Mathematical Cultures The London Meetings 2012 2014 Brendan Larvor Visit to download the full and correct content document: https://textbookfull.com/product/mathematical-cultures-the-london-meetings-2012-201 4-brendan-larvor/
More products digital (pdf, epub, mobi) instant download maybe you interests ...
The Employment Legacy of the 2012 Olympic Games A Case Study of East London Niloufar Vadiati
https://textbookfull.com/product/the-employment-legacy-ofthe-2012-olympic-games-a-case-study-of-east-london-niloufarvadiati/
White Drug Cultures and Regulation in London, 1916–1960
Christopher Hallam
https://textbookfull.com/product/white-drug-cultures-andregulation-in-london-1916-1960-christopher-hallam/
Computational Forensics 5th International Workshop IWCF 2012 Tsukuba Japan November 11 2012 and 6th
International Workshop IWCF 2014 Stockholm Sweden
August 24 2014 Revised Selected Papers 1st Edition
Utpal Garain https://textbookfull.com/product/computational-forensics-5thinternational-workshop-iwcf-2012-tsukuba-japannovember-11-2012-and-6th-international-workshopiwcf-2014-stockholm-sweden-august-24-2014-revised-selectedpapers-1st-edition/
Biomedical Image Registration 6th International
Workshop WBIR 2014 London UK July 7 8 2014 Proceedings 1st Edition Sébastien Ourselin
https://textbookfull.com/product/biomedical-imageregistration-6th-international-workshop-wbir-2014-london-ukjuly-7-8-2014-proceedings-1st-edition-sebastien-ourselin/
Security Standardisation Research First International Conference SSR 2014 London UK December 16 17 2014 Proceedings 1st Edition Liqun Chen
https://textbookfull.com/product/security-standardisationresearch-first-international-conference-ssr-2014-london-ukdecember-16-17-2014-proceedings-1st-edition-liqun-chen/
Shimura Varieties London Mathematical Society Lecture Note Series 1st Edition Thomas Haines (Editor)
https://textbookfull.com/product/shimura-varieties-londonmathematical-society-lecture-note-series-1st-edition-thomashaines-editor/
Surveys in Combinatorics 2017 London Mathematical Society Lecture Note Series 1st Edition Anders Claesson (Editor)
https://textbookfull.com/product/surveys-incombinatorics-2017-london-mathematical-society-lecture-noteseries-1st-edition-anders-claesson-editor/
Surveys in Combinatorics 2019 London Mathematical Society Lecture Note Series 1st Edition Allan Lo (Editor)
https://textbookfull.com/product/surveys-incombinatorics-2019-london-mathematical-society-lecture-noteseries-1st-edition-allan-lo-editor/
Introduction to Approximate Groups London Mathematical Society Student Texts 1st Edition Matthew C. H. Tointon
https://textbookfull.com/product/introduction-to-approximategroups-london-mathematical-society-student-texts-1st-editionmatthew-c-h-tointon/
Trends in the History of Science Brendan Larvor Editor
Mathematical Cultures The London Meetings 2012–2014
TrendsintheHistoryofScience TrendsintheHistoryofScience isaseriesdevotedtothepublicationofvolumes arisingfromworkshopsandconferencesinallareasofcurrentresearchinthe historyofscience,primarilywithafocusonthehistoryofmathematics,physics, andtheirapplications.Itsaimistomakecurrentdevelopmentsavailabletothe communityasrapidlyaspossiblewithoutcompromisingquality,andtoarchive thosedevelopmentsforreferencepurposes.Proposalsforvolumescanbesubmitted usingtheonlinebookprojectsubmissionformatourwebsitewww.birkhauserscience.com.
Moreinformationaboutthisseriesathttp://www.springer.com/series/11668
BrendanLarvor Editor
MathematicalCultures TheLondonMeetings2012 Editor BrendanLarvor SchoolofHumanities
UniversityofHertfordshire
Hatfield,Hertfordshire
UK
ISSN2297-2951ISSN2297-296X(electronic)
TrendsintheHistoryofScience
ISBN978-3-319-28580-1ISBN978-3-319-28582-5(eBook) DOI10.1007/978-3-319-28582-5
LibraryofCongressControlNumber:2016934201
© SpringerInternationalPublishingSwitzerland2016
Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart ofthematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations, recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped.
Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthis publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse.
Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthis bookarebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernorthe authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor foranyerrorsoromissionsthatmayhavebeenmade.
Printedonacid-freepaper
ThisbookispublishedunderthetradenameBirkhäuser
TheregisteredcompanyisSpringerInternationalPublishingAGSwitzerland (www.birkhauser-science.com)
EditorialIntroduction ....................................1
BrendanLarvor
PartIFirstMeeting:Varieties
UnderstandingtheCulturalConstructionofSchoolMathematics .....9 PaulAndrews
EnvisioningTransformations ThePracticeofTopology ...........25
SilviaDeToffoliandValeriaGiardino
CreativeDiscomfort:TheCultureoftheGelfandSeminar atMoscowUniversity ....................................51 SlavaGerovitch
MathematicalCultureandMathematicsEducationinHungary intheXXthCentury .....................................71 KatalinGosztonyi
OntheEmergenceofaNewMathematicalObject: AnEthnographyofaDualityTransform ......................91 StavKaufman
WhatAreWeLike … ....................................111 SnezanaLawrence
MathematicsasaSocialDifferentiatingFactor:MenofLetters, PoliticiansandEngineersinBrazilThroughtheNineteenth Century ..............................................127
RogérioMonteirodeSiqueira
“TheEndofProof”?TheIntegrationofDifferentMathematical CulturesasExperimentalMathematicsComesofAge
HenrikKraghSørensen
PartIISecondMeeting:Values
MatthewInglisandAndrewAberdein
WhatWouldtheMathematicsCurriculumLookLikeifInstead ofConceptsandTechniques,ValuesWeretheFocus? .............181
AlanJ.Bishop
MathematicsandValues ..................................189
PaulErnest
PurityasaValueintheGerman-SpeakingArea .................215
José Ferreirós
ValuesinCaringforProof .................................235
JohnMasonandGilaHanna
AnEmpiricalApproachtotheMathematicalValuesofProblem ChoiceandArgumentation ................................259
MikkelWillumJohansenandMortenMisfeldt
TheNotionofFitasaMathematicalValue .....................271
ManyaRaman-Sundström MathematicalPull .......................................287
ColinJ.Rittberg
PartIIIThirdMeeting:Interfaces
MathematicsandFirstNationsinWesternCanada: FromCulturalDestructiontoaRe-Awakening ofMathematicalReflections ................................305
TomArchibaldandVeselinJungic
RemunerativeCombinatorics:MathematiciansandTheirSponsors intheMid-TwentiethCentury ..............................329
MichaelJ.Barany
CallingaSpadeaSpade:MathematicsintheNewPattern ofDivisionofLabour.....................................347
AlexandreV.Borovik
MathematicsandMathematicalCulturesinFiction: TheCaseofCatherineShaw ...............................375
TonyMann
MoralityandMathematics .................................387
MadelineMuntersbjorn
TheGreatGibberish MathematicsinWesternPopularCulture
MarkusPantsar
IsMathematicsanIssueofGeneralEducation?
EmilSimeonov
Contributors AndrewAberdein SchoolofArtsandCommunication,FloridaInstituteof Technology,Melbourne,USA
PaulAndrews DepartmentofMathematicsandScienceEducation,Stockholm University,Stockholm,Sweden
TomArchibald DepartmentofMathematics,SimonFraserUniversity,Burnaby, Canada
MichaelJ.Barany DepartmentofHistory,PrincetonUniversity,Princeton,USA
AlanJ.Bishop FacultyofEducation,MonashUniversity,Melbourne,Australia
AlexandreV.Borovik DepartmentofMathematics,TheUniversityofManchester,Manchester,UK
RogérioMonteirodeSiqueira SchoolofArts,SciencesandHumanitiesofthe UniversityofSãoPaulo,SãoPaulo,Brazil
SilviaDeToffoli PhilosophyDepartment,StanfordUniversity,Stanford,CA, USA
PaulErnest SchoolofEducation,UniversityofExeter,Exeter,UK
José Ferreirós FacultaddeFiloso fia,UniversidaddeSevilla,Sevilla,Spain
SlavaGerovitch DepartmentofMathematics,MassachusettsInstituteofTechnology,Cambridge,MA,USA
ValeriaGiardino Laboratoired’HistoiredesSciencesetdePhilosophie ArchivesHenri-Poincaré,UMR7117CNRS Université deLorraine,Nancy, France
KatalinGosztonyi BolyaiInstitute,UniversityofSzeged,Szeged,Hungary; LaboratoiredeDidactiqueAndré Revuz,UniversityParisDiderot-Paris7,Paris, France
GilaHanna DepartmentofCurriculum,Teaching,andLearning,Universityof Toronto,Toronto,Canada vii
MatthewInglis MathematicsEducationCentre,LoughboroughUniversity, Leicestershire,UK
MikkelWillumJohansen DepartmentofScienceEducation,Universityof Copenhagen,Copenhagen,Denmark
VeselinJungic DepartmentofMathematics,SimonFraserUniversity,Burnaby, Canada
StavKaufman CohnInstitute,TelAvivUniversity,TelAviv,Israel
BrendanLarvor SchoolofHumanities,UniversityofHertfordshire,Hatfield, Hertfordshire,UK
SnezanaLawrence InstituteforEducation,BathSpaUniversity,Bath,UK
TonyMann DepartmentofMathematicalSciences,UniversityofGreenwich, Greenwich,UK
JohnMason DepartmentofMathematicsandStatistics,OpenUniversity,Milton Keynes,UK;UniversityofOxford,Oxford,UK
MortenMisfeldt DepartmentofEducation,LearningandPhilosophy,Aalborg University,Copenhagen,Denmark
MadelineMuntersbjorn DepartmentofPhilosophyandReligiousStudies, UniversityofToledo,Toledo,OH,USA
MarkusPantsar DepartmentofPhilosophy,History,CultureandArtStudies, UniversityofHelsinki,Helsinki,Finland
ManyaRaman-Sundström DepartmentofScienceandMathematicsEducation, Umeå University,Umeå,Sweden
ColinJ.Rittberg SchoolofHumanities,UniversityofHertfordshire,Hertfordshire,UK;VrijeUniversiteitBrussel,Brussels,Belgium
EmilSimeonov DepartmentAppliedMathematics&Science,Universityof AppliedSciencesTechnikumWien,Wien,Austria
HenrikKraghSørensen DepartmentofMathematics,CentreforScienceStudies, AarhusUniversity,Aarhus,Denmark
EditorialIntroduction BrendanLarvor
1WhyMathematicalCultures? Mathematicshasinternationallysharedstandardsofvalidity.Nevertheless,thereare localmathematicalcultures,whichcanaffectthedirectionandcharacterofmathematicalresearch.Therefore,philosophersofmathematicsandotherswhostudythe growthandepistemologyofmathematicsshouldhaveaninterestinthem.Theyalso matterbecauseofthewiderculturalimportanceofmathematics.Mathematics enjoysenormousintellectualprestige,andrecentyearshaveseenagrowthof popularexpositorypublishing, fi lmsaboutmathematicians,novelsandplays. However,thissameintellectualprestigeencouragesdisengagementfrommathematics.Ignoranceofevenrudimentarymathematicsremainssociallyacceptable. Policyinitiativestoencouragethestudyofmathematicsusuallyemphasisethe economicutilityofmathematics.Appealsofthissortdonotseemtobeeffective, perhapsbecausetheyspeaktotheneedsofthenationratherthantheinterestsof individualstudents,manyofwhomnoticethatitispossibletodoverywellinour economywithoutknowingverymuchmathematics.Moreover,policyresponses rarelyaddressanunhelpfulperceptionofmathematicsasremoteandforbidding. There-presentationofmathematicsascultureoffersthepossibilityofanalternative approach,inwhichmathematicsmightenjoythesameappealasthestudyof literatureorhistory.Thatistosay,wemightre-framethestudyofmathematicsas trainingoftheintellect,thefurnishingofawell-stockedmindandtheappreciation oflocal,nationalorglobalculturalriches.
