Page 1

NORTHEASTERN UNIVERSITY SCHOOL OF ARCHITECTURE Sustainable Urban Environments 7130 Master's Research Studio 1 | Fall 2014

DESIGN & THE

RESILIENT CITY


This publication has been prepared as a part of the fall 2014 Master's Research Studio 1 in the Master of Design for Sustainable Urban Environments (MDes) Program at the Northeastern University School of Architecture. All research and content in this publication has been produced by the Design and the Resilient City studio research team in collaboration with Sasaki Associates, Inc. The text and images included in this booklet are intended for academic purpose only. No part of this booklet may be copied, reproduced, republished, uploaded, posted, transmitted, or distributed in any way for commercial purposes.


DESIGN

& THE

RESILIENT CITY


01

STUDIO OVERVIEW

07

SYSTEMS

01

THE TEAM

09

INFRASTRUCTURE

03

THE CHALLENGE

13

ENVIRONMENT

05

THE BOSTON PL ANNING CONTEXT

19

BUILT FORM

23

SOCIAL & ECONOMIC FORCES


31

DESIGN & RESEARCH PROJECTS

33

WATER NETWORKS

34

WATER & FOOD

42

WATER WEB

48

DOWNTOWN ALLEY

53

RESILIENT OPEN SPACE

54 INTRAFACE 62

MYSTIC MARSHES

64

GREENING THE GRAY

68

RESILIENT RIVER EDGE

71

RETHINKING INFRASTRUCTURE

72

LEVEE LAB

78

HUB @ SULLIVAN SQUARE

80

MULTIFUNCTIONAL INFRASTRUCTURE


STUDIO OVERVIEW

THE TEAM

The master's research studio was an interdisciplinary exploration of resiliency in the Boston region, through many lenses. The teaching team was structured as a partnership between landscape architects, a planner, and an architect to support this endeavor, with workshops from visiting experts across design disciplines. The students themselves came from diverse backgrounds ranging from architecture, interiors, landscape architecture, ecology, and others, infusing the research and design work with a layered approach.

Students Mario Accordino Massoud Bagheri Luis Barsotti Jordan Bradley Tania Bronsoiler Hanono Charles Creagh Lisa Ishihara Kiersten Mutell Payton Rogers Meital Tsafrir Ganor Sasaki Advisors Gina Ford Landscape Architect Laura Marett Landscape Architect Christine Dunn Architect Brie Hensold Planner

Visiting Sasaki Experts Jill Allen Planner Zach Chrisco Civil Engineer Jason Hellendrung Landscape Architect Tony Fettes Landscape Architect and Ecologist Tao Zhang Landscape Architect and Ecologist

Special Thanks to Visiting Critics George Thrush Professor and Director, School of Architecture, Northeastern University Jane Amidon Associate Dean for Graduate Programs and Research, College of Arts, Media and Design, Professor and Director, Urban Landscape Program, Northeastern University Dan Adams Assistant Professor, Urban Landscape Program, Northeastern University Nicole Fichera General Manager District Hall, Boston

1


STUDIO OVERVIEW

THE CHALLENGE

In the wake of Hurricane Sandy and other recent weather events, the vulnerability of the eastern seaboard to sea level rise (SLR) resulting from climate change has become manifest. By 2050, 100-year storms are expected to occur every 2 to 4 years in Boston, and the economic impact of major storm occurrence is predicted to cost approximately $460 billion. Planners and designers have the opportunity to shape the way our cities prepare for and respond to the pressures of SLR. This studio explores sustainable urbanism in the Boston region by investigating the impacts of SLR on the public realm and open space systems, built form, transportation networks, and economic forces in the region. Recent disasters such as Hurricane Sandy, Hurricane Lee, and Hurricane Irene have raised awareness of the need to plan for resiliency; this research offers a chance to think proactively rather than reactively, to consider mitigation and adaptation as well as protection, and to integrate social, physical, economic, and political situations. Building on group research and analysis exercises, students generated individual design-research projects around the themes of proactive and resilient built environments. Research and design proposals consider not only coastal areas, but also inland neighborhood centers vulnerable to SLR.

RIGHT SASAKI'S SEA CHANGE / BOSTON EXHIBIT

2


STUDIO OVERVIEW

THE BOSTON PLANNING CONTEXT

Hurricane Sandy awakened coastal cities to the reality of their vulnerability to climate change and extreme weather events. Boston was fortunate that Sandy hit at low tide - if the storm had landed 5 hours later, Boston could have seen similar devastation to what occurred in the New York / New Jersey metropolitan area. The City has taken Sandy as a call to action. The Boston Harbor Association has emerged as a thought leader in the region, organizing research to provide policy makers, planners, designers, and property owners with tools to assess vulnerability and increase resilience to coastal flooding over time. Their work includes the 2013 Preparing for the Rising Tide report, the 2014 Designing with Water report, and are organizing the Boston Living with Water international design competition in early 2015. Advocating for a long-term resiliency strategy for the Greater Boston area, Sasaki also launched a research initiative on sea level rise called Sea Change. The Sea Change team tapped into the firm's interdisciplinary practice to engage in preparedness planning at the building, city, and regional scale. Sasaki designers also collaborated with experts in engineering, academia, advocacy, and policy making to harness sea level rise expertise and push design thinking further.

