Handbook of Structural Steelwork

Page 1

HANDBOOK OF STRUCTURAL STEELWORK EUROCODE EDITION

BCSA Publication No. 55/13

HANDBOOK OF STRUCTURAL STEELWORK

EUROCODE EDITION

THE BRITISH CONSTRUCTIONAL STEELWORK ASSOICIATION LIMITED

BCSA Limited is the national organisation for the Steel Construction Industry; its Member companies undertake the design, fabrication and erection of steelwork for all forms of construction in building and civil engineering. Associate Members are those principal companies involved in the direct supply to all or some Members of components, materials or products. Corporate Members are clients, professional offices, educational establishments etc, which support the development of national specifications, quality and erection techniques, overall industry efficiency and good practice.

The principal objectives of the Association are to promote the use of structural steelwork, to assist specifiers and clients, to ensure that the capacities and activities of the industry are widely understood and to provide members with professional services in technical, commercial, contractual, certification and health and safety matters. The Association’s aim is to influence the trading environment in which member companies have to operate in order to improve their profitability.

The British Constructional Steelwork Association Ltd.

4 Whitehall Court, London, SW1A 2ES.

Telephone: +44 (0) 20 7839 8566 Fax: +44 (0) 20 7976 1634

Email: postroom@steelconstruction.org

Website: www.steelconstruction.org www.steelconstruction.info

THE STEEL CONSTUCTION INSTITUTE

SCI (The Steel Construction Institute) is the leading independent provider of technical expertise and disseminator of best practice to the steel construction sector. We work in partnership with clients, members and industry peers to help build businesses and provide competitive advantage through the commercial application of our knowledge. We are committed to offering and promoting sustainable and environmentally responsible solutions.

The Steel Construction Institute, Silwood Park, Ascot, Berkshire, SL5 7QN.

Telephone: +44 (0) 1344 636525 Fax: +44 (0) 1344 636570 Email: reception@steel-sci.com

Website: www.steel-sci.org

The European operations of Tata Steel comprise Europe's second largest steel producer. With main steelmaking operations in the UK and the Netherlands, they supply steel and related services to the construction, automotive, packaging, lifting & excavating, energy & power, and other demanding markets worldwide. Tata Steel is one of the world’s top ten steel producers. The combined group has an aggregate crude steel capacity of more than 28 million tonnes and approximately 80,000 employees across four continents.

Tata Steel, PO Box 1, Scunthorpe, North Lincolnshire, DN16 1BP

Telephone: +44 (0) 1724 404040

Email: construction@tatasteel.com

Website: www.tatasteeleurope.com

HANDBOOK OF STRUCTURAL STEELWORK (EUROCODE EDITION)

Jointly published by

The Steel Construction Institute Steelwork Association Ltd Silwood Park 4 Whitehall Court Ascot London SW1A 2ES SL5 7QN

The British Constructional

Tel: +44 (0) 20 7839 8566

Fax : +44 (0) 20 7976 1634

Tel: +44 (0) 1344 636525

Fax: +44 (0) 1344 636570

Publication
No. 55/1

© The British Constructional Steelwork Association Ltd and The Steel Construction Institute, 2013

Apart from any fair dealing for the purpose of research or private study or criticism or review, as permitted under the Copyright Designs and Patents Act, 1988, this publication may not be reproduced, stored or transmitted, in any form or by any means, without the prior permission in writing of the publishers, or in the case of reprographic reproduction only in accordance with the terms of the licences issued by the UK Copyright Licensing Agency, or in accordance with the terms of licences issued by the appropriate Reproduction Rights Organisations outside the UK.

Enquiries concerning reproduction outside the terms stated here should be sent to the publishers, at the addresses given on the title page.

Although care has been taken to ensure, to the best of our knowledge, that all data and information contained herein are accurate to the extent that they relate to either matters of fact or accepted practice or matters of opinion at the time of publication, The British Constructional Steelwork Association Limited and The Steel Construction Institute assume no responsibility for any errors in or misinterpretations of such data and/or information or any loss or damage arising from or related to their use.

Publications supplied to the Members of BCSA and SCI at a discount are not for resale by them.

Publication Number: 55/1 ISBN 10: 1-85073-065-2 ISBN 13: 978-1-85073-065-1

British Library Cataloguing-in-Publication Data.

A catalogue record for this book is available from the British Library.

ii

FOREWORD

The objective of this publication is to present a practical guide to the design of structural steel elements for buildings. The document comprises three principal Sections: general guidance, general design data and design tables.

Generally the guidance is in accordance with BS EN 1993-1-1: 2005 Eurocode 3: Design of steel structures – Part 1.1: General rules and rules for buildings, its UK National Annexand other relevant Eurocodes. Worked examples are presented where appropriate. No attempt has been made to consider complete structures, and it is to be noted therefore that certain important design matters are not dealt with - those for instance of overall stability, of interaction between components and of the overall analysis of a building.

The Section on General Design Data includes bending moment diagrams, shear force diagrams and expressions for deflection calculations. A variety of beams and cantilevers with different loading and support conditions are covered. Expressions for properties of geometrical figures are also given, together with useful mathematical solutions.

The design tables also include section property, member resistance and ultimate load tables calculated according to BS EN 1993-1-1: 2005 and its associated National Annex. The tables are preceded by a comprehensive set of explanatory notes. Section ranges include universal beams and columns, joists, parallel flange channels, asymmetric beams, equal angles, unequal angles, equal angles back-to-back, unequal angles back-to-back, Tees cut from universal beams and columns, hot-finished circular, square and rectangular hollow sections and coldformed circular, square and rectangular hollow sections. The range includes the Tata Steel Advance® sections. In addition to the BS section designation, the tables also provide the Advance®, Celsius® and Hybox® branding. The relationship between the branded sections/steel grade and the BS sections/steel grades is given in Section 11 of the explanatory notes.

The member resistance tables also include the resistances for commonly used non-preloaded and preloaded bolts together with the longitudinal and transverse resistances of fillet welds.

iii
iv

ACKNOWLEDGEMENTS

This publication is jointly published by the BCSA and the SCI. The preparation of this publication was carried out under the guidance of a steering group consisting of the following members:

Dr D. B. Moore

Mr. D. G. Brown

The British Constructional Steelwork Association

The Steel Construction Institute

Dr R. J. Pope The British Constructional Steelwork Association

Valuable comments were also received from:

Mr. A. S. Malik

Mr. D. C. Iles

The Steel Construction Institute

The Steel Construction Institute

The section property and member resistance tables for this edition were produced by Miss E. Nunez Moreno formerly of the Steel Construction Institute.

This publication has been jointly funded by the BCSA and the SCI.

v
vi

ACKNOWLEDGEMENTS

CHAPTER 1 GENERAL DESIGN CONSIDERATIONS

1.2Introduction to BS EN 1990

1.3Limit state design

1.3.1Ultimate limit states

1.3.2Serviceability limit states

1.3.3Structural integrity

1.3.4Durability

1.4Actions – Eurocodes

1.5Design basis for structural steelwork

1.6Steel structures – Eurocode 3

1.6.1Structural analysis

1.6.2Sway stiffness

1.7Steel design strength

1.8Structural integrity

CHAPTER 2 RESISTANCE OF CROSS-SECTIONS

2.1Local buckling 2.2Classification

2.2.1Classes of cross-sections 2.2.2Classification process 2.3 Example 2.1 – Section classification 2.4Classification of UB and UC sections 2.5Shear resistance 2.6Bending resistance 2.7Example 2.2 – Beam with full lateral resistant

CHAPTER 3 BUCKLING RESISTANCE OF BEAMS

3.1 Design considerations 3.2 Buckling resistance of laterally unrestrained beams

3.2.1 Reduction factor for lateral-torsional buckling

3.2.2 Non-dimensional slenderness for lateral-torsional buckling

3.3 Example 3.1 – Simply supported beam with lateral restraint at load points 3.4 Resistance of webs to transverse forces (web bucking and bearing) 3.5 Web stiffeners

3.6 Example 3.2 – Web subject to transverse forces 3.7 Example 3.3 – Web stiffener

1.1Design aims 1 1 2 2 3 3 4 4 5 8 8 11 12 13 15 15 15 17 23 25 26 27 28 32 33 34 35 39 43 46 47 49

Contents Page No.
FORWARD
vii

CHAPTER 4 MEMBERS IN TENSION

4.1 Resistance of cross-section

4.2 Resistance of angles connected by one leg

4.3 Example 4.1 – Angle connected by a single leg using two rows of bolts

4.4 Members subject to bending and tension

CHAPTER 5 MEMBERS IN COMPRESSION

5.1 Resistance of cross-section

5.2Buckling resistance

5.3 Slenderness

5.4 Buckling length, Lcr

5.5 Buckling curves

5.6 Example 5.1 – Simple compression member

5.7 Example 5.2 – Simple compression member restrained at mid-height

5.8 Buckling resistance of members in bending and axial compression

5.9 Columns in simple construction

5.10 Example 5.3 – Column under axial compression and bending

5.11 Example 5.4 – Columns in simple construction

CHAPTER 6 TRUSSES

6.1 Introduction 6.2 Typical uses 6.2.1 Spans 6.3 Design concept 6.3.1 Roof arrangement 6.3.2 Pre-cambering 6.3.3 Typical sections 6.3.4 Joint resistances

GENERAL DESIGN DATA

Bending moment and deflection formulae for beams Moving loads Fixed end moments Trigonometrical formulae Solution of triangles Properties of geometrical figures Metric conversions

EXPLANATORY NOTES

3.
5.
viii
1. General 2. Dimensions of sections
Section properties 4. Introduction to resistance tables
Bending tables 6. Resistance to transverse force tables (Web bearing and buckling) 7. Tension tables 8. Compression tables 9. Bending tables 10. Axial force and bending tables 11. Bolts and welds 12. Section designations and steel grades 53 54 55 56 88 99 102 103 104 106 114 116 117 118 125 126 128 129 130 138 138 142 147 81 81 81 82 82 83 83 85 58 58 59 61 62 64 66 68 69 71 75

REFERENCES

150

TABLES OF DIMENSIONS AND GROSS SECTION PROPERTIES

Universal beams 156

Universal columns 162

Joists 164

Parallel flange channels 166

ASB (Asymmetric Beams) 168

Equal angles 171

Unequal angles 172

Equal angles back-to-back 174 Unequal angles back-to-back 175

Tees cut from universal beams 176

Tees cut from universal columns 180

Hot-finished circular hollow sections 182

Hot finished square hollow sections 186

Hot-finished rectangular hollow sections 190

Hot-finished ellipitcal hollow sections 197

Cold-formed circular hollow sections 198

Cold-formed square hollow sections 201

Cold-formed rectangular hollow sections 204

Pink Green Pages Pages S275 S355

MEMBER RESISTANCES

Universal beams subject to bending 210 326

Universal columns subject to bending 213 329

Joists subject to bending 214 330

Parallel flange channels subject to bending 215 331

Universal beams – web bearing and buckling 216 332

Universal columns – web bearing and buckling 225 341

Joists – web bearing and buckling 228 344

Parallel flange channels – web bearing and buckling 229 345

Equal angles subject to tension 231 347

Unequal angles subject to tension 234 350

Universal beams subject to compression 240 356

Universal columns subject to compression 249 365

Parallel flange channels subject to compression 252 368

Equal angles subject to compression 256 372

Unequal angles subject to compression 258 374

Universal beams subject to combined axial load and bending 263 379

Universal columns subject to combined axial load and bending 291 407

Joists subject to combined axial load and bending 301 417

Parallel flange channels subject to combined axial load and 305 421 bending

Yellow Pages
ix

BOLT RESISTANCES

Non preloaded bolts – hexagon head

Non preloaded bolts – countersunk

Preloaded bolts at serviceability limit state – hexagon head

Preloaded bolts at ultimate limit state – hexagon head

Preloaded bolts at serviceability limit state – countersunk

Preloaded bolts at ultimate limit state - countersunk

FILLET WELDS

425 428 431 433 435 437 439 x

309 312 315 317 319 321 323

Design weld resistances

CHAPTER 1 - GENERAL DESIGN CONSIDERATIONS

1.1 Design aims

The aim of any design process is the fulfilment of a purpose, and structural steelwork design is no exception. In building design, the purpose is most commonly the provision of space that is protected from the elements. Steelwork is also used to provide internal structures, particularly in industrial situations.

The designer must ensure that the structure is capable of resisting the anticipated loading with an adequate margin of safety and that it does not deform excessively during service. Due regard must be paid to economy which will involve consideration of ease of manufacture, including cutting, drilling and welding in the fabrication shop and transport to site. The provision and integration of services should be considered at an early stage and not merely added on when the structural design is complete. The need to consider buildability also arises under the Construction (Design and Management) Regulations 2007 [1], as the designer has an obligation to consider how the structure will be erected, maintained and demolished. Sustainability issues such as recycling and reuse of materials should also be considered. Any likely extensions to the structure should be considered at this stage in the process.

1.2Introduction to BS EN 1990

BS EN 1990 Eurocode - Basis of structural design [2] establishes the common principles and requirements that apply to all aspects of structural design to the Eurocodes. These include requirements for safety, serviceability and durability of structures. In BS EN 1990, loads and imposed deformations and accelerations are classed together as ‘Actions’. BS EN 1990 also sets out the method/s for determining the effects of combined actions. A full description of the combinations given in BS EN 1990 is beyond the scope of this publication and the reader is referred to the Designers’ Guide to EN 1990 [3] .

In BS EN 1990, actions are classified by their variation with time, as permanent, variable or accidental actions. These three types of action (loading) are briefly described below:

(i) Permanent actions (dead loads)

Permanent actions are those that do not vary with time, such as the self-weight of a structure and fixed equipment. These have generally been referred to as dead loads in previous British Standards.

(ii) Variable actions (live loads)

Variable actions are those that can vary with time. Gravity loading due to occupants, equipment, furniture, material which might be stored within the building, demountable partitions, snow load and wind pressures are all variable actions on building structures. These have generally been referred to as live loads in previous British Standards.

1

(iii) Accidental actions

Accidental actions result from exceptional conditions such as fire, explosion and impacts.

1.3Limit state design

In the limit state design approach given in the Eurocodes the actions (loads) are multiplied by partial factors for actions and member resistances are determined using the material strength divided by a partial factor for the material and type of member resistance.

The values of the partial factors for actions are given in BS EN 1990 and its associated National Annex [4] and vary according to the design situation to reflect the required reliability for each specified situation. Reduction factors are applied to the partial factors when actions are combined as it is less likely that, for example, maximum wind will occur with maximum imposed load.

The procedures used to determine the recommended values of partial and combination factors are explained in an Annex to BS EN 1990 in terms of the overall target reliability for construction.

The values of the material partial factors are given in the appropriate material Eurocodes and their associated National Annex (i.e. BS EN 1992, BS EN 1993, BS EN 1994, BS EN 1995, BS EN 1997 and BS EN 1999). These values reflect the reliability in determining the resistance of elements of the relevant material or product.

BS EN 1990 identifies two fundamentally different types of limit state. These are:

• Ultimate limit states

• Serviceability limit states

1.3.1Ultimate limit states

The ultimate limit states are associated with collapse and other forms of structural failure. The regulatory provisions are concerned with the safety of people through the safety of the structure. In some cases, designers need to consider other requirements such as the protection of the structure’s contents (e.g. a warehouse for classified pharmaceuticals or a museum housing irreplaceable art). BS EN 1990 lists the following ultimate limit states:

• EQU: Loss of static equilibrium of the structure or any part of the structure

• STR: Internal failure or excessive deformation of the structure or structural members

• GEO: Failure or excessive deformation of the ground

• FAT: Fatigue failure of the structure or structural members

The application of these ultimate limit states to the design of structural steelwork is explained in Section 1.5.

2

1.3.2Serviceability limit states

Serviceability limit states (SLS) correspond to the limit beyond which the specified service criteria are no longer met. In particular, they concern the functioning of the structure or structural members, comfort of people and the appearance of the structure. Serviceability loads are taken as unfactored loads with appropriate combination factors.

BS EN 1990 identifies three combinations of actions for serviceability. These relate to irreversible serviceability limit states, reversible serviceability limit states and a third one relating to long term effects and the appearance of the structure. The latter is not generally of concern in the design of steel structures.

Irreversible serviceability limit states are those limits that are permanently exceeded when the load is removed. (e.g. local damage or permanent deflections).

Reversible serviceability limit states are those limit states that are not exceeded when the load is removed (e.g. elastic deflections or vibrations).

For most steel buildings the reversible serviceability limit states apply, although the irreversible situation may apply to cracking in concrete and steel composite structures.

1.3.3Structural integrity

The requirement for structural integrity or robustness is additional to the ultimate and serviceability limit state requirements. Structural integrity/robustness is the ability of a structure to withstand an event without being damaged to an extent disproportionate to the original cause. The events referred to include explosions, impact and the consequences of human error. To ensure that the damage is not disproportionate, BS EN 1990 requires the designer to choose one or more of the following measures:

• Avoiding, eliminating or reducing the hazard to which the structure can be subjected

• Selecting a structural form which has a low sensitivity to the hazards considered

• Selecting a structural form and design that will survive adequately the removal of an individual element or limited part of the structure or the occurrence of acceptable localised damage

• Avoiding as far as possible a structural system that can collapse without warning

• Tying the structural members together

In terms of buildings, adequate structural integrity is usually achieved by ensuring that key elements are not susceptible to damage (due to a notional accidental action), by providing redundancy in the structure, such that only localised damage occurs, or by providing details that are sufficiently robust to tie the structural members together.

3

1.3.4Durability

With respect to durability, BS EN 1990 states ‘The structure shall be designed such that deterioration over its design working life does not impair the performance of the structure below that intended, having due regard to its environment and the anticipated level of maintenance.’ It recommends that to achieve a durable structure the following factors should be taken into account:

• The intended or foreseeable use of the structure,

• The required design criteria,

• The expected environmental conditions,

• The composition, properties and performance of the materials and products,

• The properties of the soil,

• The choice of the structural system,

• The shape of members and the structural detailing,

• The quality of workmanship, and the level of control,

• The particular protective measures,

• The intended maintenance during the design working life.

1.4Actions – Eurocodes

The values to be adopted for the different types of actions are given in EN 1991 –Eurocode 1: Actions on Structures. This Eurocode has the following four main Parts:

BS EN 1991-1 – General actions

BS EN 1991-2 – Traffic loads on bridges [5]

BS EN 1991-3 – Actions induced by cranes and machinery [6]

BS EN 1991-4 – Actions in silos and tanks [7]

Part 1 is sub-divided into seven Parts, which provide designers with most of the information required to determine each individual action on a structure. The seven Parts are:

BS EN 1991-1-1 – Densities, self-weight, imposed loads for buildings [8]

BS EN 1991-1-2 – Actions on structures exposed to fire [9]

BS EN 1991-1-3 – Snow loads [10]

BS EN 1991-1-4 – Wind actions [11]

BS EN 1991-1-5 – Thermal actions [12]

BS EN 1991-1-6 – Actions during execution [13]

BS EN 1991-1-7 – Accidental actions [14]

The main Parts used for the design of buildings are briefly described below, with reference to previous British Standards.

BS EN 1991-1-1 replaces BS 6399-1 [15] .

BS EN 1991-1-3 replaces BS 6399-3 [16]. It is used to determine snow loads, although some of the terminology may be unfamiliar. The UK National Annex [17] specifies the

4

use of a different snow map from that in BS 6399-3. This map in the National Annex is zoned with altitude adjustments, whereas the previous map had isopleths; the National Annex map benefits from better analysis of the latest data from the meteorological office.

BS EN 1991-1-4 replaces BS 6399-2[18] but has a major difference in that the basic wind velocity is based on a 10 minute mean wind speed, as opposed to the hourly mean wind speed in BS 6399-2 and the reference height has changed. The UK National Annex [19] provides a new wind map on this basis.

A fuller description of each of these parts can be found in references [20], [21] and [22]

1.5Design basis for structural steelwork

Ultimate Limit States

In the context of structural steelwork in buildings, the EQU limit state (overturning as a rigid body) and the STR limit state (internal failure) are of main concern. These relate to the following design issues:

i) Loss of equilibrium of the structure

ii) Strength failure

iii) Instability due to buckling

iv) Sway instability

v) Brittle fracture

For structures subject to fatigue loading, the FAT limit state must also be considered.

i) Loss of equilibrium

The ultimate limit state of static equilibrium comprises the limit states of overturning, uplift (e.g. raised by buoyancy) and sliding. Overturning of the structure (or part of it) involves rotation of the structure as a rigid body. This is often relevant for tall structures such as towers subjected to wind and it is normal practice to consider the structure as a rigid body rotating about a point. Uplift is the lifting of the structure off its seating while sliding is the movement of the structure on its foundations. In all cases, it is normal practice to consider the structure as a rigid body and the design issues are focussed on the means of securing the structure to its foundations and on the security of the foundations themselves.

ii) Strength failure

Yielding of the steel can lead to rupture (i.e. a strength failure) or buckling (i.e. instability) or a combined failure, any of which would limit the load carrying capacity of the structure. Ties and similar components in tension such as bolts are unaffected by buckling and will be limited by their strength to resist rupture. Columns and other members in compression will be limited by their resistance to buckling (see below) unless they are short enough to accept the full “squash load”. Strength considerations are most likely to be relevant in connection zones where forces are concentrated in local areas of high compression/tension.

5

iii) Instability due to buckling

Buckling is a complex phenomenon and occurs where unrestrained out-of-plane movement occurs before the full compressive strength can be developed. For individual components, this can occur in columns subjected principally to compression, in beams subjected principally to bending and in members (beam-columns) subjected to a combination of compression and bending. There can be several modes of buckling. The most common modes are flexural buckling (Euler buckling) of columns and lateraltorsional buckling of beams. Local elements of a built-up member (such as the web of a plate girder) may also fail by local shear buckling before the whole member becomes unstable. In addition, a built-up frame such as a portal frame may be limited in strength by its ability to resist global buckling.

In all cases of buckling (local, member or global), the limit of resistance is determined by the weakest buckling mode and this is determined by the restraints provided by the designer to resist out-of-plane movement. Examples are web stiffeners in plate girders, use of side rails to restrain columns and use of purlin systems and knee braces to resist buckling in portal frames.

iv) Sway instability

Instability can arise due to lateral deflection (or sway) of the whole structure. If sway deflections due to horizontal forces become too large then excessive secondary effects can become significant. With respect to the secondary effects arising from sway, the design requirements are discussed further in Section 1.6.2.

v) Brittle fracture

This is a phenomenon in which steel loses its normal ductility and fails in a brittle manner. It is avoided by ensuring that the steel used (for all components, including welds) has adequate notch toughness. Brittle fracture is more likely with low temperatures, large steel thickness, high tensile stresses, high strain rates and details that include stress raisers such a holes and welds. The higher the risk of brittle fracture, the tougher the specified steel must be. The requirements for material toughness are expressed in BS EN 1993-1-10[23] in terms of a maximum permitted thickness that depends on the grade and sub-grade of the steel, the maximum stress at the relevant location and a reference temperature. The reference temperature is not simply the lowest steel temperature but the lowest temperature plus adjustments for detail category (local stress raisers), strain rate etc.

The National Annex for BS EN 1993-1-10 [24] simplifies the whole procedure and refers to PD 6695-1-10 [25], which provides simple look-up tables for maximum thicknesses for internal and external steelwork in buildings.

vi) Fatigue

Fatigue (FAT) is rarely a problem in building structures as it happens when a very large number (of the order of 2 x 106 cycles) of stress reversals of a significant magnitude occur. The only time that this is likely to cause concern is in buildings containing heavy vibrating plant or machinery, such as printing presses or cranes.

Serviceability Limit States

The serviceability limit states that affect the use and appearance of buildings include deflections and vibrations. Each of these is considered below.

6

i) Deflections

Although a structure may have adequate strength, deflections at the specified characteristic design loading may still be unacceptable. Such distortion may result in doors or windows being inoperable and plaster and other brittle finishes cracking. Clauses NA 2.23 and NA 2.24 of the National Annex to BS EN 1993-1-1[26] give suggested limits for a variety of conditions, some of which are listed below in Tables 1.1 and 1.2. Note that the clauses refer to the limits as “suggested limits for calculated deflections”. This is because a general standard cannot give definitive values to cater for all cases and it is essential for the designer to exercise judgement in determining the requirements for each specific case considered.

Table 1.1: Suggested limits for calculated vertical deflections at SLS

Vertical deflections Limit

Cantilevers Length/180

Beams carrying plaster or other brittle finish Span/360 Other beams (except purlins and sheeting rails) Span/200 Purlins and sheeting rails To suit the characteristics of particular cladding

Table 1.2: Suggested limits for calculated horizontal deflections at SLS

Horizontal deflections Limit

Tops of columns in single-storey buildings except portal frames Height/300

Columns in portal frame buildings, not supporting crane runways

To suit the characteristics of the particular cladding

In each storey of a building with more than one storey Height of that storey/300

ii) Vibrations and wind induced oscillations

Traditionally, this has been deemed to be a problem only for masts and towers when wind oscillations have needed attention, or in structures supporting vibrating machinery. Vibrations are not usually a problem with normal buildings unless spans are large, say in excess of 9m, or for the floors of dance halls or gymnasia that are subject to rhythmic loading. The solution to any problem is not simply to over-design the members but rather to investigate the natural frequency of the structural system, which should differ significantly from the frequency of the disturbing forces so that resonance does not occur. An SCI publication gives guidance on this topic [27]

Durablilty

The durability of a steel structure is its expected life to its first maintenance. The factors that influence durability are the structure’s intended use (in particular the corrosivity category of its environment) and how its maintenance requirements relate to its overall intended design life. The use of BS EN ISO 12944 [28] for paints and varnishes and BS EN ISO 14713 [29] for zinc and aluminium coatings are recommended as references for the provision of suitable anti-corrosion protection schemes.

7

Consideration should be given to the environment and degree of exposure for each component, as well as to the level and ease of maintenance after completion. In particular, care should be taken to avoid detailing that produces pockets in which water and dirt can accumulate. Helpful information can be found in guides to corrosion [30], which note that, steel will corrode only if exposed to air and water together. In certain circumstances such as the interiors of multi-storey buildings, untreated steelwork may well be acceptable.

1.6Steel structures – Eurocode 3

1.6.1Structural analysis

To check the strength of the members and the stability of a steel framed structure it is first necessary to determine the internal forces in the structure, in which the behaviour of the joints is fundamental. BS EN 1993-1-1 gives three joint methods:

• Simple, in which the joint is assumed not to transmit bending moments;

• Continuous, in which the joint transmits bending moments but the flexibility of the joint is assumed to have no effect on the analysis

• Semi-continuous, in which the joint transmits bending moments but the flexibility of the joint needs to be taken into account in the analysis

Elastic, plastic and elastic-plastic methods of global analysis can be used with any of these three methods.

BS EN 1993-1-8 [31] gives separate definitions for the terms ‘connection’ and ‘joint’. A connection is the location where two or more elements meet and a ‘joint’ is defined as the zone where two or more elements are interconnected. For design purposes, a connection is the assemblage of basic components (i.e. the end-plate, bolts welds etc.) whereas a joint consists of the web panel and either one or two connections. These definitions are shown in Figure 1.1.

Connection

Web panel in shear

Joint = Connection + Web panel

Figure. 1.1 Definition of the terms Joint and Connection

8

Table 1.3 shows how the joint classification, the joint model and the method of global analysis are related.

Table

1.3

– Classification of joints

Method of global analysis Classification of joint, according to joint model

Simple Continuous Semi-continuous Elastic Nominally-pinnedRigid Semi-rigid Rigid-plastic Nominally-pinnedFull-strength Full or partialstrength and semirigid or partialstrength and rigid Elastic-Plastic Nominally-pinnedRigid and fullstrength Semi-rigid and partial strength

Joints may be classified by their stiffness and by their strength. Based on stiffness joints can be classified as nominally pinned, semi-rigid or rigid. Based on their strength, joints can be classified as pinned, partial-strength or full-strength. Alternatively, joints can be classified on the basis of previous satisfactory experience. The joints given in the BCSA/SCI publications for simple joints [32] and momentresisting joints [33] may be assumed to be nominally pinned and rigid respectively.

The vast majority of designs assume the joints are either nominally pinned or rigid to render design calculations manageable.

It is convenient to relate the type of joint to the terms used for design approaches commonly used in the UK – thus in ‘simple design’, the joints are idealised as perfect pins, in ‘continuous design’ the joints are assumed to be rigid with no relative rotation of connected members whatever the applied moment, and in semi-continuous design, in which the true behaviour of the joint is taken into account. A brief description of each of these approaches is given below.

Simple design

Simple design is the most traditional approach and is still commonly used. It is assumed that no moment is transferred from one connected member to another except for the nominal moments which arise as a result of eccentricity at joints. The resistance of the structure to lateral loads and sway is usually ensured by the provision of steel bracing or in some multi-storey buildings by concrete cores.

It is important that the designer recognises the assumptions regarding connection response and ensures that the detailing of the connections is such that no moments develop which adversely affect the performance of the structure. Many years of experience have demonstrated the types of details that satisfy this criterion and the designer should refer to the standard connections given in the BCSA/SCI publication on joints in simple construction [32] .

Continuous design

In continuous design, it is assumed that joints are rigid and transfer moment between members. The stability of the frame against sway is by frame action (i.e. by bending

9

of beams and columns). Continuous design is more complex than simple design, therefore software is commonly used to analyse the frame. Realistic combinations of pattern loading must be considered when designing continuous frames. The joints between members must have different characteristics (i.e. stiffness, strength and rotation capacity) depending on whether the design method for the frame is elastic or plastic.

In elastic design, the joint must possess rotational stiffness to ensure that the distribution of forces and moments around the frame correspond to those calculated. The joint must be able to carry the full moments, forces and shears arising from the frame analysis.

In plastic design, when determining the ultimate load capacity, the strength (not stiffness) of the joint is of prime importance. The strength of the joint will determine if hinges occur in the joints or the members, and will have a significant effect on the collapse mechanism. If hinges are designed to occur in the joints, they must be detailed with sufficient ductility to accommodate the resulting rotations.

The stiffness of the joints will be important when calculating beam deflections, sway deflections and sway stability.

Semi-continuous design

True semi-continuous design is more complex than either simple or continuous design as the real joint response is more realistically represented.

Similar to continuous design, connections between members must have different characteristics depending on whether the design method for the frame is elastic, plastic or elastic-plastic.

In elastic design, the joint must possess rotational stiffness but unlike continuous elastic design, the stiffness of the joint can be semi-rigid.

In plastic design, the joint must possess strength. In semi-continuous design, the joint can have a lower moment capacity than the connected members. These joints are called partial-strength. In this case, the joint will plastify before the connected member and must therefore possess sufficient ductility (i.e. rotational capacity) to allow plastic hinges to form in other parts of the structure.

Where elastic-plastic design is used the joints must possess stiffness, strength and rotational capacity. These joints are called semi-rigid, partial strength connections.

The wind moment method is a kind of semi-continuous method for unbraced frames. In this procedure, the beam-to-column joints are assumed to be pinned when considering gravity loads. However, under wind loads they are assumed to be rigid, which means that lateral loads are carried by frame action. A fuller description of the method can be found in reference [34] .

