Instant download Advances in cryptology – asiacrypt 2017: 23rd international conference on the theor

Page 1


Advances

in Cryptology – ASIACRYPT 2017: 23rd International Conference on the Theory and Applications of Cryptology and Information Security, Hong Kong, China, December 3-7, 2017, Proceedings, Part II 1st Edition

Visit to download the full and correct content document: https://textbookfull.com/product/advances-in-cryptology-asiacrypt-2017-23rd-internati onal-conference-on-the-theory-and-applications-of-cryptology-and-information-securit y-hong-kong-china-december-3-7-2017-proceedings/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Advances in Cryptology – ASIACRYPT 2017: 23rd

International Conference on the Theory and Applications of Cryptology and Information Security, Hong Kong, China, December 3-7, 2017, Proceedings, Part II 1st Edition Tsuyoshi Takagi https://textbookfull.com/product/advances-in-cryptologyasiacrypt-2017-23rd-international-conference-on-the-theory-andapplications-of-cryptology-and-information-security-hong-kongchina-december-3-7-2017-proceedings/

Advances in Cryptology ASIACRYPT

2020 26th

International Conference on the Theory and Application of Cryptology and Information Security Daejeon South Korea December 7 11 2020 Proceedings Part II Shiho

Moriai https://textbookfull.com/product/advances-in-cryptologyasiacrypt-2020-26th-international-conference-on-the-theory-andapplication-of-cryptology-and-information-security-daejeon-southkorea-december-7-11-2020-proceedings-part-ii-shih/

Advances

in Cryptology ASIACRYPT 2020 26th

International Conference on the Theory and Application of Cryptology and Information Security Daejeon South

Korea December 7 11 2020 Proceedings Part I Shiho

Moriai https://textbookfull.com/product/advances-in-cryptologyasiacrypt-2020-26th-international-conference-on-the-theory-andapplication-of-cryptology-and-information-security-daejeon-southkorea-december-7-11-2020-proceedings-part-i-shiho/

Advances in Cryptology ASIACRYPT 2020 26th

International Conference on the Theory and Application of Cryptology and Information Security Daejeon South

Korea December 7 11 2020 Proceedings Part III Shiho

Moriai https://textbookfull.com/product/advances-in-cryptologyasiacrypt-2020-26th-international-conference-on-the-theory-andapplication-of-cryptology-and-information-security-daejeon-southkorea-december-7-11-2020-proceedings-part-iii-shi/

Advances in Cryptology – ASIACRYPT 2018: 24th

International Conference on the Theory and Application of Cryptology and Information Security, Brisbane, QLD, Australia, December 2–6, 2018, Proceedings, Part II

Thomas Peyrin

https://textbookfull.com/product/advances-in-cryptologyasiacrypt-2018-24th-international-conference-on-the-theory-andapplication-of-cryptology-and-information-security-brisbane-qldaustralia-december-2-6-201-2/

Advances in Cryptology ASIACRYPT 2019 25th

International Conference on the Theory and Application of Cryptology and Information Security Kobe Japan

December 8 12 2019 Proceedings Part II Steven D.

Galbraith https://textbookfull.com/product/advances-in-cryptologyasiacrypt-2019-25th-international-conference-on-the-theory-andapplication-of-cryptology-and-information-security-kobe-japandecember-8-12-2019-proceedings-part-ii-steven-d-gal/

Cryptology and Network Security 16th International Conference CANS 2017 Hong Kong China November 30 December 2 2017 Revised Selected Papers Srdjan Capkun

https://textbookfull.com/product/cryptology-and-networksecurity-16th-international-conference-cans-2017-hong-kong-chinanovember-30-december-2-2017-revised-selected-papers-srdjancapkun/

Advances

in Cryptology – ASIACRYPT 2018: 24th

International Conference on the Theory and Application of Cryptology and Information Security, Brisbane, QLD, Australia, December 2–6, 2018, Proceedings, Part I

Thomas Peyrin https://textbookfull.com/product/advances-in-cryptologyasiacrypt-2018-24th-international-conference-on-the-theory-andapplication-of-cryptology-and-information-security-brisbane-qldaustralia-december-2-6-201/

Advances in Cryptology – ASIACRYPT 2018: 24th

International Conference on the Theory and Application of Cryptology and Information Security, Brisbane, QLD, Australia, December 2–6, 2018, Proceedings, Part III

Thomas Peyrin https://textbookfull.com/product/advances-in-cryptologyasiacrypt-2018-24th-international-conference-on-the-theory-andapplication-of-cryptology-and-information-security-brisbane-qldaustralia-december-2-6-201-3/

Advances in Cryptology –ASIACRYPT 2017

23rd International Conference on the Theory and Applications of Cryptology and Information Security Hong Kong, China, December 3–7, 2017, Proceedings, Part II

LectureNotesinComputerScience10625

CommencedPublicationin1973

FoundingandFormerSeriesEditors: GerhardGoos,JurisHartmanis,andJanvanLeeuwen

EditorialBoard

DavidHutchison

LancasterUniversity,Lancaster,UK

TakeoKanade

CarnegieMellonUniversity,Pittsburgh,PA,USA

JosefKittler UniversityofSurrey,Guildford,UK

JonM.Kleinberg

CornellUniversity,Ithaca,NY,USA

FriedemannMattern

ETHZurich,Zurich,Switzerland

JohnC.Mitchell

StanfordUniversity,Stanford,CA,USA

MoniNaor

WeizmannInstituteofScience,Rehovot,Israel

C.PanduRangan

IndianInstituteofTechnology,Madras,India

BernhardSteffen

TUDortmundUniversity,Dortmund,Germany

DemetriTerzopoulos UniversityofCalifornia,LosAngeles,CA,USA

DougTygar UniversityofCalifornia,Berkeley,CA,USA

GerhardWeikum

MaxPlanckInstituteforInformatics,Saarbrücken,Germany

Moreinformationaboutthisseriesathttp://www.springer.com/series/7410

AdvancesinCryptology –ASIACRYPT2017

23rdInternationalConferenceontheTheory andApplicationsofCryptologyandInformationSecurity HongKong,China,December3–7,2017

Proceedings,PartII

TheUniversityofTokyo

Tokyo

Japan

ThomasPeyrin

NanyangTechnologicalUniversity

Singapore

Singapore

ISSN0302-9743ISSN1611-3349(electronic) LectureNotesinComputerScience

ISBN978-3-319-70696-2ISBN978-3-319-70697-9(eBook) https://doi.org/10.1007/978-3-319-70697-9

LibraryofCongressControlNumber:2017957984

LNCSSublibrary:SL4 – SecurityandCryptology

© InternationalAssociationforCryptologicResearch2017

Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartofthe materialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodologynow knownorhereafterdeveloped.

Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse.

Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbookare believedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsortheeditors giveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforanyerrorsor omissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictionalclaimsin publishedmapsandinstitutionalaffiliations.

Printedonacid-freepaper

ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland

Preface

ASIACRYPT2017,the23rdAnnualInternationalConferenceonTheoryandApplicationofCryptologyandInformationSecurity,washeldinHongKong,SARChina, duringDecember3–7,2017.

Theconferencefocusedonalltechnicalaspectsofcryptology,andwassponsored bytheInternationalAssociationforCryptologicResearch(IACR).

ASIACRYPT2017received243submissionsfromallovertheworld.TheProgram Committeeselected67papers(fromwhichtwoweremerged)forpublicationinthe proceedingsofthisconference.Thereviewprocesswasmadebytheusual double-blindpeerreviewbytheProgramCommitteeconsistingof48leadingexperts ofthe field.Eachsubmissionwasreviewedbyatleastthreereviewers,and five reviewerswereassignedtosubmissionsco-authoredbyProgramCommitteemembers. Thisyear,theconferenceoperatedatwo-roundreviewsystemwithrebuttalphase.In the first-roundreviewtheProgramCommitteeselectedthe146submissionsthatwere consideredofvalueforproceedingtothesecondround.Inthesecond-roundreviewthe ProgramCommitteefurtherreviewedthesubmissionsbytakingintoaccounttheir rebuttalletterfromtheauthors.Alltheselectionprocesswasassistedby334external reviewers.Thesethree-volumeproceedingscontaintherevisedversionsofthepapers thatwereselected.Therevisedversionswerenotreviewedagainandtheauthorsare responsiblefortheircontents.