THE BOSTON HARBOR ASSOCIATION'S PREPARING FOR THE RISING TIDE REPORT

Sasaki curated an exhibition to showcase this research, highlighting Boston's vulnerabilities and potential design strategies. The exhibition shared the Sea Change research with the broader community in an engaging and accessible format, rich with graphics and interactive media. Events associated with the exhibition catalyzed a conversation among designers, city officials, real estate leaders, and academics. This studio builds on this rich context to investigate and propose multi-disciplinary design strategies to address the challenges posed by climate change in the Boston region. 5


SYSTEMS

A systems approach is fundamentally different from traditional analysis. Traditional analysis entails separating individual elements of study; in fact, the word analysis comes from the root meaning “to break into constituent parts.� Systems thinking, in contrast, focuses on how something is related to and interacts with the other components of a system. Rather than isolating smaller and smaller parts of a system for study, systems thinking requires continuous expanding of a view to take into account other relationships and interactions. The studio conducted an analysis of features such as topography, hydrology, ecology, landscape character, built form, ownership and land use, community, and demographics, framing an approach with an appropriate scale for resiliency and regional thinking.


NO R TH S TATIO N LO GAN I N T. A I RP ORT

S O UTH S TATIO N PO R T O F BOST ON


IN F RASTRU CT URE

Because of Boston's coastal nature, the city's multilayered infrastructure systems are vulnerable to sea level rise. The studio examined the workings and connectivity of vehicular, pedestrian, and transit systems, as well as water-control infrastructure and its vulnerability to SLR and storm surge. Much of Boston's transportation infrastructure, including Logan International Airport, MBTA hubs South Station and North Station along with 48 other T stations, the Conley shipping terminal, rail networks, surface roads, and entries to tunnels such as the Sumner, Callahan, and Ted Williams, would be innundated in both the 2050 + storm surge and the 2100 projections for SLR. ABOVE CONLEY TERMINAL, PORT OF BOSTON LEFT SEA LEVEL RISE BY 2100 WITH MAJOR INFRASTRUCTURAL SYSTEMS

Other critical city systems, including eight power plants, one wastewater treatment plant, six fuel terminals, and numerous hospitals, schools police stations, fire stations, and government buildings, are also in the path of future flooding. The studio explored how to build redundancy into infrastructure networks, such that if one point fails, other pieces of the networks withstand.

9


SYSTEMS

I NFR A S T RUC TU RE

A CROSS- SECTION OF BOSTON INFRASTRUCTURE

The Charles River Dam is a significant point of vulnerability for the City. Designed to withstand a storm surge of about 12.5 feet above mean sea level, the dam would be overtopped in the 2050 + storm surge and the 2100 projections for SLR.

10 ABOVE A CROSS SECTION OF THE CHARLES RIVER DAM RIGHT CHARLES RIVER DAM BIRD'S EYE VIEW


E N VIRO NM ENT

Boston's ecosystems are a rich mix of coastal marshlands, riparian corridors, and upland forest habitat. However, with time, much of Boston and its ecoregion has become urbanized, highly paved, and impervious, disconnecting and eroding these natural resources. The studio examined environment and the unique ecology of Boston at various spatiotemporal scales, identifying seen and unseen processes that greatly affect the region’s ability to withstand rising waters.

ABOVE THE OUTFALL AT PLEASURE BAY LEFT IMPERMEABLE SURFACES IN THE BOSTON REGION

13


SYSTEMS

ENVIRONMENT

ECOLOGICAL LAND COVERAGE IN THE BOSTON REGION

14


RUMNEY SALT MARSH OVER TIME: ALTERATION OF ECOSYSTEM

Vs.

Historic USGS topographic map 1900) overlayed with the MARSHLAND EVOLUTION IN (c. EAST BOSTON, 1900 current extent of salt marshin Rumney Marshes (MassDEP wetlands datalayer) (2009)

RSH OVER TIME: ALTERATION OF ECOSYSTEM

1900) overlayed with the ney Marshes (MassDEP

SYSTEMS

ENVIRONMENT

Current extent of salt marsh in Boston Region SHOREWARD PLANTHarbor MIGRATION (MassDEP 2009)

Some of the ways that urban development impacts natural systems are by impeding plant migration, altering the hydrologic cycle, and exacerbating coastal erosion due to man-made infrastructures.

Vs.

Current extent EVOLUTION of salt marsh inINBoston Region MARSHLAND EAST Harbor BOSTON, 2009 (MassDEP 2009)

DISRUPTION TO COASTAL ECOSYSTEM

15


16


SYSTEMS

ENVIRONMENT

Many of the Boston area's open spaces follow its riparian corridors, positioning them, if designed properly, to soak up storm surge and local flood events, helping to protect neighboring communities.