B.Larvor(&)
SchoolofHumanities,UniversityofHertfordshire,HatfieldAL109AB,UK e-mail:phlqbpl@herts.ac.uk
© SpringerInternationalPublishingSwitzerland2016
B.Larvor(ed.), MathematicalCultures,TrendsintheHistoryofScience, DOI10.1007/978-3-319-28582-5_1
2HistoryandContext Thisbookisoneoftheoutcomesofaseriesofthreemeetingsonmathematical cultures,1 principallyfundedbytheUKArtsandHumanitiesResearchCouncil (AHRC),asanetworkunderits ScienceinCulture theme.2 Thisgeneraltheme presentsawelcomeopportunityforthestudyofmathematicalcultures,andasthe convenerofthemathematicalculturesnetwork,Iamgladofthisopportunityto recordthegratitudeoftheparticipantsforthefundingwereceivedfromtheAHRC.
This ScienceinCulture initiativebytheAHRCintheearly2000swastimely, becauserecentdecadeshaveseentheemergenceoftwoscholarlymovements seekingtounderstandmathematicalcultures.Oneisthephilosophyofmathematicalpractice,alooseassociationofphilosophers,historiansofmathematics,psychologistsandresearchersinotherhumansciencesinvestigatingmathematicsand mathematicians;theotherisa ‘culturalturn’ inmathematicseducationresearch.
Thephilosophyofmathematicalpracticehasnowacquiredascholarlyliterature,3 regularconferences4 andaninternationalsociety,theAssociationforthe PhilosophyofMathematicalPractice.5 However,culturalapproachestomathematicspredatethismovementbysomedecades.Oneoftheearliest(beginningin the1950s)wastheworkofthetopologistRaymondL.Wilder,whoproposedthat mathematicsis,essentially,culture.Wilder ’sworkdidnotdirectlystimulatethe formationofanewsub-discipline.Thismayhaveresultedfromhisrelatively under-theorisednotionofculture,whichdidnotofferpromisingnewtoolstoothers whomighthavefollowedhimandunitedtheireffortsunderacommontheoretical outlook.6 ThemanyinsightsinWilder ’smainexpositionofhisview, Mathematics asaCulturalSystem,7 seemtooriginateinhisexperienceasacreativemathematician,ratherthaninthedeploymentofanthropologicaltheory.Thecultural approachseemstohaveliberatedhimtoexpressgeneralthoughtsaboutmathematicsthathebelievedonothergrounds.Thistestimonyisvaluable,butitisnota programmeofresearchthatotherscantakeupandcontinue unlesstheytooare 1https://sites.google.com/site/mathematicalcultures/ .
2http://www.sciculture.ac.uk/ .
3SeeLarvorreviewof ThePhilosophyofMathematicalPractice PaoloMancosu(ed.)OUP2008 in PhilosophiaMathematica (2010)18(3):350–360forarepresentativelist.
4SeeLarvor “WhatareCultures?” in CulturesofMathematicsandLogicSelectedpapersfromthe conferenceinGuangzhou,China,9–12November2012.ShierJu,BenediktLoewe,Thomas Mueller,YunXie(eds.)Birkhäuser,Basel(2016)forapartiallist. 5http://www.philmathpractice.org/
6Wilderofferedthisdefinitionofculture: “Weuse[theterm ‘culture’]inthegeneral anthropologicalsense Inthissense,acultureisthecollectionofcustoms,beliefs,rituals, tools,traditions,etc.,ofagroupofpeople…” IntroductiontotheFoundationsofMathematics (JohnWiley;seconded. 1965 (firstpublished1952)p.282).
7PergamonPress, 1981.
professionalmathematicianswithinsightsgroundedintheirpersonalexperienceof mathematicalresearch.Nevertheless,Wildermayhaveinfluencedsomeothers, suchasPhillipJ.Davis,ReubenHersh,DavidBloorandperhapsAlvinWhite,who foundedandformanyyearsedited(whatisnowcalled)the JournalofHumanistic Mathematics. LikeWilderbeforethem,Davis,HershandWhitecoulddrawon theirexperiencesasprofessionalmathematicians,andBloorfoundhistheoretical frameinWittgensteinratherthanWilder.Hershincludedafewculturalor anthropologicalapproachesinhiscollection 18UnconventionalEssaysonthe NatureofMathematics (Springer, 2006).OneisbyLeslieWhite,whointroduced Wildertoanthropology;othersarebyAndrewPickering,EduardGlasandHersh himself.AsHershnotesinhisintroduction(p.xv),mostofthearticlesinthis collectionareonthecognitiveaspectsofmathematicalpracticeratherthanthe culturalorsocialaspects,andinthisitreflectsthestateofthe field.Thesameistrue ofthemostimportantrecentbookinthisarea, ThePhilosophyofMathematical Practice,editedbyPaoloMancosu.8
Whilethephilosophyofmathematicalpracticecommunityhasbeenrelatively slowtotakeupculturalapproachestomathematics,therehasbeenaturntowards cultureinmathematicseducationresearch.9 Beforethis ‘culturalturn’,mathematics educationresearchwasinasimilarconditiontothestateofphilosophyofmathematicalpracticeatthemomentofpublicationof 18UnconventionalEssays,thatis, mostlyfocusedonthecognitivepsychologyinindividuals.Now,followingthis ‘culturalturn’,researchersinmathematicseducationincreasinglystudythelearning andteachingofmathematicsasculturalactivities.Thisisnotquitethesameas treatingmathematicalresearchasaculturalactivity,anditremainstobeseen whethernotionsdrawnfromeducationcouldhelpphilosophersofmathematical practice.Educationisanaturalcontextinwhichtoemployaculturalapproach, becausecultureischaracterisedby(andinsomewriters,definedas)non-biological reproduction.Philosophersofmathematicalpracticetendtofocusmoreonthe productionofmathematicalknowledgethanonitsreproduction.Moreover, researchinmathematicseducationtendstobemoreovertlypoliticisedthaninthe philosophyofmathematicalpractice,becauseoneofthemotivesforworkingon educationistoimprovemattersforpeoplewhomthecurrenteducational arrangementsservepoorly.
8Andtherefore,thisobservationisnocriticismofMancosu’seditorialwork.OxfordUniversity Press, 2008.
9Fortheoriginofthisterm,seeLerman,S.(2000).Thesocialturninmathematicseducation research.InJ.Boaler(ed.), Multipleperspectivesonmathematicsteachingandlearning (pp.19–44).Westport,CT:Ablex.Forarecentoverview,seeKarenFrancois’ videopresentationtothe culturesoflogicandmathematicsconferenceinGuangzhou https://youtu.be/umuKvJFR_7U (2012).SeealsoFrançois,K.&Stathopoulou,C.(2012). ‘In-BetweenCriticalMathematics EducationandEthnomathematics.APhilosophicalReflectionandanEmpiricalCaseofaRomany Students’ groupMathematicsEducation.’ JournalforCriticalEducationPolicyStudies,10(1), 234-247ISSN1740-2743.
3TheMathematicalCulturesResearchNetwork Thedevelopmentofthesetworesearchcommunitieswithinterestsinmathematics asculturesuggestedthepossibilityofmultidisciplinaryengagement,fundedunder theAHRCscienceinculturetheme.TheMathematicalCulturesResearchnetwork hadthefollowingobjectives(adaptedfromthefundingapplication):
(1)Createaninterdisciplinary,internationalnetworkofresearcherswithinterests inmathematicsaswellasinculture,withasupportinginternetnodethatwill outlivethisfundedproject.
(2)Facilitatediscussionofthemethodologicalchallengesfacingthestudyof mathematicsasculture.
Mathematicsissimultaneouslycultureandknowledge.Scholarswhotreatitas culturemustrespectitsstatusasknowledge;thosewhoengagewithitas knowledgemustacknowledgethatitisacollectionofhumanpractices.
(3)Exploreandmapsomeofthevariouscontemporarymathematicalcultures
Thesecanbetheculturesofprofessionalresearchmathematicians,butalso usergroupssuchasengineersoractuaries,andcultureswithineducation, amongteachersandstudents.Ofparticularinterestaretheimagesofmathematicsamongreluctantusersofmathematics.
(4)Exploretherationalstructureofmathematicalvalue-judgments
Whenmathematiciansawardorwithholdprizes,scholarships,PhDsand grants,correctnessisalmostneverthedecisivecriterion.Rather,thequestion iswhethertheworkisworthwhile,interesting,elegant,promising,insightful, etc..Ifthesejudgmentsarenotarbitrary,theyshouldrefertosomestandards orvalues.Arethesecommonacrossallthemathematicalculturesexploredin (3)?Howaretheytaught?Howdotheyevolve?
(5)Articulatetheculturalandeducationalvalueofmathematicsinaformuseful foreducationalistsandpolicy-makers
Thevalueofmathematicsisusuallyarguedeitherineconomicterms,orin termsoftheexcitementofmakingrarebreakthroughs.10 Thereisaneglected middleground:mathematicsasaproperpartoftheculturaldietofaneducated person.
(6)Publishasabookandontheinternethigh-qualityscholarshiprelatingto mathematicsasculture
Thisprojecthostedthreeconferences.The first (September2012)hadtheaimof exploringandbeginningtomapthevarietyofandconnectionsamongcontemporarymathematicalcultures.The second (September2013)aimedtoarticulateand classifymathematicalvalues.The third (Easter2014)discussedmathematicsin publicculture.
