Characteristics of a dual force plate system embedded in a six degree of freedom motion platform

Page 1

Characteristics of a Dual Force Plate System Embedded in a Six Degree of Freedom Motion Platform Emily H. Sinitski *,***

Edward D. Lemaire *,**

The Ottawa Hospital Research Institute CRRD 505 Smyth Road, Ottawa, ON K1H 8M2 esinitski@toh.on.ca

University of Ottawa Faculty of Medicine 451 Smyth Road Ottawa, ON K1H 8M5

*

**

Abstract—Motek Medical’s CAREN-Extended system is a virtual environment primarily used in physical rehabilitation and biomechanical research. This virtual environment integrates a motion capture system and a six degree of freedom motion platform equipped with a dual-belt treadmill and two force plates. This research describes performance characteristics associated with a “treadmill – motion platform” configuration that should be considered for appropriate measurement, and effective design of research protocols and rehabilitation CAREN applications. Keywords—CAREN; virtual reality; force plate; 6 DOF motion platform; treadmill

I.

INTRODUCTION

The Computer Aided Rehabilitation Environment (CAREN – Motek Medical, Amsterdam, Netherlands) is a virtual environment and a rehabilitation aid used in research and clinical settings. This system enables clinicians to utilize innovative rehabilitation techniques and to obtain comprehensive evaluation measurements that provide insights into a patient’s recovery process [1]. In addition to clinical use, researchers employ the CAREN for scientific inquiry, furthering knowledge of walking stability [2], traumatic brain injury [3], and neurorehabilitation [4]. The Ottawa Hospital Rehabilitation Centre is equipped with a CAREN-Extended system. This CAREN configuration integrates a motion capture system, six degree of freedom motion platform, instrumented treadmill, and a virtual scene. The CAREN system allows researchers to address a number of novel research questions by enabling manipulation of the standing or walking surface, virtual scene, and by developing interactive environments. The CAREN system’s discrete technologies are not new, but aggregating these systems for rehabilitation is currently unique. Understanding the performance characteristics and limitations of this system is crucial for effective design of research protocols or formulation of clinical treatment plans. One challenge presented by the CAREN-Extended This project was partially funded by the Natural Sciences and Engineering Research Council of Canada (NSERC). 978-1-4673-5197-3/13/$31.00 ©2013 IEEE

***

Natalie Baddour

University of Ottawa Department of Mechanical Engineering 161 Louis Pasteur Ottawa, ON K1N 6N5

framework is including force plates within the motion platform. In a typical motion analysis laboratory, force plates are secured in a level walkway and are isolated from electrical interference and environmental vibrations. However, CAREN-Extended force plates are embedded in a treadmill and actuated platform where platform and treadmill operation affect ground reaction force (GRF) signals. This purpose of this research was to examine how force measurements are affected by CAREN-Extended system operation. The performance tests included force plate noise characteristics during platform motion, ambulation, treadmill operation, and baseline drift. Understanding these characteristics enables researchers and clinicians to fully utilize the system’s potential. II.

METHODOLOGY

A. Equipment Description The CAREN-Extended system at The Ottawa Hospital Rehabilitation Centre (Fig. 1) incorporates a 12-camera (MX T20S) Vicon motion capture system (Vicon, Oxford, UK), 3m diameter Sarnicola hydraulic platform capable of six degrees of motion (Sarnicola Simulation Systems, Inc., Conklin, NY), Bertec 1x2m dual-belt treadmill instrumented with two force plates (Bertec Corp., Columbus, OH), 180° projection screen, and four F10 AS3D projectors (projectiondesign, Fredrikstad, Norway). The Sarnicola motion platform consists of six hydraulic actuators connected in a Stewart configuration. The actuators are controlled independently to enable motion in six degrees of freedom: sway or medial-lateral translation (ML), surge or anterior-posterior translation (AP), heave or vertical translation (VT), pitch, yaw, and roll. B. Data Collection The Vicon Nexus 1.8.2 motion capture system (Vicon, Oxford UK) was used to digitize reflective marker positions at 100 Hz and record force plate data at 1000 Hz.


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Characteristics of a dual force plate system embedded in a six degree of freedom motion platform by Natalie Baddour - Issuu