TheprogramofASIACRYPT2017featuredthreeexcellentinvitedtalks.Dustin Moodygaveatalkentitled “TheShipHasSailed:TheNISTPost-QuantumCryptography ‘Competition’ , ” WangHuaxiongspokeon “CombinatoricsinInformationTheoreticCryptography,” andPascalPailliergaveathirdtalk.Theconferencealso featuredatraditionalrumpsessionthatcontainedshortpresentationsonthelatest researchresultsofthe field.TheProgramCommitteeselectedthework “Identifi cation ProtocolsandSignatureSchemesBasedonSupersingularIsogenyProblems” by StevenD.Galbraith,ChristophePetit,andJavierSilvafortheBestPaperAwardof ASIACRYPT2017.Twomorepapers, “KummerforGenusOneoverPrimeOrder Fields” bySabyasachiKaratiandPalashSarkar,and “ASubversion-ResistantSNARK” byBehzadAbdolmaleki,KarimBaghery,HelgerLipmaa,andMichał Zajacwere solicitedtosubmitthefullversionstothe JournalofCryptology.Theprogramchairs selectedTakahiroMatsudaandBartMenninkfortheBestPCMemberAward.

ManypeoplehavecontributedtothesuccessofASIACRYPT2017.Wewouldlike tothanktheauthorsforsubmittingtheirresearchresultstotheconference.Wearevery gratefultoalloftheProgramCommitteemembersaswellastheexternalreviewersfor theirfruitfulcommentsanddiscussionsontheirareasofexpertise.Wearegreatly indebtedtoDuncanWongandSiuMingYiu,thegeneralco-chairs,fortheireffortsand overallorganization.WewouldalsoliketothankAllenAu,CatherineChan, ShermanS.M.Chow,LucasHui,ZoeJiang,XuanWang,andJunZhang,thelocal

OrganizingCommittee,fortheircontinuoussupports.WethankDuncanWongandSiu MingYiuforexpertlyorganizingandchairingtherumpsession.

Finally,wethankShaiHaleviforlettingususehisnicesoftwareforsupportingall thepapersubmissionandreviewprocess.WealsothankAlfredHofmann,Anna Kramer,andtheircolleaguesforhandlingtheeditorialprocessoftheproceedings publishedatSpringerLNCS. December2017TsuyoshiTakagi

ThomasPeyrin

ASIACRYPT2017

The23rdAnnualInternationalConferenceonTheory andApplicationofCryptologyandInformationSecurity

SponsoredbytheInternationalAssociationforCryptologicResearch(IACR)

December3–7,2017,HongKong,SARChina

GeneralCo-chairs

DuncanWongCryptoBLKLimited

SiuMingYiuTheUniversityofHongKong,SARChina

ProgramCo-chairs

TsuyoshiTakagiUniversityofTokyo,Japan

ThomasPeyrinNanyangTechnologicalUniversity,Singapore

ProgramCommittee

ShwetaAgrawalIITMadras,India

CélineBlondeauAaltoUniversity,Finland

JoppeW.BosNXPSemiconductors,Belgium

ChrisBrzuskaTUHamburg,Germany

JieChenEastChinaNormalUniversity,China

ShermanS.M.ChowTheChineseUniversityofHongKong,SARChina

Kai-MinChungAcademiaSinica,Taiwan

NicoDöttlingUniversityofCalifornia,Berkeley,USA

ThomasEisenbarthWorcesterPolytechnicInstitute,USA DarioFioreIMDEASoftwareInstitute,Madrid,Spain

GeorgFuchsbauerInriaandENS,France

StevenGalbraithAucklandUniversity,NewZealand JianGuoNanyangTechnologicalUniversity,Singapore VietTungHoangFloridaStateUniversity,USA

JérémyJeanANSSI,France

JooyoungLeeKAIST,SouthKorea

DongdaiLinChineseAcademyofSciences,China Feng-HaoLiuFloridaAtlanticUniversity,USA