10

1.6.2Sway stiffness

BS EN 1993-1-1[35] requires the effects of deformed geometry (second order effects) to be taken into account in frame analysis if they significantly increase the effects (moments and forces) in the members. The sensitivity to second order effects is measured by the αcr parameter, which represents the factor by which the vertical design loading would have to be increased to cause overall elastic buckling of the frame (see Clause 5.2.1(3) of BS EN 1993-1-1). If the parameter exceeds the following simplified limits, given in Clause 5.2.1 of BS EN 1993-1-1, second order effects may be neglected:

cr cr ≥ = F F α for elastic analysis

10 Ed

cr cr ≥ = F F α for plastic analysis

15 Ed

As a guide, for the second order effects to be ignored, a frame should contain a bracing system with a lateral stiffness of at least five times that of the unbraced frame.

For portal frames with shallow roof slopes and beam-and-column type plane frames in buildings, Clause 5.2.1(4) of BS EN 1993-1-1 gives a simplified method for checking sensitivity to second order effects. In these structures αcr may be calculated using the following approximate equation provided that the axial compression in the beams or rafters is not significant (Compression can be significant in most portal frames): = H,Ed Ed

Ed cr δ α h V H

where: HEd is the horizontal reaction at the bottom of the storey due to the horizontal loads (e.g wind) and the equivalent horizontal loads VEd is the total design vertical load on the structure at the level of the bottom of the storey under consideration

H,Ed is the horizontal deflection at the top of the storey under consideration relative to the bottom of the storey with all horizontal loads (including the equivalent horizontal loads) h is the storey height

In cases where αcr is less than 10, the designer is presented with a number of options. These include enhancement of the stability system such that αcr is raised above 10 and hence second order effects may be ignored, making allowance for second order effects by performing a second order structural analysis accounting for deformation of the structure under load, or making allowance for second order effects by approximate means. It should be noted that if αcr is less than 3, then BS EN 1993-1-1 requires a full second order analysis to be performed (See Clause 5.2.2(5) of BS EN 1993-1-1). The different approaches given in BS EN 1993-1-1 are summarised in Table 1.4.

11

Table 1.4 – Summary of how BS EN 1993-1-1 treats second order effects

Limits on cr Recommendation Outcome

cr > 10

First order analysis

First order only 10 > cr > 3 First order analysis plus amplified sway method or effective length method

Second order effects by approximate means

cr < 3 Second order analysis More accurate second order analysis

BS EN 1993-1-1 gives a number of approaches for allowing for second order effects. The first is to include all material and geometrical imperfections in a second order analysis. This approach will require the use of specialist computer programs and is unlikely to be used for regular buildings.

Another more general approach is to separate the global frame imperfections from the local members’ imperfections. In this approach, the global imperfections may be replaced by a system of equivalent horizontal forces (EHF). Since frame imperfections are always present, the EHF should be applied to all structures and should be included in all combinations of actions. Further information on EHF is given in Clause 5.3.2(7) of BS EN 1993-1-1.

The most common approximate treatment of second order effects in multi-storey buildings, which may be applied provided that αcr >3, is the ‘amplified sway method’. In this method, account for second order effects is made by amplifying all lateral loading on the structure (typically wind loads and EHF) by a factor, denoted herein as kamp, related to the sway stiffness of the structure through the following expression (Equation 5.4 of BS EN 1993-1-1).

cr amp / 1 1 1 α = k

Design of the individual members now proceeds as described in the later chapters.

1.7Steel design strength

In the standards for steel products, the specified minimum value of the yield strength and the ultimate strength of steel decrease with increasing thickness. For structural steels, the values are given in the appropriate part of the product standard (e.g. BS EN 10025 [36] for open sections). Table 1.5 gives the values of yield strength and ultimate strength for some of the more common grades of steel, as specified in BS EN 100252.

12

Table 1.5 – Yield strengths and Ultimate strengths from BS EN 10025-2 [36] for some common steel grades

Steel grade Thickness (mm) Yield strength, fy (N/mm2) Thickness (mm) Ultimate strength, fu (N/mm2)

S275 3 275 3 450 to 580 16 275 100 410 to 560 40 265 63 255 80 245 100 235 150 225 150 400 to 540

S355 3 355 3 510 to 680 16 355 100 470 to 630 40 345 63 335 80 325 100 315 150 295 150 450 to 600

BS EN 1993-1-1 states that the nominal values of the yield strength, fy, and the ultimate strength, fu for structural steel should be obtained either from Table 3.1 of BS EN 1993-1-1 or from the product standard: the choice is left to the National Annex. The UK National Annex [37] specifies the use of the values given in the appropriate product standard. There are marginal differences between Table 3.1 and the product standards. The value of fu used in design should be that at the lower end of the range given by the Standard.

1.8Structural integrity

BS EN 1991-1-7[14] gives recommendations for buildings which include a categorisation of building types into consequence classes that is very similar to the classification system used in Approved Document A [38]. Based on the consequence class of the building, BS EN 1991-1-7 recommends a strategy for achieving an acceptable level of robustness that is very similar to the recommendations for tying and/or the notional removal of supporting members given in Approved Document A.

For framed structures, horizontal ties should be provided around the perimeter of each floor and roof level and internally at right angles to tie the columns and wall elements to the structure of the building. This is most effectively done using members approximately at right angles to each other or by steel reinforcement in concrete floor slabs and profiled steel sheeting in composite steel/concrete flooring systems. These ties should be able to resist a design tensile force of:

For internal ties ()sL q g T k k i 0.8 +ψ = or 75kN whichever is the greater For perimeter ties ()sL q g T k k p 0.4 +ψ = or 75kN whichever is the greater

13

where:

s is the spacing of the ties

L is the span of the tie

ψ is the relevant factor in the expression for combination of action effects for the accidental design situation (see BS EN 1990) gk is the characteristic permanent (dead) load qk is the characteristic variable (imposed) load

14

CHAPTER 2 - RESISTANCE OF CROSS-SECTIONS

2.1 Local buckling

The cross-section of most structural members may be considered to be an assemblage of individual parts. As these parts are plate elements and are relatively thin, they may buckle locally when subjected to compression. In turn, this may limit the compression resistance and the bending resistance. This phenomenon is independent of the length of the member and hence is termed local buckling. It is dependent upon a number of parameters. The following are of particular importance:

i) Width to thickness ratio of the individual compression elements. This is often termed the aspect ratio. Wide, thin compression elements are more prone to buckling.

ii) Support condition. This is dependent upon the edge restraint to the individual compression element. If the compression element is supported by other elements along both edges parallel to the direction of the member, then it is called an internal compression part as both edges are prevented from deflecting out of plane. If this condition only occurs along one edge, it is said to be an outstand part as the free edge is able to deflect out of plane. Each half of the flange of an I section is an outstand part; the web is an internal compression part.

iii) Yield strength of the material. The higher the yield strength of the material, the greater is the likelihood of local buckling before yielding is reached.

iv) Stress distribution across the width of the plate element. The most severe form of stress distribution is uniform compression, which will occur throughout a cross-section under axial compression or in the compression flange of an I section in bending. The web of an I section under flexure will be under a varying stress, which is a less severe condition. This is because the maximum compressive stress will only occur at one location and the stress level will reduce across the width of the element, possibly even changing to a tensile value.

All of these factors are included in the classification and design provisions of BS EN 1993-1-1 [35]

2.2 Classification

2.2.1 Classes of cross-sections

BS EN 1993-1-1 (see Clause 5.5 and Table 5.2) sets out a practical and conservative approach suitable for most design situations to ensure that local buckling does not occur. The standard introduces four classes of cross-section which are defined below:

15

i)

Class 1

Class 1 cross-sections are those which have compression elements that are sufficiently stocky that the material yield strength may be attained throughout the cross-section. The bending resistance is therefore equal to the design value of the plastic moment, M0 y pl / γ f W , and this resistance can bemaintained whilst rotation required for plastic design occurs at that cross-section.

ii) Class 2

Class 2 cross-sections are those which can attain the design value of the plastic moment but which do not necessarily have the rotation capacity required for plastic design.

iii) Class 3

Class 3 cross-sections are those in which the material yield strength is attainable in the extreme compression fibres of the cross-section assuming an elastic distribution of stress without necessarily being able to attain that stress throughout the cross-section. Such a cross-section can resist the design value of the elastic moment, M0 y min el, / γ f W .

iv)Class 4

Class 4 cross-sections are those which contain elements that are so slender that local buckling is likely to occur before the attainment of the material yield strength on the extreme fibres. Reference to BS EN 1993-1-5[39] is needed to evaluate the resistance of these cross-sections.

The differences in behaviour of the four classes may be seen in Figure 2.1, which illustrates the moment-rotation behaviour of the cross-section.

Wpl fy/ M0

Wel,min fy/ M0

Figure 2.1 Moment rotation behaviour of cross-sections of different classes

16

If the section is underuniformaxial force instead of bending the classification procedure is simpler. Classes 1, 2 and 3 are all able to develop the material strength in direct compression. If the section does not meet the limit for a Class 3 cross-section, it is a Class 4 section and a more complex procedure is needed to evaluate its resistance. The procedure for a Class 4 section is given in BS EN 1993-1-5[39]

When using hot rolled sections in steel grades S275 and S355, in the majority of cases the probability of the resistance being reduced by local buckling is quite small. If a more refined procedure is required, then the reader is referred to BS EN 1993-1-5, which deals specifically with cross-sections that are more susceptible to local buckling because of their high aspect ratios.

The situation when both axial force and bending are present is a little more complex, but is covered by the clauses of BS EN 1993-1-1. In this situation, the actual classification is dependent upon the design values of axial force and moment. To apply the classification limits from Table 5.2 of BS EN 1993-1-1 for a section under combined axial load and bending requires the calculation of the parameter for Class 1 and 2 cross-sections and for a Class 3 cross-section. For the case of an I or H section subject to combined axial compression and major axis bending and where the neutral axis is within the web of the member, can be calculated from the following expression: () 1 2 1 2 1 f y w

Ed ≤ + + = r t f t N h c α where: c is shown in Table 2.1 h is the depth of the section tw is the thickness of the web tf is the thickness of the flange r isthe root radius fy is the yield strength NEd is the design axial force (+ve for compression and -ve for tension)

An example of classifying a section subject to combined axial load and moment is given in Section 2.3.

2.2.2 Classification process

For the classification process, BS EN 1993-1-1 provides Table 5.2. This table is split in to three sheets. Table 5.2 (sheet 1 of 3) gives the limits for internal partsin compression, bending, and compression and bending. Table 5.2 (sheet 2 of 3) gives the limits for outstand flanges in compression, and bending and compression, Table 5.2 (sheet 3 of 3) gives the limits for angles and tubular sections in compression and bending and/or compression respectively. These tables are reproduced here as Table 2.1. Their use is illustrated in the examples forming part of this Chapter.

The cross-section classification process follows seven basic steps as listed below:

17

i) Evaluate the slenderness ratio (c/t, h/t, (b + h)/2t, d/t) of all of the parts of the cross-section in which there is compressive stress. See the figures in Table 2.1 for notation and relevant dimensions.

It should be noted that the compression width c defined in Table 5.2 of BS EN 1993-1-is based on the flat portion of the cross-section. The root radius or the weld in the case of welded sections is omitted from the measurement. One consequence of this is that BS EN 1993-1-1 uses the same classification for both rolled and welded sections.

ii) To allow for the influence of variation in the material yield strength, evaluate the parameter ε as [235/fy ]0.5 as indicated at the foot of Table 2.1. Note that this definition of ε uses a yield strength of 235N/mm2 as a reference value. This is because grade S235 is widely regarded as the normal grade of steel throughout continental Europe. For steel of grade S275 up to 16 mm thick, ε = 0.92.

iii) Identify whether the element is an outstand compression element (supported along one edge only) or an internal compression element (supported along both edges) and choose the appropriate sheet of Table 2.1 for the element under consideration.

iv)Identify whether the element is subject to bending, compression or bending and compression.

v)In the appropriate sheet of Table 2.1, identify the appropriate column of the table for the element under consideration and, where appropriate, evaluate the parameters or . For the outstand flanges of Class 3 welded sections, see Table 2.1 (sheet 2 of 3), evaluate k , which is given in Table 4.2 of BS EN 1993-1-5 [39] (or conservatively assume uniform stress in the flange).

vi)InTable 2.1, identify the appropriate row of the table for the element under consideration and determine the class of that element according to the limiting values.

vii)Classify the complete cross-section according to the least favourable (highest) classification of the individual elements in the cross-section.

From this classification and the definitions given above in Section 2.2.1 the local resistance of the cross-section may be evaluated.

The choice of the appropriate sheet of Table 2.1 depends on the boundary support conditions of the element and the column within each sheet depends on the element’s stress conditions (i.e. whether it is subject to uniform compression, bending or combined compression and bending).

18

For the compression flange of an I, H, channel or box section, the element is either an outstand element (supported along one edge only) or an internal element (supported along both edges). The stress is assumed to be uniform.

For webs of I, H and box sections where the stress varies from tension to compression, and the level of zero stress is at the mid-depth of the element, there is a set of three limits.

For webs of I, H and box sections where the stress various across the depth of the part, other than the simple case above, the parameters or must be determined. The elements of angles are treated as outstand elements and a single limit given.

19

Table 2.1 (Sheet 1 of 3) Maximum width-to-thickness ratios for compression parts

Internal compression parts

of bending Axis of bending

20
Axis
Class Part subject to bending Part subject to compression Part subject to bending and compression Stress distribution in parts (compression positive) 1 ε ≤ 72 t / c ε ≤ 33 t / c α ε ≤ ≤ α α ε ≤ > α 36 t / c : 0,5 when 1 13 396 t / c : 0,5 when 2 ε ≤ 83 t / c ε ≤ 38 t / c α ε ≤ ≤ α α ε ≤ > α 41,5 t / c : 0,5 when 1 13 456 t / c : 0,5 when Stress distribution in parts (compression positive) 3 ε ≤ 124 t / c ε ≤ 42 t / c ) ( ) (1 62 t / c : 1 when 0,33 0,67 42 t / c : 1 when *) ψ ψ ε ≤ ≤ ψ ψ + ε ≤ > ψ y f / 235 = ε fy 235 275 355 420 460 ε 1,00 0,92 0,81 0,75 0,71 *) ψ≤ -1 applies where either the compression stress σ < fy or the tensile strain εy > fy/E t c t c c t c t c t t c t c t c + fy fy c + fyfy c + fy fy c αc + fy fy c c/2 + fy c + fy ψ fy c

Table 2.1 (sheet 2 of 3) Maximum width-to-thickness ratios for compression parts

Outstand flanges

t

c t

c t

c t c

Rolled sectionsWelded sections

Class Part subject to compression Part subject to bending and compression Tip in compression Tip in tension

+ c

αc + c

+ c c

αc + c + c 21

Stress distribution in parts (compression positive) 1 ε ≤ 9 t / c α ε ≤ 9 t / c α α ε ≤ 9 t / c 2 ε ≤ 10 t / c α ε ≤ 10 t / c α α ε ≤ 10 t / c Stress distribution in parts (compression positive) 3 ε ≤ 14 t / c σ ε ≤ k 21 t / c For kσ see EN 1993-1-5 y f / 235 = ε fy 235 275 355 420 460 ε 1,00 0,92 0,81 0,75 0,71

Table 2.1 (sheet 3 of 3) Maximum width-to-thickness ratios for compression parts

Angles

Refer also to “Outstand flanges” (see sheet 2 of 3)

t

Does not apply to angles in continuous contact with other components

Class Section in compression Stress distribution across section (compression positive) 3 ε ≤ + ε ≤ 11,5 t 2 h b : 15 t / h

Tubular sections

fy t d

Class Section in bending and/or compression 1 2 50 t / d ε ≤ 2 2 70 t / d ε ≤ 3 2 90 t / d ε ≤

h b + + 22

NOTE For 2 90 t / d ε > see EN 1993-1-6. y f / 235 = ε fy 235 275 355 420 460 ε 1,00 0,92 0,81 0,75 0,71 ε2 1,00 0,85 0,66 0,56 0,51

2.3 Example 2.1 – Section classification

A 457 x 191 x 67 UB in steel grade S355 is to be used under the three conditions described below. Classify the section for each case and evaluate the local crosssectional resistance.

i) Under bending ii) Under axial compression iii) Under bending about the major axis and an axial compression of 250 kN

The section properties are: h = 453.4 mm b = 189.9 mm tf = 12.7 mm d = 407.6 mm tw = 8.5 mm r = 10.2 mm A = 85.5 cm2 Wpl = 1470 cm3 Wel = 1300 cm3

Ratios for local buckling:

For the flange: c = (b – tw – 2r)/2 = (189.9 – 8.5 – 2 x 10.2)/2 = 80.5 mm t = tf = 12.7 mm c/t = 6.34

For the web: c = d = 407.6 mm t = tw = 8.5 mm c/t = 48.0

Influence of material strength

For thickness = 12.7 mm fy = 355 N/mm2 Hence, ε = [235/355]0.5 = 0.81

(i) Bending

Flanges (Table 2.1, sheet 2 of 3)

Limiting value of c/t for Class 1 in compression is 9ε = 7.29. The actual value is 6.34 therefore the flanges are Class 1.

Web (Table 2.2, sheet 1 of 3)

The limiting value of c/t for Class 1 in bending is 72ε = 58.32. The actual value is 48 therefore the web is Class 1.

The entire cross-section is classified as Class 1 and therefore the design strength of the material can be attained throughout the section. The moment resistance of the crosssection given by Clause 6.2.5 is:

Mc,Rd = Mpl,Rd = Wpl fy / M0 Mc,Rd = 1470 x 355 x 10-3 /1.00 = 522 kNm.

23

(ii) Compression

Flanges (Table 2.1, sheet 2 of 3)

The limiting value of c/t is as in condition i) above and the flanges are therefore Class 1.

Web (Table 2.1, sheet 1 of 3)

The limiting value of c/t for Class 3 in compression is 42ε = 34.02. The actual value is 48.0 therefore the web is Class 4.

The entire cross-section therefore may be treated as Class 4 under pure axial compression. The compression resistance (for a zero length strut) is therefore given by Clause 6.2.4(2) as: Nc, Rd = Aeff fy / M0 Aeff = Af + Aw where: Af is the area of the flanges (Class 1) Aw is the area of the web is a reduction factor for plate buckling given in Clause 4.4 of BS EN 1993-1-5 as: 1.0 ) 055(3 0 p 2 p ≤ = λ ψ λ ρ When =1, 0.673 p = λ From Clause 4.4(4) M0 y

com,Ed p p.req p / γ σ λ λ λ f = = where: Ed com,σ is the maximum design compressive stress in the element determined using the effective area of the section caused by all simultaneous actions

An iterative procedure is needed to determine the value of pλ

Assuming Ed com,σ is calculated based on the gross cross-section and that pλ = 0.673. For an axial force of 700kN, req p,λ is: 323 0 0 1 / 355 8550 / 700,000 673 0 req p, = = λ

24

Therefore as pλ < 0.673 = ρ 1.0

Therefore, the axial resistance of the section is based on the gross cross-section Nc,Rd = 8550 x 355 x 10-3/1.00 = 3035 kN.

(iii) Bending about the major axis and an axial compression of 250 kN

Classification under combined bending and compression

Web (Table 2.1, Sheet 1 of 3) For a Class 2 element under varying stress, the limiting value of c/t is given by: When 0.5 > α : 1 13 456 ≤ α ε t c When 5 0 ≤ α : α ε5 41 ≤ t c

Where from Section 2.2.1 may be calculated for an I or H section in which the neutral axis lies within the web as: () 1 2 1 2 1 f y W

Ed ≤ + + = r t f t N h c α () + × × + = 2 10 7 12 355 5 8 250000 2 1 2 453.4 6 407 1 α 0.602 = α The limit for a Class 2 web is: 54.11 1 0.602 13 81 0 456 1 13 456 = × × = α ε

The actual value is 48, therefore the web is Class 2.

The overall section under combined bending and an axial compression of 250 kN is therefore a Class 2.

2.4 Classification of UB and UC sections

For grade S275 and S355, all UB, UC and joist sections, with the exception of those given in Table 2.2 below, are Class 2 or better when in bending about the major axis.

25

The vast majority of hot rolled sections classify as Class 1 and are therefore suitable for plastic design. Care should be exercised where a UB or UC section classifies as Class 4, as reference to BS EN 1993-1-5 is needed to evaluate the resistance of these cross-sections.

The reader should examine the tables at the back of this book, which give the classification for both flanges and webs of most structural sections in grades S275 and S355 for a variety of conditions. These tables also enable the local cross-section resistances to be determined directly, without the need to perform the calculations outlined in section 2.3.

Table 2.2 List of rolled sections that are Class 3 under bending alone

Section shape Grade S275 Grade S355

Universal Beams None None

Universal Columns 152 x 152 x 23 356 x 368 x 129 305 x 305 x 97 152 x 152 x 23 Joists None None

2.5 Shear resistance

The shear resistance Rd c,V of an I or H section is given by Clause 6.2.6 of BS EN 19931-1.The plastic shear resistance Rd c,V in the absence of torsion is given by the following expression: ( ) M0

3 / γ f A V = where: y f is the yield strength M0γ is the partial factor for the resistance of cross-sections Av is the shear area and may be taken as follows:

y v pl,Rd

a)forrolled I and H sections, loaded parallel to the web, () f w f V 2 2 t r t bt A A + + = but not less than w w t hη b)for rolled channel sections loaded parallel to the web, () f w f V 2 t r t bt A A + + = c)forwelded I and H sections loaded parallel to web, () = w w t h AV η

26

d)for T-sections loaded parallel to the web: for rolled T-sections, () 2 2 f w f V t r t bt A A + = for welded T-sections, = 2 f w V t h t A

e)for rectangular hollow sections and tubes of uniform thickness: for load parallel to the depth, () h b Ah A + = / V for load parallel to the width, () h b Ab A + = / V

f)for circular sections and tubes of uniform thickness / 2 V A A = where: A is the cross-sectional area b is the overall breadth h is the overall depth hw is the depth of the web r is the root radius tf is the flange thickness tw is the web thickness (if the web thickness is not constant, tw, should be taken as the minimum thickness) is given in BS EN 1993-1-5 but may conservatively be taken as 1.00

2.6Bending resistance

Thedesign resistance for bending about a principal axis of a cross-section, Mc,Rd, is given by Clause 6.2.5 of BS EN 1993-1-1. In the presence of low shear, the design bending resistance is the resistance of the cross-section taking account of its classification.

Low shear is defined in Clause 6.2.8(2) of BS EN 1993-1-1 as those situations where the shear force is less than half the plastic shear resistance of the cross-section. An exception to this is where shear buckling reduces the section resistance. This is beyond the scope of this publication and readers are referred to BS EN 1993-1-5.

For low shear, the bending resistance of the cross-section is given by:

class 1 and 2 cross-sections

class 3 cross-sections

class 4 cross-sections

y pl
y
27
M0
Rd pl, c,Rd γ f W M M = = for
M0
el,min el,Rd c,Rd γ f W M M = = for
M0 y min ff, c,Rd γ f W M e = for

where: plW is the plastic section modulus min el,W is the minimum elastic section modulus eff,minW is the minimum effective section modulus

Fastener holes in the tension flange may be ignored, provided that for the tension flange: M0

u f,net 9 0 γ γ f A f A ≥

y f M2

Fastener holes in the tension zone of the web need not be allowed for, provided that the equation for fastener holes in the tension flange is satisfied for the complete tension zone comprising the tension flange plus the tension zone of the web.

Fastener holes in the compression zone of the cross-section, except for oversize and slotted holes, need not be allowed for provided that they are filled by fasteners.

If the shear force exceeds half the plastic shear resistance of the cross-section then the bending resistance needs to be reduced as set out in Clause 6.2.8 of BS EN 1993-1-1. It should be remembered that the maximum moment occurs at a position of low shear; the exception being cantilevers, where maximum moment and maximum shear occur together at the support.

In beams with full restraint, the design bending moments in the beam are simply verified against the above bending resistance. In beams without full restraint, the design bending moments must also be checked against the buckling resistance, as discussed in Chapter 3.

2.7Example 2.2 – Beam with full lateral restraint

Design a simply supported beam carrying a concrete floor slab over a span of 5.0 m in S275 steel. The permanent (dead) load, which includes an allowance for self weight, is 14 kN/m, and the variable (imposed) load is 19 kN/m.

28

Ultimate limit state

Partial factors for actions

Permanent (dead) load – 14 kN/m

Variable (imposed) load – 19 kN/m 5.0 m

Figure 2.2 Simply supported beam

The partial factors for actions to be used for ultimate limit state design are taken from theNational Annex to BS EN 1990 [4], Clause NA 2.2.3.2. Table NA.A1.2(b) gives the following values:

Partial factor for permanent actions G = 1.35

Partial factor for variable actions Q = 1.50 Reduction factor = 0.925

Combination of actions at ULS

The design value of combined actions is given by equation (6.10b) in BS EN 1990.

Design value of combined actions k Q k G Ed q g F γ ξγ + =

Note: In this example the combination factor 0 is not required as the only variable action is the imposed load.

98kN/m 45 19) 5 (1 14) 35 1 925 0( Ed = × + × × = F

Maximum shear force VEd is 114.95kN 2 / 5 45.98 2 / Ed = × = L F

Maximum moment = kNm .69 143 8 / 5 .98 45 8 / 2 2 Ed = × = L F

29

Design bending Moment

114.95 kN 143.69 kNm

Design shear force

114.95 kN

Figure 2.3 Bending moment and shear force diagrams

Choice of section

As the beam is fully restrained (due to the presence of the floor slab) the required bending resistance is: M0

y pl Rd pl, c,Rd γ f W M M = = assuming that the section is at least Class 2

Assuming that the maximum thickness is 16mm, fy = 275 N/mm2. M0γ = 1.00 Therefore, 3 3 6 required pl, .5cm 522 10 275 / 1.0 10 .69 143 = × × × = W

The lightest rolled section to satisfy this criterion is a 356 x 127 x 33 UB with a plastic modulus, y pl,W = 543 cm3

Fromsection tables: cf/tf = 5.82; cw/tw = 51.9; tw = 6.0 mm; r =10.2 mm A = 42.1 cm2; iy = 14.0 cm; iz = 2.58 cm. h =349.0 mm tf = 8.5 mm; h/b = 2.78 hw = 332 mm b =125.4 mm

For tf = 8.5 mm, fy = 275 N/mm2; 0.92 275 / 235 / 235 y = = = f ε

Determine section classification

From Table 2.1, the Class 1 limit for an outstand flange in compression is: c/t = 9.0 = 9.0 x 0.92 = 8.28 5.82 < 8.28, therefore the flange is Class 1.

30

The Class 1 limit for an internal compression element subject to bending is:

c/t = 72 = 72 x 0.92 = 66.24 51.9 < 66.24, therefore the web is Class 1

Therefore the whole section is Class 1.

Shear resistance

Shear resistance ( ) M0

3 / γ f A V =

y v pl,Rd

FromClause 6.2.6(3) of BS EN 1993-1-1 the shear area, Av, of an I section is given as:

The shear area is: Av = () f w f 2 2 t r t bt A + + but not less than w w t hη () 2 mm 6 2302 5 8 2 10 2 0 6 5 8 4 125 2 4210 = × × + + × × = = 1.00. The depth of the web is: mm 332 8.5 2 349 2 f w = × = = t h h 2 w w mm 1992 0 6 332 0 1 = × × = t hη Therefore Av = 2302.6 mm2

Shear resistance () kN 366 10 0 1 3 / 275 2302.6 3 pl,Rd = × × = V

Bending resistance

Where the shear force is less than half the plastic shear resistance, Clause 6.2.8(2) allows the effect of shear on the moment resistance to be neglected (except where shear buckling reduces the section resistance – see BS EN 1993-1-5).

y pl pl,Rd c,Rd = × × × = = = γ f W M M

For a Class 1 section, the bending resistance c,Rd M is given by: kNm 33 149 0 1 / 10 275 10 543 6 3 M0 31

CHAPTER 3 – BUCKLING RESISTANCE OF BEAMS

3.1 Design considerations

General

A beam is a member which carries loading primarily in bending and which spans between supports or between connections to other members. This Chapter describes the determination of the buckling resistance of beams in steel framed buildings, designed according to BS EN 1993-1-1. Guidance relates only to I, H and channel sections.

Lateral-torsional buckling

If an I section is subject to vertical loading that can move with the beam, the imperfections of the beam mean it will tend to displace as indicated in Figure 3.1, which shows one half of a simply supported beam. Due to the bending action, the upper flange is in compression and acts like a strut. Being free to move, the compression flange will tend to buckle sideways dragging the tension flange with it. The tension flange resists this sideways movement and therefore, as the beam buckles, the section twists with the web no longer vertical. This action is known as lateraltorsional buckling.

δ δ θ

Figure 3.1 Lateral-torsional buckling – buckled shape of one half of a simply supported beam

Fully restrained beams

Lateral-torsional buckling will be inhibited by the provision of restraints to the compression flange. If the flange is restrained at intervals, lateral-torsional buckling may occur between the restraints and this must be checked. If this restraint is continuous, the beam is fully restrained and lateral-torsional buckling will not occur.

Full (continuous) lateral resistant is provided by:

i)In-situ and precast flooring or composite decking,provided that the flooring is supported directly on the top flange or is cast around it.

ii)Timber flooring, if the joists are fixed by cleats, bolts or other method providing a positive connection.

iii)Steel plate flooring that is bolted or welded at closely spaced intervals. 32

BS EN 1993-1-1 gives very little information on what constitutes sufficient lateral restraint other than to say beams with sufficient lateral restraint to the compression flange are not susceptible to lateral-torsional buckling. Practical guidance on the lateral stability of steel beams and columns can be found in SCI publication P360 [40] . The standard also points out that certain types of cross-section, such as square or circular hollow sections, fabricated circular tubes or square box sections, are not susceptible to lateral-torsional buckling.

In the absence of any other information in BS EN 1993-1-1, the restraining force may be taken as 2.5% of the maximum force in the compression flange and should be assumed to be uniformly distributed along the compression flange. This force must also be carried by the connection between the flooring and the beam.

Note that the restraint must be to the compression flange. Special care is required when considering regions where the bottom flange is in compression.

3.2Buckling resistance of laterally unrestrained beams

When lateral-torsional buckling is possible, either over the full span of the beam or between intermediate restraints, the resistance of the beam to bending will be reduced by its tendency to buckle. According to Clause 6.3.2.1(1) of BS EN 1993-1-1, the beam should be verified against lateral-torsional buckling resistance as follows: 0 1 b,Rd

Ed ≤ M M

where: Ed M is the design value of the moment b,Rd M is the design buckling resistance moment

The design buckling resistance moment, b,Rd M , is given by Clause 6.3.2.1(3) as: M1

y y LT b,Rd γ χ f W M = where: y W is the appropriate section modulus as follows: y pl,W = for Class 1 or 2 cross-sections el,yW = for Class 3 cross-sections y eff,W = for Class 4 cross-sections

LTχ is the reduction factor for lateral-torsional buckling

33

3.2.1Reduction factor for lateral-torsional buckling

For rolled or equivalent welded sections in bending, Clause 6.3.2.3(1) of BS EN 1993-1-1 gives the values of the reduction factor LTχ as: 2 2

χ ≤

1 + = but 2 LT LT

LT 1 1.0 λ χ

≤ () [ ] 2 1 5 0 + + = where: LTλ is the non-dimensional slenderness, defined in Section 3.2.2

LTα is an imperfection factor for lateral-torsional buckling and is given in Table 6.3 of BS EN 1993-1-1which is reproduced below as Table 3.1.