10MichaelHarris,oneofthecontributorstotheseries,haswrittenanentirebookonthistension: MathematicswithoutApologies:PortraitofaProblematicVocation (PrincetonUniversityPress, 2015).HepresentedChaptereightofthisbookatthethirdmeetingofthemathematicalcultures network.
Howwelldiditsucceedinthesesixobjectives?Takingtheminorder:participantsdidengageacrossdisciplinaryboundariesandsomeconversationsandcollaborationshavedevelopedamongscholarswhodidnotknoweachotherbeforethis project.Ontheotherhand,the ‘supportinginternetnode’ wasalwaysmoreofa repositorythanahubofactivity theparticipantsinthisprojectrevealedthemselves tobelargelyindifferenttosocialmediaandfewtookupopportunitiestoblogor tweet.Thereweresomenotableexceptionsfollowingthethirdand finalmeeting.11 Programmes,participationlists,abstractsofallthecontributionsandvideosofmany ofthetalksareavailableontheprojectsite.Wediddiscussmethodology,butthis waslesssalientatthemeetingsthanweoriginallyhoped.Perhapsthiswasbecause thecentralterm, ‘culture’,wasnotsufficientlywellarticulatedtostimulatedebate. Fromthepresentationsinthisseries,itisclearthattheconceptofcultureremains relativelyuntheorisedamongwritersonmathematicalpractice.Onlyafewofthe philosophersandhistoriansatthemeetingsdeployedanotionofcultureexplicitly, andtheseweremostlylackinginconceptualarticulation.Thereweresomeexceptionswhohonouredtheprojectthemeandmadeadeliberateefforttotheorise mathematicalculturesassuch.12 Regardingthethirdaim,thepresentationsexplored asatisfyingvarietyofmathematicalcultures,includingresearchcommunitiesanda valuablediscussionoftheculturalsignificanceofmathematicsintheworldof finance.Sincemanyofthecontributorsarehistorians,wehavetotakeagenerous readingof ‘contemporary’ toincludemostofthetwentiethcentury,butgiventhatit iscommontoregardmathematicsashavingassumeditscurrentformintheinter-war years,thisisnotunreasonable.Thechiefdisappointmentisthatwedidnothavea presentationthatvividlyarticulatedtheperspectivesofreluctantmathematicspupils. Ourprojectwouldhavebenefittedfromanexplorationofthepossibilitythatsomeof thereluctanceofreluctantlearnersiscultural thatmathematicshasculturalassociationsthatsomechildren findoff-putting.Wedidhearsomecontributionsinthis directionfromteachers(seeSnezanaLawrence’schapterinthisvolume).Wealso hadareportonthereceptionofEuropeanmathematicsamongtheindigenouspeople ofWesternCanada,andoneffortstoovercometheresistancetoEuropeanmathematicsresultingfromitsassociationsoverdecadeswitheducationdesignedto eradicateindigenouscultures(seeArchibaldandJungicinthisvolume).Perhaps moreobviouslyethnographicstudiesofthissortmightsupplyamodelforreading theculturalpositionofmathematicsinotherclassrooms.13
Weweremoresuccessfulwithrespecttothefourthobjective,inthatwehad severalexcellentpapersonwhatitmeansforaprooftobebeautiful thoughthe resultswerenotencouragingforanyoneseekingarational,objectiveaestheticsof
11https://sites.google.com/site/mathematicalcultures/blog
12SeeSørenseninthisvolumeandLarvor(2016)inShierJu,BenediktLoewe,ThomasMueller, YunXie(eds.)forfurtherdetail.
13Thereisplentyofresearchonpupils’ feelingsaboutmathematics;lessontheircultural perceptionofmathematics.Thereissomeinterestingmaterialonlearningandteachingculturesin Hersh&John-Steiner(2011) LovingandHatingMathematics,especiallypp.273–300& 312–315.
proof.The fifthobjective,toarticulatetheculturalandeducationalvalueof mathematics,was(unsurprisinglyinretrospect)problematic.Somecontributors tookmathematicstobealivingembodimentofvaluesnormallyassociatedwiththe EuropeanEnlightenmentphilosophersoftheeighteenthcentury:universality, objectivity,rationality.Thisstandsintensionwiththepluralistspiritofour enterprise:wetookcaretospeakofmathematicalcultures,inplural.Ifmathematicalculturesreallyaredistinctandhaveimportantdifferences,thenonecannot assumequitesoeasilythattheyareallequallyvaluableandvirtuous orvaluable andvirtuousinthesameways.Nevertheless,thereisstillaworthwhilejobtodoin articulatingthevaluethatsomemathematicshashadforsomepeopleatsometimes andplaces thismaystillprovideeducatorswithbettermotivationalresourcesthan vaguepromisesofimprovedcareerprospects.
Theprincipalrealisationofobjectivesixisthisbook.Allofthecontributions havebeenthroughaprocessofreviewbyanonymousreferees.Iamimmensely gratefultothesereferees,whogavetheirtimeandexpertise probono,andwhoalso helpedwiththeselectionoftalksfortheconferences.Imustalsorecordour gratitudetotheLondonMathematicsSocietyandthestaffatDeMorganHousefor theirhelpwithandsupportforthisproject.
References Artsandhumanitiesresearchcouncilscienceinculturethemewebsite. http://www.sciculture.ac. uk/ Associationforthephilosophyofmathematicalpracticewebsite. http://www.philmathpractice.org/ Francois,K.(2012).Videopresentationtotheculturesoflogicandmathematicsconferencein Guangzhou. https://youtu.be/umuKvJFR_7U
François,K.&Stathopoulou,C.(2012).In-Betweencriticalmathematicseducationand ethnomathematics.AphilosophicalreflectionandanempiricalcaseofaRomanystudents’ groupmathematicseducation. JournalforCriticalEducationPolicyStudies,10(1),234–247. ISSN1740-2743.
Harris,M.(2015). Mathematicswithoutapologies:Portraitofaproblematicvocation.Princeton UniversityPress. Hersh,R.(2006). 18Unconventionalessaysonthenatureofmathematics. Springer. Hersh,R.&John-Steiner,V.(2011). Lovingandhatingmathematics. PrincetonUniversityPress. Larvor,B.(2010).Thephilosophyofmathematicalpractice.P.Mancosu(Ed.)OUP2008, PhilosophiaMathematica, 18(3),350–360.
Larvor,B.(2016).WhatareCultures?InS.Ju,B.Loewe,T.Mueller&Y.Xie(Eds.), Culturesof mathematicsandlogicselectedpapersfromtheconferenceinGuangzhou, China 9–12 November2012.Basel:Birkhäuser.
Larvor,B.Mathematicalcultures. https://sites.google.com/site/mathematicalcultures/ Lerman,S.(2000).Thesocialturninmathematicseducationresearch.InJ.Boaler(Ed.) Multiple perspectivesonmathematicsteachingandlearning (pp.19–44).Westport,CT:Ablex. Mancosu,P.(2008). Thephilosophyofmathematicalpractice. OxfordUniversityPress. WilderRaymondL.(1965). Introductiontothefoundationsofmathematics (2nded.).JohnWiley. WilderRaymondL.(1981). Mathematicsasaculturalsystem. PergamonPress.
PartI FirstMeeting:Varieties UnderstandingtheCultural ConstructionofSchoolMathematics PaulAndrews
1Introduction
FormorethantwentyyearsIhavebeenobserving,video-recordingandanalysing mathematicsteachinginvariousEuropeancountries.Inaddition,duetothegenerosityofmygraduatestudentsandothercolleagues,Ihaveacquiredvideo recordingsofmathematicslessonsfromseveralotherEuropeancountries.My interpretationofallthismaterialhasledmetotwoconclusions.The fi rst,asfound throughouttheliterature(Schmidtetal. 1996;Hiebertetal. 2003),isthatmathematicsteacherstendtobehaveinwaysthatalignthemmorecloselywiththeir compatriotsthanwithteacherselsewhere.Thesecond,whichmayinpartexplain the first,isthattheculturesinwhichteachersoperatehaveasmuch,ifnotmore, influenceonstudentachievementasthewaysinwhichmathematicsistaught.For example,successiveiterationsoftheprogrammeofinternationalstudentassessment (PISA)(OECD 2001; 2004; 2007; 2010a; 2013)havehighlightedFinnishstudents’ linguisticandmathematicalcompetence.However,recentanalysesindicatethat suchsuccessesmaybeduemoretomattersculturalthandidactical(Andrews 2011, 2013;Andrewsetal. 2014).IreturnlatertotheissueofFinland,whichisparticularlysigni ficantinlightofcontinualmediaandotherattentionpaidthatcountry. But firstitasimportanttoexplainwhatthischapterwill,andwillnot,attemptto achieve.Theprincipalaimistoshowhowculture,themeaningofwhichwillbe discussedbelow,underpinsallaspectsofschoolmathematics,whetheritbethe curriculumspecifiedbythesystem,thedevelopmentofthetextbooksthatteachers mayormaynotbecompelledtouse,thewaysteachersteach,theclassroom
P.Andrews(&) DepartmentofMathematicsandScienceEducation,
StockholmUniversity,Stockholm,Sweden e-mail:paul.andrews@mnd.su.se
interactionsprivilegedbythesystemorthebeliefs,attitudesandaspirationsof teachers,studentsandparents.Todothis,however,requiressomeunderstandingof thenatureofcultureanditseducationalmanifestation.
2TheNatureofCulture Ofcourse,suchambitionsmaybemoredifficulttoachievethanmightbeexpected, ascultureisnotonly “oneofthetwoorthreemostcomplicatedwordsinthe Englishlanguage” (Williams 1976,p.76)butalso “aprofoundlycongestedconcept” (Lewis 2007,p.867).Inpart,thisisduetothefactthat;
Cultureisordinary:thatisthe firstfact.Everyhumansocietyhasitsownshape,itsown purposes,itsownmeanings.Everyhumansocietyexpressesthese,ininstitutions,and learning.Themakingofasocietyisthe findingofcommonmeaningsanddirections,andits growthisanactivedebateandamendment,underpressuresofexperience,contact,and discovery,writingthemselvesintotheland.Thegrowingsocietyisthere,yetitisalsomade andremadeineveryindividualmind.Themakingofamindis, first,theslowlearningof shapes,purposes,andmeanings,sothatwork,observationandcommunicationarepossible. Then,second,butequalinimportance,isthetestingoftheseinexperience,themakingof newobservations,comparisons,andmeanings(Williams 1958,p.75).