LEFT BOSTON AND CAMBRIDGE'S OPEN SPACE NETWORKS WITH 2050 / 2100 SLR PROJECTS

17


INDUSTRIAL CONSERVATION OTHER BRADLEY+BRONSOILER+MUTELL LEGEND RESIDENTIAL COMMERCIAL INDUSTRIAL CONSERVATION OTHER

8% conservation 36% RESIDENTIAL 9% COMERCIAL 4% INDUSTRIAL 43% OTHER

8% conservation 36% RESIDENTIAL 9% COMERCIAL 4% INDUSTRIAL 43% OTHER

LANDUSE BOSTON’S ZONING CODE

18


LEGEND RESIDENTIAL COMMERCIAL INDUSTRIAL CONSERVATION OTHER

BU ILT F O RM

A historic city with a growing contemporary design culture, Boston is a city of distinct neighborhoods and a unique pattern of land filling and physical development. Understanding the current and future landscape of development is crucial to understanding proposals to bolster resiliency in the physical environment.

ABOVE VIEW OF FINANCIAL DISTRICT ACROSS FORT POINT CHANNEL LEFT LAND USE IN GREATER BOSTON

The studio examined current patterns of land use and development in a selection of Boston's neighborhoods, with an eye to resiliency measures feasible in each type of city fabric.

19


SYSTEMS

BUILT FORM A CITY OF NEIGHBORHOODS

20

DOWNTOWN BOSTON

BACK BAY

Downtown Boston is a densely built, highly paved urban environment containing the majority of the City's high-rise structures. While much of this neighborhood is built on the higher ground of the historic land mass, some areas, such as Faneuil Hall and South Station, will be under water in the 2100 SLR scenario.

Back Bay is a mixed-use neighborhood composed mainly of 5-story brownstone structures in a gridded city fabric. This neighborhood is built on historically filled marshland and is vulnerable to flooding in the 2100 SLR projections.


SYSTEMS

BUILT FORM A CITY OF NEIGHBORHOODS

EAST BOSTON

SEAPORT DISTRICT

East Boston is a largely residential neighborhood, characterized by two- to three-story attached multifamily housing, interspersed with large tracts of industrial land and Logan International Airport. Its landform is characterized by drumlins, with some of the oldest city fabric on these hilltops. The low-lying areas between drumlins as well as other areas of filled marshland are vulnerable to flooding in the 2100 SLR scenario.

The Seaport District is the northern portion of South Boston, composed of a mix of large-scale industrial and commercial properties and vast surface parking lots. This is one of the fastest developing neighborhoods in the City. Despite all of the new investment happening here, almost all of the Seaport District is projected to be underwater in the 2100 SLR scenario.

21


L A RG E IN TRO GRAP HIC

22


S O C IAL & E CO N O M IC F O RCES

A study of several economic and social factors in the region exhibited dichotomies between the City of Boston and the surrounding suburbs. The City has a much younger median age than the Metropolitan Area Planning Council (MAPC) region, due to a large student base and population of young workers. Land value is also rising around Boston and decreasing in the suburbs. These factors all have implications for future investment in public infrastructure, private development opportunities, and sea level rise vulnerability.

ABOVE VIEW FROM BEACH AT PLEASURE BAY TOWARDS DOWNTOWN LEFT BOSTON MINORITY POPULATION WITH SEA LEVEL RISE AND STORM SURGE PROJECTIONS

Boston has the fourth-highest income disparity of any city in the nation. There was a clear emphasis on industrial, commercial, and institutional land use within Boston, all of which exhibited a multi-hub structure with a focus through the downtown Boston/ South Boston area. This major focal point is at risk for impending sea level rise and storm surge inundation. While Boston is one of the most educated cities in the country, spatial economic disparity is visible and closely associated with ethnic minority-dominant tracts and unemployment.

23


SYSTEMS

SOCIAL & ECONOMIC FORCES

24

BOSTON IS...YOUNG AND OLD


SYSTEMS

SOCIAL & ECONOMIC FORCES

BOSTON IS...UNBALANCED

25


SYSTEMS

SOCIAL & ECONOMIC FORCES

26

BOSTON IS...EDUCATED


SYSTEMS

SOCIAL & ECONOMIC FORCES

BOSTON IS...INDUSTRY

27


INTRAFACE

MYSTIC MARSHES HUB @ SULLIVAN SQUARE

GREENING THE GRAY

RESILIENT RIVER’S EDGE GREEN BRIDGE DOWNTOWN ALLEY LEVEE LAB

WATER WEB

WATER AND FOOD


DESIGN & RESEARCH PROJECTS WATER NETWORKS

RESILIENT OPEN SPACE

RETHINKING INFRASTRUCTURE

From the detailed systems analyses that defined vulnerabilities in Boston’s infrastructural, environmental, social, and built realms, the studio developed strategies with the goal of increasing the resiliency of the Boston area to sea level rise by addressing system-wide vulnerabilities. Clearly stated selection criteria and analytic mapping helped select areas of focus. Each project employed prototypical design responses that addressed resiliency or adaptation for the system and could be deployed at various locations throughout the region. These consisted of architectural interventions, public realm and open space proposals, physical planning related policy investigations, or other district level strategies. Resultant projects make a clear link to analysis and research, but are morphed and nuanced by context and ground conditions.

31


WATE R N E T WO RKS

Preparing for sea level rise and extreme precipitation events requires a careful and responsive approach to urban water systems. The strategies here engage sophisticated, responsible solutions for water management that double as stimulating and productive community experiences. Territories range from downtown alleys to a multi-faceted landscape corridor to a hard-edged industrial channel, operating at various scales and locations to combat stormwater runoff, water contamination, and flooding threats.

CHARLES RIVER EDGE AT CHRISTIAN HERTER PARK CREDIT: LISA ISHIHARA

33


WATER & FOOD TANIA BRONSOILER HANONO Agricultural land uses now contribute 28 percent of the greenhouse gas emissions produced by humans, and at the current rate of land consumption for agriculture, there will not be enough to feed the world population by 2050. This project addresses two issues: flooding, especially flash floods due to increasing urbanization and precipitation, along with sea level rise; and agriculture, exploring ways to reduce its impact on greenhouse emissions while improving sustainable production.

ROOF FARM

34 TYPICAL PROTOTYPE DEVELOPMENT

PARK

BALCONY

COMMUNITY GARDEN


WATER NETWORKS

WATER & FOOD

INSTITUTIONAL FARM

FRONT YARD

INFRASTRUCTURE

INSTALLATION

VACANT LOT

35


WATER NETWORKS

WATER & FOOD

The Southwest Corridor is an ideal site to study a connected local food and sustainable water system. It crosses five different neighborhoods within Boston, offering an opportunity to connect communities and generate social resiliency. According to FEMA, the northern third of the corridor is vulnerable to future flooding scenarios.

36


WATER NETWORKS

WATER & FOOD BOSTON AGRICULTURE CYCLE THROUGH THE YEAR

37


WATER NETWORKS

1.

2.

3.

FOOD CORRIDOR

DAY-LIGHTING

BIOFUELS

WATER & FOOD

The project builds on existing community gardens along the Southwest Corridor, which provide social open space, improve air quality, and increase public access to fresh food. These gardens have the potential to be part of an innovative system of stormwater management. (Stage 1). The corridor travels above the buried Stony Brook, providing the chance to incorporate an environmental resiliency strategy (Stage 2). The food corridor can also make broader connections to the Muddy River, offering potential to utilize the invasive phragmites located there as biofuels (Stage 3). 38


COMMUNITY GARDEN

WATER NETWORKS

WATER & FOOD RAIN

COMMUNITY GARDEN PROTOTYPE

ROOF WASHER

CISTERN

RECHARGE WELL

IRRIGATE CROPS

In several parts of the City these prototypes produce food, then transport the food along the corridor by various means, such as trains or walking and biking. . Locals have access to the food through farmers markets, schools, and local restaurants. The generated waste becomes the compost used to grow more food, achieving a closed-loop food system. 39


WATER NETWORKS

WATER & FOOD

40

STAGE 1: BACK BAY IN SUMMER AND WINTER


WATER NETWORKS

WATER & FOOD Stage 2 consists of daylighting parts of the Stony Brook in order to clean the water before it reaches the Charles River. This is achieved by exposing the water to sunlight, and filtering the water with vegetation through an Articulated Concrete Block system.

STAGE 2: STONY BROOK DAYLIGHTING

Biofuels are touted as a solution to rising fuel prices, growing energy demands, and the need to curb emissions of greenhouse gases. Unless planned properly, biofuel crops are likely to escalate competition for water, especially in areas where it is already scarce. Stage 3 explores addressing the flooding problem by utilizing this water for harvesting biofuel crops.

STAGE 3: MUDDY RIVER BIOFUELS

41


WATER WEB JORDAN BRADLEY Typical city drainage infrastructure moves water as quickly and efficiently off the land as possible, contributing to flash flooding and transporting contaminants like road salts and oils directly to adjacent water bodies. The water web is a non-linear redundant system that connects streets, parks, garages, and basins designed to slow, treat, and infiltrate stormwater into the existing linear infrastructure. A portion of South Boston was identified as a testing ground for the water web concept, because of its location at the Reserved Channel on the South Boston Waterfront where a quintessential historical neighborhood - Southie - meets the rapidly developing Innovation District. This site is vulnerable to both the 2050 + storm surge and the 2100 projections for SLR.

42

TYPICAL STORMWATER DRAIN SYSTEM

WATER WEB


SITE


WATER NETWORKS

WATER WEB

PROPOSED DESIGN

44


WATER NETWORKS

WATER WEB

Seaport Common is a 130-acre green development located along the Reserved Channel on the South Boston Waterfront that will protect important surrounding industrial properties and residential neighborhoods. The current site is fully impervious and the linear stormwater management that currently exists sends the contaminated water directly into the Reserved Channel. Seaport Common’s largely permeable surface and its water web stormwater management

system work to capture, store, filter, and reuse water on site. With its high, sloping levee, Seaport Common protects against storm surge and sea level rise, and contains rock breakwaters and saltwater marshlands to slow and soak the surge. There is a vast improvement of pedestrian circulation on the site with minimal disruption of the current existing building square footages or land uses. The site solutions serve as both protection and activation of the area.

45


WATER NETWORKS

WATER WEB

SECTION 1

SECTION 2

46

The water parks, garages, and streets use a tank system that filters then stores the storm water for reuse. When the water streets are filled, underground pipes transfer the overflow to the larger capacity water garage or water park. When the park or garage is filled, the pipes then transfer the overflow

to the water basins located on the edge of the reserved channel or to the storm water pipes that exist. This allows for a relief in pressure on the existing infrastructure and generates water that can be reused for irrigation, toilets, and cooling the generation station’s mechanical equipment.


WATER NETWORKS

WATER WEB

SECTION 3

SECTION 4

47


DOWNTOWN ALLEY MEITAL TSAFRIR GANOR Much of Boston’s low-lying financial district and Chinatown neighborhoods are in the path of projected sea level rise. These areas are densely built environments that suffer from a lack of open space to serve their residents and an overabundance of stormwater resultant from their highly paved environments. The many alleys in these districts offer an opportunity to layer functions, treating and infiltrating stormwater through blue roofs, green walls, and porous paving, and doubling as social spaces for the neighborhoods. The project examined three prototypical types of alleys in the district based on their physical dimensions and vehicular and pedestrian access patterns. The proposal for each alley type is related to its specific environmental conditions, such as solar exposure, and its spatial capacity to accommodate various social programs.

48

BOSTON IS AT RISK OF FLOODING FROM THREE SOURCES:

MASSACHUSETTS ENVIRONMENTAL JUSTICE POPULATIONS IDENTIFY THREE CRITERIA:

[1] COASTAL [2] RIVERINE [3] FLASH FLOODING

[1] INCOME EARNS<65% OF MA MEDIAN HOUSEHOLD INCOME

STORM SURGE CATEGORY 5 STORM

[2] RIVERINE

2100 SEA LEVEL RISE

[3] LANGUAGE ISOLATION

<25% OF RESIDENTS IDENTIFY AS NON-WHITE

<25% OF HOUSEHOLDS HAVENO ADULT OVER 14 WHO SPEAKS ENGLISH.

MEET 1 CRITERION MEET 2 CRITERIA MEET 3 CRITERIA

SEA LEVEL RISE

SOCIAL VULNERABILITY

OPEN SPACE

DOWNTOWN ALLEYS


WATER NETWORKS

DOWNTOWN ALLEY

ALLEY TYPOLOGIES

49


WATER NETWORKS

DOWNTOWN ALLEY The alleys were not considered in isolation, but were grouped into sub-watersheds based on the topography of the area. The alleys have the potential to be networked together as a system of green infrastructure: blue roofs collect rainwater for irrigation of plantings, green walls help make an inviting pedestrian environment and reduce the urban heat island effect, and porous pavements reduce flood damage to buildings by allowing water to percolate into subsoils. The downtown alley network will bolster both environmental and social resiliency for the neighborhoods it serves.

ALLEY SUB-WATERSHED CLUSTERS

50


WATER NETWORKS

DOWNTOWN ALLEY

BLUE ROOF BENEFITS STORAGE + IRRIGATION UTILIZE GREY SYSTEM ATTENUATE ROOF RUNOFF LOW COST DETENTION OPTION LIGHT COLOR ROOFING MATERIAL HELP MINIMIZE THE URBAN HEAT ISLAND EFFECT

GREEN WALL BENEFITS REDUCE ENERGY CONSUMPTION MITIGATE URBAN HEAT ISLAND EFFECT IMPROVE STREET LEVEL AIR QUALITY INCREASE PROPERTY VALUE REDUCE NOISE POLLUTION CREATE HABITAT ISLAND EFFECT

POROUS PAVEMENT BENEFITS

FLOOD-TOLERANT SPECIES THAT SOAK UP WATER STORMWATER RUNOFF POLLUTION CONTROL

FLOOD REDUCTION OR ELIMINATION GROUND WATER RECHARGE

51


RE SILIE N T O P E N S PACE

While Boston is a city generally well served by open space, this statement is not true in every area of the region. Issues of intense industrialization in Everett, environmental justice in East Boston, and underserved river edges in Allston are addressed in this section, as projects investigate how open space needs can be leveraged to protect against the threat of flooding while creating resilient and enjoyable environments.

VIEW ALONG THE BOSTON ESPLANADE CREDIT: PAYTON ROGERS

53


INTRAFACE MARIO ACCORDINO

54


RESILIENT OPEN SPACE

INTRAFACE Home to some of the most regionally important industrial properties, Everett is a dense city with a divided urban fabric and lack of open space. To combat issues that similar industrial cities face, prototype strategies of HOLD, TRANSFER, DISTRIBUTE, and FLEX are utilized to address issues of flooding, access, mobility, and zoning. Resultant prototypes include a topographical cell structure capable of adjusting to inundation levels, a shared-use pathway that challenges notions of accessibility and occupation, flexible platforms constructed of recycled materials, and a prioritization model for industrial relocation. These prototypical studies are paired with a sitespecific strategy that creates a framework for a resilient open space system for the City.

55


RESILIENT OPEN SPACE

INTRAFACE

56


RESILIENT OPEN SPACE

INTRAFACE

57


RESILIENT OPEN SPACE

INTRAFACE

58


RESILIENT OPEN SPACE

INTRAFACE

59


60

This system consists of an ecologically rich band of green and blue infrastructure stretching laterally across the City from the Malden to Island End rivers. The system makes key physical connections and navigates across financial, political, and infrastructural realities at the interface of the industrial and residential sides of Everett. Land uses and topography are arranged and constructed according to inundation projections. In this way, the system transforms the threat of future flooding into a public asset as well as a safeguard to valuable industry.


RESILIENT OPEN SPACE

INTRAFACE

STORMWATER WETLAND CELL

ECOLOGICAL CHANGES ACROSS THE SITE

61


MYSTIC MARSHES LUIS BARSOTTI

The Mystic River was historically a tidal corridor, rich with habitat and brackish marshes that filtered water and armored adjacent communities against flooding and storm surge. Over time, as the Mystic's edges have urbanized and the River has been dammed and channelized, marshlands have atrophied or been filled for valuable waterfront property, leaving adjacent communities vulnerable. 62

This project proposes marsh (re)construction on some of the industrial, vacant, and underdeveloped land at the edge of the Mystic, providing more resilient natural landscapes to help armor against SLR and storm surge. Industrial lands with high risk of contamination by flooding were identified and strategically relocated to make space for these marsh systems. Community programming and access to the Mystic riverfront were also important considerations of the proposal.


RESILIENT OPEN SPACE

MYSTIC MARSHES

PROPOSED MARSH DESIGN

63


GREENING THE GRAY KIERSTEN MUTELL The East Boston community struggles with issues of social and environmental equity, as well as significant threat of sea level rise. Relationships between systems in East Boston such as topography, neighborhood demographics, available green space, and amenity locations in relation to public housing areas make Eagle Hill one of Boston's most vulnerable neighborhoods. Influenced by these findings, this project follows the principle that quality design should be made available to everyone. Three specific locations networked together by a harborwalk were chosen for design interventions, bringing green space, a stronger sense of community, and climate change resiliency to the neighborhood of Eagle Hill.

MAJOR STORM FLOODING 2050 MAJOR STORM FLOODING 2100 * FEMA FLOODMAP PROJECTIONS

64

2.5' SLR PREDICTION 2050 7.5' SLR PREDICTION 2100 * FEMA FLOODMAP PROJECTIONS

GREEN SPACE

NEIGHBORHOODS


RESILIENT OPEN SPACE

GREENING THE GRAY

65


RESILIENT OPEN SPACE

GREENING THE GRAY GREEN ROOF ELEVATED UTILITIES

FOUNTAINS & STORM WATER RETENTION

GREEN SPACE

ELEVATED POROUS PLAZA FLOATING DOCKS

SITE WATER MANAGEMENT

ELEVATED UTILITIES CISTERN FOR IRRIGATION AND FILTERED FOUNTAIN WATER

RECESSED GUTTERS

POROUS PAVEMENT 66

EXCESS WATER

EXTENDED STEPS TO WATER


RESILIENT OPEN SPACE

GREENING THE GRAY

GREEN ROOF

WIND

Design interventions - a public housing complex, a park, and a community center - incorporate renewable energy technology, green roofs, stormwater mitigation, and social and educational programs to help in greening the gray. Each of these locations is anchored by an improvement and prototype development for the existing harborwalk, which would increase social activation and protect against district flooding.

SOLAR

PROPOSED COMMUNITY CENTER

GREEN ROOF

PUBLIC HOUSING COMPLEX

WIND

GREEN SCREENS

GREEN ROOF

SOLAR

PERMEABLE PAVEMENT

67


RESILIENT RIVER'S EDGE LISA ISHIHARA

68

The highly urbanized edges of the Charles River contribute vast quantities of rapidly moving stormwater to the watershed, causing flash flooding, erosion, water quality issues, sedimentation, algae, and other environmental concerns. With the added overlay of the threat of SLR

and storm surge in flooding scenarios where the Charles River Dam fails, the edges of the River become a crucial place to design multifunctional open spaces that slow and infiltrate stomwater, armor against rising waters, and serve as community amenities.


RESILIENT OPEN SPACE

RESILIENT RIVER'S EDGE The Christian Herter Park in Allston is an opportune site to test these ideas, offering the potential to improve the space by not only designing for resiliency but also creating a better connection between programs and circulation within the site for a variety of users. Erosion of the riverâ&#x20AC;&#x2122;s edge and flooding were important concerns in the site design, and the proposal creates better stormwater management and edge conditions that are imbued into a variety of programs supporting user/ community connection throughout the site.