Table 3.1 Recommended values for imperfection factors for lateral-torsional buckling curves

Buckling Curve a b c d Imperfection factor LTα 0.21 0.34 0.49 0.76

The values for LT,0λ and βare given in Clause NA.2.17 of the National Annex to BS EN 1993-1-1, as follows.

a.For rolled sections, and hot finished and cold-formed hollow sections 0.4 LT,0 = λ 75 0 = β

b.For equivalent welded sections 2 0 LT,0 = λ 1.00 = β

Furthermore, the National Annex gives a replacement to Table 6.5 of BS EN 1993-11 for the selection of the lateral-torsional buckling curve, which is reproduced below as Table 3.2.

34

Table 3.2 Recommendations for the selection of lateral-torsional buckling curve for different cross-sections

Cross-section Limits Buckling Curve

Rolled doubly symmetric I and H sections and hot-finished hollow sections

h/b 2.0 2.0 < h/b 3.1 h/b > 3.1

h/b 2.0 2.0 h/b < 3.1 c d

b c d Angles (for moments in the major principal plane) d All other hot-rolled sections d Welded doubly symmetric sections and cold-formed hollow sections

The method given in Clause 6.3.2.3 includes an additional factor f that may be used to modify LTχ . This modification factor mod LT,χ is given by the following expression: f LT mod LT, χ χ = but 2 LT mod LT,

mod LT, 1 1.0 λ χ

χ ≤

The factor, f, was developed by numerical study and is dependent on the shape of the bending moment diagram between lateral restraints and is given by the following expression. ] 0.8) 2.0( )[1 0.5(1 1 2 LT c = λ k f but f 1.0 where: kc is a correction factor, defined in Clause NA.2.18 of the National Annex as: 1 c

1 C k = where: diagram moment bending uniform for the diagram moment bending actual for the cr

cr 1 M M C =

Value of 1

1 C are given in Tables 3.4 and 3.5.

3.2.2Non-dimensional slenderness for lateral-torsional buckling

Thevalue of the non-dimensional slenderness for lateral-torsional buckling, LTλ , is given by Clause 6.3.2.2(1) as follows:

35

where Mcr is the elastic critical moment for lateral-torsional buckling

The value of LT requires the determination of the elastic critical moment for lateraltorsional buckling. However, BS EN 1993-1-1 gives no information on how to calculate this parameter, except to say that it should be based on gross cross-sectional properties and should take into account the loading conditions, the real moment distribution and the lateral restraints.

The elastic critical moment for lateral-torsional buckling of a beam of uniform symmetrical cross-section with equal flanges, under standard conditions of restraint at each end, loaded through the shear centre and subject to uniform moment is given by the following equation: 5 0 z 2 T 2 cr z

w cr

z 2 cr EI GI L I I L EI M where: v E G 1 2

IT is the St Venant torsional constant Iw is the warping constant Iz is the second moment of area about the minor axis Lcr is the length of the beam between points of lateral restraint

Thisexpression is both complex and limited to particular types of beam.

The ‘LTBeam’ software may be used to determine Mcr Mcr

for different sections with different loading and resistant condition. The ‘LTBeam’ software can be downloaded from the CTICM web site. SC1 is currently developing a design tool for the calculation of and this will be available in early 2014 from www.steelconstruction.info.

Simplified evaluation of non-dimensional slenderness

For straight segments of hot-rolled, doubly symmetric I and H sections with lateral restraints to the compression flange at both ends of the segment considered with no destabilizing loads, the value of LT may be conservatively taken from Table 3.3.

Table 3.3

Value of LT for different grades of steel

Gradeof Steel S235 S275 S355 S420 S460 104 / z LT i L 96 / z LT i L 85 / z LT i L 78 / z LT i L 75 / z LT i L Where: L is the distance between points of restraint of the compression flange z i is the radius of gyration of the section about the minor axis

LT
f W
cr y y
M
36

Improved economy, relative to that given by using Table 3.3, can be gained by using an expression for the slenderness, LTλ that takes account of section geometry, variation of moment and destabilizing loading. For simply supported beams there is little to be gained but for members with double curvature bending with end moments the improvement can be significant. When the loading is not destabilizing, LTλ is given by: w z 1 LT 1 β λ λ UV C = where: C1 is a parameter depending of the shape of the bending moment diagram. Values of 1

1 C for some bending moment diagrams are given in Table 3.4 and Table 3.5. Conservatively, C1 may be taken as 1.00. 1

z z λ λ λ = and z z i kL = λ y 1 f E π λ = k isan effective length parameter and should be taken as 1.0 unless it can be demonstrated otherwise L is the distance between points of restraint to the compression flange iz is the radius of gyration of the section about the minor axis U is a parameter depending on the section geometry and is given by: w

z y pl, I I A g W U =

In which g allows for the curvature of the beam. If the beam has zero deflection before it is loaded then g is given by the following expression: = y

z 1 I I g

Conservatively g can be taken as 1.00.

Conservatively U may be taken as 1.00, or as 0.9 for rolled section.

V is a parameter related to the slenderness. Where the loading is not destabilizing it may be taken either conservatively as 00 1 = V for all sections symmetric about the major axis or as

37

V λ for doubly symmetrical hot rolled I and H sections.

4

1 +

= t h

z / 20 1 1

2 f

Table 3.4 Values of 1

1 C for end moment bending, to be used with k=1.0 1

1 C +1.00 1.00 +0.75 0.92 +0.50 0.86 +0.25 0.80 0.00 0.75 - 0.25 0.71 - 0.50 0.67 - 0.75 0.63 - 1.00 0.60 M M = 1.0 M M -1 ≤ ψ ≤ 1

Table 3.5 Values of 1

1 C for cases with transverse loading, to be used with k=1.0

1 C 0.94

Bending moment diagram 1

0.90 0.86 0.77

Note: this is equal positive and negative moments 38

3.3Example 3.1 – Simply supported beam with lateral restraint at load points

A beam is required to span 9.0 m and is to carry two intermediate point loads at third points 3.0 m apart. The design value of the loads for each point load is 100 kN. The beam is laterally restrained at the ends and at the point loads only. Select a suitable section assuming grade S275 steel.

Point loads – 100 kN

3.0 m 3.0 m 3.0 m

Figure. 3.2 Simply supported beam with lateral restraint at load points

Determine design moment

Maximum moment due to point loads = 300 kNm

Moment due to self weight, guess design value of self weight is 4.2 kN/m

Maximum moment due to self weight = 42.5 kNm

Maximum design moment, MEd = 300 + 42.5 = 342.5 kNm

Maximum shear force, VEd = 118.9 kN

Shear adjacent to point load = 106 kN

Self weight – 4.2 kN/m 9.0 m 39

118.9kN 342.5 kNm

Bending Moment

Shear force

118.9kN

Figure 3.3 Bending moment and shear force diagrams

Try a 457 x 191 x 82 UB in grade S275 steel

Fromsection property tables: h = 460.0 mm b = 191.3 mm tw = 9.9 mm tf = 16.0 mm r = 10.2 mm iz = 4.23 cm iy = 18.8 cm A = 104 cm2 Wpl,y = 1830 cm3 Iz = 1870 cm4 Iy = 37100 cm4 Iw = 0.922 dm6 cf/tf = 5.03 cw/tw = 41.2 For tf =16.0 mm, fy = 275 N/mm2 Determine section classification 92 0 275 / 235 / 235 y = = = f ε

From Table 2.1 the Class 1 limit for an outstand flange is: c/t = 9.0 = 9.0 x 0.92 = 8.28 5.03 < 8.28, therefore the flange is Class 1.

From Table 2.1 the Class 1 limit for an internal compression element subject to bending is:

40

c/t = 72 = 72 x 0.92 = 66.24 41.2 < 66.24, therefore the web is Class 1

Therefore the whole section is Class 1.

Resistance of cross-section

Shear resistance Shear resistance ( ) M0

3 / γ f A V =

y v pl,Rd

Shear area, Av = () f w f 2 2 t r t bt A × + + but not less than w w t hη () 2 mm 4763 0 16 2 10 2 9 9 16 3 191 2 10400 = × + + × × = v A

= 1.00. The depth of the web hw is: mm 428 16 2 460 2 f w = × = = t h h Hence, 2 w w mm 4237.2 9.9 428 1.0 = × × = t hη Therefore Av = 4763 mm2

Shear resistance () kN 756 10 1.0 3 / 275 4763 3 pl,Rd = × = V = EdV 118.9 kN < = pl,RdV 756 kN therefore the section is satisfactory

Bending resistance of cross-section

As the section is Class 1 the bending resistance c,Rd M is given by: kNm 503 1.0 / 10 275 10 1830 6 3 M0

y y pl, pl,Rd c,Rd = × × × = = = γ f W M M

= Ed M 342.5 kNm < = c,Rd M 503 kNm therefore the section is satisfactory.

Themaximum shear force adjacent to the point load is less than 0.5 times the shear resistance of the section, therefore no reduction need be made to the moment resistance.

41

Buckling resistance

For a Class 1 section y pl, y W W =

Determine non-dimensional slenderness for lateral-torsional buckling For straight segments of hot-rolled, doubly symmetric I and H sections with lateral restraints to the compression flange at both ends of the segment considered and with no destabilizing loads, the value of LTλ may conservatively be taken from Table 3.3.

For grade S275 steel 0.74 96 42.3 / 3000 96 / z LT = = = i L λ

Selection of buckling curve

To determine the buckling curve using Table 3.2 evaluate: h/b = 460/191.3 = 2.4 Therefore, since the member is a rolled I section with h/b greater than 2 but less that 3.1, use buckling curve c. For buckling curve c, Table 3.1 gives 0.49 LT = α .

Determine the reduction factor The reduction factor is given by: 2 2

≤ () [ ] 2 1 5 0 + + =

χ ≤

1 + = but 2 LT LT

LT 1 0 1 λ χ

For rolled sections: 0.4 LT,0 = λ 0.75 = β () [ ] 789 0 74 0 75 0 4 0 74 0 49 0 1 5 0 2 = × + + = 0.8 0.74 0.75 0.789 0.789 1 2 2 LT = × + = χ

M1 y y LT b,Rd γ χ f W M =
42

To take account of the bending moment distribution, LTχ , may be modified by the use of the ‘f’ given by Clause 6.3.2.3(2) of BS EN 1993-1-1. In this example ‘f’ is conservatively taken as 1.0. 0.8 1.0 0.8 LT mod LT, = = = f χ χ Therefore, 402 10 0 1 275 10 1830 8 0 6 3 = × × × = = 342.5 kNm therefore the section is satisfactory

3.4Resistance of webs to transverse forces (web buckling and bearing)

At locations where concentrated forces are applied to the flanges of beams, the local resistance must be verified.

The design resistance of webs to local buckling under transverse forces is given by Clause 6.2 of BS EN 1993-1-5 as: M1

w eff yw Rd γ t L f F = where: M1γ is the partial factor for the resistance of members to instability tw is the thickness of the web fyw is the yield strength of the web Leff is the effective length for resistance to transverse forces, which should be determined from y F ff χ = e L where: Fχ is the reduction factor due to local buckling y is the effective loaded length appropriate to the length of stiff bearing, s s

The above expression can be used where the load is applied in any one of the following ways:

a.through the flange and resisted by shear forces in the web, shown in Figure 3.4 (a) b.through one flange and transferred through the web directly to the opposite flange, shown in Figure 3.4 (b) c.through one flange adjacent to an unstiffened end, shown in Figure 3.4 (c)

43

Figure 3.4 Different types of load application and the buckling coefficient, k F

At locations where concentrated forces are applied, the web of the beam is required to act as a column. For an unstiffened web it is assumed that the compression flange of the rolled beam or welded girder is adequately restrained against lateral movement.

Conditions (a) and (b) are most common in practice and assume that the portion of the web being checked as a column is effectively held in position at both ends and effectively restrained in direction at both ends.

Determination of the reduction factor for local buckling

Clause 6.4(1) of BS EN 1993-1-5 gives the following expression for calculating the reduction factor: 0 1 5 0 F F ≤ = λ χ where: cr

yw w y F F f t = λ and w

3 w F cr 0.9 h t E k F = and f w 2t h h =

For webs without longitudinal stiffeners, kF should be determined from Figure 3.4. Clause 6.4(2) of BS EN 1993-1-5 gives an expression for calculating the reduction factor for webs with longitudinal stiffeners. However, this is beyond the scope of this publication.

Determination of the effective loaded length

Clause 6.5 of BS EN 1993-1-5 gives the following method for calculating the effective loaded length, y

44

For load types (a) and (b) shown in Figure 3.4, y should be calculated from the following expression: ( ) 2 1 f s y 1 2 m m t s + + + = but y the distance between adjacent transverse stiffeners where: w yw

f yf 1 t f b f m = 2 2 02 0 = f

w t h m if Fλ > 0.5 0 2 = m if Fλ 0.5

For box girders, f b in the expression for 1m should be limited to f tε 15on each side of the web.

For load type c) shown in Figure 3.4, y is smaller of the values given by the following expressions: + + + = 2

2 f

e 1 f e y 2 m t m t 2 1 f e y m m t + + = where c s h f Et k + ≤ = s w yw

2 w F e 2

Length of stiff bearing

The expression for y requires the identification of a stiff bearing length ss. This is the dimension, parallel to the longitudinal axis of the beam over which the load is effectively distributed to the outer face of the flange at a slope of 1:1. However, the stiff bearing length should never be larger that hw (the height of the web). Figure 3.5 shows the stiff bearing length for a range of different loading conditions.

Figure 3.5 Length of stiff bearing

45

Where load is transferred through an I or H section, the stiff bearing length is given by () r t s + = f s 2 but not more than hw

where tf is the thickness of the flange r is the root radius

If several concentrated forces are closely spaced, the resistance should be verified for each individual concentrated load as well as for the total load with ss taken as the centre to centre distance between the two outer loads.

3.5Web stiffeners

Where heavy concentrated loads are applied to the flanges of sections parallel to the web,web stiffeners may be required to help carry the load. These stiffeners generally take the form of flat plates welded to the web between the flanges of the beam.

The cross-sectional resistance of the effective stiffener may be determined by considering the area of the effective stiffener in contact with the flange times the yield strength of the stiffener/web material divided by M0. An allowance must be made for any coping adjacent to the web.

The buckling resistance of a stiffener is determined by examining the resistance of a cruciform section comprising the stiffeners plus a length of the web equal to a maximum value of 15 tw on either side of the stiffener, as shown in Figure 3.6. At an end support, the length on one side is limited by the end of the beam and is likely to be less than 15 tw. Figure 3.6 shows such a cruciform section away from end effects.

tw ts

15 tw 15 tw 46

Figure 3.6 Effective cross-section of stiffener

Clause 9.4 of BS EN 1993-1-5 states that the out-of-plane buckling resistance of a transverse stiffener under transverse loads should be determined using the methods described in either Clause 6.3.3 or Clause 6.3.4 of BS EN 1993-1-1, using buckling curve c. Provided that both ends are fixed laterally, a buckling length, , of not less than0.75 w h should be used, where w h is the depth of the web. Where the end conditions provide less restraint, a larger value should be used for .

Where the stiffener is subjected to axial force only, the method described in Chapter 5 for members subject to compression should be used. To determine the buckling resistance it is necessary to calculate the second moment of area and the radius of gyration of the area of the cruciform section shown in Figure 3.6. The buckling resistance can then be determined from the following expression: M1

y b,Rd γ χAf N = where: χ is the reduction factor for flexural buckling and is given by the following expression: 2 2

1 + + = but 1.0 ≤ χ and () [ ] 2 2 0 1 5 0 + + = 49 0 = α for buckling curve c 1

cr 1 λ λ i L = and Lcr is the buckling length taken as not less than 0.75 hw if the ends are fixed laterally i is the radius of gyration

3.6Example 3.2 – Web subject to transverse forces

Check the beam in Section 3.3 at the loaded positions – under a point load of 100 kN.

Web bearing and buckling check Assume that the load is transmitted to the beam via a 457 x 152 x 67 UB that sits on the top flange.

For this beam tw = 9.0 mm; tf = 15.0 mm; r = 10.2 mm

w eff yw Rd γ t L f F =

The resistance to local buckling under transverse force is given by: M1 47

The length of stiff bearing is: ()() mm 50.4 10.2 15.0 2 2 f s = + = + = r t s

For webs without longitudinal stiffeners, kF is obtained from Figure 3.4. For loading condition type a), kF is given by: 2 w F 2 6 + = a h k

Assuming there are no stiffeners and ∞ = a , then: 6 F = k Therefore for the beam in Section 3.3: 428mm 16 2 460 2 = × = × = f w t h h kN 2571 10 428 9.9 210000 6 0.9 0.9 3 3 w

3 w F cr = × × × × = = h t E k F 2 yw N/mm 275 = f (the yield strength of the web)

f yf 1 = × × = = t f b f m Assume 0.5 F > λ therefore 31 14 16 428 02 0 02 0 2 2 f

yw w y F = × × × = = F f t λ 0 1 943 0 53 0 5 0 5 0 F F < = = = λ χ mm 6 252 9 267 943 0 y F ff = × = = χ e L 00 1 M1 = γ

w 2 = = = t h m ( ) mm 267.9 14.31 19.3 1 16 2 50.4 y = + + × × + = 53 0 10 2571 275 9 9 9 267 3 cr 48

From Clause 6.5 of BS EN 1993-1-5 for type a) loading condition: ( ) 2 1 f s y 1 2 m m t s + + + = but ≤ y the distance between adjacent transverse stiffeners 3 19 9 9 275 3 191 275 w yw

w eff y Rd = × × = = γ t L f F

kN 687.7 10 1.00 9.9 252.6 275 3 M1

687.7 kN > 100 kN

Therefore the web resistance to transverse forces is OK.

3.7 Example 3.3 –Web stiffener

Consider a 610 x 229 x 101 UB carrying a point load of 800 kN (design value) via a 457 x 191 x 98 UB supported on its top flange remote from the end of the beam.

457 x 191 x 98 UB

Figure. 3.7 610 x 229 x 101 UB supporting a 457 x 191 x98 UB

Check unstiffened web

Length of stiff bearing

For a 457 x 191 x 98 UB tf = 19.6 mm; r = 10.2 mm ()() 6mm 59 2 10 6 19 2 2 f s = + = + = r t s

Without a stiffener the situation corresponds to type (a) load introduction, as shown in Figure 3.4.

3 w F cr = × × × × = = h t E k F

610 x 229 x 101 UB 49

For a 610 x 229 x 101 UB h=602.6 mm; b=227.6 mm; tw=10.5 mm tf=14.8 mm; r=12.7 mm; hw=573 mm 6 573.3 2 6 2 6 2 2 w F = ∞ + = + = a h k Therefore kN 2290 10 573.3 10.5 210000 6 0.9 0.9 3 3 w

The effective loaded length for a type (a) loading condition is given by: ( ) 2 1 s y 1 2 m m t s f + + + = but ≤ y the distance between adjacent transverse stiffeners 68 21 10.5 275 227.6 275 w yw

f yf 1 = × × = = t f b f m Assume 5 0 F > λ therefore 2 f

w 2 02 0 = t h m 2 14.8 573.3 0.02 = 30.01 = ( ) mm 0 302 01 30 68 21 1 8 14 2 6 59 y = + + × + = 0.617 10 2290 275 10.5 302.0 3 cr

yw w y F = × × × = = F f t λ 1.0 0.81 617 0 0.5 0.5 F F < = = = λ χ mm 244.6 302.0 0.81 y F ef = × = = χ f L kN 3 706 10 00 1 5 10 6 244 275 3 M1

w eff y Rd = × × = = γ t L f F This is less that the design value of load 800 kN.

Design of transverse stiffeners

Try two plates, one on either side of the web as indicated in Figure 3.8.

Figure 3.8 Details of the trial stiffener

50

Width available for each plate in bearing is given by: ()() mm 9 95 2 / 7 12 2 5 10 6 227 2 / 2 w s = × = = r t b b

Therefore make each plate 80 mm wide with a 15 mm cope at the web corners. The width in bearing is therefore 65 mm. Assuming that the stiffeners are a Class 1, 2 or 3 cross-section, the thickness can be estimated by re-arranging the expression for compression resistance given in Clause 6.2.4(2) of BS EN 1993-1-1.

Choose an 8mm thick stiffener, as a minimum practical size.

Check stiffener’s classification Table 2.1 gives the following limit for a Class 3 outstand in compression: ε14 / ≤ t c

For the stiffener 10.0 8 / 80 / = = t c 0.92 275 / 235 / 235 y = = = f ε 12.88 0.92 14 14 / = × = = ε t c 88 12 00 10 ≤

Therefore the stiffener is Class 3 and the full dimensions of the stiffener can be used without restrictions due to local buckling.

Buckling resistance of the stiffener as a cruciform strut Considering the cruciform section shown in Figure 3.6, the properties of the section are:

()()()()
+
+
ε () () () ()
3 3 w w 3 w s s s
12 5
15
12 5
12
2
× × × + + × × = + +
t t
ε
s s
51
2 w s w s s s mm 4407 5 10 8 5 10 92 0 15 2 80 8 2 15 2 2 = + × × ×
× =
× + × = t t t b t A
4 3 3
mm 10 3332
10 5 10 92 0
2
10 80 2 8
15 2 12
× =
=
t b t I
mm 27.50 4407 10 3332 3
= × = = A I i The compression resistance is given by: M1 y b,Rd γ χAf N =

where χ is the reduction factor for flexural buckling and is given by the following expression: 2 2

1 + = but 0 1 ≤ χ where () [ ] 2 2 0 1 5 0 + + =

Forflexural buckling; 1

cr 1 λ λ i L =

Buckling length, cr L Assuming that the flanges are fixed laterally, the buckling length is taken as 0.75 w h mm 430 573.3 0.75 0.75 w cr = × = = h L 86.40 0.92 93.9 93.9 1 = × = = ε λ 0.180 86.40 1 27.5 430 = = λ For buckling curve c, 0.49 = α [ ] 511 0 180 0 2 0 180 0 49 0 1 5 0 2 = + + = 00 1 0.180 0.511 0.511 1 2 2 = + = χ kN 1212 10 1.0 275 4407 00 1 3 b,Rd = × × × = N

The design load of 800kN is less than the resistance of the stiffener (1212 kN) therefore the stiffener is OK.

52

CHAPTER 4 – MEMBERS IN TENSION

Members that carry pure tension, generally referred to as ties, are relatively simple to design. In reality, the tension forces are frequently accompanied by moments and the member must be designed for the combined effects.

4.1 Resistance of cross-section

The design tension resistance, Nt,Rd , of a cross-section is given by Clause 6.2.3(2) of BS EN 1993-1-1 as the smaller of:

a) The design plastic resistance of the gross cross-section M0

y Rd pl, γ Af N =

b) The design ultimate resistance of the net cross-section at holes for fasteners M2

u net Rd u, 0.9 γ f A N =

For category C connections (as defined in clause 3.4.2(1) of BS EN 1993-1-8) the design tension resistance is given by the following expression: M0

y net Rd net, γ f A N =

where: A is the gross area of the cross-section Anet is the net area of the cross-section and is taken as the gross area less appropriate deductions for all holes and other openings.

In members where the bolt holes are not staggered, the total area to be deducted for fasteners should be the gross cross-section of the holes in a cross-section perpendicular to the direction of the axial force, see critical fracture line 2 in Figure 4.1.

In members where the holes are staggered, the deduction should be the greater of the deduction for non-staggered holes, given above, and the deduction for staggered holes given in Clause 6.2.2.2(4)b) as: p s nd t 4

2 o

where (as indicated in Figure 4.1): s is the staggered pitch, the spacing of the centres of two consecutive holes in the chain measured parallel to the member axis, p is the spacing of the centres of the same two holes measured perpendicular to the direction of the tensile force t is the thickness of the material

53

n is the number of holes extending in any diagonal or zig-zag line progressively across the member or part of the member; critical fracture line 1 in Figure 4.1 do is the diameter of the hole M2γ is the partial factor for the resistance of cross-sections in tension to fracture

Critical fracture line 2

p

Figure 4.1 Net area at staggered holes

4.2 Resistance of angles connected by one leg

Angles subject to tension with moments caused by eccentric end connections can be designed as subject to concentric loading over a net section given by using the method in Clause 3.10.3(2) of BS EN 1993-1-8.

The design method in BS EN 1993-1-8 gives the design resistance as:

For single angles connected by one bolt: () M2

0.5 2.0 γ tf d e N =

u o 2 Rd u,

For single angles connected by two bolts: M2

u net 2 Rd u, γ β f A N =

For single angles connected by three or more bolts: M2

u net 3 Rd u, γ β f A N =

where: e2 is the edge distance from the centre of a fastener hole to the adjacent edge of any part, measured at right angles to the direction of load transfer. do is the diameter of the bolt, rivet or pin t is the thickness of the angle fu is the ultimate tensile strength M2 is the partial factor for the resistance of cross-sections in tension to fracture

Critical fracture line 1 s s 54

Anet is the net area of the angle. For an unequal-leg angle connected by its smaller leg, Anet should be taken as equal to the net section of an equivalent equal-leg angle of leg size equal to that of the smaller leg.

2 and 3 are the reduction factors dependant on the pitch p1 as given in Table 4.1. For intermediate values of p1 the value of may be determined by linear interpolation.

Table 4.1 Reduction factors 2 and 3

Pitch p1 2.5 do 5.0 do 2 bolts 2 0.4 0.7 3 bolts or more 3 0.5 0.7

A common detail is an angle connected by one leg using one or more rows of bolts as shown in Figure 4.2. Unfortunately BS EN 1993-1-8 does not give any guidance for calculating the resistance of angles connected in this way.

e2 P2

Figure 4.2 Angle connected by one leg with two bolt rows

5 1 0 2 γ tf d p e N + =

u 0 2 2 Rd u,

The European connections committee, ECCS TC10, has considered this detail and suggested that the following expression may be used for calculating the design resistance of the section: () M2

where: e2 is the edge distance p2 is the spacing between the two bolts do is the diameter of the bolt hole M2γ is the partial factor for the resistance of cross-section in tension to fracture

4.3Example

4.1 - Angle connected by a single leg using two rows of bolts

A 200 x 200 x 16 mm angle section in grade S275 steel is to be used as a tie. The connection will be made by a single row of two M24 bolts in line across the width of the section. Determine the tension resistance. 55

From section tables: A = 61.8 cm2

M2 = 1.10

For tf 16 mm, fy = 275 N/mm2 and fu = 410 N/mm2

The resistance is given by: () M2

1.5 2.0 γ tf d p e N + =

u 0 2 2 Rd u,

For a 200 x 200 x 16 equal leg angle with two M24 bolts, e2 is 50 mm and p2 is 95 mm. () () kN 1264 1.1 10 410 16 26 5 1 95 50 0 2 5 1 0 2 3 M2

u 2 2 Rd u, = × × × × + = + = γ tf d p e N o

4.4Members subject to bending and tension

Members that are subject to both tension and bending must be checked to ensure that the combined effects may be safely resisted. BS EN 1993-1-1 gives a number of methods for verifying the resistance of members subject to combined bending and axial force. The method described below is given in Clause 6.2.9.1(5) and is an approximation for standard Class 1 and Class 2, rolled I and H sections, and welded I and H sections with equal flanges, where fastener holes are not to be accounted for.

()() a n M M 0.5 1 / 1 Rd y, pl, Rd y, N, = but Rd y, pl, Rd y, N, M M ≤

For n a: Rd z, pl, Rd z, N, M M =

For n > a: = 2 Rd z, pl, Rd z, N, 1 1 a a n M M

where: Rd pl, Ed / N N n =

() A bt A a / 2 f = but a 0.5

MN,y,Rd is the design plastic resistance moment about the y-y axis (major) reduced due to the axial force NEd

MN,z,Rd is the design plastic resistance moment about the z-z axis (minor) reduced due to the axial force NEd

Mpl,y,Rd is the design plastic resistance moment about the y-y axis (major)

Mpl,z,Rd is the design plastic resistance moment about the z-z axis (minor)

NEd is the design tension force

Npl,Rd is the design plastic resistance of the gross cross-section

A is the area of the gross cross-section b is the width of the cross-section tf is the flange thickness

56

This is not a sufficient check in all circumstances because if the axial load is small, then it can readily be seen that the member is essentially a beam and lateral-torsional buckling can occur. It is therefore necessary to check for lateral-torsional buckling under the bending moments alone, as outlined in Chapter 3, and to check the resistance of the cross-section to combined bending and axial force, as described in Chapter 2.

57

CHAPTER 5 – MEMBERS IN COMPRESSION

Members in compression have a limit on their resistance, which is equal to the yield strength of the material multiplied by the cross-sectional area. Long slender members will fail at much lower loads by elastic buckling. In most practical cases compression members have slenderness between these two extremes and fail by a combination of yielding and buckling. Furthermore, columns in buildings carry both axial compression and bending and must be designed for the combined effects.

5.1Resistance of cross-section

The compression resistance, Rd c, N , of a cross-section is given by Clause 6.2.4(2) of BS EN 1993-1-1 as: M0

y Rd c, γ Af N = for Class 1, 2 or 3 cross-sections M0

y eff Rd c, γ f A N = for Class 4 cross-sections

where: A is the gross area of the cross-section effA is the effective area of the cross-section y f is the yield strength M0γ is the partial safety factor for resistance of cross-sections

Fastener holes, with the exception of slotted or oversize holes, need not be allowed for provided they are filled by fasteners.

5.2Buckling resistance

The buckling resistance Nb,Rd is given by Clause 6.3.1.1(3) of BS EN 1993-1-1 in terms of a reduction factor that depends on the non-dimensional slenderness λ . The buckling resistance Nb,Rd is given by: M1

y Rd b, γ χAf N = for Class 1, 2 and 3 cross-sections

1 + = but 1.0 and ( ) [ ] 2 2 0 1 5 0 + + =

where: is the reduction factor for the relevant buckling mode. The value of is given by Clause 6.3.1.2(1) as: 2 2 58

λ is the non-dimensional slenderness (see Section 5.3) is an imperfection factor. The imperfection factor corresponding to the appropriate buckling curve is given in Table 6.1 of BS EN 1993-1-1, reproduced below as Table 5.1.

Table 5.1 Imperfection factors for buckling curves

Buckling Curve a0 a b c d Imperfection factor 0.13 0.21 0.34 0.49 0.76

5.3Slenderness

In general a column can buckle in any one of the following three modes:

• Flexural (Euler) buckling

• Torsional buckling

• Torsional-flexural buckling

BS EN 1993-1-1 gives methods for calculating the slenderness for each of these modes of behaviour. The lowest of these values will govern. However, for columns in buildings, the slenderness for flexural buckling is usually lower than that for torsional and torsional-flexural buckling. For completeness, the methods given in BS EN 19931-1 for calculating the slenderness of each of these modes of failure are given below.

y N Af = λ 1

235 f = ε (fy in N/mm2)

cr 1 λ i L = for Class 1, 2 and 3 cross-sections where: cr L is the buckling length in the buckling plane considered (see Section 5.4) i is the radius of gyration about the relevant axis cr N is the elastic critical force for the relevant buckling mode based on the gross cross-sectional properties ε π λ 93.9 y 1 = = f E y 59

Slenderness for flexural bucking Clause 6.3.1.3 of BS EN 1993-1-1 gives the following approach for calculating the slenderness for flexural buckling: The non-dimensional slenderness is given by: cr

Slenderness for torsional and torsional-flexural buckling

The non-dimensional slenderness for torsional and torsional-flexural buckling is given by Clause 6.3.1.4(2) of BS EN 1993-1-1 as: cr

y T N Af = λ for Class 1, 2 and 3 cross-sections cr

y eff T N f A = λ for Class 4 cross-sections where: TF cr, cr N N = but T cr, cr N N < TF cr, N is the elastic torsional-flexural buckling force T cr, N is the elastic torsional bucking force

W 2 t 2 0 T cr,

T cr, y cr,

2 y cr,

1 l EI GI i N π where: 2 0 2 0 2 z 2 y 2 0 z y i i i + + + = G is the shear modulus It is the torsion constant of the gross cross-section IW is the warping constant of the gross cross-section iy is the radius of gyration of the gross cross-section about the y-y axis iz is the radius of gyration of the gross cross-section about the z-z axis lT is the buckling length of the members for torsional buckling y0 is the distance from the shear centre to the centroid of the gross cross-section along the y axis z0 is the distance from the shear centre to the centroid of the gross cross-section along the z axis + + = y cr,

2 0

T cr,

0

0 1 = i y β Ncr,y is the critical force for flexural buckling about the y-y axis Further information on torsional and torsional-flexural buckling, particularly for lightgauge construction, is given in reference [41] .