FromWilliams ’ defi nitioncanbeinferredseveralkeycharacteristics;cultureisa groupconstructionbasedoncommonexperiences.Itisnot fi xedbutchangeable. Anindividual’sculturalaffiliationistheresultofanimplicitnegotiativeprocess, indicatingthattheinfluenceofcultureasaguidingforceinthelifeofindividualsis largelyhidden.Culture,inthissense,canbeconstruedasa wayoflife (Lewis 2007; Williams 1976).
This wayoflife interpretationimpliesaconsensusthatculturecomprisesa collectivepsychologicalconditioning(TriandisandSuh 2002).Itembodiesthe “implicitlyorexplicitlysharedabstractideasaboutwhatisgood,right,and desirableinasociety” (Schwartz 1999,p.25),andincludesthosebeliefs,artefacts, practicesandinstitutionsthathistoryhasshowntobeeffectiveforthemaintenance ofasocietyanditsfuturegenerations(Fiske 2002;Hofstede 1980;Triandisand Suh 2002).Culturesaresocial,historicalandbehaviouralconstructions(Fiske 2002)thatreflectthe “collectivementalprogramming” oftheirpeople(Hofstede 1980,p.43).Throughthetransmissionoftheirembeddedvalues,beliefs,knowledgeandskills,theyensurereplication.Hence,people’spsychologicalprocesses “arelikelytobecon figuredindifferentwaysacrossdifferentsocio-culturalgroups” (ErezandGati 2004,p.568).Summarisingtheabove,Triandis(2007,p.64)writes thatculturecomprisesthreemaincharacteristics;it “emergesinadaptiveinteractionsbetweenhumansandenvironments”,itcomprisessharedelementsand “is transmittedacrosstimeperiodsandgenerations” and,therefore,largelystable (Soaresetal. 2007).Inthefollowing,Iconsiderseveraleducationally-salientfeaturesofcultureandshow,invariousways,howtheyimpactonstudents’
opportunitiestolearn.Insodoing,Iacknowledgethat, “schoolscanrisenohigher thanthecommunitiesthatsupportthem” (Boyer 1983,p.6)and,intryingto understandtheprocessesofeducation,that “thethingsoutsidetheschoolsmatter evenmorethanthethingsinsidetheschools,andgovernandinterpretthethings inside” (Sadler(1900)inBereday 1964,p.310).
3ModellingCulture Anumberofresearchers,typicallyalignedwithananthropologicaltradition(Soares etal. 2007)haveattemptedtoidentifythosedimensionsthatdistinguishoneculture fromanother,anditistothemthatIturn first.Hofstede’swellknownstudyinitially identi fiedfourdimensionsofculture.The first, powerdistance,concernstheextent towhichfollowersacceptbeingled. “Asociety’spowerdistancelevelisbredinits familiesthroughtheextenttowhichitschildrenaresocializedtowardobedienceor towardinitiative” (Hofstede&McCrae 2004,p.62).Thesecond, uncertainty avoidance,relatestotheextenttowhich “acultureprogramsitsmemberstofeel eitheruncomfortableorcomfortableinunstructuredsituations”.Thethirdis individualism,orthe “degreetowhichindividualsareintegratedintogroups”.Lastly, thereare masculine asopposedto feminine cultures. Masculine cultures “strivefor maximaldistinctionbetweenwhatmenareexpectedtodoandwhatwomenare expectedtodo”.Fromtheperspectiveofeducation,Hofstede(1986)hasusedthese dimensionstopredictculturallydetermineddifferencesinthesocialpositionsof teachersandstudents,participants’ cognitiveandaffectiveexpectations,andpatternsofparticipantinteractions.
Othershaveproposeddifferentbutrelatedmodelsofculture.Forexample, Triandis(2001)offeredelevendimensionsandSchwartz(1999)seven.Like Hofstede’sdimensions,bothcategorisationshelpustounderstandtheroleof cultureinframinghumans’ decisionmakingingeneralandtheprocessesofeducationinparticular.Signifi cantly,Schwartzfocusedonelementaryteachers’ education-relatedvaluesinmorethan40countries,arguingthatteachers “playan explicitroleinvaluesocialisation”,arelikelytobe “keycarriersofculture,and… reflectthemid-rangeofprevailingvalueprioritiesinmostsocieties ” (Schwartz 1999,p.34).Hefound,forexample,thatconservativeculturesthatemphasisethe “maintenanceofthestatusquo orthetraditionalorder” wouldstructureeducationalopportunitiesverydifferentlyfromanautonomouscultureinwhichan individual finds “meaninginhisorherownuniqueness andisencouragedtodo so” (Schwartz 1999,p.34).Allsuchmodelshelpustounderstandthatforces, possiblybeyondparticipants’ consciousness,acttoshapewhathappensinclassrooms.They “determinewhatistobetaught,towhomitistaught,howitistobe taughtandwhereitistaught” (Andrews 2010,p.5).
4CultureandCurricula Thecurriculum,accordingtothesecondinternationalmathematicsstudy,comprisesintended,implementedandattainedforms.However,whatisfrequently missingfromsuchdiscussionsistheextenttowhichculturalforcesshapecurricula developmentsindifferentcountries.Inthisrespectacurriculumcanbeconstruedas “bothmaterialartefact”,thesphereoftheculturalanthropologist,and “symbolic system”,thesphereoftheculturalsociologist.Thatis,thecurriculumreflectsbotha wayoflife,includingthe “sharedvaluesandmeaningscommontomembersofthe group” andthepracticesbywhichmeaningisconstructedandsharedwithinthe group(Mason 2007,p.172).Inmuchthesamewayaswithcultureabove,various analystshavemodelledcurricula.Forexample,HolmesandMcLean(1989)have presentedfourcurriculummodels: essentialism,derivedfromtheEnglishpublic1 school, encyclopaedism,linkedtopost-revolutionaryFranceanditsEnlightenment principles, polytechnicalism,tiedtoSovietexpectationsofvocationalismunderpinnedbyanencyclopaedicmodelofknowledge,and pragmatism,derivedfrom theUnitedStatesandaneedfortheknowledgeandskillsnecessaryfortacklingthe realworldproblemsofaliberaleconomy.Inasimilarvein,Kamensetal.(1996) categoriseuppersecondarycurriculainfourways; classicalcurricula addressthe maintenanceofthenaturalsocialorderthroughthetrainingofapoliticalandsocial elite, comprehensivecurricula,reflectingegalitarianprinciples,aimtoproduce competentandproductivecitizens, mathematicsandsciencecurricula reflect economicneedsforatechnologicallycompetentwork-force,and arts,humanities, andmodernlanguagescurricula, reflectingamodernisationoftheclassical Europeancurriculum,focusonthemaintenanceofanelitehighculture.Finally,it hasbeenassertedthatfewoftheworld’scurriculaarenotadaptationsofoneofsix core curricula thePrussian,Russian,French,English,JapaneseandUnitedStates (Cummings 1999).
Ofcourse,suchcharacterisationsarecrudeandmaynotreflecttheparticularities ofindividualsystems.Forexample,socialscientistshavetendedto “conceptualize individualismastheoppositeofcollectivism,especiallywhencontrastingEuropean AmericanandEastAsianculturalframes(Oysermanetal. 2002,p.3).However, suchconceptionsare,insomeways,confoundedbyanalysesoftheEuropean context.Weber(1930)observedthatProtestantcultures,focusedonthepromotion ofself-reliance,tendedtowardstheindividualistwhileCatholic,duetoemphases onthemaintenanceofestablishedhierarchicalrelationships,tendedtothecollectivist.Admittedly,increasingmobilityasaresultoftheEuropeanUnionandother postcolonialimmigrationmayhavecompromisedtheobviousrelevanceofsuch characterisations,butfewnationalcurriculadonotattempttoinstilintheirstudents asenseofthenationalcharacter,ifonlyinthewaysthatliteratureismanaged.
1Theadjective public inthiscontextismisleading;anEnglishpublicschoolisaneliteindependent school.Suchschoolssustainthehigherranksofthecivilserviceandthejudiciary,halfofall studentsatCambridgeandOxforduniversities,andadisproportionatelyhighnumberofmembers ofparliament.
Inotherwords,whilemodelssuchasthosepresentedabovehighlighthowcurricula mayvarysubstantiallyinbothprincipleandmanifestation,fewmoderncurricula aresotightlylocatedinasingleculturalcontextthattheyremainuntouchedby developmentselsewhere(Kamensetal. 1996),particularlyinthelightofrecent internationaltestsofstudentachievement,especiallyTIMSSandPISA.Indeed, suchtestsare,essentially,underpinnedbyassumptionsthatmathematicsisinthe vanguardofcurricularconvergence;afterall,anequationisanequationirrespective ofwhereitisfound,isn’tit?Inthefollowing,thereforeIshow,withreferenceto variousEuropeaneducationalsystems,howcurricularmathematicsanditsclassroompresentationvariesaccordingtoculturallyestablishednorms.
5CultureandMathematicsCurricula Inthefollowing,usingthemasaplaceholderformathematics,Isummarisefour Europeansystem’scurricularperspectivesonlinearequationsbeforediscussing theminrelationtothevariouscharacteristicsofculture.Insodoing,Itrytoshow howcurriculaareconstructed.Choice,inrespectofthecountriesunderscrutiny, wasconstrainedbytheavailabilityofcurriculainEnglish,whilethetopicwas determinedbyotherworkonwhichIamengaged.Eachispresentedalphabetically bycountry,withdetailsreferringonlytocontentrelatedexplicitlytotheformulationandsolutionoflinearequations.Thus,referencestosolvingsimultaneous linearequations,forexample,havebeenomittedintheinterestsofnarrative simplicity.
TheEnglishnationalcurriculum 2 forstudentsintheagerange11–14assertsthat pupils,undertheumbrellaofdeveloping fluency,should,interalia, “solveequations”.Theyshould “movefreelybetweendifferentnumerical,algebraic,graphical anddiagrammaticrepresentations[forexample,… equationsandgraphs]”.More particularly,pupilsshouldbetaughtto “understandandusetheconceptsand vocabularyof… equations” , “usealgebraicmethodstosolvelinearequationsinone variable(includingallformsthatrequirerearrangement)” .
TheFinnishnationalcurriculum 3 forgrades6–9assertsthatstudents,bytheend ofgrade8, “willknowhowto… solvea fi rstdegreeequation”
TheFlemishmathematicscurriculum,4 expectsstudentsinthe fi rstgradeof secondaryeducationto “solveequationsofthe fi rstgradewithoneunknownand simpleproblemswhichcanbeconvertedtosuchequations”.Duringthesecond gradetheywill “solveequationsofthe fi rstandseconddegreeinoneunknownand problemswhichcanbeconvertedintosuchequations”
2See https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/239058/ SECONDARY_national_curriculum_-_Mathematics.pdf
3See http://www.oph. fi/english/publications/2009/national_core_curricula
4See http://www.ond.vlaanderen.be/dvo/english/ .
TheHungariancurriculum 5 forgrades5–8(upperprimary)writesthatinyear5 studentsshould “solvesimpleequationsofthe firstdegreebydeduction,breaking down,checkingbysubstitutionalongwithsimpleproblemsexpressedverbally”.In year6theyshould “solvesimpleequationsofthe firstdegreeandonevariablewith freelyselectedmethod”.Byyear7theyshould “solvesimpleequationsofthe fi rst degreebydeductionandthebalanceprinciple.Interprettextsandsolveverbally expressedproblemsandequationsofthe firstdegreeandonevariablebythe graphicalmethod”.Lastly,byyear8studentsshould “solvedeductivelyequations ofthe firstdegreeinrelationtothebasesetandsolutionset.Analysetextsand translatethemintothelanguageofmathematics.Solveverballyexpressedmathematicalproblems”
Fromtheseexamplescanbediscerneddifferentperspectivesonacoretopicof thelowersecondarycurriculum.UnliketheFlemishandHungariancurricula, neithertheEnglishnortheFinnishdocumentsofferyear-on-yearprogression,with bothspecifyingoutcomestobeachievedbytheendofaparticularphase.Indeed,it isdifficulttoimaginealessdetailedspeci ficationthantheFinnish.Neithercurriculumspeci fiesmethods,althoughtheEnglishalludestoarecommendedalgebraicrearrangementmethod.Neitherdocumentmakesexplicitmentionofproblem solvingorwordproblemsandthederivationofequationsfromtext.TheFlemish document,whichalsosaysnothingaboutapproaches,appearssuper ficiallymore tightlyspecifiedalthoughtheshiftfromoneyeartothenextisvague.However, thereisaclearsensethatstudentsareexpectedtoderiveandsolveequationsfrom, byimplication,wordproblems.Finally,theHungariancurriculumoffersatightly speci fiedprogressionoverafouryearperiodwithmethodsandproblemsolving, includingwordproblems,increasinglyspeci fiedandexploited.
So,howdothevariousculturalnormsplayoutinthecurricularpresentationof mathematics?Thetwocountrieswiththeloosestcurriculaexpectations,England andFinland,reflecthorizontalcultures(Triandis 2001)wherepowerdistanceand uncertaintyavoidancearelow(Hofstede 1980).Incountrieswithlowpowerdistance, “peopleatvariouspowerlevelsfeel preparedtotrustpeople” (Hofstede 1980,p.46).Inotherwords,curriculumauthoritiesseenoneedtoover-specify, say,teachingapproachesbecauseteachersaretrustedtomanagetheirresponsibilitiesappropriately.Indeed,Finnishteachersoperatewithinacultureoftrust (Välijärvi 2004)thatextendsfromthetoptothebottom(Sahlberg 2007);theyenjoy highpublicesteem(Simola 2005)andareviewedasprofessionalswhoknowwhat isbestfortheirstudents(Ahoetal. 2006).Insimilarvein,looselystructured curriculafoundincountrieswithlowuncertaintyavoidancereflectsocietalnormsin whichnotonlyis “theuncertaintyinherentinlife … moreeasilyacceptedandeach day… takenasitcomes” butalsoacultureinwhichdissentanddeviationare toleratedandpeoplearewillingtotakerisks(Hofstede 1980,p.47).TheFlemish situationisdifferent,althoughitisimportantforthereadertounderstandthat Hofstede’sstudiesfocusedonBelgiumasawholeandnotjustFlanders.Relatively highlevelsofpowerdistanceanduncertaintyavoidancemayhelpexplainwhythe
5See http://www.okm.gov.hu/letolt/nemzet/kerettanterv36.doc .
FlemishauthoritiesproducedamoretightlystructuredcurriculumthantheEnglish ortheFinns.Further,theverytightlyspeci fiedHungariancurriculumwouldbea productofacultureinwhichpowerdistanceanduncertaintyavoidancearehigher thantheotherthreecountriesunderscrutiny.Inotherwords,thereappearstobea relationshipbetweenthedegreetowhichacurriculumisspecifiedandthelevelsof bothpowerdistanceanduncertaintyavoidance thelowertheculturaldimensions thelessspecifi edthecurricula.Alternatively,thelooselystructuredcurriculaofthe EnglishandtheFinnsmaybeartefactsofautonomous(Schwartz 1999)protestant (Weber 1930)cultures,whilethemorestructuredcurriculaoftheFlemish,and particularlytheHungarians,couldbeconstruedasreflectingmoreconservative (Schwartz 1999)Catholic(Weber 1930)cultures.Inshort,itisnotinconceivable thatdifferencesinthepresentationofmathematicscurriculaareconsequencesof signifi cantdifferencesintheunderlyingstructuresoftheculturesthemselves.Inthe followingIconsiderhowsuchdifferencesplayoutinmathematicsclassrooms.
6CultureandMathematicsTeaching If,assuggestedabove,teachersareproxiesforasystem’svaluesthenitwould surprisingifteachers’ actionswerenotculturallydeterminedmanifestationsofthose values.Inthisrespect,itiswidelythoughtthatmathematicsteachingintheWest differsfromthatintheEast.Forexample,anumberofresearchershaveemphasised theinfluenceofSocraticandConfucianphilosophiesontheculturallyWestand culturallyChineseeducationaltraditions(Leung 2001;TweedandLehman 2002; Watkins 2000).Indeed,inrespectofmathematics,Leung(2001)proposedsix dichotomiesthatdistinguishbetweenEastAsianandWesternmathematicsclassrooms;product(content)versusprocess,rotelearningversusmeaningfullearning, studyinghardversuspleasurablelearning,extrinsicversusintrinsicmotivations, wholeclassteachingversusindividualisedlearning,andteachercompetencein relationtothesubjectmatterversuspedagogydebate.However,suchdistinctionsare notonlycrudeand,attimes,inaccurate(Clarke 2006)butfrequentlyslideinto unconsciousstereotypingorevenracism(Mason 2007).Inthefollowing,mindfulof suchproblems,IfocusonEuropeansystemsandthemoresubtlewaysinwhich culturesinfluenceeducationalpracticesingeneralandmathematicsteachingin particular.Forexample,atthegenerallevel,Osborn(2004)hasshownhowsocietal privilegingoftheindividual,thecommunityandthenation emphasesexplicable byreferencetothevariousculturalmodelsdiscussedabove underpineducational expectationsandpracticesin,respectively,England,DenmarkandFrance.With respecttotheparticularsofmathematics,theanti-scientifictraditionsoftheEnglish curriculumandtherationalencyclopaedictraditionsoftheFrenchcurriculum (HolmesandMcLean 1989;Cummings 1999)mayexplain findingsthatEnglish mathematicsteachersworktoreducethecomplexityofmathematicsfortheirstudents,whileFrenchteachersworktowardsan “inductionintothatcomplexity”
(JenningsandDunne 1996,p.51).Inasimilarvein,Kaiser(2002)foundsubstantial differencesbetweenthetraditionsofEnglishandGermanmathematicsteaching explicablebythesocio-historicalunderpinningsofthetwosystems.Forexample,in Germanclassrooms “theoreticalmathematicalconsiderationsareofgreatimportance” whileEnglishmathematicsteachingprivilegesa “pragmaticunderstandingof theory” (p.249).Germanmathematicsisdefinedbythestructureofthesubjectwith largethematic fieldstaughtindependentlyofeachother,whileinEnglandaspiral curriculumallowstopicstobeintroduced,revisitedlaterandtaughtindependentlyof anyobvioussenseofstructure.InGermanynewtopicsormethodsareintroducedby meansofclassdiscussionsandoftenillustratedbyreal-worldexamples,whilein Englandtheyhavealowimportanceandareoftengiven “asinformationorinthe styleofarecipe” (p.250).Germanlessonsareprogressedbyhighexpectationsof students’ correctandconfidentexecutionofalgorithms,withclearexpectationsthat eachisundertakeninwell-definedandpredeterminedways.InEnglishlessons “rulesandstandardalgorithms(are)ofminorimportance” (p.252),withpriority giventostudents’ ownsolutions.Germanteachersplacegreatimportanceonprecise mathematicallanguageatalllevelsofdiscourse,whileEnglishteachersviewsuch mattersasofminorimportance.
Thecontentandstructureofmathematicstextbooks,too,showevidenceof beingculturallydetermined.HaggartyandPepin(2002)analysedcommonlyused English,FrenchandGermantextbooksandfoundevidencesupportiveofthedifferencesdiscussedinthepreviousparagraph.Forexample,Frenchtexts,which werecognitivelychallenging,incorporatedextensiveexplanatorytextandtechnical vocabularysufficientforstudentsto “dothequestions … withoutadditionalsupport” (p.576).Germantexts,incorporatingdetailedexplanatorytextandmuch technicalvocabulary,attemptedtoestablishlinks “betweeneverydaysituationsand whatpupilsaretolearn” (p.578),althoughtypicallyquestionsrequiredonly low-levelapplicationsoftheskillsbeingpractised.Englishtextswerelessdense andcontainedfewerexamples.Therewaslittleemphasisontechnicalvocabulary andnoexplanatorytext.Exerciseswerelowlevelwithlittlescopeforextension (p.582).Finally,withrespecttotextbooks,culturesdifferintheirproductionand deployment.Forexample,allGreekteachersaremandatedtousecentrallyproducedtextbooks(Hatzinikitaetal. 2008),whereasthesupplyoftextbooksin Englandisunregulated.Suchmatterscanalsobeexplainedbyculturalanalyses. Greece,despitebeinganOrthodoxcommunity,wouldbeconstruedascollectively CatholicunderaWeberiananalysis,anargumentsupportedbyitshavingoneofthe largestpowerdistancesofallEuropeancountriesandthelargestuncertainty avoidanceintheworld(Hofstede 1986).Suchculturalcharacteristicsdiffergreatly fromtheEnglishdescribedabove.