StefanMangardGrazUniversityofTechnology,Austria

TakahiroMatsudaAIST,Japan

AlexanderMayRuhrUniversityBochum,Germany

BartMenninkRadboudUniversity,TheNetherlands

AmirMoradiRuhrUniversityBochum,Germany

PratyayMukherjeeVisaResearch,USA

MridulNandiIndianStatisticalInstitute,India

KhoaNguyenNanyangTechnologicalUniversity,Singapore MiyakoOhkuboNICT,Japan

TatsuakiOkamotoNTTSecurePlatformLaboratories,Japan

ArpitaPatraIndianInstituteofScience,India

BartPreneelKULeuven,Belgium

MatthieuRivainCryptoExperts,France

ReihanehSafavi-NainiUniversityofCalgary,Canada

YuSasakiNTTSecurePlatformLaboratories,Japan

PeterSchwabeRadboudUniversity,TheNetherlands FangSongPortlandStateUniversity,USA

Francois-XavierStandaertUCL,Belgium

DamienStehlé ENSLyon,France

RonSteinfeldMonashUniversity,Australia

RainerSteinwandtFloridaAtlanticUniversity,USA

MehdiTibouchiNTTSecurePlatformLaboratories,Japan

DominiqueUnruhUniversityofTartu,Estonia

GillesVanAsscheSTMicroelectronics,Belgium SergeVaudenayEPFL,Switzerland

IngridVerbauwhedeKULeuven,Belgium IvanViscontiUniversityofSalerno,Italy

LeiWangShanghaiJiaotongUniversity,China

MeiqinWangShandongUniversity,China

JiangZhangStateKeyLaboratoryofCryptology,China

AdditionalReviewers

MasayukiAbe

ArashAfshar

DiveshAggarwal

ShashankAgrawal

AhmadAhmadi

MamunAkand

GorjanAlagic

JoelAlwen

AbdelrahamanAly

MiguelAmbrona

ElenaAndreeva

DiegoAranha

NuttapongAttrapadung

SepidehAvizheh

Saikrishna

Badrinarayanan

ShiBai

FatihBalli

SubhadeepBanik

ZhenzhenBao

HridamBasu

AlbertoBatistello

BalthazarBauer

CarstenBaum

GeorgT.Becker

ChristofBeierle

SoniaBeläd

FabriceBenhamouda

FrancescoBerti

GuidoBertoni

SanjayBhattacherjee

Jean-FrancoisBiasse

BegülBilgin

OlivierBlazy

JohannesBloemer

SoniaMihaelaBogos

SashaBoldyreva

CharlotteBonte

RaphaelBost

LeifBoth

FlorianBourse

SébastienCanard

BrentCarmer

WouterCastryck

DarioCatalano

Gizem Çetin

AvikChakraborti

NishanthChandran

MelissaChase

BinyiChen

CongChen

LongChen

Yi-HsiuChen

YuChen

Yu-ChiChen

Nai-HuiChia

GwangbaeChoi

WutichaiChongchitmate

Chi-NingChou

AshishChoudhury

Chitchanok

Chuengsatiansup

HaoChung

MicheleCiampi

ThomasDeCnudde

KatrielCohn-Gordon

HenryCorrigan-Gibbs

CraigCostello

GeoffroyCouteau

EricCrockett

TingtingCui

EdouardCuvelier

JoanDaemen

WeiDai

PratishDatta

BernardoDavid

MargueriteDelcourt

JeroenDelvaux

YiDeng

DavidDerler

JulienDevigne

ClausDiem

ChristophDobraunig

YarkinDoroz

LéoDucas

DungH.Duong

RatnaDutta

StefanDziembowski

MariaEichlseder

MuhammedEsgin

ThomasEspitau

XiongFan

AntonioFaonio

SebastianFaust

BjörnFay

SergeFehr

LucaDeFeo

NilsFleischhacker

Jean-PierreFlori

ToreKasperFrederiksen

ThomasFuhr

MarcFyrbiak

TommasoGagliardoni

ChayaGanesh

FlavioGarcia

PierrickGaudry

RémiGéraud

SatrajitGhosh

IreneGiacomelli

BenediktGierlichs

JunqingGong

LouisGoubin

AlexGrilo

HannesGross

VincentGrosso

ChunGuo

HuiGuo

HeleneHaagh

PatrickHaddad

HarryHalpin

ShuaiHan

YoshikazuHanatani

JensHermans

GottfriedHerold

JuliaHesse

FelixHeuer

MinkiHhan

FumitakaHoshino

Yin-HsunHuang

ZhenyuHuang

AndreasHülsing

JungYeonHwang

IliaIliashenko

MehmetInci

VincenzoIovino

AiIshida

TakanoriIsobe

TetsuIwata

MalikaIzabachène

MichaelJacobson

AbhishekJain

DavidJao

ZhengfengJi

DingdingJia

ShaoquanJiang

AnthonyJournault

Jean-GabrielKammerer

SabyasachiKarati

HandanKilinç

DongwooKim

JihyeKim

Jon-LarkKim

SamKim

TaechanKim

ElenaKirshanova

ÁgnesKiss

FuyukiKitagawa

SusumuKiyoshima

ThorstenKleinjung

MiroslavKnezevic

AlexanderKoch

FrançoisKoeune

KonradKohbrok

LisaKohl

IlanKomargodski

YashvanthKondi

RobertKuebler

FrédéricLafitte

Ching-YiLai

RussellW.F.Lai

AdelineLanglois

GregorLeander

ChangminLee

HyungTaeLee

IraklisLeontiadis

TancrèdeLepoint

DebbieLeung

YongqiangLi

Jyun-JieLiao

BenoitLibert

FuchunLin

Wei-KaiLin

PatrickLonga

JulianLoss

SteveLu

XianhuiLu

AtulLuykx

ChangLv

VadimLyubashevsky

MonosijMaitra

MaryMaller

GiorgiaAzzurraMarson

MarcoMartinoli

DanielMasny

SarahMeiklejohn

PeihanMiao

MicheleMinelli

TakaakiMizuki

AhmadMoghimi

PaymanMohassel

MariaChiaraMolteni

SeyyedAmirMortazavi

FabriceMouhartem

KöksalMus

MichaelNaehrig

RyoNishimaki

AncaNitulescu

LucaNizzardo

KojiNuida

KaisaNyberg

AdamO’Neill

TobiasOder

OlyaOhrimenko

EmmanuelaOrsini

ElisabethOswald

ElenaPagnin

PascalPaillier

JiaxinPan

AlainPasselègue

SikharPatranabis

RoelPeeters

ChrisPeikert

AlicePellet-Mary

LudovicPerret

PeterPessl

ThomasPeters

ChristophePetit

DuongHieuPhan

AntigoniPolychroniadou

RomainPoussier

AliPoustindouz

EmmanuelProuff

KexinQiao

BaodongQin

SebastianRamacher

SominduC.Ramanna

ShahramRasoolzadeh

DivyaRavi

FrancescoRegazzoni

Jean-René Reinhard

LingRen

JoostRenes

OscarReparaz

JoostRijneveld

DamienRobert

JérémieRoland

ArnabRoy

SujoySinhaRoy

VladimirRozic

JoerideRuiter

YusukeSakai

AminSakzad

SimonaSamardjiska

OlivierSanders

PascalSasdrich

AlessandraScafuro

JohnSchanck

TobiasSchneider

JacobSchuldt

GilSegev

OkanSeker

BinandaSengupta

SouravSengupta

JaeHongSeo

MasoumehShafienejad

SetarehShari fian

SinaShiehian

KazumasaShinagawa

DaveSingelée

ShashankSingh

JavierSilva

LuisaSiniscalchi

DanielSlamanig

BenjaminSmith

LingSong

PratikSoni

KoutarouSuzuki

AlanSzepieniec

BjörnTackmann

MostafaTaha

RaymondK.H.Tai

KatsuyukiTakashima

AtsushiTakayasu

BenjaminHong

MengTan

QiangTang

YanBoTi

YosukeTodo

NiTrieu

RobertoTrifiletti

ThomasUnterluggauer

JohnvandeWetering

Muthuramakrishnan

Venkitasubramaniam

DanieleVenturi

Dhinakaran

Vinayagamurthy

VanessaVitse

DamianVizár

SatyanarayanaVusirikala

SebastianWallat

AlexandreWallet

HaoyangWang

MinqianWang

WenhaoWang

XiuhuaWang

YuyuWang

FelixWegener

PuwenWei

WeiqiangWen

MarioWerner

BenjaminWesolowski

BaofengWu

DavidWu

KeitaXagawa

ZejunXiang

ChengboXu

ShotaYamada

KanYang

KangYang

KanYasuda

DonggeonYhee

KazukiYoneyama

KisoonYoon

YuYu

ZuoxiaYu

HenryYuen

AaramYun

MahdiZamani

GregZaverucha

CongZhang

JieZhang

KaiZhang

LocalOrganizingCommittee

Co-chairs

RenZhang

WentaoZhang

YongjunZhao

YuqingZhu

DuncanWongCryptoBLKLimited SiuMingYiuTheUniversityofHongKong,SARChina

Members

LucasHui(Chair)TheUniversityofHongKong,SARChina CatherineChan(Manager)TheUniversityofHongKong,SARChina JunZhangTheUniversityofHongKong,SARChina XuanWangHarbinInstituteofTechnology,Shenzhen,China ZoeJiangHarbinInstituteofTechnology,Shenzhen,China AllenAuTheHongKongPolytechnicUniversity,SARChina ShermanS.M.ChowTheChineseUniversityofHongKong,SARChina

InvitedSpeakers

TheShipHasSailed:theNISTPost-quantum Cryptography “Competition”

Abstract. Inrecentyears,therehasbeenasubstantialamountofresearchon quantumcomputers – machinesthatexploitquantummechanicalphenomenato solvemathematicalproblemsthataredifficultorintractableforconventional computers.Iflarge-scalequantumcomputersareeverbuilt,theywillcompromisethesecurityofmanycommonlyusedcryptographicalgorithms.Inparticular,quantumcomputerswouldcompletelybreakmanypublic-key cryptosystems,includingthosestandardizedbyNISTandotherstandards organizations.

Duetothisconcern,manyresearchershavebeguntoinvestigatepostquantumcryptography(alsocalledquantum-resistantcryptography).Thegoal ofthisresearchistodevelopcryptographicalgorithmsthatwouldbesecure againstbothquantumandclassicalcomputers,andcaninteroperatewith existingcommunicationsprotocolsandnetworks.Asignificanteffortwillbe requiredtodevelop,standardize,anddeploynewpost-quantumalgorithms.In addition,thistransitionneedstotakeplacewellbeforeanylarge-scalequantum computersarebuilt,sothatanyinformationthatislatercompromisedby quantumcryptanalysisisnolongersensitivewhenthatcompromiseoccurs.

NISThastakenseveralstepsinresponsetothispotentialthreat.In2015, NISTheldapublicworkshopandlaterpublishedNISTIR8105,Reporton Post-QuantumCryptography,whichsharesNIST’sunderstandingofthestatus ofquantumcomputingandpost-quantumcryptography.NISTalsodecidedto developadditionalpublic-keycryptographicalgorithmsthroughapublicstandardizationprocess,similartothedevelopmentprocessesforthehashfunction SHA-3andtheAdvancedEncryptionStandard(AES).Tobegintheprocess, NISTissuedadetailedsetofminimumacceptabilityrequirements,submission requirements,andevaluationcriteriaforcandidatealgorithms,availableat http:// www.nist.gov/pqcrypto.Thedeadlineforalgorithmstobesubmittedwas November30,2017.

Inthistalk,IwillsharetherationaleonthemajordecisionsNISThasmade, suchasexcludinghybridand(stateful)hash-basedsignatureschemes.Iwillalso talkaboutsomeopenresearchquestionsandtheirpotentialimpactonthe standardizationeffort,inadditiontosomeofthepracticalissuesthatarosewhile creatingtheAPI.Finally,Iwillgivesomepreliminaryinformationaboutthe submittedalgorithms,anddiscusswhatwe’velearnedduringthe firstpartofthe standardizationprocess.