T cr, y cr, TF cr, 4 1 1 2 N N i y N N N N N N β where: 2 0 60

BS EN 1993-1-1 does not give expressions for calculating the elastic torsional-flexural buckling force and the elastic torsional buckling force. For sections that are symmetrical about the y-y axis (major) the following expressions may be used. + = 2 T

Expressions for calculating the elastic torsional-flexural force and torsional buckling force are given in reference [42]

5.4Buckling Length, Lcr

The end restraint conditions of a column will affect the buckling shape of the column (see Table 5.2) and also the buckling resistance. The buckling length, Lcr, is best described as the length of a pin-ended member that has the same elastic critical buckling resistance as the real member with its actual end restraints. Thus a vital step in the design of any compression member is the identification of the buckling length.

Table 5.2 shows the buckled shapes and buckling lengths for some reference conditions. They are separated into non-sway and sway conditions. Relative movement of the ends of the column are restricted in a non-sway frame, this can be achieved by effective diagonal bracing or by the provision of shear walls – possibly the concrete core around lift shafts and stair wells. However, if the building relies on frame action for its lateral stability, it is more likely to be a sway-sensitive frame.

Table 5.2 Effective lengths of columns with various end conditions

If the ends of a non-sway member have no rotational restraint, then the buckling length of the column is the actual length – by definition. If effective rotational restraint is present – for example from stiff beams that are effectively fastened to the column by stiff end-plate connections – then the member will have a greater elastic critical force and the buckling length will be reduced. In the extreme case of a non-sway member that is fully restrained against rotation, the buckling length will be one half of the actual length. This is an idealised reference case because full rotational restraint is not achievable in practice and therefore the buckling length is taken as 0.7L. It is important to recognise that rotational restraint is provided by the connected members and the stiffness of the connections to transmit this restraint.

The two cases at the right hand side of Table 5.2 show columns that can sway. Under these conditions the buckling length can never be less than the actual length. This lower limit implies complete rotational restraint at the column ends which is not achievable in practice.

To design a column, it is necessary to determine the length over which it can buckle, termed the segment length. The length over which a column can buckle is the length in any plane between restrained points in that plane. This is the distance between the

E
61

intersections of the column and the restraining members and will usually be the storey height in a building frame. The restraining members will inhibit movement and/or rotation at the specific location. From the segment length, the buckling length may be determined using Table 5.3.

If the beams are attached to the columns using flexible connections, such as fin plates, then it would be unwise to assume any rotational restraint, whatever the stiffness of the beam. With connections such as partial depth end-plates or double angle cleats, provided that the beams are reasonably sized, partial restraint may be assumed. Stiff beams connected to the columns using substantial connections such as flush or extended end-plates will provide effective rotational restraint. The above is general advice based upon normal circumstances and the engineer must view each case on its merits.

Table 5.3 Buckling length, Lcr for a compression member

a)Non-sway

Restraint (in the plane under consideration) by other parts of the structure Buckling length, Lcr Effectively held in position at both ends

Effectively restrained in direction at both ends 0.7L Partially restrained in direction at both ends 0.85L Restrained in direction at one end 0.85L Not restrained in direction at either end 1.0L b) Sway

One end Other end Buckling length, Lcr

Effectively held in position and restrained in direction

Not held in position

5.5Buckling curves

Effectively restrained in direction 1.2L Partially restrained in direction 1.5L Not restrained in direction 2.0L

The interaction of yielding and instability effects is influenced by a number of parameters including the section shape, the axis of bending, the initial out of straightness and the residual stresses within the section. Considerable research has shown that the effect of these parameters may be efficiently incorporated using an appropriate buckling curve from a family of five (shown in Figure 6.4 of BS EN 19931-1 as curves a0, a, b, c and d). Table 6.2 of BS EN 1993-1-1 enables the designer to determine the appropriate curve. This table is reproduced here as Table 5.4.

For torsional and torsional-flexural buckling the appropriate buckling curve may be determined from Table 5.4 using the buckling curve related to the z-z axis.

62

Table 5.4 Selection of buckling curves for a cross-section

Cross section Limits Buckling about axis

S 460

Buckling curve S 235 S 275 S 355 S 420

z z

h y y

b

Rolled sections h/b > 1,2 tf ≤ 40 mm y – y z – z a b a0 a0 40 mm < tf ≤ 100 y – y z – z b c a a h/b ≤ 1,2 tf ≤ 100 mm y – y z – z b c a a tf > 100 mm y – y z – z d d c c Welded I-sections tf ≤ 40 mm y – y z – z b c b c tf > 40 mm y – y z – z c d c d Hollow sections hot finished any a a0 cold formed any c c

t f t t f f yyyy zz t t

h y y

f b

w

z z 63

Welded box sections generally (except as below) any b b

thick welds: a > 0,5tf b/tf < 30 h/tw <30 any c c U-, Tand solid sections any c c L-sections any b b

5.6Example 5.1 – Simple compression member

A 7.0m long 152 x 152 x 30 UC in grade S275 steel is to be used with pinned ends to carry axial force only. Determine its compression resistance.

From section tables: h = 157.6 mm; b =152.9 mm; h/b = 1.03 cf/tf = 6.98; cw/tw = 19.0; tf = 9.4 mm; A = 38.3 cm2; iy = 6.76 cm; iz = 3.83 cm. tw = 6.5 mm;

For tf = 9.4 mm, from Table 7 of BS EN 10025-2; fy = 275 N/mm2;

Section classification

From Table 5.2 (Sheet 2 of 3) of BS EN 1993-1-1 the Class 1 limit for an outstand flange is c/t = 9.0 y / 235 f = ε = 275 / 235 = 0.92

The Class 1 limit c/t = 9.0 = 8.28 6.98 < 8.28, therefore the flange is Class 1.

From Table 5.2 (Sheet 1 of 3) of BS EN 1993-1-1 the Class 1 limit for an internal compression element is c/t = 33 = 30.36 19.0 < 33.36, therefore the web is Class 1 Therefore the whole section is Class 1.

Buckling length

For a section with pinned ends, from Table 5.2, Lcr = 1.0L = 7.0 m for both axes.

Buckling curve

For an S275 rolled section with h/b = 1.03 and tf = 9.4 the buckling curves from Table 6.2 of BS EN 1993-1-1 are:

Buckling about y-y axis (major) – Buckling curve b Buckling about z-z axis (minor) – Buckling curve c

Non-dimensional slenderness

For flexural buckling about the z-z axis (minor) for a Class 1 section, the nondimensional slenderness is given by Clause 6.3.1.3(1) of BS EN 1993-1-1 as: cr

cr 1 λ i L =

y z N Af = λ 1 z

where: ε π λ 93.9 y 1 = = f E = 93.9 x 0.92 = 86.39

64

Therefore 39 86 1 3 38 7000 z = λ = 2.12

Similarly the non-dimensional slenderness about the y-y axis (major) is

y y N Af = λ 1 y

cr

cr 1 λ i L = = 86.39 1 67.6 7000 = 1.20

Buckling resistance, Nb,z,Rd (flexural buckling about the z-z axis) The buckling resistance, Nb,z,Rd , is given by Clause 6.3.1.2 of BS EN 1993-1-1, as: M1

y z Rd z, b, γ

χ Af N = for Class 1, 2 and 3 cross-sections where:

M1 is given in the NA to EN1993-1-1 as 1.00 0 1 but 1 2 z 2 z ≤ + = () [ ] 2 2 0 1 5 0 + + =

For buckling curve c, Table 6.1 of EN 1993-1-1 gives = 0.49. () [ ] 2 12 2 2 0 12 2 49 0 1 5 0 + + = = 3.22 2 2 z 2.12 3.22 3.22 1 + = χ = 0.177 Therefore 1.00 10 275 3830 0.177 3 Rd z, b, × × × = N = 186 kN

Buckling resistance, Nb,y,Rd (flexural buckling about the y-y axis) The buckling resistance, Nb,y,Rd , is given by Clause 6.3.1.2 of BS EN 1993-1-1, as: M1

y y Rd y, b, γ

χ Af N = for Class 1, 2 and 3 cross-sections where:

M1 is given in the NA to BS EN 1993-1-1 as 1.00 0 1 but 1 2 y 2 y ≤ + = () [ ] 2 y y 2 0 1 5 0 + + =

65

For buckling curve b, Table 6.1 of BS EN 1993-1-1 gives = 0.34. () [ ] 2 2 1 2 0 2 1 34 0 1 5 0 + + = = 1.39 2 2 y 2 1 39 1 39 1 1 + = χ = 0.478 Therefore 1.00 10 275 3830 478 0 3 Rd y, b, × × × = N = 503 kN

The bucking resistance is the lesser of Nb,z,Rd and Nb,y,Rd which is 186 kN.

In this example it is obvious that the minor axis buckling is the controlling factor but this is not always the case.

5.7Example 5.2 – Simple compression member restrained at mid-height

A 254 x 254 x 89 UC in grade S275 steel is 6.00 m long and is pinned at its ends in both planes. It has a positional restraint located at its mid-height that prevents lateral movement parallel to the flanges. Determine its bucking resistance.

From section tables: h =260.5 mm; b = 256.3 mm; h/b = 1.02 cf/tf = 6.38 ; cw/tw = 19.4; tf = 17.3 mm; A = 113 cm2; iy = 11.2 cm; iz = 6.55 cm.

For tf = 17.3 mm; fy = 265 N/mm2;

Section classification

From Table 5.2 (Sheet 2 of 3) of BS EN 1993-1-1 the Class 1 limit for an outstand flange is c/t = 9.0 y / 235 f = ε = 265 / 235 = 0.94

The Class 1 limit c/t = 9.0 = 8.46 6.38 < 8.46, therefore the flange is Class 1.

From Table 5.2 (Sheet 1 of 3) of BS EN 1993-1-1 the Class 1 limit for an internal compression element is c/t = 33 = 31.02

19.4 < 31.02, therefore the web is Class 1

Therefore the whole section is Class 1.

Buckling length

For a section with pinned ends, from Table 5.2, Lcr = 1.0L = 6.0 m for the major axis andbecause of the restraint at mid height Lcr = 1.0 x 3.0 = 3.0 m for the minor axis.

66

Buckling curve

For an S275 rolled section with h/b = 1.02 and tf = 17.3 the buckling curves from Table 6.2 of BS EN 1993-1-1 are:

Buckling about y-y axis (major) – Buckling curve b Buckling about z-z axis (minor) – Buckling curve c

Non-dimensional slenderness

For flexural buckling about the z-z axis (minor) for a Class 1 section, the nondimensional slenderness is given by Clause 6.3.1.3(1) of BS EN 1993-1-1 as: cr

y z N Af = λ 1 z

cr 1 λ i L = where: ε π λ 93.9 y 1 = = f E = 93.9 x 0.94 = 88.27 Therefore 27 88 1 5 65 3000 z = λ = 0.52

Similarly the non-dimensional slenderness about the y-y axis (major) is cr

y y N Af = λ 1 y

cr 1 λ i L = = 88.27 1 112 6000 = 0.61

Buckling resistance, Nb,z,Rd (flexural buckling about the z-z axis) The buckling resistance, Nz,b,Rd , is given by Clause 6.3.1.2 of BS EN 1993-1-1, as: M1

y z Rd z, b, γ χ Af N = for Class 1, 2 and 3 cross-sections where: M1 is given in the NA to BS EN 1993-1-1 as 1.00 0 1 but 1 2 z 2 z ≤ + = () [ ] 2 z z 2 0 1 5 0 + + =

For buckling curve c, Table 6.1 of BS EN 1993-1-1 gives = 0.49. () [ ] 2 52 0 2 0 52 0 49 0 1 5 0 + + = = 0.714 2 2 z 52 0 714 0 714 0 1 + = χ = 0.831

67

Therefore 1.00 10 265 11300 0.831 3 Rd z, b, × × × = N = 2488 kN

Buckling resistance, Nb,y,Rd (flexural buckling about the y-y axis) The buckling resistance, Nb,y,Rd , is given by Clause 6.3.1.2 of BS EN 1993-1-1, as: M1

y y Rd y, b, γ χ Af N = for Class 1, 2 and 3 cross-sections where: M1 is given in the NA to BS EN 1993-1-1 as 1.00 0 1 but 1 2 y 2 y ≤ + = () [ ] 2 y y 2 0 1 5 0 + + =

For buckling curve b, Table 6.1 of BS EN 1993-1-1 gives = 0.34. () [ ] 612 0 2 0 61 0 34 0 1 5 0 + + = = 0.756 2 2 y 0.61 0.756 0.756 1 + = χ = 0.832 Therefore 00 1 10 265 11300 832 0 3 Rd y, b, ÷ × × = N = 2491 kN

The bucking resistance is the lesser of Nb,y,Rd and Nb,z,Rd which is Nb,z,Rd =2488 kN.

5.8Buckling resistance of members in bending and axial compression

Compression members with moments are verified using the comprehensive interaction formulation given in Clause 6.3.3 of BS EN 1993-1-1. Two separate expressions are needed, the first deals primarily with in-plane buckling and the second deals with outof-plane buckling. These expressions are given by Clause 6.3.3(4) and are reproduced below:

1 M1
z, Ed z,
z,
Ed ≤ Δ + + Δ +
γ γ χ γ χ M M M k M M M k N N 1 M1 Rk z, Ed z, Ed z, zz M1 Rk y, LT Ed y, Ed y, zy
Rk z Ed ≤ Δ +
Δ
γ γ χ
M M M k
68
Rk
Ed
yz M1 Rk y, LT Ed y, Ed y, yy M1 Rk y
+
M1
+
+ +
γ χ
M M M k N N

where:

NEd, My,Ed and Mz,Ed are the design values of the compression force and the maximum moments about the y-y axis (major) and z-z axis (minor) along the member respectively My,Ed and Mz,Ed are the moments due to the shift of the centroidal axis according to Clause 6.2.9.3 of BS EN 1993-1-1 for Class 4 sections. y and z are the reduction factors due to flexural buckling (see Section 5.2)

LT is the reduction factor due to lateral-torsional buckling (see Section 3.2.1) kyy, kyz, kzy and kzz are the interaction factors and are given in Annexes A and B of BS EN 1993-1-1.

These expressions look very complex but they can be reduced to something more familiar to UK engineers. For Class 1, 2 and 3 cross-sections the terms My,Ed and Mz,Ed can be set to zero as they only apply for Class 4 cross-sections.

The terms M1

Rk y γ χ N and M1

Rk z γ χ N are the buckling resistances of the compression member about the major and minor axes respectively and can be expressed as Nb,y,Rd and Nb,z,Rd. Similarly, M1

Rk y, LT γ χ M and M1

Rk z, γ M are the lateral-torsional buckling resistance of the member about its y-y axis and the moment capacity of the section about its z-z axis respectively; these can be expressed as Mb,y,Rd and Mb,z,Rd,0 respectively. Substituting these expressions into the above criteria gives the following, more familiar, expressions:

Rd y, yy Rd y, b,

Ed z, yz Rd y, b,

1.0 Rd,0 z, b,

Ed ≤ + + M M k M M k N N

Ed ≤ + + M M k M M k N N 1.0 Rd,0 z, b,

Rd y, zy Rd z, b,

Ed z, zz Rd y, b,

5.9Columns in simple construction

In non-sway frames using simple construction joints are designed to be flexible. The distribution of forces and moments in the frame are determined assuming that the connections between beams and columns are pinned.The joint flexibility may include distortions which arise as a consequence of plastic deformations in all components of the connections except the bolts. The beams are designed as simply supported at their ends. A beam of span L measured between the column centrelines and subjected to uniformly distributed loading dF , will be designed for a maximum moment of d FL2/8. In reality the beams are not supported on the column centrelines and thus some eccentricity will occur, leading to moments in the columns. A nominal eccentricity should therefore be assumed when designing columns in simple construction.

69

BS EN 1993-1-1 does not have any provisions for designing columns in simple construction and therefore the approach presented below is based on the wellestablished approach for the design of columns in simple construction but modified to take account of the symbols and resistances given in BS EN 1993-1-1

1.All beams should be taken as fully loaded and pattern loading may be ignored.

2.The nominal moments should be determined using the following.

i)For a typical beam-column type connection, the eccentricity should be taken as the distance to the face of the column plus 100 mm.

ii)For a beam supported on a cap plate, the reaction should be taken at the face of the member or the edge of any packing.

iii)For a roof truss on a cap plate the eccentricity may be taken as zero provided that the simple connections do not develop adverse moments.

3.In multi-storey frames that are effectively continuous at their splices, the out of balance moments at every beam column joint may be divided equally between the column lengths above and below that point in proportion to their stiffness (I/L). However, if the value of I/L for these two lengths does not differ by a factor exceeding 1.5, then the out of balance moment may be divided equally. No moments should be carried over to adjacent levels (both above and below the beam level under consideration).

4.The adequacy of the column under the combined effects of the axial compression and the nominal moments should be verified as described in Section 5.8. Alternatively the simplified interaction criteria described below may be used.

Simplified interaction criteria

The following simplified interaction criteria may be used for the design of columns in simple construction: 1.0 1.5 Rd z, cb,

Ed y, Rd b, min,

Ed z, Rd y, b,

Ed ≤ + + M M M M N N where: NEd, My,Ed and Mz,Ed are the design values of the compression force and the maximum moments about the y-y axis (major) and z-z axis (minor) along the member respectively Nmin,b,Rd is the lesser of M1

y y γ χ A f and M1

y z γ χ A f yχ and zχ are the reduction factors due to flexural buckling (see Section 5.2) about the major and minor axes respectively

y pl, y LT γ χ W f LTχ is the reduction factor due to lateral-torsional buckling (see section 3.2.1) Mcb,z,Rd is given by 1

, M

z pl y W f γ for class 1 and 2 sections and M1 70

z el, y γ W f for class 3 sections

Mb,y,Rd is given by M1

These expressions can only be used subject to the following limitations:

• The column is a hot rolled I or H section, or rectangular hollow section

• The cross-section is class 1, 2 or 3 under compression

• The bending moment diagrams about each axis are linear

• The column is restrained laterally in both the y and z directions at each floor but unrestrained between floors

Furthermore these expressions are only valid for a range of bending moment diagrams specified by y 0.11 and z 0.0625, where y and z are the shape of the bending moment distribution about the y-y and z-z axes respectively and are defined in Tables 3.4 and 3.5. For hot rolled I and H sections Rd y, b, N is always greater than Rd z, b, N . In cases where the base of the column is nominally pinned (i.e. y and z = 0.0) the above expression may still be used provided: 0.83 Rd y, b,

Ed ≤ N N where: Nb,y,Rd is the resistance to buckling about the y-y axis

The background to this simplified approach is given in reference [42]

5.10Example 5.3 – Column under axial compression and bending

A 356 x 368 x 153 UC in S275 is part of a braced multi-storey frame that has been shown to be classified as a non-sway frame. The storey height between beam centres is 6.00 m. The column is attached to the beams using flush end plate connections and the beams support concrete floor slabs thus providing partial restraint against bending in both principal planes and full restraint against rotation in plan. The design axial force in the column is 1500 kN. At the upper end the design moment is 250 kNm about the major axis and 60 kNm about the minor axis. The corresponding values at the lower end are 200 kNm and 80 kNm respectively; tending to cause double curvature bending in both planes. Verify the adequacy of the column section for this storey.

Design moments and forces

Axial force in column, NEd = 1500 kN

Moments at both upper and lower ends of the column

a. Upper end

Moment about major axis My,Ed = 250 kNm

Moment about minor axis Mz,Ed = 60 kNm

b. Lower end

Moment about major axis My,Ed = 200 kNm

Moment about minor axis Mz,Ed = 80 kNm

71

Section properties

From section tables the properties of a 356 x 368 x 153 UC are:

h =362 mm; b = 370.5 mm h/b = 1.00 tf = 20.7 mm; cf/tf = 7.92; cw/tw = 23.6; iz = 9.49 cm; Wpl,y = 2960 cm3; Wpl,z = 1430 cm3; A = 195 cm2

tf > 16 mm therefore from Table 7 of BS EN10025-2 fy = 265 N/mm2

Section classification

From Table 5.2 (Sheet 2 of 3) of BS EN 1993-1-1 the Class 1 limit for an outstand flange is c/t = 9.0 y / 235 f = ε = 265 / 235 = 0.94

Assume that half the flange is subject to compression. The Class 1 limit c/t = 9.0 = 8.46 7.92 < 8.46, therefore the flange is Class 1.

Assume that the web is subject to compression. The Class 1 limit for an internal part subject to compression is given in Table 5.2 (Sheet 2 of 3) of BS EN 1993-1-1 as: 0 31 94 0 33 33 / = × = = ε t c 23.0< 31.0, therefore the web is Class 1 Therefore the whole section is Class 1.

Buckling length

The beams are connected to the column using full depth end-plates which supports a concrete slab and provides partial rotational restraint. Take Lcr as 0.85 L for both the major and minor axes. Lcr = 0.85 x 6.0 = 5.1 m

Buckling curve

For an S275 rolled section with h/b = 1.00 and tf = 20.7 mm the buckling curves from Table 6.2 of BS EN 1993-1-1 are:

Buckling about y-y axis (major) – Buckling curve b Buckling about z-z axis (minor) – Buckling curve c

Non-dimensional slenderness

y z N Af = λ 1 z 72

cr 1 λ i L =

For flexural buckling about the z-z axis (minor) for a Class 1 section, the nondimensional slenderness is given by Clause 6.3.1.3(1) of BS EN 1993-1-1 as: cr

where: ε π λ 93.9 y 1 = = f E = 93.9 x 0.94 = 88.27 Therefore 27 88 1 9 94 5100 z = λ = 0.61

Buckling resistance, Nb,z,Rd (flexural buckling about the z-z axis) The buckling resistance, Nb,z,Rd , is given by Clause 6.3.1.2 of BS EN 1993-1-1, as: M1

y z Rd z, b, γ χ Af N = for Class 1, 2 and 3 cross-sections where: M1 is given in the NA to BS EN 1993-1-1 as 1.00 2 z 2 z

1 + = () [ ] 2 z z 2 0 1 5 0 + + =

For buckling curve c, Table 6.1 of BS EN 1993-1-1 gives = 0.49. () [ ] 612 0 2 0 61 0 49 0 1 5 0 + + = = 0.787 2 2 z 61 0 787 0 787 0 1 + = χ = 0.779 Therefore 00 1 10 265 19500 779 0 3 Rd z, b, × × × = N = 4025 kN

y y pl, LT Rd y, b, γ χ f W M = where: From Clause 6.3.2.3(1) of BS EN 1993-1-1 2 LT LT 2 LT LT 1 + = but 1.0 LT ≤ χ and 2 LT LT 1 λ χ ≤ () [ ] 2 LT LT,0 LT LT LT 1 5 0 + + =

Buckling resistance moment, Mb,y,Rd The buckling resistance moment Mb,y,Rd is given by Clause 6.3.2.1(3) of BS EN 19931-1 as: M1 73

From the National Annex for BS EN 1993-1-1, use curve b, LT,0λ = 0.4 and = 0.75 and from BS EN 1993-1-1 LTα = 0.34

Section 3.2.2 gives the following expression for the value of LTλ : w z 1 LT 1 β λ λ UV C =

For the above column 75 0 = ψ , from Table 3.4 in Section 3.2.2 63 0 1 1

= C

U = 0.9 (see Section 3.2.2) V = 1.0 (see Section 3.2.2)

Assuming that the flush end-plate connections together with the beams they support provide partial resistance about both axes the effective length factor, k, may be taken as 0.85. 0.61 88.27 94.9 6000 85 0 1 z 1

z z = × × = = = λ λ λ λ i kL 1.0 = wβ 0.35 1.0 0.61 1.0 0.9 0.63 1 w z 1 LT = × × × × = = β λ λ UV C () [ ] 2 LT 35 0 75 0 4 0 35 0 34 0 1 5 0 × + + = = 0.54 2 2 LT 0.35 0.75 0.54 0.54 1 × + = χ = 1.0

In this example there is no benefit in using the f factor to account for the shape of the bending moment distribution as LT = 1.0. 6 Rd y, b, 10 1.00 265 2960000 1.0 × × = M = 784 kNm

Moment resistance, Mpl,z,Rd

The moment resistance Mpl,z,Rd is given in Clause 6.2.5(2) of BS EN 1993-1-1 as: M0

y z pl, Rd z, pl, γ f W M =

From the National Annex to BS EN 1993-1-1 M0γ = 1.00 00 1 10 265 1430000 6 Rd z, pl, × × = M = 379 kNm

74

Combined bending and axial compression

For I and H sections with y -0.11 and z 0.0625 the simplified interaction equation for combined bending and axial compression is given as:

Ed ≤ + + M M M M N N

Rd y, Rd z, b,

Ed z, Rd y, b,

1.0 1.5 Rd z, cb,

Check limits on y and z y = - 0.8 < -0.11 and z -0.75 0.0625 therefore the above expression can be used.

Check top of column

As the National Annex for BS EN 1993-1-1 gives 1.0 M1 M0 = = γ γ : Rd z, pl, Rd z, cb, M M = 0.929 379 60 1.5 784 250 4025 1500 1.5 Rd z, b,

Ed = × + + = + + M M M M N N

Rd y, Rd z, b,

Ed z, Rd y, b,

0.929 < 1.0 Check bottom of column 0.944 379 80 1.5 784 200 4025 1500 1.5 Rd z, cb,

Ed = × + + = + + M M M M N N

Rd y, Rd z, b,

Ed z, Rd y, b,

0.944<1.0 Therefore the column is satisfactory in combined axial load and bending.

5.11Example 5.4 – Column in simple construction

The continuous column shown in Figure 5.1 has a storey height of 4000 mm and has a design axial force of 450 kN. The beams are connected to the column using end-plates. At the upper end, two beams frame into the web without eccentricity from the major axis. One transfers a design force of R1 = 200 kN and the other a design force of R3 = 300 kN. Only one beam frames into the major axis transferring a design force of R2 = 400 kN without eccentricity about the major axis. The conditions at the lower end of the column are identical to those at the upper end. Verify the resistance of the column just above the lower beams.

75

450 kN

4000 mm R1 R2 R3

Figure 5.1 Column in simple construction

Design moments and forces

Axial force in column = 450 + 200 + 300 + 400 = 1350 kN

Moments at both upper and lower ends of the column

Moment about major axis My,Ed = 400 (h/2 + 100)

Guess h (depth of cross-section) = 320 mm then My,Ed = 400 x 0.26 = 104 kNm

Moment about minor axis Mz,Ed = (300 – 200)(tw/2 + 100)

Guess tw = 20 mm then My,Ed = 100 x 0.11 = 11 kNm

As the column is continuous through the length under consideration the adjacent column lengths have I/L ratios differing by less than 1.5. Therefore the moments may be divided equally between the upper and lower column lengths at each beam level and no carry-overs to adjacent joints are made.

Thus the column needs to be designed for:

Axial load NEd = 1350 kN

Moment My,Ed = 52.0 kNm

Moment Mz,Ed = 5.5 kNm

Select trial section

Fromsection tables the dimensions of a 254 x 254 x 73 UC are:

h = 254.1 mm; b = 254.6 mm; h/b = 1.00 tf = 14.2 mm; cf/tf = 7.77; cw/tw = 23.3; iz = 6.48 cm; Wpl,y = 992 cm3; Wpl,z = 465 cm3; A = 93.1 cm2 .

tf 16 mm therefore from Table 7 of BS EN 10025-2 fy = 275 N/mm2

76

Section classification

From Table 5.2 (Sheet 2 of 3) of BS EN 1993-1-1 the Class 1 limit for an outstand flange is c/t = 9.0 y / 235 f = ε = 275 / 235 = 0.92

The Class 1 limit c/t = 9.0 = 8.28

7.77 < 8.28, therefore the flange is Class 1.

From Table 5.2 (Sheet 1 of 3) of BS EN 1993-1-1 the Class 1 limit for an internal compression element is c/t = 33 = 30.36 23.3< 30.36, therefore the web is Class 1

Therefore the whole section is Class 1.

Buckling length

The beams are connected to the column using partial depth end-plates therefore little rotational restraint will be provided and Lcr should be taken as 1.0 L for both the major and minor axes. Lcr = 1.0 x 4.0 = 4.0 m

Buckling curve

For an S275 rolled section with h/b = 1.00 and tf = 14.2 the buckling curves from Table 6.2 of BS EN 1993-1-1 are:

Buckling about y-y axis (major) – Buckling curve b Buckling about z-z axis (minor) – Buckling curve c

Non-dimensional slenderness

For flexural buckling about the z-z axis (minor) for a Class 1 section, the nondimensional slenderness is given by Clause 6.3.1.3(1) of BS EN 1993-1-1 as: cr

cr 1 λ i L =

y z N Af = λ 1 z

where: ε π λ 93.9 y 1 = = f E = 93.9 x 0.92 = 86.39 Therefore 39 86 1 8 64 4000 z = λ = 0.715

77

Buckling resistance, Nb,z,Rd (flexural buckling about the z-z axis)

The buckling resistance, Nb,z,Rd , is given by Clause 6.3.1.2 of BS EN 1993-1-1, as: M1

y z Rd z, b, γ χ Af N = for Class 1, 2 and 3 cross-sections where M1 is given in the NA to BS EN 1993-1-1 as 1.00 2 z 2 z

1 + = () [ ] 2 z z 2 0 1 5 0 + + =

For buckling curve c, Table 6.1 of BS EN 1993-1-1 gives = 0.49. () [ ] 2 715 0 2 0 715 0 49 0 1 5 0 + + = = 0.882 2 2 z 715 0 882 0 882 0 1 + = χ = 0.715 Therefore 1.00 10 275 9310 715 0 3 Rd z, b, × × × = N = 1830 kN

Buckling resistance moment, Mb,y,Rd The buckling resistance moment Mb,y,Rd is given in Clause 6.3.2.1(3) of BS EN 19931-1 as: M1

y y pl, LT Rd y, b, γ χ f W M = where: From Clause 6.3.2.3(1) of BS EN 1993-1-1 2 LT LT 2 LT LT 1 + = but 1.0 LT ≤ χ and 2 LT LT 1 λ χ ≤ () [ ] 2 LT LT,0 LT LT LT 1 5 0 + + =

From the National Annex for BS EN 1993-1-1 use buckling curve b, LT,0λ = 0.4 and = 0.75 and from BS EN 1993-1-1 LTα = 0.34

For a column subject to negative values of Section 3.2.2 gives the following expression for the value of LTλ : w z 1 LT 1 β λ λ UV C =

78

For the above column

1.0 = ψ , from Table 3.4 in section 3.2.2 0.60 1 1

= C U = 0.9 (see Section 3.2.2) V = 1.0 (see Section 3.2.2) 0.71 86.39 64.8 4000 1.0 1 z 1

z z = × × = = = λ λ λ λ i kL 1.0 = wβ 0.38 1.0 0.71 1.0 0.9 0.60 1 w z 1 LT = × × × × = = β λ λ UV C () [ ] 2 LT 38 0 75 0 4 0 38 0 34 0 1 5 0 × + + = Φ = 0.55 2 2 LT 0.38 0.75 0.55 0.55 1 × + = χ = 1.0

In this example there is no benefit in taking account of the shape of the bending moment distribution using the factor f as LT = 1.0. 6 Rd y, b, 10 00 1 275 992000 0 1 × × = M = 272.8 kNm

Moment resistance, Mcb,z,Rd The moment resistance Mcb,z,Rd is given in Clause 5.9 as: M1

y z pl, Rd z, cb, λ f W M =

From the National Annex to BS EN 1993-1-1 M1γ = 1.00 1.00 10 275 465000 6 Rd z, cb, × × = M = 127.9 kNm

Combined bending and axial compression

For I and H sections with y 0.11 and z 0.0625 the simplified interaction equation for combined bending and axial compression is given as: 1.0 1.5 Rd z, cb,

Ed ≤ + + M M M M N N

Rd y, Rd z, b,

Ed z, Rd y, b,

Check limits on y and z y and z = - 1.00 < 0.11 and 0.0625 therefore the above expression can be used. 0.99 127.9 5.5 1.5 272.8 52 1830 1350 1.5 cb,z,Rd

Ed = × + + = + + M M M M N N

y,Rd b,z,Rd

z,Ed y,Rd b,

0.99< 1.0

79

Therefore the column is satisfactory in combined axial load and bending.

