistypeofselectionavoidscommunication loopsbecauseanodecanbeapossiblePP,ifandonlyif,itsrankislowerthan thatofitschildren.Tofindthemostsuitableroute,therearedifferenttypesof selectionmetrics,ofwhichwechosetouseETX.
InthissectionwedefinedifferenttypesofAPselectionforMulti-pathtransmission.Notethatifnoneofthepotentialparentsofanodematchestheselection process,orifseveralnodesdo,thentheonewiththesecondbestETXwillbe chosen.ItisalsopossiblethatnoAPisselectedinthecasewhereanodehas onlyoneparent.
3.1Overhearing
Totakeadvantageofthenatureofthewirelessmedium,nodesclosetoatransmissioncanoverhearapacket.Weimplementedthisfeature,thatwecall overhearing,toletapotentialparentreceiveapacketsentfromachildtoanother parent.Thisallowsasecondopportunityfortheinformationtoreachitsdestination.
Withinthiswork,theuseofoverhearingwasincorporatedintoLFC,i.e.,in allcasesofMulti-pathselection.Inaddition,wedevelopedanotheralgorithm whereweonlyaddtheOverhearingtoRPL(i.e.,RPLO)withoutdoingany duplication.
Another random document with no related content on Scribd: