Differentiating Two Daily Activities Through Analysis of Short Ambulatory Video Clips Payam Moradshahi1, James R. Green1, Edward D. Lemaire2,3, Natalie Baddour4 1
2
Department of Systems and Computer Engineering, Carleton, University, Ottawa, Canada Centre for Rehabilitation Research and Development, Ottawa Hospital Research Institute, Ottawa, Canada 3 Faculty of Medicine, University of Ottawa, Ottawa, Canada 4 Department of Mechanical Engineering, University of Ottawa, Ottawa, Canada {mpayam, jrgreen}@sce.carleton.ca, elemaire@ottawahospital.on.ca, nbaddour@uottawa.ca
Abstract— Automatically detecting daily activities using wearable smartphones would provide valuable information to clinicians. While accelerometer data is effective in this area, classifying stair ascent can be difficult. In this paper, video content analysis is performed on short videos captured from a wearable smartphone in order to distinguish between level ground walking and stair climbing. High contrast image features, such as corners, were tracked across consecutive video frames to create feature paths. Computing the median of the slope of the paths in each frame revealed substantial differences, in both magnitude and variation over time, for stair climbing as opposed to walking. A time series of median slope values was produced for each video clip, and the number of local maxima and minima above a threshold of 1.0 were computed. Results revealed that the number of peaks during stair climbing were substantially larger than walking and, therefore, could be used as a feature for distinguishing between these two activities. Keywords-component; walk; stairs; video; video content analysis; wearable mobility monitoring system
I.
INTRODUCTION
Understanding mobility as people move within their chosen environment is essential for healthcare decisionmaking and research. Ideally, a quantitative approach is used to monitor a person as they perform their activities of daily living, since self-reporting activity is often biased and clinical mobility measures do not necessarily reflect mobility outside the clinic. Wearable mobility monitoring systems (WMMS) can provide this quantitative information to better understand activity and mobility. Smartphones have been used as a WMMS because they are small, light, easily worn, easy to use for most consumers, and they provide multitasking computing platforms that can incorporate accelerometers, GPS, video camera, light sensors, temperature sensors, gyroscopes, and magnetometer [1],[2]. Activities are typically recognized by analyzing the phone’s accelerometer or external sensor data [3]–[6]. A Blackberry smartphone-based system was developed that identifies each mobility change-of-state (CoS), attempts to classify the activity using accelerometer data, and triggers video capture for 3 seconds [6]. This single subject case study reported an average sensitivity of 89.7% and specificity of 99.5% for walking-related activities, sensitivity
978-1-4673-5197-3/13/$31.00 ©2013 IEEE
of 72.2% for stair navigation, and sensitivity of 33.3% for ramp recognition. Specifically, climbing a staircase was identified as being difficult to distinguish using accelerometer data alone. Video analysis could improve activity categorization and provide context for the activity. However, appropriate, automated video analysis methods for wearable video are not currently available. Automated video analysis for ambulatory video captured by a smartphone has numerous inherent challenges. First, the camera is not mounted on a stationary platform. In fact, typical waist-clip mounting leads to potentially large vibrations and translations as the person’s hips move, as well as occasional occlusions by the arm as it swings in front of the camera. Second, there is no frame of reference, which could be used for tracking purposes. Finally, no prior knowledge of the environment is known and environment content is continuously changing. Previous work related to video content analysis focused on unsupervised clustering of audio and video inputs for event detection [7], system training in the user’s environment as an indoor personal positioning system [8], or capturing specific environment features (such as edges) for heading change detection [9] and absolute corridor orientation detection [11]. For the corridor orientation study, the camera was mounted in a fixed orientation on a rolling platform and was not subject to excessive vibration, swinging, or other environmental interference. In this paper, short 3-second ambulatory video clips, captured using a wearable smartphone, were analyzed in order to extract features capable of distinguishing between walking and stair ascent. II.
EXPERIMENTAL SETUP
Video recording was performed at 30 frames per second using a Blackberry10 ™ Alpha device or Blackberry Bold™ 9900 (Research In Motion, Waterloo, ON, Canada). A video database of level ground walking and stair climbing was created from videos recorded by the previously developed WMMS software [6] and manually captured videos on the Blackberry10 device. All trails were performed by ablebodied participants with no mobility deficits. The smartphone was placed in a holster and clipped onto the front right side of the person’s waist belt. A total of 12 stair climbing (using the Blackberry™ Alpha device) and 12