CombinatoricsinInformation-Theoretic Cryptography

SchoolofPhysicalandMathematicalSciences, NanyangTechnologicalUniversity,Singapore hxwang@ntu.edu.sg

Abstract. Information-theoreticcryptographyisanareathatstudiescryptographicfunctionalitieswhosesecuritydoesnotrelyonhardnessassumptions fromcomputationalintractabilityofmathematicalproblems.Itcoversawide rangeofcryptographicresearchtopicssuchasone-timepad,authentication code,secretsharingschemes,securemultipartycomputation,privateinformationretrievalandpost-quantumsecurityetc.,justtomentionafew.Moreover, manyareasincomplexity-basedcryptographyarewellknowntobenefitorstem frominformation-theoreticmethods.Ontheotherhand,combinatoricshasbeen playinganactiveroleincryptography,forexample,thehardnessofHamiltonian cycleexistenceingraphtheoryisusedtodesignzero-knowledgeproofs.Inthis talk,Iwillfocusontheconnectionsbetweencombinatoricsandinformationtheoreticcryptography.Afterabrief(incomplete)overviewontheirvarious connections,Iwillpresentafewconcreteexamplestoillustratehowcombinatorialobjectsandtechniquesareappliedtotheconstructionsandcharacterizationsofinformation-theoreticschemes.Specifically,Iwillshow

1.howperfecthashfamiliesandcover-freefamiliesleadtobetterperformance incertainsecretsharingschemes;

2.howgraphcolouringfromplanargraphsisusedinconstructingsecure multipartycomputationprotocolsovernon-abeliangroups;

3.howregularintersectingfamiliesareappliedtotheconstructionsofprivate informationretrievalschemes.

Contents – PartII

Asiacrypt2017AwardPaperI

KummerforGenusOneoverPrimeOrderFields....................3 SabyasachiKaratiandPalashSarkar

Pairing-basedProtocols

ABEwithTagMadeEasy:ConciseFrameworkandNewInstantiations inPrime-OrderGroups......................................35 JieChenandJunqingGong

TowardsaClassificationofNon-interactiveComputationalAssumptions inCyclicGroups...........................................66 EssamGhadafiandJensGroth

AnEfficientPairing-BasedShuffleArgument.......................97 PrastudyFauzi,HelgerLipmaa,JannoSiim,andMichał Zając

EfficientRingSignaturesintheStandardModel.....................128 GiulioMalavoltaandDominiqueSchröder

QuantumAlgorithms

GroverMeetsSimon – QuantumlyAttackingtheFX-construction.........161 GregorLeanderandAlexanderMay

QuantumMulticollision-FindingAlgorithm........................179 AkinoriHosoyamada,YuSasaki,andKeitaXagawa

AnEfficientQuantumCollisionSearchAlgorithmandImplications onSymmetricCryptography...................................211 André Chailloux,MaríaNaya-Plasencia,andAndré Schrottenloher

QuantumResourceEstimatesforComputingEllipticCurve DiscreteLogarithms........................................241 MartinRoetteler,MichaelNaehrig,KrystaM.Svore,andKristinLauter

EllipticCurves

qDSA:SmallandSecureDigitalSignatureswithCurve-Based Diffie–HellmanKeyPairs....................................273 JoostRenesandBenjaminSmith

ASimpleandCompactAlgorithmforSIDHwithArbitrary DegreeIsogenies...........................................303

CraigCostelloandHuseyinHisil

FasterAlgorithmsforIsogenyProblemsUsingTorsionPointImages......330 ChristophePetit

BlockChains

BeyondHellman’sTime-MemoryTrade-OffswithApplications toProofsofSpace..........................................357

HamzaAbusalah,JoëlAlwen,BramCohen,DanyloKhilko, KrzysztofPietrzak,andLeonidReyzin

TheSleepyModelofConsensus................................380 RafaelPassandElaineShi

InstantaneousDecentralizedPoker...............................410 IddoBentov,RanjitKumaresan,andAndrewMiller

Multi-partyProtocols

MoreEfficientUniversalCircuitConstructions......................443 DanielGünther, ÁgnesKiss,andThomasSchneider

EfficientScalableConstant-RoundMPCviaGarbledCircuits............471

AnerBen-Efraim,YehudaLindell,andEranOmri

OverlayingConditionalCircuitClausesforSecureComputation..........499 W.SeanKennedy,VladimirKolesnikov,andGordonWilfong

JIMU:FasterLEGO-BasedSecureComputationUsingAdditive HomomorphicHashes.......................................529 RuiyuZhuandYanHuang

OperatingModesSecurityProofs

AnalyzingMulti-keySecurityDegradation.........................575 AtulLuykx,BartMennink,andKennethG.Paterson

Full-StateKeyedDuplexwithBuilt-InMulti-userSupport..............606 JoanDaemen,BartMennink,andGillesVanAssche

ImprovedSecurityforOCB3..................................638 RitamBhaumikandMridulNandi

TheIteratedRandomFunctionProblem...........................667 RitamBhaumik,NilanjanDatta,AvijitDutta,NickyMouha, andMridulNandi

AuthorIndex

Asiacrypt2017AwardPaperI

KummerforGenusOneoverPrimeOrderFields

SabyasachiKarati1(B) andPalashSarkar2

1 iCISLab,DepartmentofComputerScience, UniversityofCalgary,Calgary,Canada sabyasachi.karati@ucalgary.ca

2 AppliedStatisticsUnit,IndianStatisticalInstitute, 203,B.T.Road,Kolkata700108,India palash@isical.ac.in

Abstract. Thisworkconsiderstheproblemoffastandsecurescalar multiplicationusingcurvesofgenusonedefinedoverafieldofprime order.PreviousworkbyGaudryandLubiczin2009hadsuggestedthe useoftheassociatedKummerlinetospeedupscalarmultiplication.In thiswork,weexplorethisideaindetail.Thefirsttaskistoobtainan ellipticcurveinLegendreformwhichsatisfiesnecessarysecurityconditionssuchthattheassociatedKummerlinehassmallparameters andabasepointwithsmallcoordinates.Inturnsoutthattheladder stepontheKummerlinesupportsparallelismandcanbeimplemented veryefficientlyinconstanttimeusingthesingle-instructionmultipledata(SIMD)operationsavailableinmodernprocessors.Forthe128-bit securitylevel,thisworkpresentsthreeKummerlinesdenotedas K1 := KL2519(81, 20), K2 := KL25519(82, 77)and K3 := KL2663(260, 139)over thethreeprimes2251 9,2255 19and2266 3respectively.ImplementationsofscalarmultiplicationsforallthethreeKummerlinesusing Intelintrinsicshavebeendoneandthecodeispubliclyavailable.TimingresultsontherecentSkylakeandtheearlierHaswellprocessorsof Intelindicatethatbothfixedbaseandvariablebasescalarmultiplicationsfor K1 and K2 arefasterthanthoseachievedby Sandy2x whichis ahighlyoptimisedSIMDimplementationinassemblyofthewellknown Curve25519;forexample,onSkylake,variablebasescalarmultiplicationon K1 isfasterthan Curve25519 byabout25%.OnSkylake,both fixedbaseandvariablebasescalarmultiplicationfor K3 arefasterthan Sandy2x;whereasonHaswell,fixedbasescalarmultiplicationfor K3 is fasterthan Sandy2x whilevariablebasescalarmultiplicationforboth K3 and Sandy2x takeroughlythesametime.Infact,onSkylake, K3 isbothfasterandalsooffersabout5bitsofhighersecuritycompared to Curve25519.Inpracticalterms,theparticularKummerlinesthatare introducedinthisworkareseriouscandidatesfordeploymentandstandardisation.

Keywords: Ellipticcurvecryptography · Kummerline · Montgomery curve · Scalarmultiplication

S.Karati—Partoftheworkwasdonewhiletheauthorwasapost-doctoralfellow attheTuringLaboratoryoftheIndianStatisticalInstitute. PartsupportedbyAlbertaInnovatesintheProvinceofAlberta,Canada.

c InternationalAssociationforCryptologicResearch2017

T.TakagiandT.Peyrin(Eds.):ASIACRYPT2017,PartII,LNCS10625,pp.3–32,2017. https://doi.org/10.1007/978-3-319-70697-9 1

1Introduction

Curve-basedcryptographyprovidesaplatformforsecureandefficientimplementationofpublickeyschemeswhosesecurityrelyonthehardnessofdiscretelogarithmproblem.StartingfromthepioneeringworkofKoblitz[29]and Miller[33]introducingellipticcurvesandtheworkofKoblitz[30]introducing hyperellipticcurvesforcryptographicuse,thelastthreedecadeshaveseenan extensiveamountofresearchinthearea.

Appropriatelychosenellipticcurvesandgenustwohyperellipticcurvesare consideredtobesuitableforpracticalimplementation.Table 1 summarisesfeaturesforsomeoftheconcretecurvesthathavebeenproposedintheliterature. Arguably,thetwomostwellknowncurvesproposedtilldateforthe128-bit securitylevelareP-256[37]andCurve25519[2].Alsothe secp256k1 curve[40] hasbecomeverypopularduetoitsdeploymentintheBitcoinprotocol.Allof thesecurvesareinthesettingofgenusoneoverprimeorderfields.Inparticular, wenotethatCurve25519hasbeenextensivelydeployedforvariousapplications. Alistingofsuchapplicationscanbefoundat[17].So,fromthepointofview ofdeployment,practitionersareveryfamiliarwithgenusonecurvesoverprime orderfields.Influentialorganisations,suchasNIST,Brainpool,Microsoft(the NUMScurve)haveconcreteproposalsinthissetting.See[5]forafurtherlisting ofsuchprimesandcurves.Itisquitelikelythatanyfutureportfolioofproposals bystandardisationbodieswillincludeatleastonecurveinthesettingofgenus oneoveraprimefield.

OurContributions

Thecontributionofthispaperistoproposenewcurvesforthesettingofgenus oneoveraprimeorderfield.ActualscalarmultiplicationisdoneovertheKummerlineassociatedwithsuchacurve.TheideaofusingKummerlinewasproposedbyGaudryandLubicz[22].They,however,werenotclearaboutwhether competitivespeedscanbeobtainedusingthisapproach.Ourmaincontribution istoshowthatthiscanindeedbedoneusingthesingle-instructionmultipledata(SIMD)instructionsavailableinmodernprocessors.Wenotethattheuse ofSIMDinstructionstospeedupcomputationhasbeenearlierproposedfor Kummersurfaceassociatedwithgenustwohyperellipticcurves[22].Theapplicationofthisidea,however,toKummerlinehasnotbeenconsideredinthe literature.OurworkfillsthisgapandshowsthatproperlyusingSIMDinstructionsprovidesacompetitivealternativetoknowncurvesinthesettingofgenus oneandprimeorderfields.

AsinthecaseofMontgomerycurve[34],scalarmultiplicationontheKummerlineproceedsviaaladderingalgorithm.Aladderstepcorrespondstoeach bitofthescalarandeachsuchstepconsistsofadoublingandadifferential additionirrespectiveofthevalueofthebit.Asaconsequence,itbecomeseasy todevelopcodewhichrunsinconstanttime.Wedescribeandimplementavectorisedversionoftheladderingalgorithmwhichisalsoconstanttime.Ourtarget isthe128-bitsecuritylevel.

Table1. Featuresofsomecurvesproposedinthelastfewyears.

Reference Genus Form Fieldorder Endomorphisms

NISTP-256[37] 1 Weierstrass Prime No

Curve25519[2] 1 Montgomery Prime No

secp256k1[40] 1 Weierstrass Prime No

Brainpool[11] 1 Weierstrass Prime No

NUMS[41] 1 TwistedEdwards

Longa-Sica[32]

Bosetal.[9]

Bosetal.[10]

Hankersonetal.[26], Olivieraetal.[38] 1 Weierstrass/Koblitz 2n Yes

Longa-Sica[32], Faz-Hern´andezet al.[18] 1 TwistedEdwards p 2 Yes

Costelloetal.[15] 1 Montgomery p 2 Yes

Gaudry-Schost[23], Bernsteinetal.[4] 2 Kummer

Costello-Longa[14]

Hankersonetal.[26], Olivieraetal.[39]

Thiswork 1 Kummer Prime No

ChoiceoftheUnderlyingField: Ourtargetisthe128-bitsecuritylevel.To thisend,weconsiderthreeprimes,namely,2251 9,2255 19and2266 3.These primesareabbreviatedas p2519, p25519and p2663respectively.Theunderlying fieldwillbedenotedas Fp where p isoneof p2519, p25519or p2663.

ChoiceoftheKummerLine: Followingprevioussuggestions[3, 9],weworkin thesquare-onlysetting.Inthiscase,theparametersoftheKummerlinearegiven bytwointegers a2 and b2 .WeprovideappropriateKummerlinesforallthree oftheprimes p2519, p25519and p2663.Thesearedenotedas KL2519(81,20), KL25519(82,77) and KL2663(260,139) respectively.Ineachcase,weidentifya basepointwithsmallcoordinates.TheselectionoftheKummerlinesisdone usingasearchforcurvesachievingcertaindesiredsecurityproperties.Laterwe providethedetailsofthesepropertieswhichindicatethatthecurvesprovide securityatthe128-bitsecuritylevel.

SIMDImplementation: OnIntelprocessors,itispossibletopack464-bit wordsintoasingle256-bitquantityandthenuseSIMDinstructionstosimultaneouslyworkonthe464-bitwords.Weapplythisapproachtocarefullyconsidervariousaspectsoffieldarithmeticover Fp .SIMDinstructionsallowthe simultaneouscomputationof4multiplicationsin Fp andalso4squaringsin Fp .

TheuseofSIMDinstructionsdovetailsverynicelywiththescalarmultiplication algorithmovertheKummerlineasweexplainbelow.

Fig.1. Oneladdersteponthe Kummerline.

OneladderstepontheMontgomery curve.

ScalarMultiplicationovertheKummerLine: Auniform,ladderstyle algorithmisused.Intermsofoperationcount,eachladdersteprequires2field multiplications,6fieldsquarings,6multiplicationsbyparametersand2multiplicationsbybasepointcoordinates[22].Incontrast,oneladdersteponthe Montgomerycurverequires4fieldmultiplications,4squarings,1multiplication bycurveparameterand1multiplicationbyabasepointcoordinate.Thishad ledtoGaudryandLubicz[22]commentingthatKummerlinecanbeadvantageousprovidedthattheadvantageoftradingoffmultiplicationsforsquarings isnotoffsetbytheextramultiplicationsbytheparametersandthebasepoint coordinates.

OurchoicesoftheKummerlinesensurethattheparametersandthebase pointcoordinatesareindeedverysmall.ThisisnottosuggestthattheKummer lineisonlysuitableforfixedbasedpointscalarmultiplication.ThemainadvantagearisesfromthestructureoftheladderstepontheKummerlineversusthat ontheMontgomerycurve.

AnexampleoftheladderstepontheKummerlineisshowninFig. 1.Inthe figure,theHadamardtransform H(u,v )isdefinedtobe(u + v,u v ).Observe thatthereare4layersof4simultaneousmultiplications.Thefirstlayerconsists of2fieldmultiplicationsand2squarings,whilethethirdlayerconsistsof4 fieldsquarings.Using256-bitSIMDinstructions,the2multiplicationsandthe2 squaringsinthefirstlayercanbecomputedsimultaneouslyusinganimplementationofvectorisedfieldmultiplicationwhilethethirdlayercanbecomputed usinganimplementationofvectorisedfieldsquaring.Thesecondlayerconsists

Fig.2.

onlyofmultiplicationsbyparametersandiscomputedusinganimplementation ofvectorisedmultiplicationbyconstants.Thefourthlayerconsistsoftwomultiplicationsbyparametersandtwomultiplicationsbybasepointcoordinates.For fixedbasepoint,thislayercanbecomputedusingasinglevectorisedmultiplicationbyconstantswhileforvariablebasepoint,thislayerrequiresavectorised fieldmultiplication.AmajoradvantageoftheladderstepontheKummerlineis thatthepackingandunpackinginto256-bitquantitiesisdoneonceeach.Packingisdoneatthestartofthescalarmultiplicationandunpackingisdoneatthe end.Theentirescalarmultiplicationcanbecomputedonthepackedvectorised quantities.