TofurtherillustratethediversityofEuropeanmathematicsdidacticstraditions,I returntothetopicoflinearequationsandaqualitativeanalysisofasequenceof five lessonstaughtineachofFinland,FlandersandHungary(AndrewsandSayers 2012).Theyfound,atthelevelofdidacticalstructure,thateachsequencepassed throughfourphases,whichtheydescribedasdefi nition,activation,expositionand
consolidation.Thedefinitionphase,alwaysawhole-classactivity,introducedstudentstothenotionofanequationand,eitherimplicitlyorexplicitly,presenteda definition.Theactivationphase,predominatelywhole-class,involvedstudents solvingequationswiththeunknownononesideoftheequalssign.Suchequations allowforintuitiveapproaches,typicallybasedoninverseoperations.Theexpositionphase,whichwasalwayswholeclassactivity,focusedonsolvinganequation withtheunknownonbothsidesoftheequalsign,exposedtheinadequaciesof intuitiveapproachesandwarrantedtheintroductionofthebalanceasadidactictool. Finally,theconsolidationphase,whichincorporatedbothwhole-classandindividualworking,enabledstudentstopracticeandexploittheirnewlyacquiredskills. However,whentheanalyseswentbeyondsuchstraightforwardsimilarities,substantialdifferenceswereobserved.TheHungarianteacher,focusedmuchofher timeonencouragingherstudentstoconstructequationsfromwordproblems.These equations,whichwerealternatedwithequationsderivedfromproblemssetina worldofmathematics,werealwayscognitivelychallengingbut,afterperiodsof individualwork,collectivelysolvedinwaysthatprivilegedthestudents’ voice focusedonacollectivelyagreedsolution.TheFlemishteacherusedawordproblem tointroducethetopicbutthenspentmuchofhertimeworkingoncognitively challengingproblemslocatedinaworldofmathematics.However,thesolutionsto suchproblemsweremanagedinwaysthatminimisedopportunitiesforstudentsto engageinindividualproblemsolving,withheralwaysbeingthe finalarbiterof whatconstitutedanappropriatesolution.Finally,theFinnishteacherexploitedonly problemssetinaworldofmathematics.Thesewerealwaysroutine,nevercognitivelychallenging,andalwayssolvedinwaysthatminimisedorignoredthestudent voice.Suchteacherbehaviours,whichresonatedcloselywiththeavailableliteratureoneachteacher ’scountry’sdidacticalpractices,furtherhighlighthowteachers areconditionedtoactinparticularwaysbythecultureinwhichtheyliveandwork (AndrewsandSayers 2013)andleadus,aspromisedearlier,backtoFinland.
Finland,acountrymuchadmiredforitsrepeatedsuccessesonthe fi veiterations ofPISA,hasattractedmanythousandsofforeignenvoyskeentouncover curriculum-relatedinsights(Laukkanen 2008, 2013).Indeed,suchactivityhasbeen encouragedbytheOECD’sextraordinaryassertionthat “bringingallcountriesup totheaverageperformanceofFinland,OECD’sbestperformingeducationsystem inPISA,wouldresultingainsintheorderofUSD260trillion” overthe “lifetimeof thegenerationbornin2010” (OECD 2010b,p.6).However,asIshowbelow,the assumptionthatemulatingFinnishpracticewillraiseachievementelsewheremay benaïve.Forexample,andtypicallydownplayedbytheFinnishauthorities,has beenFinnishstudents’ modestachievementonthetwoTIMSSinwhichFinland hasparticipated.Indeed,inboth1999and2011,Finnishstudents’ algebraicand geometriccompetencebarelyreachedtheleveloftheinternationalmean(Mullis etal. 2000, 2012).ThisdisparitybetweenhighPISAand,inrealterms,lowTIMSS hasnotonlypromptedFinnishmathematicianstosuggestthatthemathematical knowledgeandskillsnecessaryforfurtherstudyofthesubjecthavebeensacri ficed inthecontinuingpursuitofPISAsuccess(Astalaetal. 2006;Martio 2009;
TarvainenandKivelä 2006)butleadsonetoask,whatishappeninginFinnish classroomsthatmightexplainsuccessononeformoftestandfailureontheother?
EarlyanalysesofFinnishclassroomshavebeenparticularlycritical.Research undertakenmorethanaquarterofacenturyagofoundteachingpracticesthathad notonlychangedlittlein fi ftyyearsbutcreatedanintelligenceandemotional wasteland(Carlgrenetal. 2006).Morerecently,butprecedingFinland’sPISA successes,Norrisetal.(1996,p.29)found “rowsandrowsofchildrenalldoingthe samethinginthesamewaywhetheritbeart,mathematicsorgeography”,adding thattheyhad “movedfromschooltoschoolandseenalmostidenticallessons,you couldhaveswappedtheteachersoverandthechildrenwouldneverhavenoticed thedifference”.DuringthePISAyears,Andrewsandhiscolleagues,inanattempt tounderstandtherelationshipbetweenFinnishmathematics-relateddidacticsand PISAsuccessundertookthree,differentlyframedqualitativeanalysesofvideo sequencesofFinnishmathematicslessons.The first,basedonKilpatricketal.’s (2001) fi vestrandsofmathematicalproficiency,foundnoevidenceofFinnish teachersencouragingstudentstoacquirethehigherorderskillsconduciveto problemsolving;theprimaryobjectiveseemedtobeproceduralcompetence locatedonlimitedconceptualknowledge(Andrews 2013).Thesecond,exploiting PISA’sownassessmentframework,foundnoevidenceofstudentsbeingencouragedtoacquirethehigherlevelcompetencestheydemonstratedinrepeatedPISA assessments(Andrewsetal. 2014).Thethird,basedonaconstantcomparison analysisinwhichdatawerenotsubjectedtopredeterminedframeworks,founda didacticaltraditioninwhichteachersposedmanyclosedquestionsbutnever evaluatedorsoughtclari ficationrelatingtoastudent’sresponse.Thus,correct, partiallycorrect,incompleteorincorrectstudentresponsesreceivedthesame, noncommittalteacherfeedback.This implicit tradition,wherestudentsinfer meaningfromanygivensetofteacher-studentinteractions,dominatedallanalysed lessons(Andrews 2011).Thus,whileFinnishdidacticaltraditionsmaybeunableto explainFinnishstudents’ continuingPISAsuccesses,theymayhelpustounderstandtheirrepeatedTIMSSfailures,whichleadsnaturallytothe finalquestion, whatdoesexplainFinnishPISAsuccess?Thistakesustoanotherkeyrelationship betweencultureandeducation.
Anumberoffactors,assumedcontributorytostudents’ continuingPISAsuccesses,havebeenproposedbytheFinnsthemselves.Theseconcernthequalityof thecomprehensiveschoolsystemanditscompulsorycommoncurriculum(Aho etal. 2006),exceptionalspecialeducationalneedsarrangements(Hausstätterand Takala 2011;KiviraumaandRuoho 2007)andthehighqualityofteachereducation (Antikainen 2006;Laukkanen 2008;NiemiandJakku-Sihvonen 2006;Tuovinen 2008;Välijärvi 2004).However,suchstudieshave,asisincreasinglytypicalin Finland,failedtoacknowledgetheproblemofTIMSS.Afew,lesstriumphal, authorshavesuggestedthatFinnishPISAsuccessmaybeaconsequenceofother factors,largelyindependentofschool.Firstly,culturalhomogeneity(Välijärvietal. 2002)hasmadeit “comparativelyeasyinFinlandtoreachmutualunderstandingon nationaleducationpolicyandthemeansfordevelopingtheeducationsystem” . (Välijärvietal. 2002,p.45).Moreover,Finnishculturalhomogeneity,bornof
frequentlyviolentstrugglesbetweentheFinnishpeopleandoppressorsfromboth eastandwest,hascreatedacollectivemindsetnotdissimilartothoseofJapanand Korea(Simola 2005).Inparticular, “thereissomethingarchaic,something authoritarian,possiblyevensomethingeastern,intheFinnishcultureandmentality” (Simola 2005,p.458).Secondly,thissenseoftheauthoritariancollective finds resonanceinthetraditionthatparticipationinFinnishculturallifehas,since post-reformationtimes,beendependentonapublicdemonstrationofreading competence,whichwasapreconditionnotonlyforreceivingthesacramentsbutalso forcontractingaChristianmarriage(Linnakylä 2002).Consequently,asMason (2007,p.167)notes, “givenwhatwenowknowoftherelationshipbetweenlevelsof parentaleducationandtheeducationalachievementsoftheirchildren,itdoesnot takeasocialDarwinianperspective torealizetheeffectovercenturiesofacultural practicethathasmeantthatalmostallchildreninFinlandhavebeenraisedin familieswherebothparentsareliterate”.Consequently,theFinnshaveacquireda collectiveappreciationforeducationingeneralandFinnishliteratureinparticular (HalinenandJärvinen 2008),totheextentthattheFinnishlibrarynetworkisamong theworld’sdensest,withFinnsborrowingmorebooksthananyoneelse(Sahlberg 2007).Suchtraditions,basedonthecreationsofoneoftheworld’smostliterary cultures,explainwhyFinnishstudentsachievewellonPISAandnotonTIMSS; theyreadwithcompetence,theycaninterprettextandextractrelevantmaterial beforeundertakingthesimplemathematicsexpectedofatypicalPISAitem. Mathematically,TIMSSaskssomuchmoreofastudent,and,inthisrespect,Finnish studentsarenomorecompetentthananyotherstudentsintheWest.Inshort,the availableevidenceshowsthatculturemayplayamoresignificantrolethanpedagogyindeterminingtheeducationalachievementsofcountry,a findingthatshould beofgreatconcerntoanyonewithaninterestinimprovingbothmathematics teachingandstudentachievement.
7Conclusions Inthischapter,Ihavetriedtodemonstratetheextenttowhichteachingingeneral andmathematicsteachinginparticularareculturallydeterminedactivities.Thereis atemptation,particularlyamongacademicmathematiciansandpolicymakers,to assumethatschoolmathematicsisthesamewhereveritisexperienced.Thisis simplynottrue.Researchshowsconsistentlythatteachers’ practicesreflect “culturallydeterminedpatternsofbeliefandbehaviour,frequentlybeneatharticulation, thatdistinguishonesetofteachersfromtheirculturallydifferentcolleagues” (AndrewsandSayers 2013,p.133).Wherevertheyarelocated,lessons “havea routinenessaboutthemthatensuresadegreeofconsistencyandpredictability” (Kawanakaetal. 1999,p.91).Thissenseofroutinepredictabilityhasbeenvariouslydescribedasthe traditionsofclassroommathematics (Cobbetal. 1992),the characteristicpedagogical flow ofalesson(Schmidtetal. 1996),the culturalscript (StiglerandHiebert 1999)andthe lessonsignature (Hiebertetal. 2003).Such
descriptionsalludetorepeatedlyenactedpedagogicalstrategiestypicalofacountry’slesson(CoganandSchmidt 1999).Inthismannerculture “shapestheclassroomprocessesandteachingpracticeswithincountries,aswellashowstudents, parentsandteachersperceivethem” (Knipping 2003,p.282).Indeed,sosignificant isthishiddenroleofculturethatmanyoftheprocessesofteachingareso “deepin thebackgroundoftheschoolingprocess… sotaken-for-granted… astobebeneath mention” (HuftonandElliott 2000,p.117).Thatsaid,Ihopetheabovepageshave highlightedthecomplexrelationshipbetweenculture,howeveritisdefined,andthe processesandpracticesofeducationingeneralandmathematicseducationin particular.