69


RETHIN KIN G IN F RASTRU CT URE

These projects analyze the robust transportation infrastructure in the Boston region and identify its points of weakness socially, environmentally, and financially. Whether connecting iconic landscapes across the Charles River, protecting billions of dollars of investment in downtown, or threading together disconnected neighborhoods, the Cityâ&#x20AC;&#x2122;s vulnerable infrastructure is the motivation for radical yet pragmatic innovations.

VIEW OF SULLIVAN SQUARE CREDIT: MASSOUD BAGHERI

71


LEVEE L AB CHARLES CREAGH Bostonâ&#x20AC;&#x2122;s low-lying financial district, waterfront buildings along Atlantic Avenue, and historic assets like Quincy Market are threatened by sea level rise and storm surge. By elevating 5 key parcels and cross streets between Broad and North streets along the Rose Fitzgerald Kennedy Greenway from 12 to 16 feet, Bostonâ&#x20AC;&#x2122;s valuable historic and economically productive downtown can remain dry even when conditions reach mean higher high water (MHHW) +5. Over the next century, the proposal protects against rare floods in addition to projected daily high tides.

72

FINANCIAL DISTRICT FLOOD VULNERABILITY


RETHINKING INFRASTRUCTURE

LEVEE LAB The Rose Fitzgerald Kennedy Greenway was selected as the study site because of the low-lying topography between Broad and North streets. This area is where water will enter as it moves up State Street to the steps between City Hall and Quincy Market. The site has the potential to be layered, ecologically rich, accessible, and multi-modal.

LEVEE LAB PROPOSALS

73


RETHINKING INFRASTRUCTURE

LEVEE LAB

74


RETHINKING INFRASTRUCTURE

LEVEE LAB The project represents an innovative district solution to sea level rise, reshaping an existing urban linear greenway to double as a protective levee. The system works by tying into existing topography to mitigate against future rising waters. Unlike a traditional seawall, which does not contribute significant ecological value, this project proposes an elongated beached edge to provide critical habitat for marine organisms in the future.

75


RETHINKING INFRASTRUCTURE

LEVEE LAB

76


RETHINKING INFRASTRUCTURE

LEVEE LAB

77


HUB @ SULLIVAN SQUARE MASSOUD BAGHERI

Boston's MBTA rail network is currently a radial system, with all lines converging at several key locations downtown, such as South Station, North Station, and Park Street Station. This configuration makes the system vulnerable, as many of these downtown stations are in the path of projected sea level rise. Building redundancy into the transit system by creating a hub and spoke configuration with multiple points of convergence would make the whole system more resilient if one portion were to temporarily fail.

78


RETHINKING INFRASTRUCTURE

HUB @ SULLIVAN SQUARE

This project builds on the idea of an urban ring, which would circle the City outside of downtown to connect each of the T lines, creating a redundant system. Sullivan Square in Somerville was identified as an opportune site for a new hub along the urban ring, as it lies on high ground at the nexus of several dense urban neighborhoods currently underserved by public transit: Somerville, Charlestown, and Everett.

79


LONGFELLOW GREEN BRIDGE PAYTON ROGERS

80


RETHINKING INFRASTRUCTURE

LONGFELLOW GREEN BRIDGE

Sea level rise, storm surge, and flash flooding threaten many of Boston's bridges and tunnels - vital and expensive parts of the City's transportation network and critical evacuation routes. This project addresses resiliency by implementing strategies that more effectively mitigate stormwater and flooding affecting these networks, primarily before water is contaminated and allowed into existing sewer systems.

TUNNELS AS FLOODABLE NETWORKS

81


RETHINKING INFRASTRUCTURE

LONGFELLOW GREEN BRIDGE

1" RAIN EVENT = 27,154 GAL/ACRE 5 ACRES = 135,770 GALLONS MITIGATION POTENTIAL

CAMBRIDGE

Two strategies were developed: The Longfellow Green Bridge employs green roof technologies to bridge the pedestrian gap between the two greenways on either side of the River. The bridge connects the two cities, while mitigating a large amount of stormwater and providing the public a multi-use urban park. The Charles River North Shore expansion proposal utilizes a wetland edge that allows rainwater to drain and filter naturally before being returned to the River. The wetland also acts as a sponge and levee in the event of a sudden rise in the River's water level.

82

BOSTON


RETHINKING INFRASTRUCTURE

LONGFELLOW GREEN BRIDGE

CHARLES RIVER + INUNDATED WETLANDS

MEMORIAL DR. EAST

GREEN SPACE

MEMORIAL DR. WEST

CAMBRIDGE

9FT 0FT

9FT 0FT 100 FT CHARLES RIVER

GREEN SPACE

2+ FT MEMORIAL DR. EAST

GREEN SPACE

MEMORIAL DR. WEST

CAMBRIDGE

83


SEA LEVEL RISE & RESILIENCY

◦◦

◦◦ A Climate of Progress: City of Boston Climate Action Plan Update 2011. City of Boston, 2011. http://www.cityofboston.gov/Images_ Documents/A%20Climate%20of%20Progress%20-%20CAP%20 Update%202011_tcm3-25020.pdf

Frumhoff, Peter C. et al. Confronting Climate Change in the U.S. Northeast: Science, Impacts, and Solutions. Northeast Climate Change Impacts Assessment Team, 2007. http://www.state.nj.us/dep/cleanwatercouncil/ pdf/confronting_climate_change.pdf

◦◦

A Stronger, More Resilient New York. PlaNYC, the City of New York, 2013. http://www.nyc.gov/html/sirr/html/report/report.shtml

◦◦

Keuning, David and Koen Olthuis. Float!: Building on Water to Combat Urban Congestion and Climate Change. Amsterdam, Netherlands: Frame Publishers, 2010.