Check assumptions concerning depth of section and thickness of flange on eccentricities.

Actual h/2 = 254.1/2 = 127 mm which is less than guessed 160 mm therefore safe.

Actual tw/2 = 8.6/2 = 4.3 mm which is less than guessed 10 mm therefore safe.

Adopt this trial section.

80

CHAPTER 6 TRUSSES

6.1Introduction

A truss is a triangulated framework of members in which loads are primarily resisted by axial forces in the individual members. The most commonly used truss is single span, simply supported and statically determinate with joints assumed to act as pins. Trusses can be pitched with sloping rafters as shown in Figure 6.1 or can have parallel top and bottom chords. Trusses with parallel chords are often referred to as lattice girders.

Figure 6.1 Typical roof structures

6.2Typical uses

A common application of pitched trusses is for roofs. Lattice girders have a wider variety of uses including support of roof and floors particularly with long spans or heavier loads.

The support of long span flat roofs is generally accomplished by using trusses with parallel chords. Pitched roofs are normally supported by pitched trusses even for modest spans, the exception being the specialised area of pitched roof portal frames. Portal frames are beyond the scope of this publication.

One advantage of trusses is that they can be delivered to site as one complete unit, as several smaller units or even as individual members. The choice will depend upon the size of the truss, the ease of transport between the fabrication shop and the site and the availability of space on site.

6.2.1Spans

The most efficient form of truss to be employed in any given situation is usually controlled by the span to be covered. Figure 6.2 shows a variety of pitched roof trusses together with the spans over which they are customarily used. For spans in excess of these values, lattice girders may be more practical. However, lattice girders are used for a whole range of spans (greater than approximately 7 m).

Figure 6.3 shows two types of lattice girder – the N-girder or Pratt truss and the Warren girder. These trusses have depth-to-span ratios typically in the range 1:10 to 1:14.

81

Figure 6.2 Typical roof trusses and associated spans

Figure 6.3 Lattice girders

6.3Design concept

Typical roof trusses are plane frames consisting of sloping rafters which meet at the apex or ridge of the frame (see Figure 6.1). The lower ends of the rafters are prevented from spreading by a horizontal main tie, whilst internal bracing members triangulate the truss and carry primarily axial forces. The internal members also reduce the segment lengths of the chords which enable lighter weight and therefore more efficient chords to be used.

6.3.1Roof arrangement

The roof coverings may be made from a variety of materials ranging from traditional slates or tiles, profiled steel sheeting or more exotic materials. These coverings are supported on purlins (members running between the trusses), which are supported by the rafters and therefore apply loads to the rafters. The purlins also provide out-ofplane stability to the truss. Stability to the truss must be provided at all times, including during erection, when temporary bracing may be used.

The spacing of the purlins (which can range from as little as 900 mm to over 3.5 m) is normally dictated by the roofing material. If the purlins are only located at points where internal members meet (the panel points), then the truss members will be subjected primarily to axial forces. However, if the spacing is such that the purlins are

82

supported between panel points, then rafters will need to be designed for combined axial load and bending. Figure 6.4 shows the two possible options.

a) Pulins at panel points

b) Purlins between panel points

Figure 6.4 Purlins at or between panel points

6.3.2Pre-cambering

Deflections of nominally flat trusses (Pratt trusses or Warren trusses) must be considered if ponding and therefore overloading are to be avoided. Two possible solutions are to either pre-camber the truss or to have a shallow slope in the top chord. The concept of pre-cambering is often extended to longer span pitched roof trusses where the nominally horizontal bottom chord may slope upwards slightly from the supports. This is done so that under loading the bottom chord does not deflect below the horizontal.

6.3.3Typical sections

The sections used for the members of a typical roof truss may be hollow sections, single angles, double angles (single angles fastened back-to-back), single channels, double channels or single T sections. For members with more than one component (double angles or double channels) the elements may be connected directly to each other. Alternatively a gusset plate may be inserted between them which enables a connection to be made to other members so that eccentricities at the connections can be minimised. For single component members this is not possible and a lapped joint with its consequent eccentricity is unavoidable.

Hollow sections are often chosen for trusses. They are lightweight, structurally efficient and are often exposed. The joints are generally welded. With hollow section trusses checking the joint resistance is important because the selection of member, geometry and internal forces will fix the joint resistance (see Section 6.3.4).

If the members consist of angle, channel and T sections then the axial forces should be determined assuming that the joints are pinned. The moments caused by eccentricities at the ends need not be considered explicitly. Clause BB.1 of BS EN 1993-1-1 gives values for the buckling length for both the chord and web members about the relevant axes. These buckling lengths should be used to check the buckling resistances of the members in compression using the method described in Clause 6.3.1 of BS EN 19931-1. For built-up members, the method described in Clause 6.4 of BS EN 1993-1-1 should be used. Care must be taken to ensure that all possible modes of buckling are recognised and this will often involve consideration of buckling about the y-y, z-z, u-u

83

and v-v axes. The assumption implied in this approach is that the members may be represented by lines meeting at a point located at the nodes. Any moments arising from minor eccentricities are allowed for in the choice of effective lengths. Figure 6.5 shows some typical details from an example of a bolted roof truss, using back-to-back angles for the members, with gusset plates at the connections.

Figure 6.6 shows a welded truss using T section; detail 2 show that the members node without any eccentricity. Figures 6.5 and 6.6 are only examples of a number of typical details from a wide variety of solutions which may be adopted.

Figure 6.5 Bolted roof truss and typical details

Figure 6.6 Welded roof truss and typical details

84

6.3.4Joint resistances

The detailing of the joints is a vital part of truss design. The design of the truss may be controlled by the resistance of the joints as much as by the resistance of the members. If members are selected such that their resistance is almost fully utilised, the resulting joint details required to transmit the applied forces can be very impractical. The joints should therefore be considered at an early stage in the design, in conjunction with the selection of the members. As mentioned above, the joint eccentricities will affect design of the truss and its members. The joints adopted in practice must not invalidate the assumptions at the design stage.

85
86
87
Γ
88
}
() () + () + + () () [] + + + + = δ 89
() () 90
() () + () +

+ + + + + ()

91

+ +

() () 92

+ + + + + + + +

+ 93
94
+ +

() + () + () +

95

+ + + / / () () + / + + = + + + = +

+ 96
97
= = + + + = +
98
99
3 3 = + () () () Σ Σ Σ Σ Σ 100

() ()

Σ
101
√ √ Σ
()
()
+
() + 102
+ + + + + + + + + +
+ () () ()
()
()
2 () θ = θ = 2 () θ = θ = 2 () θ = θ θ = 2 () θ = θ = 2 () θ = θ = 2 () θ = θ = ± ± ± ± ϕ θ ϕ + θ ϕ θ + ϕ θ θ θ + θ θ θ θ ϕ + θ ϕ θ ϕ + θ ϕ θ ϕ + θ ϕ θ ϕ + θ ϕ θ θ 103
104
+ + + + Β = = + + + +

+

105
106
=

+ + + +

107

+ + + + +

108
= 109
+ + + + =
+ + + + + + + + + + + + π Β π = π π = π = π π π + 110
π π
111
π π π π π π
112
113
π π π π π π π π π π π π π π π π π π π π π π π π π π π π π π π π π π π π
114
115
116
w × × × f f w w () [] + = () [] + = () [] + = = 117
f w = = f w f w
118
f w w w w w w w
π
y z 119
el el,y y el,z z pl × =
= pl,y
() ν + = ν w T
T
α1 120
pl,y T pl,y y z T w T w z s s f
() + + α
121
1 () () + + + + f w w T w + T () + + α α1 + 1 w T w T () + + α z + + ()() () + + + + T
T T () + + α ()() + + w T φ φ φ φ ψ ψ φ a el,u φ a T u el, a AI g W = φ el,u v u T 122

0 is the of the shear centre along the v-v axis, relative to the centroid t is the of the angle. ()() [] () + +

ψ a ()
v u v v 1 2
2
2 i i 0 a + = ψ
=
s
c c c t t t zc c 3 c zt t 3 t c t 123
t I dA
u
i
i i
= ψ 0 f w f w () () () () () + + +
ψ
+
c t c t c t f
T
π ()
p p c π 124
≤ ≤ ≤ ≤ pl pl T
T + c
+ + +
p ()() c t t el t + el T p γM0 γM1 γM2 γM2 γM3 γM3,ser 125
y
γ = 126
y c,Rd γ = = v v f w f η w w v = f w f y γM0 γM0

γ = pl,eff,y γ = • v,y,Rd M0

2 w pl,y V,Rd y,

4 γ

ρ f t A W M = ρ 2 Rd pl,

y w

Ed 1 2 V V × × 5 = 12.36 kN/m

In this case, the unfactored variable actions are 5/12.36 = 0.4 or 40% of the ultimate load.

127
Rd γ = y w eff χF y ) χF λ y γM1 γM1 λ cr + + F ≤ w f s y y1 ( ) + + + y2 + + + y3 + + 128
e s 1 2 > λ 2 ≤ λ Rd lim lim s ( ) = = + + = lim t,Rd γ = 129
eq y γ
c,Rd γ = γ = 130
M0 γM0 eq = = e e1 e2 but e ≤ n1 n2 e1 e n1 e1 ≤ 1 e2 e n2 e2 ≤ 2 e n1 1 bolts 0t 1 × × bolts 0 is the diameter of the hole n2 2 2 1

b,z,Rd

b,z,Rd

b,z,Rd

y eff γM0 γ
131
M0 c,Rd pl,Rd c,Rd w > ε w ε y y • b,y,Rd
• b,T,Rd b,y,Rd
b,y,Rd
λ • cr •
ε λ = ε λ =
λ = ε
• 132
ε
λ = cr,y cr,z y z Ed pl,Rd × × w ε Ed pl,Rd cr,y b,y,Rd cr,y b,y,Rd b,T,Rd b,T,Rd λ
cr
= λ = λ cr,T + π 0 + + 0
λ • cr • ε λ = ε λ = ε λ = ε λ = cr,y cr,z y z 133
b,y,Rd b,z,Rd

b,z,Rd

b,T,Rd b,y,Rd b,z,Rd b,y,Rd b,z,Rd

b,T,Rd

γ = y
• • ε λ = ε λ = cr,y cr,z
134
c,Rd
γM0 γM0 c,Rd pl,Rd • • • b,y,Rd
λ
cr
λ • cr • • =
σ
• • 135
λ cr,T + π 0 + + 0 cr,TF σTF
TF ()() + + σ βσ σ σ σ σ β σEy () π σT cr,T / A β 0 0 2 ey
b,y,Rd b,z,Rd
b,T,Rd b,y,Rd b,z,Rd b,y,Rd b,z,Rd λ

b,z,Rd • b,T,Rd b,y,Rd b,z,Rd and the torsionalflexural buckling resistance. b,y,Rd b,z,Rd λ

• ε λ =
λ λ + = ε λ = λ λ + = ε λ = 136
+ ≥ λ λ ε λ = cr,y cr,z y z ε y 0.5 b,T,Rd • b,y,Rd
• • •
λ λ + = ε λ =
+ = ε
=
= ε
=
= ε
= y z v
T
• • • =
=
+ = 137
λ λ
λ
λ λ +
λ
λ λ +
λ
b,T,Rd b,T,Rd
λ
λ
λ cr,T = () ν
≤ + + ν T 0 = + + ( + ) u v 0 0 138
M0 y
Af y γ
γ
$
Ed
Ed
Ed N,Rd N,Rd N,y,Rd ≤ γ ≤ 139
pl,Rd c,y,Rd c,z,Rd c,Rd Ed pl,Rd pl,Rd
γ
M0
M0 c,y,Rd c,z,Rd pl,y el,y, pl,z el,z c,Rd Ed pl,Rd
>
pl,Rd
pl,Rd
w f γ
140
M0 γM0 = = ≤ pl,y,Rd Ed pl,Rd () ≤ N,z,Rd γ ≤ w f γM0 γM0 = ≤ = > = ≤ pl,z,Rd Ed pl,Rd

Rk y γ χ N M1 141

Rk z γ χ N b,y,Rd b,z,Rd Ed pl,Rd γ χ b,Rd Ed pl,Rd b,Rd 1 γ z,Rk y el,z y pl,z c,z,Rd γM1 y el,y and pl,Rd * Ed pl,Rd Ed pl,Rd

N,y,Rd N,z,Rd Ed pl,Rd M1
• • • • • s γ = 2 ub s γM2 γM2 = γ α = 142
αv
143
ub s u m M2 Rd p, min 0.6 f d B t π γ = = t,Rd m d u s M2 u b 1 Rd b, γ α t d f k F = 1k 2 2 0 bα 0 1 ; ; 4 1 3 ; 3 min u ub 0 1 0 1 f f d p d e ub
u 1 1 1 1 2 2 1 2 1 2 s γ μ = γ μ = 144
s μ μ p,C ub s γM3 γM3 γM3,ser () γ β τ τ σ ≤ + + ⊥ ⊥ M2 u 9 0 γ σ f ≤ ⊥ a F θ σ sin Ed T, w, = ⊥ a F θ τ cos Ed T, w, = ⊥ a F Ed L, w, // = τ 145
γ β θ θ ≤ + + () γ β θ θ ≤ + + () γ β θ ≤ + + M2 w u 2 w,L,Ed 2 2 T,Ed w, 3 1 γ β f F K F a ≤ + () θ + = a f F d vw, Rd L, w, = Rd L, w, Rd T, w, KF F = vw,d M2 w u 3 γ β f = u 2 2 wβ γM2 γM2 () θ + = ° θ ° 146

UNIVERSAL BEAMS UKB

147

HOT FINISHED CIRCULAR HOLLOW SECTIONS Celsius® CHS

S275 / Advance® 275
148

S355 / Celsius® 355

149

REFERENCES

1.Construction (Design and Management) Regulations 2007, Statutory Instrument 2007 No. 320, Office of Public Sector Information.

2.British Standards Institution

BS EN 1990: 2002+A1: 2005, Eurocode – Basis of structural design, BSI, 2005.

3.Gulvanessian H., Calgaro J-D. and Holicky M. Designer’s Guide to EN 1990. Eurocode: Basis of structural design. Published by Thomas Telford, 2002.

4.British Standards Institution

NA to BS EN 1990-1-1: 2002+A1: 2005, UK National Annex for Eurocode 0 – Basis of structural design, BSI, 2005.

5.British Standards Institution

BS EN 1991-2: 2003, Eurocode 1 – Actions on structures: Part 2: Traffic loads on bridges, BSI, 2003.

6.British Standards Institution

BS EN 1991-3: 2006, Eurocode 1 – Actions on structures: Part 3. Actions induced by cranes and machinery, BSI, 2006.

7.British Standards Institution

BS EN 1991-4: 2006, Eurocode 1 – Actions on structures: Part 4: Silos and tanks, BSI, 2006.

8.British Standards Institution

BS EN 1991-1-1: 2002, Eurocode 1 – Actions on structures, Part 1.1 General actions – Densities, self weight and imposed loads for buildings, BSI, 2002.

9.British Standards Institution

BS EN 1991-1-2: 2002, Eurocode 1 – Actions on Structures – Part 1.2 General actions – Actions on structures exposed to fire, BSI, 2002.

10.British Standards Institution

BS EN 1991-1-3: 2003, Eurocode 1 – Actions on Structures – Part 1.3 General actions – Snow loads, BSI, 2003.

11.British Standards Institution

BS EN 1991-1-4: 2005+A1: 2010, Eurocode 1 – Actions on Structures – Part 1.4 General actions - Wind actions, BSI, 2010.

12.British Standards Institution

BS EN 1991-1-5: 2003, Eurocode 1 – Actions on Structures – Part 1.5 General actions - Thermal actions, BSI, 2003.

13.BS EN 1991-1-6:2005. Eurocode 1 – Actions on Structures – Part 1.6 General actions – Actions during execution, BSI, 2005.

14.British Standards Institution

BS EN 1991-1-7: 2006, Eurocode 1 – Actions on Structures – Part 1.7 General actions – Accidental actions, BSI, 2006.

15.British Standards Institution

BS 6399-1: 1996, Loading for buildings – Part 1: Code of practice for dead and imposed loads, 1996, published by BSI

16.British Standards Institution

BS 6399-3: 1998, Loading for buildings – Part 3: Code of practice for imposed roof loads, 1998, published by BSI

17.British Standards Institution

150

NA to BS EN 1991-1-3:2003, UK National Annex to Eurocode 1: Actions on structures - Part 1.3 General actions – Snow loads, BSI, 2005.

18.British Standards Institution

BS 6399-2: 1995, Loading for buildings Part 2. Code of practice for wind loads. 1995, published by BSI.

19.British Standards Institution

NA to BS EN 1991-1-4: 2005 + A1: 2010, UK National Annexe to Eurocoode 1: Actions on structures: Part 1.4 General actions – Wind actions, BSI, 2010.

20.Cook N.

Designers’ Guide to EN 1991-1-4 Eurocode 1: Actions on Structures, General actions Part 1-4 Wind action. Published by Thomas Telford, 2007

21.Gulvanessian H., Formichi P. and Calgaro J-A.

Designers’ Guide to Eurocode 1: Actions on Buildings.. Published by Thomas Telford, 2009.

22.Moore D., Bailey C., Lennon T. and Wang Y. ‘Designers’ Guide to EN 1991-1-2, 1992-1-2, 1993-1-2 and EN 1994-1-2 (Eurocode). Published by Thomas Telford, 2007.

23.British Standards Institution

BS EN 1993-1-10: 2005, Eurocode 3: Design of steel structures – Part 1.10: Material toughness and through-thickness properties, BSI, 2005.

24.British Standards Institution

NA to BS EN 1993-1-10: 2005, UK National Annex to Eurocode 3: Design of steel structures – Part 1.10: Material toughness and through-thickness properties, BSI, 2009.

25.British Standards Institution

PD 6695-1-10: 2009, Published Document Recommendations for the design of structures to BS EN 1993-1-10, Published by BSI, 2009.

26.British Standards Institution

NA to BS EN 1993-1-1: 2005. UK National Annex for Eurocode 3: Design of steel structures – Part 1.1: General rules and rules for buildings, BSI, 2008

27. The Steel Construction Institute

Design of Floors for Vibration – A New Approach, SCI publication P354, 2007.

28.British Standards Institution

BS EN ISO 12944-5: 2007, Paints and varnishes. Corrosion protection of steel structures by protective paint systems, BSI, 2007.

29.British Standards Institution

BS EN ISO 14713-1: 2009, Zinc coatings – Guidelines and recommendations for the protection against corrosion of iron and steel in structures. Part 1: General principles of design and corrosion resistance (ISO 14713-1: 2009), BSI, 2009.

30.Tata Steel (formerly Corus)

The prevention of corrosion on structural steelwork, Corus, 2004.

31.British Standards Institution

BS EN 1993-1-8: 2005, Eurocode 3: Design of steel structures – Part 1.8: Design of joints, BSI, 2005.

32.British Constructional Steelwork Association and The Steel Construction Institute Joints in Steel Construction – Simple Joints to Eurocode 3, Publication P358, 2011

33.British Constructional Steelwork Association and The Steel Construction Institute Joints in Steel Construction – Moment-Resisting Joints to Eurocode3, P393,2013.

34.Salter P. R., Couchman G. H. and Anderson D. Wind moment design of low rise frames. SCI, publication Number P263, 1999.

151

35.British Standards Institution

BS EN 1993-1-1: 2005, Eurocode 3: Design of steel structures – Part 1.1: General rules and rules for buildings, BSI, 2005.

36.British Standards Institution

BS EN 10025-2: 2004, Hot-rolled products of structural steels – Part 2: Technical delivery conditions for non-alloy structural steels, BSI, 2004.

37.British Standards Institution

NA to BS EN 1993-1-1: 2005, UK National Annex to Eurocode 3: Design of steel structures Part 1.1 General rules and rules for buildings, BSI, 2008.

38.Office of the Deputy Prime Minister

Approved Document A – Structure: 2004, published by the Office of the Deputy Prime Minister, 2004.

39.British Standards Institution

BS EN 1993-1-5: 2006, Eurocode 3 – Design of steel structures – Part 1.5: Plated structural elements, BSI, 2006.

40.Gardner, L.

Stability of steel beams and columns. The Steel Construction Institute, Silwood Park, Ascot. Publication SCI-P360, 2011.

41.Gardner, L. and Nethercot, D.A.

Designers’ Guide to EN 1993-1-1 Eurocode 3: Design of steel structures, General rules and rules for buildings. Published by Thomas Telford, 2005.

42.Steel Construction Institute

NCCI: Verification of columns in simple construction – A simplified interaction criteria.

43.British Standards Institution

BS EN 10025-3: 2004, Hot rolled products of structural steel. Part 3: Technical delivery conditions or normalized/normalized rolled weldable fine grain structural steels, BSI, 2004.

44.British Standards Institution

BS EN 10025-4: 2004, Hot rolled products of structural steel. Part 4: Technical delivery conditions for thermomechanical rolled weldable find grain structural steel, BSI, 2004.

45.British Standards Institution

BS 4-1: 2005, Specification for hot rolled sections, BSI, 2005.

46.British Standards Institution

BS EN 10034: 1993, Structural steel I and H sections. Tolerances on shape and dimensions (Replaces BS 4-1: 1980), BSI, 1993.

47.British Standards Institution

BS EN 10024: 1995, Hot rolled taper I sections. Tolerances on shape and dimensions, BSI, 1995.

48.British Standards Institution

BS EN 10279: 2000, Hot rolled steel channels. Tolerances on shape, dimensions and mass (including amendment 1 and amendment 2, 2000), BSI, 2000.

49.British Standards Institution

BS EN 10056-1: 1999, Specification for structural steel equal and unequal angles.

Part 1: Dimensions (Replaces BS 4848-4: 1972), BSI, 1999.

50.British Standards Institution

BS EN 10056-2: 1993, Specification for structural steel equal and unequal angles.

Part 2: Tolerances on shape and dimensions (Replaces BS 4848-4: 1972), BSI, 1993.

51.British Standards Institution

152

BS EN 10210-1: 2006, Hot finished structural hollow sections of non-alloy and fine grain structural steels, Part 1: Technical delivery requirements (Replaces BS 4360: 1990), BSI, 2006.

52.British Standards Institution

BS EN 10210-2: 2006, Hot finished structural hollow sections of non-alloy and fine grain structural steels, Part 2: Tolerances, dimensions and sectional properties, BSI, 2006.

53.British Standards Institution

BS EN 10219-1: 2006, Cold formed welded structural sections of non-alloy and fine grain steels. Part 1: Technical delivery requirements, BSI, 2006.

54.British Standards Institution

BS EN 10219-2: 2006, Cold formed welded structural sections of non-alloy and fine grain steels. Part 2: Tolerances and sectional properties, BSI, 2006.

55.Tata Steel

Advance®Sections: CE marked structural sections. Available from: http://www.tatasteelconstruction.com

56.Nethercot, D. A., Salter, P. R. And Malik, A. S.

Design of members subject to combined bending and torsion, SCI publication number P057, The Steel Construction Institute, 1989.

57.Elastic Moduli of Angular Sections, Advisory Desk Note AD 340. Available from http://www.steelbiz.org

58.Tension resistance of angles in SCI P363. Advisory Desk Note AD 351. Available from http://www.steelbiz.org

59.The Steel Construction Institute and The British Constructional Steelwork Association Ltd

Steel Building Design: Design Data, Publication number P363, SCI, 2013.

60.British Standards Institution

BS EN 1090-2: 2008, Execution of steel structures and aluminium structures. Part 2: Technical requirements for steel structures, BSI, 2008.

61.British Standards Institution

BS EN 14399, High-strength structural bolting assemblies for preloading

• BS EN 14399-1: 2005: Part 1: General requirements

• BS EN 14399-2: 2005: Part 2: Suitability test for preloading

• BS EN 14399-3: 2005: Part 3: System HR. Hexagon bolt and nut assemblies

• BS EN 14399-4: 2005: Part 4: System HV. Hexagon bolt and nut assemblies

• BS EN 14399-5: 2005: Part 5: Plain washers

• BS EN 14399-6: 2005: Part 6: Plain chamfered washers

• BS EN 14399-9: 2009: Part 9: System HR or HV. Bolt and nut assembles with direct tension indicators

• BS EN 14399-10: 2009: Part 10: System HRC. Bolt and nut assemblies with calibrated preload

62.British Standards Institution

BS EN 15048 Non-preloaded structural bolting assemblies

• BS EN 15048-1: 2007: Part 1: General requirements

• BS EN 15048-2: 2007: Part 2: Suitability test

63.Access steel document SN002

NCCI: Determination of non-dimensional slenderness of I and H sections. Available from: www.access-steel.com

64.Access steel document SN001

153

NCCI: Critical axial load for torsional and flexural-torsional buckling modes. Available from: www.access-steel.com

65.Access steel document SN003

NCCI: Elastic critical moment for lateral torsional buckling. Available from: www.access-steel.com

66.British Standards Institution

BS 4399: 1973, Specifications for ISO metric black cup and countersunk head bolts and screws with hexagon nuts. BSI, 1973.

67.British Standards Institution

BS EN ISO 4014: 2001, Hexagon head bolts. Product grades A and B, BSI, 2001.

68.British Standards Institution

BS EN ISO 4017: 2001, Hexagon head screws. Product grades A and B, BSI, 2001.

69.British Standards Institution

BS EN ISO 4016: 2001, Hexagon head bolts. Product grade C, BSI, 2001.

70.British Standards Institution

BS EN ISO 4018: 2001, Hexagon head screw. Product grade C, BSI, 2001.

71.British Standards Institution

BS EN ISO 4032: 2001, Hexagon nuts, style 1. Product grades A and B, BSI, 2001.

72.British Standards Institution

BS EN ISO 4034: 2001, Hexagon nuts. Product grade C, BSI, 2001.

73.British Standards Institution

BS EN ISO 898-1: 1999, Mechanical properties of fasteners made of carbon steel and alloy steel. Bolts, screws and studs, BSI, 1999.

154
155

UNIVERSAL BEAMS

Advance® UKB

C

Dimensions

Section MassDepthWidthRootDepth

ThicknessRatios for

DesignationperofofRadiusbetween

Local Buckling

Dimensions for Detailing Notch

Surface Area

MetreSectionSectionWebFlangeFilletsFlangeWebEndPerPer

ClearanceMetreTonne

hbtw tf rdcf / tf cw / tw C N n kg/mmmmmmmmmmmmmmmmmmm m 2 m 2

1016x305x487 +486.71036.3308.530.054.130.0868.12.0228.917150863.206.58 1016x305x437 +437.01026.1305.426.949.030.0868.12.2332.315150803.177.25

1016x305x393 +392.71015.9303.024.443.930.0868.12.4935.614150743.148.00

1016x305x349 +349.41008.1302.021.140.030.0868.12.7641.113152703.138.96

1016x305x314 +314.3999.9300.019.135.930.0868.13.0845.512152663.119.89

1016x305x272 +272.3990.1300.016.531.030.0868.13.6052.610152623.1011.4 1016x305x249 +248.7980.1300.016.526.030.0868.14.3052.610152563.0812.4 1016x305x222 +222.0970.3300.016.021.130.0868.15.3154.310152523.0613.8 914x419x388 388.0921.0420.521.436.624.1799.64.7937.413210623.448.87 914x419x343 343.3911.8418.519.432.024.1799.65.4841.212210583.429.96 914x305x289 289.1926.6307.719.532.019.1824.43.9142.312156523.0110.4 914x305x253 253.4918.4305.517.327.919.1824.44.4847.711156482.9911.8 914x305x224 224.2910.4304.115.923.919.1824.45.2351.810156442.9713.2 914x305x201 200.9903.0303.315.120.219.1824.46.1954.610156402.9614.7 838x292x226 226.5850.9293.816.126.817.8761.74.5247.310150462.8112.4 838x292x194 193.8840.7292.414.721.717.8761.75.5851.89150402.7914.4 838x292x176 175.9834.9291.714.018.817.8761.76.4454.49150382.7815.8 762x267x197 196.8769.8268.015.625.416.5686.04.3244.010138422.5513.0 762x267x173 173.0762.2266.714.321.616.5686.05.0848.09138402.5314.6 762x267x147 146.9754.0265.212.817.516.5686.06.2753.68138342.5117.1 762x267x134 133.9750.0264.412.015.516.5686.07.0857.28138322.5118.7 686x254x170 170.2692.9255.814.523.715.2615.14.4542.49132402.3513.8 686x254x152 152.4687.5254.513.221.015.2615.15.0246.69132382.3415.4 686x254x140 140.1683.5253.712.419.015.2615.15.5549.68132362.3316.6 686x254x125 125.2677.9253.011.716.215.2615.16.5152.68132322.3218.5

610x305x238 238.1635.8311.418.431.416.5540.04.1429.311158482.4510.3

610x305x179 179.0620.2307.114.123.616.5540.05.5138.39158422.4113.5

610x305x149 149.2612.4304.811.819.716.5540.06.6045.88158382.3916.0

610x229x140 139.9617.2230.213.122.112.7547.64.3441.89120362.1115.1

610x229x125 125.1612.2229.011.919.612.7547.64.8946.08120342.0916.7

610x229x113 113.0607.6228.211.117.312.7547.65.5449.38120302.0818.4

610x229x101 101.2602.6227.610.514.812.7547.66.4852.27120282.0720.5

610x178x100 +100.3607.4179.211.317.212.7547.64.1448.5894301.8918.8

610x178x92 +92.2603.0178.810.915.012.7547.64.7550.2794281.8820.4

610x178x82 +81.8598.6177.910.012.812.7547.65.5754.8794261.8722.9

533x312x273 +273.3577.1320.221.137.612.7476.53.6422.613160522.378.67

533x312x219 +218.8560.3317.418.329.212.7476.54.6926.011160422.3310.7

533x312x182 +181.5550.7314.515.224.412.7476.55.6131.310160382.3112.7

533x312x151 +150.6542.5312.012.720.312.7476.56.7537.58160342.2915.2

Advance® and UKB are trademarks of Tata Steel. A fuller description of the relationship between Universal Beams (UB) and the Advance® range of sections manufactured by Tata Steel is given in note 12.

+ These sections are in addition to the range of BS 4 sections.

FOR EXPLANATION OF TABLES SEE NOTE 2

n
N r t b t d h f w BS EN 1993-1-1:2005 BS 4-1:2005 156

UNIVERSAL BEAMS

Advance® UKB

Properties

Second MomentPlastic RadiusElastic

Modulus of Area

Modulus of Gyration

Section BucklingTorsionalWarpingTorsional Area DesignationParameterIndexConstantConstantof AxisAxisAxisAxisAxisAxisAxisAxisSection y-yz-zy-yz-zy-yz-zy-yz-z

UXIw IT A

cm 4 cm 4 cmcm cm 3 cm 3 cm 3 cm 3 dm6 cm 4 cm 2

1016x305x487 +10220002670040.66.571970017302320028000.86721.164.44300620

1016x305x437 +9100002340040.46.491770015402080024700.86823.156.03190557

1016x305x393 +8080002050040.26.401590013501850021700.86825.548.42330500

1016x305x349 +7230001850040.36.441430012201660019400.87227.943.31720445

1016x305x314 +6440001620040.16.371290010801480017100.87230.737.71260400

1016x305x272 +5540001400040.06.35112009341280014700.87235.032.2835347

1016x305x249 +4810001180039.06.0998207841130012400.86139.926.8582317

1016x305x222 +408000955038.05.818410636981010200.85045.721.5390283

914x419x388 7200004540038.29.591560021601770033400.88526.788.91730494

914x419x343 6260003920037.89.461370018701550028900.88330.175.81190437

914x305x289 5040001560037.06.511090010101260016000.86731.931.2926368 914x305x253 4360001330036.86.4295008711090013700.86536.226.4626323

914x305x224 3760001120036.36.278270739953011600.86041.322.1422286

914x305x201 325000942035.76.07720062183509820.85346.918.4291256 838x292x226 3400001140034.36.277980773916012100.86935.019.3514289 838x292x194 279000907033.66.06664062076409740.86241.615.2306247 838x292x176 246000780033.15.90589053568108420.85646.513.0221224

762x267x197 240000817030.95.71623061071709580.86933.111.3404251

762x267x173 205000685030.55.58539051462008070.86538.09.39267220 762x267x147 169000546030.05.40447041151606470.85845.27.40159187

762x267x134 151000479029.75.30402036246405700.85349.86.46119171

686x254x170 170000663028.05.53492051856308110.87231.87.42308217 686x254x152 150000578027.85.46437045550007100.87135.46.42220194 686x254x140 136000518027.65.39399040945606380.87038.65.72169178 686x254x125 118000438027.25.24348034639905420.86343.84.80116159

610x305x238 2090001580026.37.2365901020749015700.88621.314.5785303

610x305x179 1530001140025.97.074930743555011400.88527.710.2340228

610x305x149 126000931025.77.00411061145909370.88632.78.17200190

610x229x140 112000451025.05.03362039141406110.87530.63.99216178

610x229x125 98600393024.94.97322034336805350.87534.03.45154159

610x229x113 87300343024.64.88287030132804690.87038.02.99111144

610x229x101 75800291024.24.75252025628804000.86343.02.5277.0129

610x178x100 +72500166023.83.60239018527902960.85438.71.4495.0128

610x178x92 +64600144023.43.50214016125102580.85042.71.2471.0117

610x178x82 +55900121023.23.40187013621902180.84348.51.0448.8104

533x312x273 +1990002060023.97.6968901290787019900.89115.915.01290348

533x312x219 +1510001560023.37.485400982612015100.88419.811.0642279

533x312x182 +1230001270023.17.404480806504012400.88623.48.77373231

533x312x151 +1010001030022.97.323710659415010100.88527.87.01216192

Advance® and UKB are trademarks of Tata Steel. A fuller description of the relationship between Universal Beams (UB) and the Advance® range of sections manufactured by Tata Steel is given in note 12.

+ These sections are in addition to the range of BS 4 sections.

FOR EXPLANATION OF TABLES SEE NOTE 3

BS EN 1993-1-1:2005 BS 4-1:2005 z z yy 157

Dimensions

Section MassDepthWidthRootDepth

DesignationperofofRadiusbetween MetreSectionSectionWebFlangeFilletsFlangeWebEndPerPer

ClearanceMetreTonne

hbtw tf rdcf / tf cw / tw C N n kg/mmmmmmmmmmmmmmmmmmm m 2 m 2

533x210x138 +138.3549.1213.914.723.612.7476.53.6832.49110381.9013.7 533x210x122 122.0544.5211.912.721.312.7476.54.0837.58110341.8915.5

533x210x109 109.0539.5210.811.618.812.7476.54.6241.18110321.8817.2 533x210x101 101.0536.7210.010.817.412.7476.54.9944.17110321.8718.5

533x210x92 92.1533.1209.310.115.612.7476.55.5747.27110301.8620.2

533x210x82 82.2528.3208.89.613.212.7476.56.5849.67110261.8522.5

533x165x85 +84.8534.9166.510.316.512.7476.53.9646.3790301.6919.9

533x165x75 +74.7529.1165.99.713.612.7476.54.8149.1790281.6822.5

533x165x66 +65.7524.7165.18.911.412.7476.55.7453.5690261.6725.4

457x191x161 +161.4492.0199.418.032.010.2407.62.5222.611102441.7310.7

457x191x133 +133.3480.6196.715.326.310.2407.63.0626.610102381.7012.8

457x191x106 +105.8469.2194.012.620.610.2407.63.9132.38102321.6715.8

457x191x98 98.3467.2192.811.419.610.2407.64.1135.88102301.6717.0

457x191x89 89.3463.4191.910.517.710.2407.64.5538.87102281.6618.6

457x191x82 82.0460.0191.39.916.010.2407.65.0341.27102281.6520.1

457x191x74 74.3457.0190.49.014.510.2407.65.5545.37102261.6422.1

457x191x67 67.1453.4189.98.512.710.2407.66.3448.06102241.6324.3

457x152x82 82.1465.8155.310.518.910.2407.63.2938.8784301.5118.4

457x152x74 74.2462.0154.49.617.010.2407.63.6642.5784281.5020.2

457x152x67 67.2458.0153.89.015.010.2407.64.1545.3784261.5022.3

457x152x60 59.8454.6152.98.113.310.2407.64.6850.3684241.4924.9

457x152x52 52.3449.8152.47.610.910.2407.65.7153.6684221.4828.3

406x178x85 +85.3417.2181.910.918.210.2360.44.1433.1796301.5217.8

406x178x74 74.2412.8179.59.516.010.2360.44.6837.9796281.5120.4 406x178x67 67.1409.4178.88.814.310.2360.45.2341.0696261.5022.3 406x178x60 60.1406.4177.97.912.810.2360.45.8445.6696241.4924.8 406x178x54 54.1402.6177.77.710.910.2360.46.8646.8696221.4827.3

406x140x53 +53.3406.6143.37.912.910.2360.44.4645.6678241.3525.3

406x140x46 46.0403.2142.26.811.210.2360.45.1353.0578221.3429.1

406x140x39 39.0398.0141.86.48.610.2360.46.6956.3578201.3334.1

356x171x67 67.1363.4173.29.115.710.2311.64.5834.2794261.3820.6

356x171x57 57.0358.0172.28.113.010.2311.65.5338.5694241.3724.1 356x171x51 51.0355.0171.57.411.510.2311.66.2542.1694221.3626.7

356x171x45 45.0351.4171.17.09.710.2311.67.4144.5694201.3630.2

356x127x39 39.1353.4126.06.610.710.2311.64.6347.2570221.1830.2

356x127x33 33.1349.0125.46.08.510.2311.65.8251.9570201.1735.4

305x165x54 54.0310.4166.97.913.78.9265.25.1533.6690241.2623.3

305x165x46 46.1306.6165.76.711.88.9265.25.9839.6590221.2527.1

305x165x40 40.3303.4165.06.010.28.9265.26.9244.2590201.2430.8

Advance® and UKB are trademarks of Tata Steel. A fuller description of the relationship between Universal Beams (UB) and the Advance® range of sections manufactured by Tata Steel is given in note 12.

+ These sections are in addition to the range of BS 4 sections. FOR EXPLANATION OF TABLES SEE NOTE 2

BucklingDetailing
UNIVERSAL BEAMS Advance® UKB ThicknessSurface Area Notch Local
Ratios forDimensions for
n C N r t b t d h f w BS EN 1993-1-1:2005 BS 4-1:2005 158

Advance®

UKB

Properties

Second Moment

of Area

RadiusElastic

Plastic of GyrationModulus

Modulus

Section BucklingTorsionalWarpingTorsional Area DesignationParameterIndexConstantConstantof AxisAxisAxisAxisAxisAxisAxisAxisSection y-yz-zy-yz-zy-yz-zy-yz-z

UXIw IT A

cm 4 cm 4 cmcm cm 3 cm 3 cm 3 cm 3 dm6 cm 4 cm 2

533x210x138 +86100386022.14.68314036136105680.87424.92.67250176

533x210x122 76000339022.14.67279032032005000.87827.62.32178155

533x210x109 66800294021.94.60248027928304360.87530.91.99126139

533x210x101 61500269021.94.57229025626103990.87433.11.81101129

533x210x92 55200239021.74.51207022823603550.87336.41.6075.7117

533x210x82 47500201021.34.38180019220603000.86341.61.3351.5105

533x165x85 +48500127021.23.44182015321002430.86135.50.85773.8108

533x165x75 +41100104020.83.30155012518102000.85341.10.69147.995.2

533x165x66 +3500085920.53.20134010415601660.84747.00.56632.083.7

457x191x161 +79800425019.74.55324042637806720.88116.52.25515206

457x191x133 +63800335019.44.44266034130705350.87919.61.73292170

457x191x106 +48900251019.04.32208025923904050.87624.41.27146135

457x191x98 45700235019.14.33196024322303790.88125.81.18121125

457x191x89 41000209019.04.29177021820103380.87828.31.0490.7114

457x191x82 37100187018.84.23161019618303040.87930.80.92269.2104

457x191x74 33300167018.84.20146017616502720.87733.80.81851.894.6

457x191x67 29400145018.54.12130015314702370.87337.80.70537.185.5

457x152x82 36600118018.73.37157015318102400.87227.40.59189.2105

457x152x74 32700105018.63.33141013616302130.87230.10.51865.994.5

457x152x67 2890091318.43.27126011914501870.86833.60.44847.785.6

457x152x60 2550079518.33.23112010412901630.86837.50.38733.876.2

457x152x52 2140064517.93.1195084.611001330.85943.80.31121.466.6

406x178x85 +31700183017.14.11152020117303130.88024.40.72893.0109

406x178x74 27300155017.04.04132017215002670.88227.50.60862.894.5 406x178x67 24300136016.93.99119015313502370.88030.40.53346.185.5

406x178x60 21600120016.83.97106013512002090.88033.70.46633.376.5 406x178x54 18700102016.53.8593011510501780.87138.30.39223.169.0 406x140x53 +1830063516.43.0689988.610301390.87034.10.24629.067.9

406x140x46 1570053816.43.0377875.78881180.87139.00.20719.058.6

406x140x39 1250041015.92.8762957.872490.80.85847.40.15510.749.7

356x171x67 19500136015.13.99107015712102430.88624.40.41255.785.5

356x171x57 16000111014.93.9189612910101990.88228.80.33033.472.6

356x171x51 1410096814.83.867961138961740.88132.10.28623.864.9

356x171x45 1210081114.53.7668794.87751470.87436.80.23715.857.3

356x127x39 1020035814.32.6857656.865989.00.87135.20.10515.149.8

356x127x33 825028014.02.5847344.754370.20.86342.10.0818.7942.1

305x165x54 11700106013.03.937541278461960.88923.60.23434.868.8

305x165x46 990089613.03.906461087201660.89027.10.19522.258.7

305x165x40 850076412.93.8656092.66231420.88931.00.16414.751.3

Advance® and UKB are trademarks of Tata Steel. A fuller description of the relationship between Universal Beams (UB) and the Advance® range of sections manufactured by Tata Steel is given in note 12.

+ These sections are in addition to the range of BS 4 sections.

FOR EXPLANATION OF TABLES SEE NOTE 3

UNIVERSAL BEAMS
BS EN 1993-1-1:2005 BS 4-1:2005 z z yy 159

Section MassDepthWidthRootDepth

DesignationperofofRadiusbetween

MetreSectionSectionWebFlangeFilletsFlangeWebEndPerPer ClearanceMetreTonne

hbtw tf rdcf / tf cw / tw C N n kg/mmmmmmmmmmmmmmmmmmm m 2 m 2

305x127x48 48.1311.0125.39.014.08.9265.23.5229.5770241.0922.7 305x127x42 41.9307.2124.38.012.18.9265.24.0733.2670221.0825.8 305x127x37 37.0304.4123.47.110.78.9265.24.6037.4670201.0728.9

305x102x33 32.8312.7102.46.610.87.6275.93.7341.8558201.0130.8 305x102x28 28.2308.7101.86.08.87.6275.94.5846.0558181.0035.5

305x102x25 24.8305.1101.65.87.07.6275.95.7647.6558160.99240.0 254x146x43 43.0259.6147.37.212.77.6219.04.9230.4682221.0825.1 254x146x37 37.0256.0146.46.310.97.6219.05.7334.8582201.0728.9 254x146x31 31.1251.4146.16.08.67.6219.07.2636.5582181.0634.0 254x102x28 28.3260.4102.26.310.07.6225.24.0435.7558180.90431.9 254x102x25 25.2257.2101.96.08.47.6225.24.8037.5558160.89735.7 254x102x22 22.0254.0101.65.76.87.6225.25.9339.5558160.89040.5 203x133x30 30.0206.8133.96.49.67.6172.45.8526.9574180.92330.8 203x133x25 25.1203.2133.25.77.87.6172.47.2030.2574160.91536.5 203x102x23 23.1203.2101.85.49.37.6169.44.3731.4560180.79034.2 178x102x19 19.0177.8101.24.87.97.6146.85.1430.6460160.73838.7 152x89x16 16.0152.488.74.57.77.6121.84.4827.1454160.63840.0 127x76x13 13.0127.076.04.07.67.696.63.7424.2446160.53741.4

A
the
Notch Detailing ThicknessRatios for
Advance®
Local Buckling Dimensions forSurface Area
n C N r t b t d h f w BS EN 1993-1-1:2005 BS 4-1:2005 160
FOR EXPLANATION OF TABLES SEE NOTE 2 Advance® and UKB are trademarks of Tata Steel.
fuller description of
relationship between Universal Beams (UB) and the Advance® range of sections manufactured by Tata Steel is given in note 12.
UNIVERSAL BEAMS
UKB
Dimensions

Section

BucklingTorsionalWarpingTorsional Area DesignationParameterIndexConstantConstantof AxisAxisAxisAxisAxisAxisAxisAxisSection y-yz-zy-yz-zy-yz-zy-yz-z

UXIw IT A

cm 4 cm 4 cmcm cm 3 cm 3 cm 3 cm 3 dm6 cm 4 cm 2

305x127x48 957046112.52.7461673.67111160.87323.30.10231.861.2 305x127x42 820038912.42.7053462.661498.40.87226.50.084621.153.4

305x127x37 717033612.32.6747154.553985.40.87229.70.072514.847.2

305x102x33 650019412.52.1541637.948160.00.86731.60.044212.241.8 305x102x28 537015512.22.0834830.540348.40.85937.30.03497.4035.9

305x102x25 446012311.91.9729224.234238.80.84643.40.0274.7731.6 254x146x43 654067710.93.5250492.05661410.89121.10.10323.954.8 254x146x37 554057110.83.4843378.04831190.89024.30.085715.347.2

254x146x31 441044810.53.3635161.339394.10.87929.60.06608.5539.7

254x102x28 400017910.52.2230834.935354.80.87327.50.02809.5736.1

254x102x25 341014910.32.1526629.230646.00.86631.40.02306.4232.0 254x102x22 284011910.12.0622423.525937.30.85636.30.01824.1528.0 203x133x30 29003858.713.1728057.531488.20.88221.50.037410.338.2 203x133x25 23403088.563.1023046.225870.90.87625.60.02945.9632.0 203x102x23 21001648.462.3620732.223449.70.88822.40.01547.0229.4 178x102x19 13601377.482.3715327.017141.60.88622.60.00994.4124.3 152x89x16 83489.86.412.1010920.212331.20.89019.50.004703.5620.3 127x76x13 47355.75.351.8474.614.784.222.60.89416.30.002002.8516.5

the
the
of
of Area
BS EN 1993-1-1:2005 BS 4-1:2005 z z yy 161
FOR EXPLANATION OF TABLES SEE NOTE 3 Advance® and UKB are trademarks of Tata Steel. A fuller description of
relationship between Universal Beams (UB) and
Advance® range of sections manufactured by Tata Steel is given in note 12.
Gyration
Plastic ModulusModulus Second MomentRadiusElastic Properties UNIVERSAL BEAMS Advance® UKB

Advance® UKC

Dimensions

Section MassDepthWidthRootDepth DesignationperofofRadiusbetween

ThicknessRatios for Local Buckling Dimensions for Detailing Notch

Surface Area

MetreSectionSectionWebFlangeFilletsFlangeWebEndPerPer ClearanceMetreTonne hbtw tf rdcf / tf cw / tw C N n kg/mmmmmmmmmmmmmmmmmmm m 2 m 2

356x406x634 633.9474.6424.047.677.015.2290.22.256.1026200942.523.98 356x406x551 551.0455.6418.542.167.515.2290.22.566.8923200842.474.48

356x406x467 467.0436.6412.235.858.015.2290.22.988.1120200742.425.18 356x406x393 393.0419.0407.030.649.215.2290.23.529.4817200662.386.06 356x406x340 339.9406.4403.026.642.915.2290.24.0310.915200602.356.91 356x406x287 287.1393.6399.022.636.515.2290.24.7412.813200522.318.05 356x406x235 235.1381.0394.818.430.215.2290.25.7315.811200462.289.70 356x368x202 201.9374.6374.716.527.015.2290.26.0717.610190442.1910.8 356x368x177 177.0368.2372.614.423.815.2290.26.8920.29190402.1712.3 356x368x153 152.9362.0370.512.320.715.2290.27.9223.68190362.1614.1 356x368x129 129.0355.6368.610.417.515.2290.29.427.97190342.1416.6 305x305x283 282.9365.3322.226.844.115.2246.73.009.2115158601.946.86

305x305x240 240.0352.5318.423.037.715.2246.73.5110.714158541.917.96 305x305x198 198.1339.9314.519.131.415.2246.74.2212.912158481.879.44 305x305x158 158.1327.1311.215.825.015.2246.75.3015.610158421.8411.6 305x305x137 136.9320.5309.213.821.715.2246.76.1117.909158381.8213.3 305x305x118 117.9314.5307.412.018.715.2246.77.0920.68158341.8115.4 305x305x97 96.9307.9305.39.915.415.2246.78.6024.97158321.7918.5 254x254x167 167.1289.1265.219.231.712.7200.33.4810.412134461.589.46 254x254x132 132.0276.3261.315.325.312.7200.34.3613.110134381.5511.7 254x254x107 107.1266.7258.812.820.512.7200.35.3815.68134341.5214.2 254x254x89 88.9260.3256.310.317.312.7200.36.3819.47134301.5016.9 254x254x73 73.1254.1254.68.614.212.7200.37.7723.36134281.4920.4 203x203x127 + 127.5241.4213.918.130.110.2160.82.918.8811108421.2810.0 203x203x113 + 113.5235.0212.116.326.910.2160.83.269.8710108381.2711.2 203x203x100 + 99.6228.6210.314.523.710.2160.83.7011.19108341.2512.6 203x203x86 86.1222.2209.112.720.510.2160.84.2912.78110321.2414.4 203x203x71 71.0215.8206.410.017.310.2160.85.0916.17110281.2217.2 203x203x60 60.0209.6205.89.414.210.2160.86.2017.17110261.2120.2 203x203x52 52.0206.2204.37.912.510.2160.87.0420.46110241.2023.1 203x203x46 46.1203.2203.67.211.010.2160.88.0022.36110221.1925.8

152x152x51 + 51.2170.2157.411.015.77.6123.64.1811.2884240.93518.3

152x152x44 + 44.0166.0155.99.513.67.6123.64.8213.0784220.92421.0

152x152x37 37.0161.8154.48.011.57.6123.65.7015.5684200.91224.7

152x152x30 30.0157.6152.96.59.47.6123.66.9819.0584180.90130.0

152x152x23 23.0152.4152.25.86.87.6123.69.6521.3584160.88938.7

Advance® and UKC are trademarks of Tata Steel. A fuller description of the relationship between Universal Columns (UC) and the Advance® range of sections manufactured by Tata Steel is given in note 12.

+ These sections are in addition to the range of BS 4 sections.

FOR EXPLANATION OF TABLES SEE NOTE 2

UNIVERSAL COLUMNS
h b t r t d w f n C N BS EN 1993-1-1:2005 BS 4-1:2005 162

UNIVERSAL COLUMNS

Advance® UKC

Properties

Second Moment of Area Plastic Modulus Radius of Gyration Elastic Modulus

Section BucklingTorsionalWarpingTorsional Area Designation ParameterIndexConstantConstantof AxisAxisAxisAxisAxisAxisAxisAxisSection y-yz-zy-yz-zy-yz-zy-yz-z

UXIw IT A

cm 4 cm 4 cmcm cm 3 cm 3 cm 3 cm 3 dm6 cm 4 cm 2

356x406x634 2750009810018.411.01160046301420071100.8435.4638.813700808

356x406x551 2270008270018.010.9996039501210060600.8416.0531.19240702

356x406x467 1830006780017.510.7838032901000050300.8396.8524.35810595

356x406x393 1470005540017.110.570002720822041500.8377.8618.93550501

356x406x340 1230004690016.810.460302330700035400.8368.8415.52340433

356x406x287 999003870016.510.350701940581029500.83510.1712.31440366

356x406x235 791003100016.310.241501570469023800.83412.049.54812299

356x368x202 663002370016.19.6035401260397019200.84413.357.16558257

356x368x177 571002050015.99.5431001100346016700.84415.006.09381226

356x368x153 486001760015.89.492680948296014300.84417.015.11251195

356x368x129 402001460015.69.432260793248012000.84419.814.18153164

305x305x283 789002460014.88.2743201530511023400.8557.646.352030360

305x305x240 642002030014.58.1536401280425019500.8548.735.031270306

305x305x198 509001630014.28.0430001040344015800.85410.233.88734252

305x305x158 387001260013.97.902370808268012300.85112.462.87378201

305x305x137 328001070013.77.832050692230010500.85114.132.39249174

305x305x118 27700906013.67.77176058919608950.85016.141.98161150 305x305x97 22200731013.47.69145047915907260.85019.191.5691.2123

254x254x167 30000987011.96.812080744242011400.8518.481.63626213 254x254x132 22500753011.66.69163057618708780.85010.321.19319168 254x254x107 17500593011.36.59131045814806970.84812.380.898172136 254x254x89 14300486011.26.55110037912205750.85014.460.717102113 254x254x73 11400391011.16.488983079924650.84917.240.56257.693.1 203x203x127 + 1540049209.755.50128046015207040.8547.380.549427162 203x203x113 + 1330042909.595.45113040413306180.8538.110.464305145 203x203x100 + 1130036809.445.3998835011505340.8529.020.386210127 203x203x86 945031309.285.348502999774560.85010.200.318137110 203x203x71 762025409.185.307062467993740.85311.900.25080.290.4 203x203x60 612020608.965.205842016563050.84614.100.19747.276.4 203x203x52 526017808.915.185101745672640.84815.800.16731.866.3

203x203x46 457015508.825.134501524972310.84717.700.14322.258.7

152x152x51 + 323010207.043.963791304381990.84810.100.06148.865.2

152x152x44 + 27008606.943.923261103721690.84811.500.05031.756.1

152x152x37 22107066.853.8727391.53091400.84813.300.04019.247.1

152x152x30 17505606.763.8322273.32481120.84916.000.03110.538.3

152x152x23 12504006.543.7016452.618280.10.84020.700.0214.6329.2

Advance® and UKC are trademarks of Tata Steel. A fuller description of the relationship between Universal Columns (UC) and the Advance® range of sections manufactured by Tata Steel is given in note 12.

+ These sections are in addition to the range of BS 4 sections.

FOR EXPLANATION OF TABLES SEE NOTE 3

z z yy BS EN 1993-1-1:2005 BS 4-1:2005 163

h

b t

1 2 f

Surface Area Radii n N r r t d = =

Dimensions

Section MassDepthWidthDepth Designationperofofbetween

ThicknessRatios for Local Buckling

MetreSectionSectionWebFlangeRootToeFilletsFlangeWebEndPerPer ClearanceMetreTonne

hbtw tf r1 r2 dcf / tf cw / tw C N n kg/mmmmmmmmmmmmmmmmmmmmm m 2 m 2 254x203x8282.0254.0203.210.219.919.69.7166.63.8616.37104441.2114.8 254x114x3737.2254.0114.37.612.812.46.1199.33.2026.2660280.89924.2 203x152x5252.3203.2152.48.916.515.57.6133.23.4115.0678360.93217.8 152x127x3737.3152.4127.010.413.213.56.694.33.399.07766300.73719.8 127x114x2929.3127.0114.310.211.59.94.879.53.677.79760240.64622.0 127x114x2726.9127.0114.37.411.49.95.079.53.8210.7660240.65024.2 127x76x1616.5127.076.25.69.69.44.686.52.7015.4542220.51231.0 114x114x2727.1114.3114.39.510.714.23.260.83.576.40760280.61822.8 102x102x2323.0101.6101.69.510.311.13.255.23.395.81754240.54923.9 102x44x77.5101.644.54.36.16.93.374.62.1617.3428140.35046.6 89x89x1919.588.988.99.59.911.13.244.22.894.65746240.47624.4 76x76x1515.076.280.08.98.49.44.638.13.114.28642200.41927.9 76x76x1312.876.276.25.18.49.44.638.13.117.47542200.41132.1 FOR EXPLANATION OF TABLES SEE NOTE 2

w 164

JOISTS
Dimensions for Detailing Notch BS EN 1993-1-1:2005 BS 4-1:2005 C

Properties

Second Moment of Area Plastic Modulus Radius of Gyration Elastic Modulus

Section BucklingTorsionalWarpingTorsional Area Designation ParameterIndexConstantConstantof AxisAxisAxisAxisAxisAxisAxisAxisSection y-yz-zy-yz-zy-yz-zy-yz-z

UXIw IT A

cm 4 cm 4 cmcm cm 3 cm 3 cm 3 cm 3 dm6 cm 4 cm 2 254x203x8212000228010.74.6794722410803710.88811.00.312152105 254x114x37508026910.42.3940047.145979.10.88418.70.039225.247.3 203x152x5248008168.493.504721075411760.89010.70.071164.866.6 152x127x3718203786.192.8223959.627999.80.8679.30.018333.947.5 127x114x299792425.122.5415442.318170.80.8538.80.0080720.837.4 127x114x279462365.262.6314941.317268.20.8689.30.0078816.934.2 127x76x1657160.85.211.7090.016.010426.40.89011.80.002106.7221.1 114x114x277362244.622.5512939.215165.80.8397.90.0060118.934.5 102x102x234861544.072.2995.630.311350.60.8367.40.0032114.229.3 102x44x71537.824.010.90730.13.5135.46.030.87214.90.0001781.259.50 89x89x193071013.512.0269.022.882.738.00.8296.60.0015811.524.9 76x76x1517260.93.001.7845.215.254.225.80.8206.40.0007006.8319.1 76x76x1315851.83.121.7941.513.648.722.40.8537.20.0005954.5916.2

FOR EXPLANATION OF TABLES SEE NOTE 3

JOISTS
yy z z BS EN 1993-1-1:2005 BS 4-1:2005 165

PARALLEL FLANGE CHANNELS

Advance® UKPFC

Dimensions

Section MassDepthWidthRootDepthDistance

ThicknessRatios for Local Buckling

Dimensions forSurface Area Detailing

Notch

DesignationperofofRadius between MetreSectionSectionWebFlangeFilletsFlangeWebEndPerPer ClearanceMetreTonne

hbtw tf rdcf / tf cw / tw eo C N n kg/mmmmmmmmmmmmmcmmmmmmm m 2 m 2 430x100x6464.443010011.019.0153623.8932.93.271396361.2319.0 380x100x5454.03801009.517.5153154.3133.23.481298341.1320.9 300x100x4645.53001009.016.5152374.6126.33.681198320.96921.3 300x90x4141.4300909.015.5122454.4527.23.181188280.93222.5 260x90x3534.8260908.014.0122085.0026.03.321088280.85424.5 260x75x2827.6260757.012.0122124.6730.32.62974260.79628.8 230x90x3232.2230907.514.0121785.0423.73.461090280.79524.7 230x75x2625.7230756.512.5121814.5227.82.78976260.73728.7 200x90x3029.7200907.014.0121485.0721.13.60990280.73624.8 200x75x2323.4200756.012.5121514.5625.22.91876260.67828.9 180x90x2626.1180906.512.5121315.7220.23.64990260.69726.7 180x75x2020.3180756.010.5121355.4322.52.87876240.63831.4 150x90x2423.9150906.512.0121025.9615.73.71990260.63726.7 150x75x1817.9150755.510.0121065.7519.32.99876240.57932.4 125x65x1514.8125655.59.51282.05.0014.92.56866220.48933.1 100x50x1010.2100505.08.5965.04.2413.01.94752180.38237.5

Advance® and UKPFC are trademarks of Tata Steel. A fuller description of the relationship between Parallel Flange Channels (PFC) and the Advance® range of sections manufactured by Tata Steel is given in note 12.

e0 is the distance from the centre of the web to the shear centre FOR EXPLANATION OF TABLES SEE NOTE 2

r t
b h w
BS EN 1993-1-1:2005 BS 4-1:2005 n C N 166
t
f

PARALLEL FLANGE CHANNELS

Advance® UKPFC

Properties

Second Moment of Area

Radius of Gyration Elastic Modulus

Plastic Modulus

Section BucklingTorsionalWarpingTorsional Area DesignationParameterIndexConstantConstantof AxisAxisAxisAxisAxisAxisAxisAxisSection y-yz-zy-yz-zy-yz-zy-yz-z

UXIw IT A

cm 4 cm 4 cmcm cm 3 cm 3 cm 3 cm 3 dm6 cm 4 cm 2 430x100x642190072216.32.97102097.912201760.91722.50.21963.082.1 380x100x541500064314.83.0679189.29331610.93321.20.15045.768.7 300x100x46823056811.93.1354981.76411480.94417.00.081336.858.0 300x90x41722040411.72.7748163.15681140.93418.30.058128.852.7 260x90x35473035310.32.8236456.34251020.94317.20.037920.644.4 260x75x28362018510.12.3027834.432862.00.93220.50.020311.735.1 230x90x3235203349.272.8630655.035598.90.94915.10.027919.341.0 230x75x2627501819.172.3523934.827863.20.94517.30.015311.832.7 200x90x3025203148.162.8825253.429194.50.95212.90.019718.337.9 200x75x2319601708.112.3919633.822760.60.95614.70.010711.129.9 180x90x2618202777.402.8920247.423283.50.95012.80.014113.333.2 180x75x2013701467.272.3815228.817651.80.94515.30.007547.3425.9 150x90x2411602536.182.8915544.417976.90.93710.80.0089011.830.4 150x75x188611316.152.4011526.613247.20.94513.10.004676.1022.8 125x65x1548380.05.072.0677.318.889.933.20.94211.10.001944.7218.8 100x50x1020832.34.001.5841.59.8948.917.50.94210.00.0004912.5313.0

Advance® and UKPFC are trademarks of Tata Steel. A fuller description of the relationship between Parallel Flange Channels (PFC) and the Advance® range of sections manufactured by Tata Steel is given in note 12.

FOR EXPLANATION OF TABLES SEE NOTE 3

BS EN 1993-1-1:2005 BS 4-1:2005 z z yy 167

b b

Dimensions and properties

Width of Flange

Second Moment of Area ThicknessRatios for Local Buckling Surface Area Flanges

Section MassDepthRootDepth DesignationperofRadiusbetween MetreSectionTopBottomWebFlangeFilletsWebAxisAxisPerPer y-yz-zMetreTonne hbt bb tw tf rdcft/tf cfb/tf cw/tw kg/mmmmmmmmmmmmmmm cm 4 cm 4 m 2 m 2

300 ASB 249 ^24934220331340.040.027.02081.362.745.2052900132001.596.38

300 ASB 19619634218329320.040.027.02081.362.7410.445900105001.557.93

300 ASB 185 ^18532019530532.029.027.02081.883.786.503570087501.538.29

300 ASB 15515532617928916.032.027.02081.703.4213.03450079901.519.71

300 ASB 153 ^15331019030027.024.027.02082.274.567.702840068401.509.81

280 ASB 136 ^13628819030025.022.024.01962.665.167.842220062601.4610.7

280 ASB 12412429617828813.026.024.01962.254.3715.12350064101.4611.8

280 ASB 10510528817628611.022.024.01962.665.1617.81920053001.4413.7

280 ASB 100 ^10027618429419.016.024.01963.667.0910.31550042501.4314.2

280 ASB 7473.627217528510.014.024.01964.188.1119.61220033301.4019.1

^ Sections are fire engineered with thick webs.

FOR EXPLANATION OF TABLES SEE NOTES 2 AND 3

ASB (ASYMMETRIC BEAMS)
b t
t w t t f f h d r BS EN 1993-1-1:2005 Corus ASB z z y y 168

yy

Properties (Continued)

Elastic N.A. Plastic N.A.

Radius of Gyration Elastic Modulus

Neutral Axis Position Plastic Modulus

Section BucklingTorsionalMono-WarpingTorsionalArea DesignationParameterIndexsymmetryConstantConstantof AxisAxisAxisAxisAxisElasticPlasticAxisAxisindex*Section y-yz-zy-yy-yz-zy-yz-z

TopBottomze zp UX Iw IT A cmcm cm 3 cm 3 cm 3 cmcm cm 3 cm 3 dm6 cm 4 cm 2

300 ASB 249 ^12.96.402760353084319.222.6376015100.8206.800.6632.002000318

300 ASB 19613.66.482320318071419.828.1306012300.8407.860.8951.501180249

300 ASB 185 ^12.36.101980254057418.021.0266010300.8208.560.6621.20871235

300 ASB 15513.26.351830252055318.927.323609500.8409.400.8681.07620198

300 ASB 153 ^12.15.931630209045617.420.421608170.8209.970.6430.895513195

280 ASB 136 ^11.36.001370177041716.319.218107410.81010.20.6280.710379174

280 ASB 12412.26.371360190044517.325.717307610.83010.50.8070.721332158

280 ASB 10512.06.301150161037016.825.314406330.83012.10.7770.574207133

280 ASB 100 ^11.05.76995129028915.618.412905110.81013.20.6160.451160128

280 ASB 7411.45.96776106023415.721.39784030.83016.70.6990.33872.093.7

^ Sections are fire engineered with thick webs.

* Monosymmetry index is positive when the wide flange is in compression and negative when the narrow flange is in compression FOR EXPLANATION OF TABLES SEE NOTES 2 AND 3

ASB (ASYMMETRIC BEAMS)
z z
z z e p 169
170

Dimensions and properties

Advance® UKA - Equal Angles Radius

ANGLES of Gyration Section Designation RadiusSecond Moment of Area

MassAreaDistanceElasticTorsionalEquivalent peroftoModulusConstantSlenderness SizeThicknessMetreRootToeSectioncentroidAxisAxisAxisAxisAxisAxisAxisCoefficient y-y, z-zu-uv-vy-y, z-zu-uv-vy-y, z-z h x htr1 r2 cIT a mmmmkg/mmmmm cm 2 cm cm 4 cm 4 cm 4 cmcmcm cm 3 cm 4

200x20024 71.118.09.0090.65.843330528013806.067.643.902351822.50

200x200 20 59.918.09.0076.35.682850453011706.117.703.921991073.05

200x200 18 54.318.09.0069.15.602600415010506.137.753.9018178.93.43

200x200 16 48.518.09.0061.85.52234037209606.167.763.9416256.13.85

150x15018 +40.116.08.0051.24.38106016804404.555.732.9399.858.62.48

150x150 15 33.816.08.0043.04.2589814303704.575.762.9383.534.63.01 150x150 12 27.316.08.0034.84.1273711703034.605.802.9567.718.23.77

150x150 10 23.016.08.0029.34.036249902584.625.822.9756.910.84.51

120x12015 +26.613.06.5034.03.524487101863.634.572.3452.827.02.37

120x120 12 21.613.06.5027.53.403685841523.654.602.3542.714.22.99

120x120 10 18.213.06.5023.23.313134971293.674.632.3636.08.413.61

120x120 8 +14.713.06.5018.83.242594111073.714.672.3829.54.444.56

100x10015 +21.912.06.0028.03.022503951052.993.761.9435.822.31.92

100x100 12 17.812.06.0022.72.9020732885.73.023.801.9429.111.82.44 100x100 10 15.012.06.0019.22.8217728073.03.043.831.9524.66.972.94

100x100 8 12.212.06.0015.52.7414523059.93.063.851.9619.93.683.70 90x9012 +15.911.05.5020.32.6614923562.02.713.401.7523.510.52.17 90x90 10 13.411.05.5017.12.5812720152.62.723.421.7519.86.202.64 90x90 8 10.911.05.5013.92.5010416643.12.743.451.7616.13.283.33 90x90 7 9.6111.05.5012.22.4592.614738.32.753.461.7714.12.243.80 80x8010 11.910.05.0015.12.3487.513936.42.413.031.5515.45.452.33 80x80 8 9.6310.05.0012.32.2672.211529.92.433.061.5612.62.882.94 75x758 8.999.004.5011.42.1459.193.824.52.272.861.4611.02.652.76 75x75 6 6.859.004.508.732.0545.872.718.92.292.891.478.411.173.70 70x707 7.389.004.509.401.9742.367.117.52.122.671.368.411.692.92 70x70 6 6.389.004.508.131.9336.958.515.32.132.681.377.271.093.41 65x657 6.839.004.508.732.0533.453.013.81.962.471.267.181.582.67 60x608 7.098.004.009.031.7729.246.112.21.802.261.166.892.092.14 60x60 6 5.428.004.006.911.6922.836.19.441.822.291.175.290.9222.90 60x60 5 4.578.004.005.821.6419.430.78.031.822.301.174.450.5503.48 50x506 4.477.003.505.691.4512.820.35.341.501.890.9683.610.7552.38 50x50 5 3.777.003.504.801.4011.017.44.551.511.900.9733.050.4502.88 50x50 4 3.067.003.503.891.368.9714.23.731.521.910.9792.460.2403.57 45x455 3.067.003.503.901.257.1411.42.941.351.710.8702.200.3042.84 40x405 2.976.003.003.791.165.438.602.261.201.510.7731.910.3522.26 40x40 4 2.426.003.003.081.124.477.091.861.211.520.7771.550.1882.83 35x354 2.095.002.502.671.002.954.681.231.051.320.6781.180.1582.50 30x304 1.785.002.502.270.8781.802.850.7540.8921.120.5770.8500.1372.07 30x30 3 1.365.002.501.740.8351.402.220.5850.8991.130.5810.6490.06132.75 25x254 1.453.501.751.850.7621.021.610.4300.7410.9310.4820.5860.10701.75 25x25 3 1.123.501.751.420.7230.8031.270.3340.7510.9450.4840.4520.04722.38 20x203 0.8823.501.751.120.5980.3920.6180.1650.5900.7420.3830.2790.03821.81

+ These sections are in addition to the range of BS EN 10056-1 sections. c is the distance from the back of the leg to the centre of gravity.

FOR EXPLANATION OF TABLES SEE NOTES 2 AND 3

EQUAL
u uv v c c z z yy
h
Advance® and UKA are trademarks of Tata Steel. A fuller description of the relationship between Angles and the Advance® range of sections manufactured by Tata Steel is given in note 12. BS EN 1993-1-1:2005 BS EN 10056-1:1999 171
r t
h 90° r r 1 2 2

t 90°

ANGLES Advance® UKA - Unequal Angles Radius Dimension

Dimensions and properties

Mass per SizeThicknessMetreRootToeAxisAxisAxisAxisAxisAxisAxisAxis y-yz-zu-uv-vy-yz-zu-uv-v h x btr1 r2 cy cz

mmmmkg/mmmmmcmcm cm 4 cm 4 cm 4 cm 4 cmcmcmcm

200x15018 +47.115.07.506.333.852380115029206236.294.376.973.22 200x150 1539.615.07.506.213.73202097924805266.334.407.003.23 200x150 1232.015.07.506.083.61165080320304306.364.447.043.25

200x1001533.815.07.507.162.22176029918601936.402.646.592.12 200x100 1227.315.07.507.032.10144024715301596.432.676.632.14 200x100 1023.015.07.506.932.01122021012901356.462.686.652.15

150x901526.612.06.005.212.237612058411264.742.464.981.93 150x90 1221.612.06.005.082.126271716941044.772.495.021.94 150x90 1018.212.06.005.002.0453314659188.34.802.515.051.95 150x751524.812.06.005.521.8171311975378.64.751.944.881.58

150x75 1220.212.06.005.401.6958899.662364.74.781.974.921.59 150x75 1017.012.06.005.311.6150185.653155.14.811.994.951.60 125x751217.811.05.504.311.8435495.539158.53.952.054.151.61 125x75 1015.011.05.504.231.7630282.133449.93.972.074.181.61 125x75 812.211.05.504.141.6824767.627440.94.002.094.211.63

100x751215.410.05.003.272.0318990.223049.53.102.143.421.59 100x75 1013.010.05.003.191.9516277.619742.23.122.163.451.59 100x75 810.610.05.003.101.8713364.116234.63.142.183.471.60 100x6510 +12.310.05.003.361.6315451.017530.13.141.813.351.39 100x65 8 +9.9410.05.003.271.5512742.214424.83.161.833.371.40 100x65 7 +8.7710.05.003.231.5111337.612822.03.171.833.391.40 100x508 8.978.004.003.601.1311619.712312.83.191.313.281.06 100x50 6 6.848.004.003.511.0589.915.495.49.923.211.333.311.07 80x607 7.368.004.002.511.5259.028.472.015.42.511.742.771.28 80x408 7.077.003.502.940.96357.69.6160.96.342.531.032.600.838 80x40 6 5.417.003.502.850.88444.97.5947.64.932.551.052.630.845 75x508 7.397.003.502.521.2952.018.459.610.82.351.402.521.07 75x50 6 5.657.003.502.441.2140.514.446.68.362.371.422.551.08 70x506 5.417.003.502.231.2533.414.239.77.922.201.432.401.07 65x505 4.356.003.001.991.2523.211.928.86.322.051.472.281.07 60x406 4.466.003.002.001.0120.17.1223.14.161.881.122.020.855 60x40 5 3.766.003.001.960.97217.26.1119.73.541.891.132.030.860 60x305 3.365.002.502.170.68415.62.6316.51.711.910.7841.970.633 50x305 2.965.002.501.730.7419.362.5110.31.541.570.8161.650.639 45x304 2.254.502.251.480.7405.782.056.651.181.420.8501.520.640 40x254 1.934.002.001.360.6233.891.164.350.7001.260.6871.330.534 40x204 1.774.002.001.470.4803.590.6003.800.3931.260.5141.300.417 30x204 1.464.002.001.030.5411.590.5531.810.3300.9250.5460.9880.421 30x20 3 1.124.002.000.9900.5021.250.4371.430.2560.9350.5531.000.424

+ These sections are in addition to the range of BS EN 10056-1 sections. cy is the distance from the back of the short leg to the centre of gravity. cz is the distance from the back of the long leg to the centre of gravity.

FOR EXPLANATION OF TABLES SEE NOTES 2 AND 3

Section Designationof Areaof Gyration RadiusSecond Moment yy z y 172

UNEQUAL
BS EN 1993-1-1:2005 BS EN 10056-1:1999
r r r h b 2
v v
u c
Advance® and UKA are trademarks of Tata Steel. A fuller description of the relationship between Angles and the Advance® range of sections manufactured by Tata Steel is given in note 12. z z
1 2
u
c

Advance® UKA - Unequal Angles

t 90°

b

AngleTorsionalMono-Area Axis y-yConstantsymmetryof SizeThicknessAxisAxistoIndexSection y-yz-zAxis u-uMinMax

h x bt Tan IT a a a mmmm cm 3 cm 3 cm 4 cm 2

200x15018 +1741030.54967.92.933.724.6060.0 200x150 1514786.90.55139.93.534.505.5550.5 200x150 1211970.50.55220.94.435.706.9740.8

200x1001513738.50.26034.33.545.179.1943.0

200x100 1211131.30.26218.04.426.5711.534.8

200x100 1093.226.30.26310.665.267.9213.929.2 150x901577.730.40.35426.82.583.595.9633.9 150x90 1263.324.80.35814.13.244.587.5027.5 150x90 1053.321.00.3608.303.895.569.0323.2

150x751575.221.00.25325.12.623.746.8431.7

150x75 1261.317.10.25813.23.304.798.6025.7 150x75 1051.614.50.2617.803.955.8310.421.7 125x751243.216.90.35411.62.663.736.2322.7

125x75 1036.514.30.3576.873.214.557.5019.1 125x75 829.611.60.3603.624.005.759.4315.5

Coefficient

100x751228.016.50.54010.052.102.643.4619.7 100x75 1023.814.00.5445.952.543.224.1716.6 100x75 819.311.40.5473.133.184.085.2413.5 100x6510 +23.210.50.4105.612.523.435.4515.6 100x65 8 +18.98.540.4132.963.144.356.8612.7 100x65 7 +16.67.530.4152.023.585.007.8511.2 100x508 18.25.080.2582.613.304.808.6111.4 100x50 6 13.83.890.2621.144.386.5211.68.71 80x607 10.76.340.5461.662.923.724.789.38 80x408 11.43.160.2532.052.613.736.859.01 80x40 6 8.732.440.2580.8993.485.129.226.89 75x508 10.44.950.4302.142.363.184.929.41 75x50 6 8.013.810.4350.9353.184.346.607.19 70x506 7.013.780.5000.8992.963.895.446.89 65x505 5.143.190.5770.4983.384.265.085.54 60x406 5.032.380.4310.7352.513.395.265.68 60x40 5 4.252.020.4340.4353.024.116.344.79 60x305 4.071.140.2570.3823.154.568.264.28 50x305 2.861.110.3520.3402.513.525.993.78 45x304 1.910.9100.4360.1662.853.875.922.87 40x254 1.470.6190.3800.1422.513.485.752.46 40x204 1.420.3930.2520.1312.573.686.862.26 30x204 0.8070.3790.4210.10961.792.393.951.86 30x20 3 0.6210.2920.4270.04862.403.285.311.43 + These sections are in addition to the range of BS EN 10056-1 sections. FOR EXPLANATION OF TABLES SEE NOTES 2 AND 3

Dimensions and properties (continued) Section yy z y 173

Advance® and UKA are trademarks of Tata Steel. A fuller description of the relationship between Angles and the Advance® range of sections manufactured by Tata Steel is given in note 12.

Designation UNEQUAL ANGLES
BS EN 1993-1-1:2005 BS EN 10056-1:1999
r r r h
2
v v
u c
Elastic Modulus Equivalent Slenderness z z
1 2
u
c

EQUAL ANGLES BACK TO BACK

Advance® UKA - Equal Angles BACK TO BACK

z z

Composed

Dimensions and properties of Two

Angles

TotalDistanceTotal MassArea per Metreny

x

Properties about Axis y-y Radius of Gyration iz about Axis z-z (cm)

Iy iy Wel,y h x ht

Space between angles, s, (mm)

mmmmkg/mcm cm 2 cm 4 cm cm 3 08101215

200x2002414214.218166606.064708.428.708.778.848.95 200x200 2012014.315357006.113988.348.628.698.768.87 200x200 1810914.413852006.133628.318.588.658.728.83 200x200 1697.014.512446806.163248.278.548.618.688.79

150x15018 +80.210.610221204.552006.326.606.676.756.86

150x150 1567.610.886.018004.571676.246.526.596.666.77 150x150 1254.610.969.614704.601356.186.456.526.596.70

150x150 1046.011.058.612504.621146.136.406.476.546.64 120x12015 +53.28.4868.08963.631065.065.345.425.495.60

120x120 1243.28.6055.07363.6585.44.995.275.355.425.53 120x120 1036.48.6946.46263.6772.04.945.225.295.365.47 120x120 8 +29.48.7637.65183.7159.04.935.205.275.345.45

100x10015 +43.86.9856.05002.9971.64.254.544.624.694.81

100x100 1235.67.1045.44143.0258.24.194.474.554.624.74 100x100 1030.07.1838.43543.0449.24.144.434.504.574.69 100x100 824.47.2631.02903.0639.84.114.384.464.534.64 90x9012 +31.86.3440.62982.7147.03.804.094.164.244.36 90x90 1026.86.4234.22542.7239.63.754.044.114.194.30 90x90 821.86.5027.82082.7432.23.713.994.064.134.25 90x90 719.26.5524.41852.7528.23.693.964.044.114.22 80x801023.85.6630.21752.4130.83.363.653.723.803.92 80x80 819.35.7424.61442.4325.23.313.603.673.753.86 75x75818.05.3622.81182.2722.03.123.413.493.563.68 75x75 613.75.4517.591.62.2916.83.073.353.433.503.62 70x70714.85.0318.884.62.1216.82.893.183.263.333.45 70x70 612.85.0716.373.82.1314.52.873.163.233.313.42 65x65713.74.4517.566.81.9614.42.833.143.213.293.42 60x60814.24.2318.158.41.8013.82.522.822.902.973.10 60x60 610.84.3113.845.61.8210.62.482.772.852.923.04 60x60 59.144.3611.638.81.828.902.452.742.812.893.01

50x5068.943.5511.425.61.507.222.092.382.462.542.66 50x50 57.543.609.6022.01.516.102.062.352.432.512.63 50x50 46.123.647.7817.91.524.922.042.322.402.482.60

Advance® and UKA are trademarks of Tata Steel. A fuller description of the relationship between Angles and the Advance® range of sections manufactured by Tata Steel is given in note 12.

+ These sections are in addition to the range of BS EN 10056-1 sections.

Properties about z-z axis:

Iz = (Total Area).(iz)2

Wel,z = Iz / (0.5bo)

FOR EXPLANATION OF TABLES SEE NOTES 2 AND 3

BS EN 1993-1-1:2005 BS EN 10056-1:1999
o s yy
b h h n 174

UNEQUAL ANGLES BACK TO BACK

Advance® UKA - Unequal Angles BACK TO BACK

Dimensions and properties

Composed of Two

Angles

TotalDistanceTotal MassArea per Metreny Iy iy Wel,y h x bt

Properties about Axis y-y Radius of Gyration iz about Axis z-z (cm)

Space between angles, s, (mm)

mmmmkg/mcm cm 2 cm 4 cm cm 3 08101215

200x15018 +94.213.712047506.293485.846.116.186.256.36

200x150 1579.213.810140406.332945.776.046.116.186.28

200x150 1264.013.981.633006.362385.725.986.056.126.22

200x1001567.512.886.035206.402743.453.723.793.863.97

200x100 1254.613.069.628806.432223.393.653.723.793.90

200x100 1046.013.158.424406.461863.353.613.673.743.85

150x901553.29.7967.815224.741553.323.603.673.753.86

150x90 1243.29.9255.012504.771273.273.553.623.693.80

150x90 1036.410.046.410704.801073.233.503.573.643.75

150x751549.69.4863.414304.751502.652.943.013.093.21

150x75 1240.49.6051.411804.781232.592.872.943.023.14 150x75 1034.09.6943.410004.811032.562.832.902.973.08

125x751235.68.1945.47083.9586.42.763.043.113.193.30 125x75 1030.08.2738.26043.9773.02.722.993.073.143.26 125x75 824.48.3631.04944.0059.22.682.953.023.093.20 100x751230.86.7339.43783.1056.02.953.243.313.393.51 100x75 1026.06.8133.23243.1247.62.913.193.273.343.46 100x75 821.26.9027.02663.1438.62.873.153.223.293.41 100x6510 +24.66.6431.23083.1446.42.432.722.792.872.99 100x65 8 +19.96.7325.42543.1637.82.392.672.742.822.93 100x65 7 +17.56.7722.42263.1733.22.372.652.722.792.91 100x50817.96.4022.82323.1936.41.732.022.092.172.29 100x50 613.76.4917.41803.2127.61.691.972.042.122.24 80x60714.75.4918.81182.5121.42.312.592.672.742.86 80x40814.15.0618.01152.5322.81.411.711.791.872.00 80x40 610.85.1513.889.82.5517.51.371.661.741.821.94 75x50814.84.9818.81042.3520.81.902.192.272.352.47 75x50 611.35.0614.481.02.3716.01.862.142.222.302.42 70x50610.84.7713.866.82.2014.01.902.192.262.342.46 65x5058.704.5111.146.42.0510.31.932.212.282.362.48 60x4068.924.0011.440.21.8810.11.511.801.881.962.09 60x40 57.524.049.5834.41.898.501.491.781.861.942.06

Advance® and UKA are trademarks of Tata Steel. A fuller description of the relationship between Angles and the Advance® range of sections manufactured by Tata Steel is given in note 12.

+ These sections are in addition to the range of BS EN 10056-1 sections.

Properties about z-z axis:

Iz = (Total Area).(iz)2

Wel,z = Iz / (0.5bo)

FOR EXPLANATION OF TABLES SEE NOTES 2 AND 3

BS EN 1993-1-1:2005 BS EN 10056-1:1999 n z
yy y o
b 175
z
h s b

Advance® UKT split from Advance® UKB

Dimensions and properties

ThicknessRatios for Local Buckling

Second Moment

of Area

Section Cut fromMassWidthDepthRootDimension DesignationUniversal BeamperofofRadius MetreSectionSectionWebFlangeFlangeWebAxisAxis Section y-yz-z Designationbhtw tf r cf/tf cw/tw cy kg/mmmmmmmmmmmcm cm 4 cm 4

254x343x63686x254x12562.6253.0338.911.716.215.26.5129.08.8589802190 305x305x119 610x305x238119.0311.4317.918.431.416.54.1417.37.11124007920 305x305x90610x305x17989.5307.1310.014.123.616.55.5122.06.6990405700 305x305x75610x305x14974.6304.8306.111.819.716.56.6025.96.4574104650 229x305x70610x229x14069.9230.2308.513.122.112.74.3423.57.6177402250 229x305x63610x229x12562.5229.0306.011.919.612.74.8925.77.5469001970 229x305x57610x229x11356.5228.2303.711.117.312.75.5427.47.5862701720

229x305x51610x229x10150.6227.6301.210.514.812.76.4828.77.7856901460

178x305x50 +610x178x10050.1179.2303.711.317.212.74.1426.98.575890829

178x305x46 +610x178x9246.1178.8301.510.915.012.74.7527.78.785450718

178x305x41 +610x178x8240.9177.9299.310.012.812.75.5729.98.884840603

312x267x136 +533x312x272136.6320.2288.821.137.612.73.6413.76.281060010300

312x267x110 +533x312x219109.4317.4280.418.329.212.74.6915.36.0985307790

312x267x91 +533x312x18290.7314.5275.615.224.412.75.6118.15.7868906330 312x267x75 +533x312x15175.3312.0271.512.720.312.76.7521.45.5456205140

210x267x69 +533x210x13869.1213.9274.514.723.612.73.6818.76.9459901930

210x267x61533x210x12261.0211.9272.212.721.312.74.0821.46.6651601690 210x267x55533x210x10954.5210.8269.711.618.812.74.6223.36.6146001470 210x267x51533x210x10150.5210.0268.310.817.412.74.9924.86.5342501350 210x267x46533x210x9246.0209.3266.510.115.612.75.5726.46.5538801190 210x267x41533x210x8241.1208.8264.19.613.212.76.5827.56.7535301000 165x267x43 +533x165x8542.3166.5267.110.316.512.73.9625.97.233750637 165x267x37 +533x165x7537.3165.9264.59.713.612.74.8127.37.463350520 165x267x33 +533x165x6632.8165.1262.48.911.412.75.7429.57.592960429 191x229x81 +457x191x16180.7199.4246.018.032.010.22.5213.76.2251602130 191x229x67 +457x191x13366.6196.7240.315.326.310.23.0615.75.9641801670 191x229x53 +457x191x10652.9194.0234.612.620.610.23.9118.65.7332601260 191x229x49457x191x9849.1192.8233.511.419.610.24.1120.55.5329701170

191x229x45457x191x8944.6191.9231.610.517.710.24.5522.15.4726801040 191x229x41457x191x8241.0191.3229.99.916.010.25.0323.25.472470935

191x229x37457x191x7437.1190.4228.49.014.510.25.5525.45.382220836 191x229x34457x191x6733.5189.9226.68.512.710.26.3426.75.462030726

152x229x41457x152x8241.0155.3232.810.518.910.23.2922.25.962600592

152x229x37457x152x7437.1154.4230.99.617.010.23.6624.15.882330523

152x229x34457x152x6733.6153.8228.99.015.010.24.1525.45.912120456

152x229x30457x152x6029.9152.9227.28.113.310.24.6828.05.841880397

152x229x26457x152x5226.1152.4224.87.610.910.25.7129.66.041670322

Advance®, UKT and UKB are trademarks of Tata Steel. A fuller description of the relationship between Structural Tees and the Advance® range of sections manufactured by Tata Steel is given in note 12.

+ These sections are in addition to the range of BS 4 sections FOR EXPLANATION OF TABLES SEE NOTES 2 AND 3

STRUCTURAL TEES CUT FROM UNIVERSAL BEAMS
BS EN 1993-1-1:2005 BS 4-1:2005 c z
yy y r t t h f w b 176
z

Properties (continued)

Radius of Gyration

Advance® UKT split from Advance® UKB Modulus

Plastic Elastic Modulus

Axis

SectionBucklingTorsionalMono-WarpingTorsionalArea DesignationParameterIndexsymmetryConstantConstantof AxisAxisAxisAxisAxisIndex(*)Section y-yz-zy-yy-yz-zy-yz-z

FlangeToeUX Iw It A cmcm cm 3 cm 3 cm 3 cm 3 cm 3 cm 6 cm 4 cm 2

254x343x6310.65.2410103581736432710.65121.90.740209057.979.7 305x305x119 9.037.2317405015098947870.48310.60.66211300391152 305x305x908.917.0713503723716565720.48413.80.6644710170114 305x305x758.837.0011503073055384690.48316.40.666269099.895.0 229x305x709.325.0310203331965923060.61315.30.727256010889.1 229x305x639.314.979152991725312680.61717.10.728184076.979.7 229x305x579.334.888262751504892350.62619.00.731140055.572.0 229x305x519.404.767322551284562000.64421.60.736108038.364.4

178x305x50 +9.603.6068827092.54901480.69419.40.768123047.363.9

178x305x46 +9.643.5062125580.34681290.71021.50.774105035.358.7

178x305x41 +9.643.4054523067.84251090.72224.30.77878024.352.1 312x267x136 +7.817.6916904696448579930.2477.960.61317300642174

312x267x110 +7.827.4814003894916967570.3329.930.6178730320139

312x267x91 +7.727.4011903174035626190.32411.70.6184920186116

312x267x75 +7.657.3210102603304585050.32614.00.619278010895.9

210x267x69 +8.244.688622921815202840.60912.50.719249012588.1 210x267x618.154.677752511604462500.60013.80.719166088.977.7

210x267x558.144.606972261404012180.60515.50.721120063.069.4 210x267x518.124.576502091283712000.60616.60.72295150.364.3 210x267x468.144.515931931143431780.61318.30.72473737.758.7 210x267x418.214.3852317996.13201500.63420.80.73056525.752.3

165x267x43 +8.343.4451919276.63461220.67217.70.75867036.854.0 165x267x37 +8.393.3044917662.73211000.69320.60.76551423.947.6 165x267x33 +8.413.2039015952.029183.10.70823.60.77137815.941.9 191x229x81 +7.094.558302812135073360.5738.240.6993780256103 191x229x67 +7.014.447022311704142670.5769.820.702213014684.9 191x229x53 +6.964.325691841303282030.58312.20.706107072.667.4 191x229x496.884.335361671222961890.57312.90.70583560.562.6 191x229x456.874.294911521092691690.57614.10.70662845.256.9 191x229x416.884.2345214197.82501520.58315.50.70949434.552.2 191x229x376.864.2041312787.82251360.58316.90.70936525.847.3 191x229x346.904.1237211876.52091190.59718.90.71328018.542.7

152x229x417.053.3743615076.32671200.63413.70.74053444.552.3

152x229x377.033.3339713567.82421070.63615.10.74239632.947.2 152x229x347.043.2735912559.322393.30.64616.80.74530523.842.8

152x229x307.023.2332211152.019981.50.64818.80.74621716.938.1

152x229x267.083.1127610242.318366.60.67122.00.75316110.733.3

Advance®, UKT and UKB are trademarks of Tata Steel. A fuller description of the relationship between Structural Tees and the Advance® range of sections manufactured by Tata Steel is given in note 12.