References Aho,E.,Pitkänen,K.,&Sahlberg,P.(2006). Policydevelopmentandreformprinciplesofbasic andsecondaryeducationinFinlandsince1968.Washington:TheWorldBank. Andrews,P.(2010).Theimportanceofacknowledgingtheculturaldimensioninmathematics teachingandlearningresearch. ActaDidacticaNapocensia,3(2),3–16. Andrews,P.(2011).Finnishmathematicsteaching:Acaseofuniquelyimplicitdidactics.InT. Dooley,D.Corcoran,&M.Ryan(Eds.), Proceedingsofthefourthconferenceonresearchin mathematicseducation(mei4):mathematicsteachingmatters (pp.3–18).Dublin:StPatrick’s College.
Andrews,P.(2013).Finnishmathematicsteachingfromareformperspective:Avideo-basedcase studyanalysis. ComparativeEducationReview,57(2),189–211.
Andrews,P.,&Sayers,J.(2012).Teachinglinearequations:CasestudiesfromFinland,Flanders andHungary. TheJournalofMathematicalBehavior,31(4),476–488. Andrews,P.,&Sayers,J.(2013).Comparativestudiesofmathematicsteaching:Doesthemeans ofanalysisdeterminetheoutcome? ZDM:TheInternationalJournalonMathematics Education,45(1),133–144.
Andrews,P.,Ryve,A.,Hemmi,K.,&Sayers,J.(2014).PISA,TIMSSandFinnishmathematics teaching:Anenigmainsearchofanexplanation. EducationalStudiesinMathematics,87(1), 7–26.
Antikainen,A.(2006).InsearchoftheNordicmodelineducation. ScandinavianJournalof EducationalResearch,50(3),229–243.
Astala,K.,Kivelä,S.,Koskela,P.,Martio,O.,Näätänen,M.,&Tarvainen,K.(2006).ThePISA surveytellsonlyapartialtruthofFinnishchildren’smathematicalskills. Matilde,29,9. Bereday,G.(1964).SirMichaelSadler ’s ‘StudyofForeignSystemsofEducation’ . Comparative EducationReview,7(3),307–314.
Boyer,E.L.(1983). Highschool:AreportonsecondaryeducationinAmerica.NewYork:Harper andRow.
Carlgren,I.,Klette,K.,Mýrdal,S.,Schnack,K.,&Simola,H.(2006).ChangesinNordicteaching practices:Fromindividualisedteachingtotheteachingofindividuals. ScandinavianJournalof EducationalResearch,50(3),301–326. Clarke,D.(2006).Usinginternationalresearchtocontestprevalentoppositionaldichotomies. ZDM,38(5),376–387.
Cobb,P.,Wood,T.,Yackel,E.,&McNeal,B.(1992).Characteristicsofclassroommathematics traditions:Aninteractionalanalysis. AmericanEducationalResearchJournal,29(3),573–604. Cogan,L.,&Schmidt,W.(1999).Anexaminationofinstructionalpracticesinsixcountries.InG. Kaiser,E.Luna,&I.Huntley(Eds.), Internationalcomparisonsinmathematicseducation (pp.68–85).London:Falmer.
Cummings,W.(1999).TheInstitutionsofeducation:Compare,compare,compare! Comparative EducationReview,43(4),413–437.
Erez,M.,&Gati,E.(2004).Adynamic,multi-levelmodelofculture:Fromthemicrolevelofthe individualtothemacrolevelofaglobalculture. AppliedPsychology:AnInternationalReview, 53(4),583–598.
Fiske,A.P.(2002).Usingindividualismandcollectivismtocomparecultures Acritiqueofthe validityandmeasurementoftheconstructs:CommentonOysermanetal2002. Psychological Bulletin, 128(1),78–88.
Haggarty,L.,&Pepin,B.(2002).Aninvestigationofmathematicstextbooksandtheirusein English,FrenchandGermanclassrooms:Whogetsanopportunitytolearnwhat? British EducationalResearchJournal,28(4),567–590.
Halinen,I.,&Järvinen,R.(2008).Towardsinclusiveeducation:ThecaseofFinland. Prospects, 38(1),77–97.
Hatzinikita,V.,Dimopoulos,K.,&Christidou,V.(2008).PISAtestitemsandschooltextbooks relatedtoscience:Atextualcomparison. ScienceEducation,92(4),664–687.
Hausstätter,R.,&Takala,M.(2011).Canspecialeducationmakeadifference?Exploringthe differencesofspecialeducationalsystemsbetweenFinlandandNorwayinrelationtothePISA results. ScandinavianJournalofDisabilityResearch,13(4),271–281.
Hiebert,J.,Gallimore,R.,Garnier,H.,BogardGivvin,K.,Hollingsworth,H.,Jacobs,J.,etal. (2003). Teachingmathematicsinsevencountries:ResultsfromtheTIMSS1999videostudy. Washington:NationalCenterforEducationalStatistics.
Hofstede,G.(1980).Motivation,leadershipandorganization:DoAmericantheoriesapply abroad? OrganizationalDynamics, 42–63.
Hofstede,G.(1986).Culturaldifferencesinteachingandlearning. InternationalJournalof InterculturalRelations,10(3),301–320.
Hofstede,G.,&McCrae,R.(2004).Personalityandculturerevisited:Linkingtraitsand dimensionsofculture. Cross-CulturalResearch,38(1),52–88.
Holmes,B.,&McLean,M.(1989). TheCurriculum:Acomparativeperspective.London:Unwin Hyman.
Hufton,N.,&Elliott,J.(2000).Motivationtolearn:ThepedagogicalnexusintheRussianschool: Someimplicationsfortransnationalresearchandpolicyborrowing. EducationalStudies,26(1), 115–136.
Jennings,S.,&Dunne,R.(1996).Acriticalappraisalofthenationalcurriculumbycomparison withtheFrenchexperience. TeachingMathematicsanditsApplications,15(2),49–55. Kaiser,G.(2002).Educationalphilosophiesandtheirinfluenceonmathematicseducation An ethnographicstudyinEnglishandGermanmathematicsclassrooms. ZDM,34(6),241–257. Kamens,D.,Meyer,J.,&Aaron,B.(1996).Worldwidepatternsinacademicsecondaryeducation curricula. ComparativeEducationReview,40(2),116–138.
Kawanaka,T.,Stigler,J.,&Hiebert,J.(1999).StudyingmathematicsclassroomsinGermany, JapanandtheUnitedStates:LessonsfromtheTIMSSvideotapestudy.InG.Kaiser,E.Luna, &I.Huntley(Eds.), Internationalcomparisonsinmathematicseducation (pp.86–103). London:Falmer.
Kilpatrick,J.,Swafford,J.,&Findell,B.(Eds.).(2001). Addingitup:Helpingchildrenlearn mathematics.Washington,DC:TheNationalAcademiesPress. Kivirauma,J.,&Ruoho,K.(2007).Excellencethroughspecialeducation?Lessonsfromthe Finnishschoolreform. InternationalReviewofEducation,53(3),283–302. Knipping,C.(2003).Learningfromcomparing:Areviewandreflectiononqualitativeoriented comparisonsofteachingandlearningmathematicsindifferentcountries. Zentralblattfur DidaktikderMathematik,35(6),282–293.
Laukkanen,R.(2008).Finnishstrategyforhigh-leveleducationforall.InN.C.Soguel& P.Jaccard(Eds.), Governanceandperformanceofeducationsystems (pp.305–324). Dordrecht:Springer.
Another random document with no related content on Scribd:
THE FULL PROJECT GUTENBERG LICENSE PLEASE READ THIS BEFORE YOU DISTRIBUTE OR USE THIS WORK
To protect the Project Gutenberg™ mission of promoting the free distribution of electronic works, by using or distributing this work (or any other work associated in any way with the phrase “Project Gutenberg”), you agree to comply with all the terms of the Full Project Gutenberg™ License available with this file or online at www.gutenberg.org/license.
Section 1. General Terms of Use and Redistributing Project Gutenberg™ electronic works 1.A. By reading or using any part of this Project Gutenberg™ electronic work, you indicate that you have read, understand, agree to and accept all the terms of this license and intellectual property (trademark/copyright) agreement. If you do not agree to abide by all the terms of this agreement, you must cease using and return or destroy all copies of Project Gutenberg™ electronic works in your possession. If you paid a fee for obtaining a copy of or access to a Project Gutenberg™ electronic work and you do not agree to be bound by the terms of this agreement, you may obtain a refund from the person or entity to whom you paid the fee as set forth in paragraph 1.E.8.
1.B. “Project Gutenberg” is a registered trademark. It may only be used on or associated in any way with an electronic work by people who agree to be bound by the terms of this agreement. There are a few things that you can do with most Project Gutenberg™ electronic works even without complying with the full terms of this agreement. See paragraph 1.C below. There are a lot of things you can do with Project Gutenberg™ electronic works if you follow the terms of this agreement and help preserve free future access to Project Gutenberg™ electronic works. See paragraph 1.E below.
1.C. The Project Gutenberg Literary Archive Foundation (“the Foundation” or PGLAF), owns a compilation copyright in the collection of Project Gutenberg™ electronic works. Nearly all the individual works in the collection are in the public domain in the United States. If an individual work is unprotected by copyright law in the United States and you are located in the United States, we do not claim a right to prevent you from copying, distributing, performing, displaying or creating derivative works based on the work as long as all references to Project Gutenberg are removed. Of course, we hope that you will support the Project Gutenberg™ mission of promoting free access to electronic works by freely sharing Project Gutenberg™ works in compliance with the terms of this agreement for keeping the Project Gutenberg™ name associated with the work. You can easily comply with the terms of this agreement by keeping this work in the same format with its attached full Project Gutenberg™ License when you share it without charge with others.
1.D. The copyright laws of the place where you are located also govern what you can do with this work. Copyright laws in most countries are in a constant state of change. If you are outside the United States, check the laws of your country in addition to the terms of this agreement before downloading, copying, displaying, performing, distributing or creating derivative works based on this work or any other Project Gutenberg™ work. The Foundation makes no representations concerning the copyright status of any work in any country other than the United States.
1.E. Unless you have removed all references to Project Gutenberg:
1.E.1. The following sentence, with active links to, or other immediate access to, the full Project Gutenberg™ License must appear prominently whenever any copy of a Project Gutenberg™ work (any work on which the phrase “Project Gutenberg” appears, or with which the phrase “Project Gutenberg” is associated) is accessed, displayed, performed, viewed, copied or distributed:
This eBook is for the use of anyone anywhere in the United States and most other parts of the world at no cost and with almost no restrictions whatsoever. You may copy it, give it away or re-use it under the terms of the Project Gutenberg License included with this eBook or online at www.gutenberg.org. If you are not located in the United States, you will have to check the laws of the country where you are located before using this eBook.