Incontrast,theladderstepontheMontgomerycurveisshowninFig. 2 whichhasbeenreproducedfrom[2].ThestructureofthisladderisnotasregularastheladderstepontheKummerline.Thismakesitdifficulttooptimally grouptogetherthemultiplicationsforSIMDimplementation. Curve25519 isa Montgomerycurve.SIMDimplementationsof Curve25519 havebeenreported in[7, 12, 16, 19].Thework[16]formsfourgroupsofindependentmultiplications/squaringswiththefirstandthethirdgroupconsistingoffourmultiplications/squaringseach,thesecondgroupconsistingoftwomultiplications andthefourthgroupconsistsofasinglemultiplication.Interspersedwith thesemultiplicationsaretwogroupseachconsistingoffourindependentadditions/subtractions.Themainproblemwiththisapproachisthatofrepeated packing/unpackingofdatawithinaladderstep.Thisdrawbackwilloutweigh thebenefitsoffoursimultaneousSIMDmultiplicationsandthisapproachhas notbeenfollowedinlaterworks[7, 12, 19].Theselaterimplementationsgrouped togetheronlytwoindependentmultiplications.Inparticular,wenotethatthe wellknown Sandy2x implementationof Curve25519 isanSIMDimplementationwhichisbasedon[12]andgroupstogetheronlytwomultiplications.AVX2 basedimplementationofCurve25519in[19]alsogroupstogetheronly2multiplications/squarings.

Ataforum1 TungChoucomments(perhapsobliviousof[16])thatitwould bettertofindfourindependentmultiplications/squaringsandvectorisethem.As discussedabove,thepreviousworksonSIMDimplementationof Curve25519 do notseemtohavebeenabletoidentifythis.Ontheotherhand,fortheladderstep ontheKummerlineshowninFig. 1,performingvectorisationof4independent multiplications/squaringscomesquitenaturally.Thisindicatesthattheladder stepontheKummerlineismoreSIMDfriendlythantheladdersteponthe Montgomerycurve.

Implementation: WereportimplementationsofallthethreeKummerlines KL2519(81,20), KL25519(82,77) and KL2663(260,139).Theimplementationsare inIntelintrinsicsanduseAVX2instructions.OntherecentSkylakeprocessor, bothfixedandvariablebasescalarmultiplicationsforallthethreeKummerlines arefasterthan Sandy2x whichisthepresentlythebestknownSIMDimplementationinassemblyof Curve25519.OntheearlierHaswellprocessor,bothfixed andvariablebasescalarmultiplicationsfor KL2519(81,20), KL25519(82,77) are 1 https://moderncrypto.org/mail-archive/curves/2015/000637.html

fasterthanthatof Sandy2x;fixedbasescalarmultiplicationfor KL2663(260,139) isfasterthanthatof Sandy2x whilevariablebasescalarmultiplicationforboth KL2663(260,139) and Sandy2x takeroughlythesametime.Detailedtiming resultsareprovidedlater.

Atabroadlevel,thetimingresultsreportedinthisworkshowthattheavailabilityofSIMDinstructionsleadstothefollowingtwopracticalconsequences.

1.Atthe128-bitsecuritylevel,thechoiceof F2255 19 asthebasefieldisnotthe fastest.Ifoneiswillingtosacrificeabout2bitsofsecurity,thenusing F2251 9 asthebasefieldleadstoabout25%speedupontheSkylakeprocessor.

2.Moregenerally,theladderstepontheKummerlineisfasterthantheladder stepontheMontgomerycurve.Wehavedemonstratedthisbyimplementing ontheIntelprocessors.Futureworkcanexplorethisissueonotherplatforms suchastheARMNEONarchitecture.

Duetopagelimitrestrictions,weareunabletoincludeallthedetailsinthis version.Theseareprovidedinthefullversion[28].

2Background

Inthissection,webrieflydescribethetafunctionsovergenusone,Kummer lines,Legendreformellipticcurvesandtheirrelations.Inourdescriptionofthe backgroundmaterial,thefullversion[28]providescertaindetailswhicharenot readilyavailableintheliterature.

2.1ThetaFunctions

Inthisandthenextfewsections,weprovideasketchofthemathematicalbackgroundonthetafunctionsovergenusoneandKummerlines.Followingprevious works[22, 27, 36]wedefinethetafunctionsoverthecomplexfield.Forcryptographicpurposes,ourgoalistoworkoveraprimefieldoflargecharacteristic. Allthederivationsthatareusedhaveagoodreduction[22]andsoitispossible tousetheLefschetzprinciple[1, 21]tocarryovertheidentitiesprovedoverthe complextothoseoveralargecharacteristicfield.

Let τ ∈ C havingapositiveimaginarypartand w ∈ C.Let ξ1 ,ξ2 ∈ Q.Theta functionswithcharacteristics ϑ[ξ1 ,ξ2 ](w,τ )aredefinedtobethefollowing:

ϑ[ξ1 ,ξ2 ](w,τ )= n∈Z exp πi(n + ξ1 )2 τ +2πi(n + ξ1 )(w + ξ2 ) . (1)

Forafixed τ ,thefollowingthetafunctionsaredefined.

ϑ1 (w )= ϑ[0, 0](w,τ )and ϑ2 (w )= ϑ [0, 1/2](w,τ ). Θ1 (w )= ϑ[0, 0](w, 2τ )and Θ2 (w )= ϑ [1/2, 0](w, 2τ )

Thefollowingidentitiesholdforthethetafunctions.Proofsaregiveninthe appendixofthefullversion[28].

Putting w1 = w2 = w ,weobtain

Putting w =0in(4),weobtain

2.2KummerLine

Let τ ∈ C havingapositiveimaginarypartanddenoteby P1 (C)theprojective lineover C.TheKummerline(K )associatedwith τ istheimageofthemap ϕ from C to P1 (C)definedby ϕ : w −→ (ϑ1 (w ),ϑ2 (w

Supposethat ϕ(w )=[ϑ1 (w ): ϑ2 (w )]isknownforsome w ∈ Fq .Using(4)it ispossibletocompute Θ1 (2w )and Θ2 (2w )andthenusing(5)itispossibleto compute ϑ1 (2w )and ϑ2 (2w ).So,from ϕ(w )itispossibletocompute ϕ(2w )= [ϑ1 (2w ): ϑ2 (2w )]withoutknowingthevalueof w .

Supposethat ϕ(w1 )=[ϑ1 (w1 ): ϑ2 (w1 )]and ϕ(w2 )=[ϑ1 (w2 ): ϑ2 (w2 )]are knownforsome w1 ,w2 ∈ Fq .Using(4),itispossibletoobtain Θ1 (2w1 ), Θ1 (2w2 ), Θ2 (2w1 )and Θ2 (2w2 ).Then(3)allowsthecomputationof ϑ1 (w1 + w2 )ϑ1 (w1 w2 )and ϑ2 (w1 + w2 )ϑ2 (w1 w2 ).Further,if ϕ(w1 w2 )=[ϑ1 (w1 w2 ): ϑ2 (w1 w2 )]isknown,thenitispossibletoobtain ϕ(w1 + w2 )=[ϑ1 (w1 + w2 ): ϑ2 (w1 + w2 )]withoutknowingthevaluesof w1 and w2 .

Thetaskofcomputing ϕ(2w )from ϕ(w )iscalleddoublingandthetaskof computing ϕ(w1 + w2 )from ϕ(w1 ), ϕ(w2 )and ϕ(w1 w2 )iscalleddifferential (orpseudo)addition.