◦◦

Adams, Michele and Donald Watson. Design for Flooding: Architecture, Landscape and Urban Design for Resilience to Climate Change. Hoboken, NJ: John Wiley & Sons, 2011.

◦◦

Kirshen, Paul, et al. “Climate Change and Coastal Flooding in Metro Boston: Impacts and Adaptation Strategies.” Dordrecht, Netherlands: Springer Science + Business Media B.V., 2008. http://www.cityofboston.gov/images_ documents/Coastal%20Flooding%20Metro%20Boston_tcm3-31975.pdf Manuel, John. “The Long Road to Recovery: Environmental Health Impacts of Hurricane Sandy.” Environ Health Perspect 121:A152–A159 (2013). http:// ehp.niehs.nih.gov/121-a152/

◦◦

Bergdoll, Barry. Rising Currents: Projects for New York’s Waterfront. New York: Museum of Modern Art, 2011.

◦◦

Douglas, Ellen, et al. Preparing for the Rising Tide. The Boston Harbor Association, 2013. http://www.tbha.org/sites/tbha.org/files/documents/ preparing_for_the_rising_tide_final.pdf ◦◦

◦◦

Field, Christopher B. et al. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: ◦◦ Cambridge University Press, 2012. http://www.ipcc-wg2.gov/SREX/ images/uploads/SREX-All_FINAL.pdf

◦◦

◦◦ Flood Plain Urbanism: Strategies for Sustainable Urban Coastal Development. Northeastern University, 2011. http://www.northeastern. edu/camd/architecture/portfolio/flood-plain-urbanism/ content/106/51/21527.full.pdf+html

◦◦

Mooney, John. “By the Numbers: Hurricane Sandy’s Environmental Impact.” NJ Spotlight. 4 December 2014. http://www.njspotlight.com/ stories/12/12/03/by-the-numbers-hurricane-sandy-s-environmental-impact/ Nordenson, Guy, et al. On the Water: Palisade Bay. New York, NY: Museum of Modern Art, 2009. www.palisadebay.org/Chapters Rahmstorf, Stefan and Martin Vermeer. “Global Sea Level Linked to Global Temperature.” Proceedings of the National Academy of Sciences of the United States of America, 2009. http://www.pnas.org/


SOURCES ORGANIZATIONS

DEMOGRAPHICS

◦◦

The Massachusetts Office of Coastal Zone Management (CZM) ◦◦ US CENSUS 2010 http://www.mass.gov/czm/czm.htm http://www.census.gov/2010census/

◦◦

The Boston Harbor Association (TBHA) ◦◦ Massachusetts Executive Office of Administration and Finance http://www.tbha.org/ http://www.mass.gov/anf/

◦◦

National Oceanic and Atmospheric Administration (NOAA) ◦◦ The Brookings Institution http://www.noaa.gov/about-noaa.html http://www.brookings.edu/ Metropolitan Area Planning Council (MAPC) ◦◦ Boston Indicators Project www.mapc.org http://www.bostonindicators.org/

◦◦

◦◦

Department of Environmental Protection (MassDEP) http://www.mass.gov/eea/agencies/massdep/

BOSTON CONTEXT

◦◦

◦◦

◦◦

Charles River Watershed Association (CRWA) ◦◦ Seasholes, Nancy. Gaining Ground: A History of Landmaking in Boston. www.crwa.org Cambridge, MA: The MIT Press, 2003. Mystic River Watershed Association (MRWA) ◦◦ Krieger, Alex et al. Mapping Boston. Cambridge, MA: The MIT Press, 2001. www.mysticriver.org The Boston Redevelopment Authority (BRA) www.bostonredevelopmentauthority.org/


DESIGN AND THE RESILIENT CITY SUEN 7130 MASTER'S RESEARCH STUDIO 1 FALL 2014 This studio explored sustainable urbanism in the Boston region by investigating the potential impacts of sea level rise on open space systems, built form, transportation networks, and regional economic forces. Building on group research and analysis exercises, students generated individual design-research projects around the themes of proactive and resilient built environments. Research and design proposals consider not only coastal areas, but also inland neighborhood centers vulnerable to rising waters.

Profile for Northeastern School of Architecture

Design + the Resilient City  

This studio explored sustainable urbanism in the Boston region by investigating the potential impacts of sea level rise on open space system...

Design + the Resilient City  

This studio explored sustainable urbanism in the Boston region by investigating the potential impacts of sea level rise on open space system...

Advertisement