1.E.2. If an individual Project Gutenberg™ electronic work is derived from texts not protected by U.S. copyright law (does not contain a notice indicating that it is posted with permission of the copyright holder), the work can be copied and distributed to anyone in the United States without paying any fees or charges. If you are redistributing or providing access to a work with the phrase “Project Gutenberg” associated with or appearing on the work, you must comply either with the requirements of paragraphs 1.E.1 through 1.E.7 or obtain permission for the use of the work and the Project Gutenberg™ trademark as set forth in paragraphs 1.E.8 or 1.E.9.
1.E.3. If an individual Project Gutenberg™ electronic work is posted with the permission of the copyright holder, your use and distribution must comply with both paragraphs 1.E.1 through 1.E.7 and any additional terms imposed by the copyright holder. Additional terms will be linked to the Project Gutenberg™ License for all works posted with the permission of the copyright holder found at the beginning of this work.
1.E.4. Do not unlink or detach or remove the full Project Gutenberg™ License terms from this work, or any files containing a part of this work or any other work associated with Project Gutenberg™.
1.E.5. Do not copy, display, perform, distribute or redistribute this electronic work, or any part of this electronic work, without prominently displaying the sentence set forth in paragraph 1.E.1 with active links or immediate access to the full terms of the Project Gutenberg™ License.
1.E.6. You may convert to and distribute this work in any binary, compressed, marked up, nonproprietary or proprietary form, including any word processing or hypertext form. However, if you provide access to or distribute copies of a Project Gutenberg™ work in a format other than “Plain Vanilla ASCII” or other format used in the official version posted on the official Project Gutenberg™ website (www.gutenberg.org), you must, at no additional cost, fee or expense to the user, provide a copy, a means of exporting a copy, or a means of obtaining a copy upon request, of the work in its original “Plain Vanilla ASCII” or other form. Any alternate format must include the full Project Gutenberg™ License as specified in paragraph 1.E.1.
1.E.7. Do not charge a fee for access to, viewing, displaying, performing, copying or distributing any Project Gutenberg™ works unless you comply with paragraph 1.E.8 or 1.E.9.
1.E.8. You may charge a reasonable fee for copies of or providing access to or distributing Project Gutenberg™ electronic works provided that:
• You pay a royalty fee of 20% of the gross profits you derive from the use of Project Gutenberg™ works calculated using the method you already use to calculate your applicable taxes. The fee is owed to the owner of the Project Gutenberg™ trademark, but he has agreed to donate royalties under this paragraph to the Project Gutenberg Literary Archive Foundation. Royalty payments must be paid within 60 days following each date on which you prepare (or are legally required to prepare) your periodic tax returns. Royalty payments should be clearly marked as such and sent to the Project Gutenberg Literary Archive Foundation at the address specified in Section 4, “Information about donations to the Project Gutenberg Literary Archive Foundation.”
• You provide a full refund of any money paid by a user who notifies you in writing (or by e-mail) within 30 days of receipt that s/he does not agree to the terms of the full Project Gutenberg™ License. You must require such a user to return or destroy all
copies of the works possessed in a physical medium and discontinue all use of and all access to other copies of Project Gutenberg™ works.
• You provide, in accordance with paragraph 1.F.3, a full refund of any money paid for a work or a replacement copy, if a defect in the electronic work is discovered and reported to you within 90 days of receipt of the work.
• You comply with all other terms of this agreement for free distribution of Project Gutenberg™ works.
1.E.9. If you wish to charge a fee or distribute a Project Gutenberg™ electronic work or group of works on different terms than are set forth in this agreement, you must obtain permission in writing from the Project Gutenberg Literary Archive Foundation, the manager of the Project Gutenberg™ trademark. Contact the Foundation as set forth in Section 3 below.
1.F. 1.F.1. Project Gutenberg volunteers and employees expend considerable effort to identify, do copyright research on, transcribe and proofread works not protected by U.S. copyright law in creating the Project Gutenberg™ collection. Despite these efforts, Project Gutenberg™ electronic works, and the medium on which they may be stored, may contain “Defects,” such as, but not limited to, incomplete, inaccurate or corrupt data, transcription errors, a copyright or other intellectual property infringement, a defective or damaged disk or other medium, a computer virus, or computer codes that damage or cannot be read by your equipment.
1.F.2. LIMITED WARRANTY, DISCLAIMER OF DAMAGES - Except for the “Right of Replacement or Refund” described in paragraph 1.F.3, the Project Gutenberg Literary Archive Foundation, the owner of the Project Gutenberg™ trademark, and any other party distributing a Project Gutenberg™ electronic work under this agreement, disclaim all liability to you for damages, costs and
expenses, including legal fees. YOU AGREE THAT YOU HAVE NO REMEDIES FOR NEGLIGENCE, STRICT LIABILITY, BREACH OF WARRANTY OR BREACH OF CONTRACT EXCEPT THOSE PROVIDED IN PARAGRAPH 1.F.3. YOU AGREE THAT THE FOUNDATION, THE TRADEMARK OWNER, AND ANY DISTRIBUTOR UNDER THIS AGREEMENT WILL NOT BE LIABLE TO YOU FOR ACTUAL, DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE OR INCIDENTAL DAMAGES EVEN IF YOU GIVE NOTICE OF THE POSSIBILITY OF SUCH DAMAGE.
1.F.3. LIMITED RIGHT OF REPLACEMENT OR REFUND - If you discover a defect in this electronic work within 90 days of receiving it, you can receive a refund of the money (if any) you paid for it by sending a written explanation to the person you received the work from. If you received the work on a physical medium, you must return the medium with your written explanation. The person or entity that provided you with the defective work may elect to provide a replacement copy in lieu of a refund. If you received the work electronically, the person or entity providing it to you may choose to give you a second opportunity to receive the work electronically in lieu of a refund. If the second copy is also defective, you may demand a refund in writing without further opportunities to fix the problem.
1.F.4. Except for the limited right of replacement or refund set forth in paragraph 1.F.3, this work is provided to you ‘AS-IS’, WITH NO OTHER WARRANTIES OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PURPOSE.
1.F.5. Some states do not allow disclaimers of certain implied warranties or the exclusion or limitation of certain types of damages. If any disclaimer or limitation set forth in this agreement violates the law of the state applicable to this agreement, the agreement shall be interpreted to make the maximum disclaimer or limitation permitted by the applicable state law. The invalidity or unenforceability of any provision of this agreement shall not void the remaining provisions.
1.F.6. INDEMNITY - You agree to indemnify and hold the Foundation, the trademark owner, any agent or employee of the Foundation, anyone providing copies of Project Gutenberg™ electronic works in accordance with this agreement, and any volunteers associated with the production, promotion and distribution of Project Gutenberg™ electronic works, harmless from all liability, costs and expenses, including legal fees, that arise directly or indirectly from any of the following which you do or cause to occur: (a) distribution of this or any Project Gutenberg™ work, (b) alteration, modification, or additions or deletions to any Project Gutenberg™ work, and (c) any Defect you cause.
Section 2. Information about the Mission of Project Gutenberg™ Project Gutenberg™ is synonymous with the free distribution of electronic works in formats readable by the widest variety of computers including obsolete, old, middle-aged and new computers. It exists because of the efforts of hundreds of volunteers and donations from people in all walks of life.
Volunteers and financial support to provide volunteers with the assistance they need are critical to reaching Project Gutenberg™’s goals and ensuring that the Project Gutenberg™ collection will remain freely available for generations to come. In 2001, the Project Gutenberg Literary Archive Foundation was created to provide a secure and permanent future for Project Gutenberg™ and future generations. To learn more about the Project Gutenberg Literary Archive Foundation and how your efforts and donations can help, see Sections 3 and 4 and the Foundation information page at www.gutenberg.org.
Section 3. Information about the Project Gutenberg Literary Archive Foundation The Project Gutenberg Literary Archive Foundation is a non-profit 501(c)(3) educational corporation organized under the laws of the state of Mississippi and granted tax exempt status by the Internal Revenue Service. The Foundation’s EIN or federal tax identification number is 64-6221541. Contributions to the Project Gutenberg Literary Archive Foundation are tax deductible to the full extent permitted by U.S. federal laws and your state’s laws.
The Foundation’s business office is located at 809 North 1500 West, Salt Lake City, UT 84116, (801) 596-1887. Email contact links and up to date contact information can be found at the Foundation’s website and official page at www.gutenberg.org/contact
Section 4. Information about Donations to the Project Gutenberg Literary Archive Foundation Project Gutenberg™ depends upon and cannot survive without widespread public support and donations to carry out its mission of increasing the number of public domain and licensed works that can be freely distributed in machine-readable form accessible by the widest array of equipment including outdated equipment. Many small donations ($1 to $5,000) are particularly important to maintaining tax exempt status with the IRS.
The Foundation is committed to complying with the laws regulating charities and charitable donations in all 50 states of the United States. Compliance requirements are not uniform and it takes a considerable effort, much paperwork and many fees to meet and keep up with these requirements. We do not solicit donations in locations where we have not received written confirmation of compliance. To SEND DONATIONS or determine the status of compliance for any particular state visit www.gutenberg.org/donate.
While we cannot and do not solicit contributions from states where we have not met the solicitation requirements, we know of no
prohibition against accepting unsolicited donations from donors in such states who approach us with offers to donate.
International donations are gratefully accepted, but we cannot make any statements concerning tax treatment of donations received from outside the United States. U.S. laws alone swamp our small staff.
Please check the Project Gutenberg web pages for current donation methods and addresses. Donations are accepted in a number of other ways including checks, online payments and credit card donations. To donate, please visit: www.gutenberg.org/donate.
Section 5. General Information About Project Gutenberg™ electronic works Professor Michael S. Hart was the originator of the Project Gutenberg™ concept of a library of electronic works that could be freely shared with anyone. For forty years, he produced and distributed Project Gutenberg™ eBooks with only a loose network of volunteer support.
Project Gutenberg™ eBooks are often created from several printed editions, all of which are confirmed as not protected by copyright in the U.S. unless a copyright notice is included. Thus, we do not necessarily keep eBooks in compliance with any particular paper edition.
Most people start at our website which has the main PG search facility: www.gutenberg.org.
This website includes information about Project Gutenberg™, including how to make donations to the Project Gutenberg Literary Archive Foundation, how to help produce our new eBooks, and how to subscribe to our email newsletter to hear about new eBooks.