2.3SquareonlySetting

Let P = ϕ(w )=[x : z ]beapointontheKummerline.Asdescribedabove, doublingcomputesthepoint2P andsupposethat2P =[x3 : z3 ].Further,supposethatinsteadof[x : z ],wehavethevalues x2 and z 2 andafterthedoubling weareinterestedinthevalues x2 3 and z 2 3 .Thenthedoublingoperationgivenby (8)and(9)onlyinvolvesthesquaredquantities ϑ1 (0)2 ,ϑ2 (0)2 ,Θ1 (0)2 ,Θ2 (0)2

and x2 ,z 2 .Asaconsequence,thedoubleof[x : z ]and[x : z ]aresame.We have

Similarly,considerthatfrom

)=[

:

] and P = P1 P 2= ϕ(w1 w2 )=[x : z ]therequirementistocompute P1 + P2 = ϕ(w1 + w2 )=[x3 : z3 ].Ifwehavethevalues

,z 2 alongwith ϑ1 (0)2 ,ϑ2 (0)2 ,Θ1 (0)2 ,Θ2 (0)2 thenwecancomputethevalues x2 3 and z 2 3 byEqs.(10)and(11). x 2 3 = z 2

Thisapproachrequiresonlysquaredvalues,i.e.,itstartswithsquaredvaluesand alsoreturnssquaredvalues.Hence,thisiscalledthesquareonlysetting.Note thatinthesquareonlysetting,[x2 : z 2 ]representstwopoints[x : ±z ]onthe Kummerline.Forthecaseofgenustwo,thesquareonlysettingwasadvocated in[3, 9](seealso[13]).Tothebestofourknowledge,thedetailsofthesquare onlysettingingenusonedonotappearearlierintheliterature.

Let

Thenfrom(6)weobtain Θ1 (0)2 = A2 /2and Θ2 (0)2 = B 2 /2. By Ka2 ,b2 we denotetheKummerlinehavingtheparameters a2 and b2 . Table 2 showstheAlgorithms dbl and diffAdd fordoublinganddifferential addition.Detailsregardingcorrectnessofthecomputationareprovidedinthe fullversion[28].

Table2. Doubleanddifferentialadditioninthesquare-onlysetting.

In Ka2 ,b2 ,thepoint[a2 : b2 ](representing[a : ±b])inthesquareonlysetting actsastheidentityelementforthedifferentialaddition.Thefullversion[28] providesfurtherdetails.

Intherestofthepaper,wewillworkinthesquareonlysettingovera Kummerline Ka2 ,b2 forsomevaluesoftheparameters a2 and b2

ScalarMultiplication: Suppose P =[x2 1 : z 2 1 ]and n beapositiveinteger.We wishtocompute nP =[x2 n : z 2 n ].ThemethodfordoingthisisgivenbyAlgorithm scalarMult inTable 3.AconceptualdescriptionofaladderstepisgiveninFig. 1.

Table3. Scalarmultiplicationusingaladder.

2.4LegendreFormEllipticCurve

Let E beanellipticcurveand σ : E → E betheautomorphismwhichmapsa pointof E toitsinverse,i.e.,for(a,b) ∈ E , σ (a,b)=(a, b). For μ ∈ Fq ,let

Eμ : Y 2 = X (X 1)(X μ)(12)

beanellipticcurveintheLegendreform.Let Ka2 ,b2 beaKummerlinesuch that

(13)

Anexplicitmap ψ : Ka2 ,b2 → Eμ /σ hasbeengivenin[22].Inthesquareonly setting,let[x2 : z 2 ]representthepoints[x : ±z ]oftheKummerline Ka2 ,b2 such that[x2 : z 2 ] =[b2 : a2 ].Recallthat[a2 : b2 ]actsastheidentityin Ka2 ,b2 .Then from[22],

ψ ([x 2 : z 2 ])= ∞ if[x2 : z 2 ]=[a2 : b2 ]; a 2 x 2 a2 x2 b2 z 2 ,... otherwise. (14)

Given X = a2 x2 /(a2 x2 b2 z 2 ),itispossibletofind ±Y fromtheequationof E , thoughitisnotpossibletouniquelydeterminethesignof Y .Theinverse ψ 1 , mapsapointnotofordertwoof Eμ /σ tothesquaredcoordinatesofpointsin Ka2 ,b2 .Wehave

ψ 1 (P)= [a2 : b2 ]if P = ∞; b2 X a2 (X 1) :1 if P =(X,...). (15)

Notation: Wewilluseupper-caseboldfaceletterstodenotepointsof Eμ and uppercasenormalletterstodenotepointsof Ka2 ,b2 .

Consistency: Let Ka2 ,b2 and Eμ besuchthat(13)holds.Considerthepoint T =(μ, 0)on Eμ .Notethat T isapointofordertwo.Givenanypoint P = (X,...)of Eμ ,let Q = P + T.Thenitiseasytoverifythat Q = μ(X 1) X μ ,... .

Considerthemap ψ : Ka2 ,b2 → Eμ suchthatforpoints[x : ±z ]representedby [x2 : z 2 ]inthesquareonlysetting

Theinversemap ψ 1 takesapoint P of Eμ tosquaredcoordinatesin Ka2 ,b2

Foranytwopoints P1 , P2 on Eμ whicharenotofordertwoand P = P1 P2 thefollowingpropertieshold.

Theproofsfor(17)canbederivedfromtheformulasfor ψ , ψ 1 ;theformulasfor additionanddoublingon Eμ ;andtheformulasarisingfrom dbl and diffAdd.This involvessimplificationsoftheintermediateexpressionsarisingintheseformulas. Suchexpressionsbecomequitelarge.Intheappendixofthefullversion[28] weprovideaSAGEscriptwhichdoesthesymbolicverificationoftherequired calculations.

Therelationsgivenby(17)havethefollowingimportantconsequenceto scalarmultiplication.Suppose P isin Ka2 ,b2 and P = ψ (P ).Then ψ (nP )= nP Fig. 3 depictsthisinpictorialform.

Fig.3. Consistencyofscalarmultiplicationson Eµ and Ka2 ,b2 .

RelationBetweentheDiscreteLogarithmProblems: SupposetheKummerline Ka2 ,b2 ischosensuchthatthecorrespondingcurve Eμ hasacyclic

Another random document with no related content on Scribd:

Gutenberg” is associated) is accessed, displayed, performed, viewed, copied or distributed:

This eBook is for the use of anyone anywhere in the United States and most other parts of the world at no cost and with almost no restrictions whatsoever. You may copy it, give it away or re-use it under the terms of the Project Gutenberg License included with this eBook or online at www.gutenberg.org. If you are not located in the United States, you will have to check the laws of the country where you are located before using this eBook.

1.E.2. If an individual Project Gutenberg™ electronic work is derived from texts not protected by U.S. copyright law (does not contain a notice indicating that it is posted with permission of the copyright holder), the work can be copied and distributed to anyone in the United States without paying any fees or charges. If you are redistributing or providing access to a work with the phrase “Project Gutenberg” associated with or appearing on the work, you must comply either with the requirements of paragraphs 1.E.1 through 1.E.7 or obtain permission for the use of the work and the Project Gutenberg™ trademark as set forth in paragraphs 1.E.8 or 1.E.9.

1.E.3. If an individual Project Gutenberg™ electronic work is posted with the permission of the copyright holder, your use and distribution must comply with both paragraphs 1.E.1 through 1.E.7 and any additional terms imposed by the copyright holder. Additional terms will be linked to the Project Gutenberg™ License for all works posted with the permission of the copyright holder found at the beginning of this work.

1.E.4. Do not unlink or detach or remove the full Project Gutenberg™ License terms from this work, or any files containing a part of this work or any other work associated with Project Gutenberg™.

1.E.5. Do not copy, display, perform, distribute or redistribute this electronic work, or any part of this electronic work, without prominently displaying the sentence set forth in paragraph 1.E.1 with active links or immediate access to the full terms of the Project Gutenberg™ License.

1.E.6. You may convert to and distribute this work in any binary, compressed, marked up, nonproprietary or proprietary form, including any word processing or hypertext form. However, if you provide access to or distribute copies of a Project Gutenberg™ work in a format other than “Plain Vanilla ASCII” or other format used in the official version posted on the official Project Gutenberg™ website (www.gutenberg.org), you must, at no additional cost, fee or expense to the user, provide a copy, a means of exporting a copy, or a means of obtaining a copy upon request, of the work in its original “Plain Vanilla ASCII” or other form. Any alternate format must include the full Project Gutenberg™ License as specified in paragraph 1.E.1.

1.E.7. Do not charge a fee for access to, viewing, displaying, performing, copying or distributing any Project Gutenberg™ works unless you comply with paragraph 1.E.8 or 1.E.9.

1.E.8. You may charge a reasonable fee for copies of or providing access to or distributing Project Gutenberg™ electronic works provided that:

• You pay a royalty fee of 20% of the gross profits you derive from the use of Project Gutenberg™ works calculated using the method you already use to calculate your applicable taxes. The fee is owed to the owner of the Project Gutenberg™ trademark, but he has agreed to donate royalties under this paragraph to the Project Gutenberg Literary Archive Foundation. Royalty payments must be paid within 60 days following each date on which you prepare (or are legally required to prepare) your periodic tax returns. Royalty payments should be clearly marked as such and sent to the Project Gutenberg Literary Archive Foundation at the address specified in Section 4, “Information

about donations to the Project Gutenberg Literary Archive Foundation.”

• You provide a full refund of any money paid by a user who notifies you in writing (or by e-mail) within 30 days of receipt that s/he does not agree to the terms of the full Project Gutenberg™ License. You must require such a user to return or destroy all copies of the works possessed in a physical medium and discontinue all use of and all access to other copies of Project Gutenberg™ works.

• You provide, in accordance with paragraph 1.F.3, a full refund of any money paid for a work or a replacement copy, if a defect in the electronic work is discovered and reported to you within 90 days of receipt of the work.

• You comply with all other terms of this agreement for free distribution of Project Gutenberg™ works.

1.E.9. If you wish to charge a fee or distribute a Project Gutenberg™ electronic work or group of works on different terms than are set forth in this agreement, you must obtain permission in writing from the Project Gutenberg Literary Archive Foundation, the manager of the Project Gutenberg™ trademark. Contact the Foundation as set forth in Section 3 below.

1.F.

1.F.1. Project Gutenberg volunteers and employees expend considerable effort to identify, do copyright research on, transcribe and proofread works not protected by U.S. copyright law in creating the Project Gutenberg™ collection. Despite these efforts, Project Gutenberg™ electronic works, and the medium on which they may be stored, may contain “Defects,” such as, but not limited to, incomplete, inaccurate or corrupt data, transcription errors, a copyright or other intellectual property infringement, a defective or damaged disk or other

medium, a computer virus, or computer codes that damage or cannot be read by your equipment.

1.F.2. LIMITED WARRANTY, DISCLAIMER OF DAMAGESExcept for the “Right of Replacement or Refund” described in paragraph 1.F.3, the Project Gutenberg Literary Archive Foundation, the owner of the Project Gutenberg™ trademark, and any other party distributing a Project Gutenberg™ electronic work under this agreement, disclaim all liability to you for damages, costs and expenses, including legal fees. YOU AGREE THAT YOU HAVE NO REMEDIES FOR NEGLIGENCE, STRICT LIABILITY, BREACH OF WARRANTY OR BREACH OF CONTRACT EXCEPT THOSE PROVIDED IN PARAGRAPH

1.F.3. YOU AGREE THAT THE FOUNDATION, THE TRADEMARK OWNER, AND ANY DISTRIBUTOR UNDER THIS AGREEMENT WILL NOT BE LIABLE TO YOU FOR ACTUAL, DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE OR INCIDENTAL DAMAGES EVEN IF YOU GIVE NOTICE OF THE POSSIBILITY OF SUCH DAMAGE.

1.F.3. LIMITED RIGHT OF REPLACEMENT OR REFUND - If you discover a defect in this electronic work within 90 days of receiving it, you can receive a refund of the money (if any) you paid for it by sending a written explanation to the person you received the work from. If you received the work on a physical medium, you must return the medium with your written explanation. The person or entity that provided you with the defective work may elect to provide a replacement copy in lieu of a refund. If you received the work electronically, the person or entity providing it to you may choose to give you a second opportunity to receive the work electronically in lieu of a refund. If the second copy is also defective, you may demand a refund in writing without further opportunities to fix the problem.

1.F.4. Except for the limited right of replacement or refund set forth in paragraph 1.F.3, this work is provided to you ‘AS-IS’, WITH NO OTHER WARRANTIES OF ANY KIND, EXPRESS

OR IMPLIED, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PURPOSE.

1.F.5. Some states do not allow disclaimers of certain implied warranties or the exclusion or limitation of certain types of damages. If any disclaimer or limitation set forth in this agreement violates the law of the state applicable to this agreement, the agreement shall be interpreted to make the maximum disclaimer or limitation permitted by the applicable state law. The invalidity or unenforceability of any provision of this agreement shall not void the remaining provisions.

1.F.6. INDEMNITY - You agree to indemnify and hold the Foundation, the trademark owner, any agent or employee of the Foundation, anyone providing copies of Project Gutenberg™ electronic works in accordance with this agreement, and any volunteers associated with the production, promotion and distribution of Project Gutenberg™ electronic works, harmless from all liability, costs and expenses, including legal fees, that arise directly or indirectly from any of the following which you do or cause to occur: (a) distribution of this or any Project Gutenberg™ work, (b) alteration, modification, or additions or deletions to any Project Gutenberg™ work, and (c) any Defect you cause.

Section 2. Information about the Mission of Project Gutenberg™

Project Gutenberg™ is synonymous with the free distribution of electronic works in formats readable by the widest variety of computers including obsolete, old, middle-aged and new computers. It exists because of the efforts of hundreds of volunteers and donations from people in all walks of life.

Volunteers and financial support to provide volunteers with the assistance they need are critical to reaching Project

Gutenberg™’s goals and ensuring that the Project Gutenberg™ collection will remain freely available for generations to come. In 2001, the Project Gutenberg Literary Archive Foundation was created to provide a secure and permanent future for Project Gutenberg™ and future generations. To learn more about the Project Gutenberg Literary Archive Foundation and how your efforts and donations can help, see Sections 3 and 4 and the Foundation information page at www.gutenberg.org.

Section 3. Information about the Project Gutenberg Literary Archive Foundation

The Project Gutenberg Literary Archive Foundation is a nonprofit 501(c)(3) educational corporation organized under the laws of the state of Mississippi and granted tax exempt status by the Internal Revenue Service. The Foundation’s EIN or federal tax identification number is 64-6221541. Contributions to the Project Gutenberg Literary Archive Foundation are tax deductible to the full extent permitted by U.S. federal laws and your state’s laws.

The Foundation’s business office is located at 809 North 1500 West, Salt Lake City, UT 84116, (801) 596-1887. Email contact links and up to date contact information can be found at the Foundation’s website and official page at www.gutenberg.org/contact

Section 4. Information about Donations to the Project Gutenberg Literary Archive Foundation

Project Gutenberg™ depends upon and cannot survive without widespread public support and donations to carry out its mission of increasing the number of public domain and licensed works that can be freely distributed in machine-readable form

accessible by the widest array of equipment including outdated equipment. Many small donations ($1 to $5,000) are particularly important to maintaining tax exempt status with the IRS.

The Foundation is committed to complying with the laws regulating charities and charitable donations in all 50 states of the United States. Compliance requirements are not uniform and it takes a considerable effort, much paperwork and many fees to meet and keep up with these requirements. We do not solicit donations in locations where we have not received written confirmation of compliance. To SEND DONATIONS or determine the status of compliance for any particular state visit www.gutenberg.org/donate.

While we cannot and do not solicit contributions from states where we have not met the solicitation requirements, we know of no prohibition against accepting unsolicited donations from donors in such states who approach us with offers to donate.

International donations are gratefully accepted, but we cannot make any statements concerning tax treatment of donations received from outside the United States. U.S. laws alone swamp our small staff.

Please check the Project Gutenberg web pages for current donation methods and addresses. Donations are accepted in a number of other ways including checks, online payments and credit card donations. To donate, please visit: www.gutenberg.org/donate.

Section 5. General Information About Project Gutenberg™ electronic works

Professor Michael S. Hart was the originator of the Project Gutenberg™ concept of a library of electronic works that could be freely shared with anyone. For forty years, he produced and

distributed Project Gutenberg™ eBooks with only a loose network of volunteer support.

Project Gutenberg™ eBooks are often created from several printed editions, all of which are confirmed as not protected by copyright in the U.S. unless a copyright notice is included. Thus, we do not necessarily keep eBooks in compliance with any particular paper edition.

Most people start at our website which has the main PG search facility: www.gutenberg.org.

This website includes information about Project Gutenberg™, including how to make donations to the Project Gutenberg Literary Archive Foundation, how to help produce our new eBooks, and how to subscribe to our email newsletter to hear about new eBooks.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.