+ These sections are in addition to the range of BS 4 sections (*) Note units are cm6 and not dm6

FOR EXPLANATION OF TABLES SEE NOTES 2 AND 3

STRUCTURAL TEES CUT FROM UNIVERSAL BEAMS
BS EN 1993-1-1:2005 BS 4-1:2005 yy z z 177

Advance® UKT split from Advance® UKB

Dimensions and properties

Section Cut fromMassWidthDepthRootDimension DesignationUniversal BeamperofofRadius MetreSectionSectionWebFlangeFlangeWebAxisAxis Section y-yz-z Designationbhtw tf r cf/tf cw/tw cy kg/mmmmmmmmmmmcm cm 4 cm 4

ThicknessRatios forSecond Moment of Area

Local Buckling

178x203x43 +406x178x8542.6181.9208.610.918.210.24.1419.14.912030915

178x203x37406x178x7437.1179.5206.39.516.010.24.6821.74.761740773

178x203x34406x178x6733.5178.8204.68.814.310.25.2323.34.731570682

178x203x30406x178x6030.0177.9203.17.912.810.25.8425.74.641400602

178x203x27406x178x5427.0177.7201.27.710.910.26.8626.14.831290511

140x203x27 +406x140x5326.6143.3203.37.912.910.24.4625.75.161320317

140x203x23406x140x4623.0142.2201.56.811.210.25.1329.65.021120269

140x203x20406x140x3919.5141.8198.96.48.610.26.6931.15.32979205

171x178x34356x171x6733.5173.2181.69.115.710.24.5820.04.001150681

171x178x29356x171x5728.5172.2178.98.113.010.25.5322.13.97986554

171x178x26356x171x5125.5171.5177.47.411.510.26.2524.03.94882484 171x178x23356x171x4522.5171.1175.67.09.710.27.4125.14.05798406

127x178x20356x127x3919.5126.0176.66.610.710.24.6326.84.43728179

127x178x17356x127x3316.5125.4174.46.08.510.25.8229.14.56626140 165x152x27305x165x5427.0166.9155.17.913.78.95.1519.63.21642531 165x152x23305x165x4623.0165.7153.26.711.88.95.9822.93.07536448 165x152x20305x165x4020.1165.0151.66.010.28.96.9225.33.03468382 127x152x24305x127x4824.0125.3155.49.014.08.93.5217.33.94662231 127x152x21305x127x4220.9124.3153.58.012.18.94.0719.23.87573194 127x152x19305x127x3718.5123.4152.17.110.78.94.6021.43.78501168 102x152x17305x102x3316.4102.4156.36.610.87.63.7323.74.1448797.1 102x152x14305x102x2814.1101.8154.36.08.87.64.5825.74.2042077.7 102x152x13305x102x2512.4101.6152.55.87.07.65.7626.34.4337761.5 146x127x22254x146x4321.5147.3129.77.212.77.64.9218.02.64343339 146x127x19254x146x3718.5146.4127.96.310.97.65.7320.32.55292285 146x127x16254x146x3115.5146.1125.66.08.67.67.2620.92.66259224 102x127x14254x102x2814.1102.2130.16.310.07.64.0420.73.2427789.3 102x127x13254x102x2512.6101.9128.56.08.47.64.8021.43.3225074.3 102x127x11254x102x2211.0101.6126.95.76.87.65.9322.33.4522359.7 133x102x15203x133x3015.0133.9103.36.49.67.65.8516.12.11154192 133x102x13203x133x2512.5133.2101.55.77.87.67.2017.82.10131154

Advance®, UKT and UKB are trademarks of Tata Steel. A fuller description of the relationship between Structural Tees and the Advance® range of sections manufactured by Tata Steel is given in note 12.

+ These sections are in addition to the range of BS 4 sections FOR EXPLANATION OF TABLES SEE NOTES 2 AND 3

STRUCTURAL
CUT
TEES
FROM UNIVERSAL BEAMS
BS EN 1993-1-1:2005 BS 4-1:2005 c z
yy y r t t h f w b 178
z

Advance® UKT split from Advance® UKB

Properties (continued)

RadiusElastic

of GyrationModulus

Plastic

Axis Modulus

SectionBucklingTorsionalMono-WarpingTorsionalArea DesignationParameterIndexsymmetryConstantConstantof AxisAxisAxisAxisAxisIndex(*)Section y-yz-zy-yy-yz-zy-yz-z

FlangeToeUX Iw It A cmcm cm 3 cm 3 cm 3 cm 3 cm 3 cm 6 cm 4 cm 2

178x203x43 +6.114.114131271012261570.55612.20.69453846.354.3

178x203x376.064.0436510986.11941330.55513.80.69635031.347.2

178x203x346.073.9933210076.31771180.56115.20.69826223.042.8 178x203x306.043.9730189.067.61571040.56116.90.69918616.638.3

178x203x276.133.8526884.657.515089.10.58819.20.70514611.534.5

140x203x27 +6.233.0625687.044.315569.50.63617.10.73914814.434.0 140x203x236.193.0322474.237.813259.00.63319.50.74093.79.4929.3

140x203x206.282.8718467.228.912145.40.66823.80.75066.35.3324.8

171x178x345.203.9928881.578.61451210.50012.20.67224927.842.7

171x178x295.213.9124870.964.412599.40.51414.40.67615416.636.3 171x178x265.213.8622463.956.511387.10.52116.10.67711011.932.4 171x178x235.283.7619759.147.410473.30.54618.40.68379.27.9028.7 127x178x205.412.6816455.028.498.044.50.63217.60.73957.17.5324.9 127x178x175.452.5813748.622.387.235.10.65521.10.74638.04.3821.1 165x152x274.323.9320052.263.792.897.80.38911.80.63612817.334.4 165x152x234.273.9117443.754.177.182.80.38013.60.63678.611.129.4 165x152x204.273.8615538.646.367.670.90.39315.50.63852.07.3525.7 127x152x244.652.7416857.136.810258.00.60211.70.71410415.830.6 127x152x214.632.7014849.931.388.949.20.60613.30.71669.210.526.7 127x152x194.612.6713243.827.277.942.70.60614.90.71847.47.3623.6 102x152x174.822.1511842.319.075.830.00.65615.80.74936.86.0820.9 102x152x144.842.08100.037.415.367.524.20.67318.70.75625.23.6917.9 102x152x134.881.9785.034.812.163.919.40.70521.80.76620.42.3715.8 146x127x223.543.5213033.246.059.570.50.20210.60.61364.911.927.4 146x127x193.523.4811528.539.050.759.70.23312.20.61641.07.6523.6 146x127x163.613.3697.426.230.646.047.10.37614.80.62324.54.2619.8 102x127x143.922.2285.528.317.550.427.40.60713.80.72021.04.7718.0 102x127x133.952.1575.326.214.646.923.00.62815.80.72715.93.2016.0 102x127x113.992.0664.524.111.743.518.60.65618.20.73612.02.0614.0 133x102x152.843.1773.118.828.733.544.1 - - 0.56921.75.1319.1 133x102x132.863.1062.416.223.128.735.5 - - 0.57212.62.9716.0 + These sections are in addition to the range of BS 4 sections (*) Note units are cm6 and not dm6 FOR EXPLANATION OF TABLES SEE NOTES 2 AND 3

Advance®, UKT and UKB are trademarks of Tata Steel. A fuller description of the relationship between Structural Tees and the Advance® range of sections manufactured by Tata Steel is given in note 12.

STRUCTURAL TEES CUT FROM UNIVERSAL BEAMS
BS EN 1993-1-1:2005 BS 4-1:2005 yy z z 179

Advance® UKT split from Advance® UKC

Dimensions

Section

Thickness

Ratios for Local Buckling

SectionCut fromMassWidthDepthRootDimension DesignationUniversal BeamperofofRadius MetreSectionSectionWebFlangeFlangeWeb

Designationbhtw tf r cf/tf cw/tw cy kg/mmmmmmmmmmmcm

305x152x79305x305x15879.0311.2163.515.825.015.25.3010.33.04 305x152x69305x305x13768.4309.2160.213.821.715.26.1111.62.86 305x152x59305x305x11858.9307.4157.212.018.715.27.0913.12.69 305x152x49305x305x9748.4305.3153.99.915.415.28.6015.52.50 254x127x84254x254x16783.5265.2144.519.231.712.73.487.533.07 254x127x66 254x254x13266.0261.3138.115.325.312.74.369.032.70 254x127x54254x254x10753.5258.8133.312.820.512.75.3810.42.45 254x127x45254x254x8944.4256.3130.110.317.312.76.3812.62.21 254x127x37254x254x7336.5254.6127.08.614.212.77.7714.82.05 203x102x64 +203x203x12763.7213.9120.718.130.110.22.916.672.73 203x102x57 +203x203x11356.7212.1117.516.326.910.23.267.212.56 203x102x50 +203x203x10049.8210.3114.314.523.710.23.707.882.38 203x102x43203x203x8643.0209.1111.012.720.510.24.298.742.20 203x102x36203x203x7135.5206.4107.810.017.310.25.0910.81.95 203x102x30203x203x6030.0205.8104.79.414.210.26.2011.11.89 203x102x26203x203x5226.0204.3103.07.912.510.27.0413.01.75 203x102x23203x203x4623.0203.6101.57.211.010.28.0014.11.69 152x76x26 +152x152x5125.6157.485.111.015.77.64.187.741.79 152x76x22 +152x152x4422.0155.983.09.513.67.64.828.741.66 152x76x19152x152x3718.5154.480.88.011.57.65.7010.11.53 152x76x15152x152x3015.0152.978.76.59.47.66.9812.11.41 152x76x12152x152x2311.5152.276.15.86.87.69.6513.11.39

Advance®, UKT and UKC are trademarks of Tata Steel. A fuller description of the relationship between Structural Tees and the Advance® range of sections manufactured by Tata Steel is given in note 12.

+ These sections are in addition to the range of BS 4 sections FOR EXPLANATION OF TABLES SEE NOTES 2 AND 3

STRUCTURAL
CUT FROM UNIVERSAL COLUMNS
TEES
BS EN 1993-1-1:2005 BS 4-1:2005 c z z yy y t r h w b 180

Advance® UKT split from Advance® UKC

Properties

Second Moment of Area

Radius of Gyration Elastic Modulus

Axis

Plastic Modulus

Section Mono-WarpingTorsionalArea Designation symmetryConstantConstantof AxisAxisAxisAxisAxisAxisAxisIndex(*)Section y-yz-zy-yz-zy-yy-yz-zy-yz-z

FlangeToe Iw It A

cm 4 cm 4 cmcm cm 3 cm 3 cm 3 cm 3 cm 3 cm 6 cm 4 cm 2

305x152x79153062803.907.905031154042256150.2683650188101 305x152x69129053503.847.8345097.73461885260.263234012487.2 305x152x59108045303.797.7740182.82951564480.262147080.375.1 305x152x4985836503.737.6934366.52391233630.25880645.561.7 254x127x84120049303.366.813911053722205690.2614540312106 254x127x66 87137703.226.6932378.32881594390.250220015984.1 254x127x5467629603.156.5927662.12291223480.245115085.968.2 254x127x4552424303.046.5523748.519094.02880.24266051.156.7 254x127x3741719502.996.4820439.215374.02330.23635928.846.5 203x102x64 +63724602.805.5023368.22301453520.279205021281.2 203x102x57 +54021402.735.4521158.82021233090.270143015272.3 203x102x50 +45318402.675.3919050.01751032670.26695110463.4 203x102x4337315602.615.3416941.915084.62280.25760568.154.8 203x102x3628012702.495.3014331.812363.61870.25434340.045.2 203x102x3024410302.535.2012928.410054.31530.24519523.538.2 203x102x262008892.465.1811523.487.044.51320.24312815.833.1 203x102x231777742.455.1310520.976.039.01150.24287.211.029.4 152x76x26 +1415112.083.9679.021.064.941.499.50.28112224.332.6 152x76x22 +1164302.043.9270.017.555.234.084.40.28176.715.828.0 152x76x1993.13531.993.8760.714.245.727.169.80.27744.99.5423.5 152x76x1572.22801.943.8351.411.236.720.955.80.26923.75.2419.1 152x76x1258.52002.003.7041.99.4126.316.940.10.2789.782.3014.6

Advance®, UKT and UKC are trademarks of Tata Steel. A fuller description of the relationship between Structural Tees and the Advance® range of sections manufactured by Tata Steel is given in note 12.

+ These sections are in addition to the range of BS 4 sections (*) Note units are cm6 and not dm6

Values of U and X are not given, as lateral torsional buckling due to bending about the y-y axis is not possible, because the second moment of area about the z-z axis exceeds the second moment of area about the y-y axis.

FOR EXPLANATION OF TABLES SEE NOTES 2 AND 3

STRUCTURAL TEES CUT FROM UNIVERSAL COLUMNS
BS EN 1993-1-1:2005 BS 4-1:2005 y z y z 181

Celsius® CHS

Dimensions and properties

MassAreaRatioSecondRadiusElasticPlastic perofforMomentofModulusModulus OutsideThicknessMetreSectionLocalof AreaGyrationPerPer DiameterBucklingMetreTonne dtAd/tIiWel Wpl IT Wt mmmmkg/m cm 2 cm 4 cm cm 3 cm 3 cm 4 cm 3 m 2 m 2

Designation

21.32.6 #1.201.538.190.6810.6680.6390.9151.361.280.06755.9 2.9 #1.321.687.340.7270.6590.6830.9901.451.370.06750.9 3.2 1.431.826.660.7680.6500.7221.061.541.440.06746.9

26.92.6 #1.561.9810.31.480.8641.101.542.962.200.08554.6

2.9 #1.722.199.281.600.8551.191.683.192.380.08549.6

3.2 1.872.388.411.700.8461.271.813.412.530.08545.5 3.6 #2.072.647.471.830.8341.361.973.662.720.08541.1 33.72.6 #1.992.5413.03.091.101.842.526.193.670.10653.1

2.9 #2.202.8111.63.361.091.992.766.713.980.10648.1

3.2 2.413.0710.53.601.082.142.997.214.280.10644.0

3.6 #2.673.409.363.911.072.323.287.824.640.10639.6 4.0 2.933.738.434.191.062.493.558.384.970.10636.1 4.5 #3.244.137.494.501.042.673.879.015.350.10632.8 5.0 #3.544.516.744.781.032.844.169.575.680.10630.0 42.42.6 #2.553.2516.36.461.413.054.1212.96.100.13352.1

2.9 #2.823.6014.67.061.403.334.5314.16.660.13347.1 3.2 3.093.9413.37.621.393.594.9315.27.190.13343.0 3.6 #3.444.3911.88.331.383.935.4416.77.860.13338.6 4.0 3.794.8310.68.991.364.245.9218.08.480.13335.1 4.5 #4.215.369.429.761.354.606.4919.59.200.13331.7 5.0 #4.615.878.4810.51.334.937.0420.99.860.13328.9 48.32.6 #2.933.7318.69.781.624.055.4419.68.100.15251.8 2.9 #3.254.1416.710.71.614.435.9921.48.860.15246.8 3.2 3.564.5315.111.61.604.806.5223.29.590.15242.7 3.6 #3.975.0613.412.71.595.267.2125.410.50.15238.3 4.0 4.375.5712.113.81.575.707.8727.511.40.15234.8 4.5 #4.866.1910.715.01.566.218.6630.012.40.15231.3 5.0 5.346.809.6616.21.546.699.4232.313.40.15228.4 5.6 #5.907.518.6317.41.527.2110.334.814.40.15225.8 6.3 6.538.317.6718.71.507.7611.237.515.50.15223.3 60.32.6 #3.704.7123.219.72.046.528.6639.313.00.18951.0

2.9 #4.115.2320.821.62.037.169.5643.214.30.18946.1 3.2 4.515.7418.823.52.027.7810.446.915.60.18942.0 3.6 #5.036.4116.825.92.018.5811.651.717.20.18937.6 4.0 5.557.0715.128.22.009.3412.756.318.70.18934.0 4.5 #6.197.8913.430.91.9810.214.061.820.50.18930.4 5.0 6.828.6912.133.51.9611.115.367.022.20.18927.8 5.6 #7.559.6210.836.41.9412.116.872.724.10.18924.9 6.3 8.3910.79.5739.51.9213.118.579.026.20.18922.5 8.0 #10.313.17.5446.01.8715.322.192.030.50.18918.3

Celsius® is a trademark of Tata Steel. A fuller description of the relationship between Hot Finished Circular Hollow Sections (HFCHS) and the Celsius® range of sections manufactured by Tata Steel is given in note 12.

HOT-FINISHED CIRCULAR HOLLOW SECTIONS
#
FOR
OF TABLES SEE
Check avialability
EXPLANATION
NOTES 2 AND 3 Surface Area Section
z z t d BS EN 1993-1-1:2005 BS EN 10210-2:2006 182
Torsional Constants Hot Finished yy

HOT-FINISHED CIRCULAR HOLLOW SECTIONS

Celsius® CHS

yy

Dimensions and properties

MassAreaRatioSecondRadiusElasticPlastic perofforMomentofModulusModulus OutsideThicknessMetreSectionLocalof AreaGyrationPerPer DiameterBucklingMetreTonne dtAd/tIiWel Wpl IT Wt mmmmkg/m cm 2 cm 4 cm cm 3 cm 3 cm 4 cm 3 m 2 m 2

76.12.9 5.246.6726.244.72.5911.815.589.523.50.23945.6

3.2 5.757.3323.848.82.5812.817.097.625.60.23941.6

3.6 #6.448.2021.154.02.5714.218.910828.40.23937.0

4.0 7.119.0619.059.12.5515.520.811831.00.23933.7

4.5 #7.9510.116.965.12.5417.123.113034.20.23930.1

5.0 8.7711.215.270.92.5218.625.314237.30.23927.2

5.6 #9.7412.413.677.52.5020.427.915540.80.23924.6

6.3 10.813.812.184.82.4822.330.817044.60.23922.0

8.0 13.417.19.511012.4226.437.320152.90.23917.8 88.92.9 #6.157.8430.772.53.0416.321.514532.60.27945.5

3.2 #6.768.6227.879.23.0317.823.515835.60.27941.3

3.6 #7.579.6524.787.93.0219.826.217639.50.27936.8 4.0 8.3810.722.296.33.0021.728.919343.30.27933.2

4.5 #9.3711.919.81072.9924.032.121347.90.27929.9 5.0 10.313.217.81162.9726.235.223352.40.27927.0

5.6 #11.514.715.91282.9528.738.925557.50.27924.2 6.3 12.816.314.11402.9331.543.128063.10.27921.7 8.0 16.020.311.11682.8737.852.533675.60.27917.5 10.0 #19.524.88.891962.8144.162.639288.20.27914.3 101.63.2 #7.779.8931.81203.4823.631.024047.20.31941.2 3.6 #8.7011.128.21333.4726.234.626652.50.31936.7 4.0 #9.6312.325.41463.4528.838.129357.60.31933.2 4.5 #10.813.722.61623.4431.942.532463.80.31929.6 5.0 #11.915.220.31773.4234.946.735569.90.31926.8 5.6 #13.316.918.11953.4038.451.739076.90.31924.1 6.3 #14.818.916.12153.3842.357.343084.70.31921.5 8.0 #18.523.512.72603.3251.170.35191020.31917.3 10.0 #22.628.810.23053.2660.184.26111200.31914.1 114.33.2 #8.7711.235.71723.9330.239.534560.40.35940.9 3.6 9.8312.531.81923.9233.644.138467.20.35936.6 4.0 10.913.928.62113.9036.948.742273.90.35933.0 4.5 #12.215.525.42343.8941.054.346982.00.35929.5 5.0 13.517.222.92573.8745.059.851489.90.35926.6 5.6 #15.019.120.42833.8549.666.256699.10.35923.9 6.3 16.821.418.13133.8254.773.66251090.35921.4 8.0 21.026.714.33793.7766.490.67591330.35917.1 10.0 #25.732.811.44503.7078.71098991570.35914.0

# Check avialability FOR EXPLANATION OF TABLES SEE NOTES 2 AND 3
z z t d BS EN 1993-1-1:2005 BS EN 10210-2:2006 183
Surface Area Designation Constants Section Torsional Celsius® is a trademark of Tata Steel. A fuller description of the relationship between Hot Finished Circular Hollow Sections (HFCHS) and the Celsius® range of sections manufactured by Tata Steel is given in note 12. Hot Finished

Celsius® CHS

yy

Dimensions and properties

MassAreaRatioSecondRadiusElasticPlastic perofforMomentofModulusModulus OutsideThicknessMetreSectionLocalof AreaGyrationPerPer DiameterBucklingMetreTonne dtAd/tIiWel Wpl IT Wt mmmmkg/m cm 2 cm 4 cm cm 3 cm 3 cm 4 cm 3 m 2 m 2

139.73.2 #10.813.743.73204.8345.859.664091.60.43940.7

3.6 #12.115.438.83574.8151.166.77131020.43936.3 4.0 #13.417.134.93934.8056.273.77861120.43932.8 4.5 #15.019.131.04374.7862.682.38741250.43929.2

5.0 16.621.227.94814.7768.890.89611380.43926.4

5.6 #18.523.624.95314.7576.110110601520.43923.7 6.3 20.726.422.25894.7284.311211801690.43921.2 8.0 26.033.117.57204.6610313914402060.43916.9 10.0 32.040.714.08624.6012316917202470.43913.7 12.5 #39.250.011.210204.5214620320402920.43911.2

168.35.0 20.125.733.78565.7810213317102030.52926.3 5.6 #22.528.630.19485.7611314819002250.52923.5 6.3 25.232.126.710505.7312516521102500.52921.0 8.0 31.640.321.013005.6715420626003080.52916.7 10.0 39.049.716.815605.6118625131303720.52913.5 12.5 48.061.213.518705.5322230437404440.52911.0 193.75.0 23.329.638.713206.6713617826402730.60926.2 5.6 #26.033.134.614706.6515119829303030.60923.4 6.3 29.137.130.716306.6316822132603370.60920.9 8.0 36.646.724.220206.5720827640304160.60916.6 10.0 45.357.719.424406.5025233848805040.60913.5 12.5 55.971.215.529306.4230341158706060.60910.9 16.0 #70.189.312.135506.3136750771107340.6098.71 219.14.5 #23.830.348.717507.5915920734903190.68828.9 5.0 #26.433.643.819307.5717622938603520.68826.1 5.6 #29.537.639.121407.5519525542803910.68823.3 6.3 33.142.134.823907.5321828547704360.68820.8 8.0 41.653.127.429607.4727035759205400.68816.5 10.0 51.665.721.936007.4032843872006570.68813.3 12.5 63.781.117.543507.3239753486907930.68810.8 14.2 #71.891.415.448207.2644059796408800.6889.56 16.0 80.110213.753007.20483661106009670.6888.60 244.55.0 #29.537.648.927008.4722128754004410.76826.0 5.6 #33.042.043.730008.4524532060004910.76823.3 6.3 #37.047.138.833508.4227435866905470.76820.7 8.0 #46.759.430.641608.3734044883206810.76816.4 10.0 #57.873.724.550708.30415550101008300.76813.3 12.5 71.591.119.661508.215036731230010100.76810.8 14.2 #80.610317.268408.165597541370011200.7689.52 16.0 90.211515.375308.106168371510012300.7688.52 # Check avialability FOR EXPLANATION OF TABLES SEE NOTES 2 AND 3

Celsius® is a trademark of Tata Steel. A fuller description of the relationship between Hot Finished Circular Hollow Sections (HFCHS) and the Celsius® range of sections manufactured by Tata Steel is given in note 12.

HOT-FINISHED CIRCULAR HOLLOW SECTIONS
z t d BS EN 1993-1-1:2005 BS EN 10210-2:2006 184
Section TorsionalSurface Area Designation Constants Hot Finished
z

Celsius® CHS

Dimensions and properties

Designation

Constants

MassAreaRatioSecondRadiusElasticPlastic perofforMomentofModulusModulus OutsideThicknessMetreSectionLocalof AreaGyrationPerPer DiameterBucklingMetreTonne dtAd/tIiWel Wpl IT Wt mmmmkg/m cm 2 cm 4 cm cm 3 cm 3 cm 4 cm 3 m 2 m 2

273.05.0 #33.042.154.637809.4827735975605540.85826.0 5.6 #36.947.048.842109.4630840084106160.85823.3 6.3 #41.452.843.347009.4334444893906880.85820.7 8.0 #52.366.634.158509.37429562117008570.85816.4 10.0 64.982.627.371509.315246921430010500.85813.2 12.5 80.310221.887009.226378491740012700.85810.7 14.2 #90.611519.297009.167109521940014200.8589.44 16.0 10112917.1107009.1078410602140015700.8588.46

323.95.0 #39.350.164.8637011.3393509127007871.0225.9 5.6 #44.056.057.8709011.3438567142008761.0223.2 6.3 #49.362.951.4793011.2490636159009791.0220.7 8.0 #62.379.440.5991011.26127991980012201.0216.3 10.0 77.498.632.41220011.17519862430015001.0213.2 12.5 96.012225.91480011.091712102970018301.0210.6 14.2 #10813822.81660011.0103013603320020501.029.40 16.0 12115520.21840010.9114015203680022701.028.39 355.66.3 #54.369.156.41050012.45937692110011901.1220.6 8.0 #68.687.444.51320012.37429672640014901.1216.4 10.0 #85.210935.61620012.291212003240018301.1213.1 12.5 #10613528.41990012.1112014703970022301.1210.6 14.2 #12015225.02220012.1125016604450025001.129.36 16.0 13417122.22470012.0139018504930027701.128.36 406.46.3 #62.279.264.51580014.178010103170015601.2820.6 8.0 #78.610050.81990014.197812703970019601.2816.3 10.0 97.812540.62450014.0121015704900024101.2813.1 12.5 #12115532.53000013.9148019406010029601.2810.5 14.2 #13717528.63370013.9166021906740033201.289.32 16.0 15419625.43740013.8184024407490036901.288.31 457.06.3 #70.089.272.52270015.999112804530019801.4420.6 8.0 #88.611357.12840015.9125016105690024901.4416.3 10.0 11014045.73510015.8154020007020030701.4413.1 12.5 #13717536.64310015.7189024708630037801.4410.5 14.2 #15519832.24850015.7212027909690042401.449.29 16.0 17422228.65400015.62360311010800047201.448.28 508.06.3 #77.999.380.63120017.7123015906250024601.6020.5 8.0 #98.612663.53930017.7155020007860030901.6016.2 10.0 #12315650.84850017.6191024809700038201.6013.0 12.5 15319540.65980017.52350307012000047101.6010.5 14.2 #17322035.86720017.52650346013400052901.609.25 16.0 19424731.87490017.42950387015000059001.608.24 # Check avialability FOR EXPLANATION OF TABLES SEE NOTES 2 AND 3

Celsius® is a trademark of Tata Steel. A fuller description of the relationship between Hot Finished Circular Hollow Sections (HFCHS) and the Celsius® range of sections manufactured by Tata Steel is given in note 12.

HOT-FINISHED CIRCULAR HOLLOW SECTIONS
Section
Hot
z z t d BS EN 1993-1-1:2005 BS EN 10210-2:2006 185
TorsionalSurface Area
Finished yy

HOT-FINISHED SQUARE HOLLOW SECTIONS

Celsius® SHS

Dimensions and properties

MassAreaRatioSecondRadiusElasticPlastic perofforMomentofModulusModulus SizeThicknessMetreSectionLocalof AreaGyrationPerPer BucklingMetreTonne

h x htA c/t (1) IiWel Wp IT Wt mmmmkg/m cm 2 cm 4 cm cm 3 cm 3 cm 4 cm 3 m 2 m 2 40 x 403.0 #3.414.3410.39.781.504.895.9715.77.100.15244.5

3.2 3.614.609.5010.21.495.116.2816.57.420.15242.1

3.6 #4.015.108.1111.11.475.546.8818.18.010.15137.8

4.0 4.395.597.0011.81.455.917.4419.58.540.15034.2 5.0 5.286.735.0013.41.416.688.6622.59.600.14727.8 50 x 503.0 #4.355.5413.720.21.918.089.7032.111.80.19244.2

3.2 4.625.8812.621.21.908.4910.233.812.40.19241.7

3.6 #5.146.5410.923.21.889.2711.337.213.50.19137.2

4.0 5.647.199.5025.01.869.9912.340.414.50.19033.6

5.0 6.858.737.0028.91.8211.614.547.616.70.18727.3

6.3 8.3110.64.9432.81.7613.117.055.218.80.18422.1

7.1 #9.1411.64.0434.51.7213.818.358.919.80.18219.8 8.0 #10.012.83.2536.01.6814.419.562.320.60.17917.9 60 x 603.0 #5.296.7417.036.22.3212.114.356.917.70.23243.8

3.2 5.627.1615.838.22.3112.715.260.218.60.23241.3 3.6 #6.277.9813.741.92.2914.016.866.520.40.23137.0 4.0 6.908.7912.045.42.2715.118.372.522.00.23033.4

5.0 8.4210.79.0053.32.2317.821.986.425.70.22727.0 6.3 10.313.16.5261.62.1720.526.010229.60.22421.8 7.1 #11.414.55.4565.82.1321.928.211031.60.22219.5 8.0 12.516.04.5069.72.0923.230.411833.40.21917.5 70 x 703.0 #6.247.9420.359.02.7316.919.992.224.80.27243.5 3.2 6.638.4418.962.32.7217.821.097.626.10.27241.1 3.6 #7.409.4216.468.62.7019.623.310828.70.27136.6 4.0 8.1510.414.574.72.6821.325.511831.20.27033.2 5.0 9.9912.711.088.52.6425.330.814236.80.26726.7 6.3 12.315.68.111042.5829.736.916942.90.26421.5 7.1 #13.617.36.861122.5432.040.318546.10.26219.3 8.0 15.019.25.751202.5034.243.820049.20.25917.2 8.8 #16.320.74.951262.4635.946.621251.60.25715.8 80 x 803.0 #7.189.1423.789.83.1322.526.314033.00.31243.4

3.2 7.639.7222.095.03.1323.727.914834.90.31240.9 3.6 #8.5310.919.21053.1126.231.016438.50.31136.4 4.0 9.4112.017.01143.0928.634.018041.90.31032.9 5.0 11.614.713.01373.0534.241.121749.80.30726.6 6.3 14.218.19.701622.9940.549.726258.70.30421.3

7.1 #15.820.28.271762.9543.954.528663.50.30219.1 8.0 17.522.47.001892.9147.359.531268.30.29917.0 8.8 #19.024.26.092002.8750.063.733272.00.29715.6 10.0 #21.126.95.002142.8253.569.336076.80.29413.9 12.5 #25.232.13.402342.7058.678.940483.80.28811.4

For local
FOR
SEE
(1)
buckling calculation c = h - 3t. # Check avialability
EXPLANATION OF TABLES
NOTES 2 AND 3
BS EN 1993-1-1:2005 BS EN 10210-2:2006 Hot Finished
z z t h h 186
Surface Area Section Designation Torsional Constants Celsius® is a trademark of Tata Steel. A fuller description of the relationship between Hot Finished Square Hollow Sections (HFSHS) and the Celsius® range of sections manufactured by Tata Steel is given in note 12.
yy

HOT-FINISHED SQUARE HOLLOW SECTIONS

Celsius® SHS

Dimensions and properties

Designation Section

h

h Hot Finished yy

z z

z z

t h

Torsional Constants

Surface Area

MassAreaRatioSecondRadiusElasticPlastic perofforMomentofModulusModulus SizeThicknessMetreSectionLocalof AreaGyrationPerPer BucklingMetreTonne

h x htA c/t (1) IiWel Wp IT Wt mmmmkg/m cm 2 cm 4 cm cm 3 cm 3 cm 4 cm 3 m 2 m 2 90 x 903.6 #9.6612.322.01523.5233.839.723749.70.35136.5

4.0 10.713.619.51663.5037.043.626054.20.35032.8

5.0 13.116.715.02003.4544.453.031664.80.34726.4

6.3 16.220.711.32383.4053.064.338277.00.34421.2

7.1 #18.123.09.682603.3657.770.841983.70.34218.9

8.0 20.125.68.252813.3262.677.645990.50.33916.9

8.8 #21.827.87.232993.2866.583.449296.00.33715.5 10.0 #24.330.96.003223.2371.691.35361030.33413.8 12.5 #29.137.14.203593.1179.81056121140.32811.3 100 x 1003.6 10.813.724.82123.9242.349.532862.30.39136.2

4.0 11.915.222.02323.9146.454.436168.20.39032.7

5.0 14.718.717.02793.8655.966.443981.80.38726.3

Celsius® is a trademark of Tata Steel. A fuller description of the relationship between Hot Finished Square Hollow Sections (HFSHS) and the Celsius® range of sections manufactured by Tata Steel is given in note 12.

t h 187

6.3 18.223.212.93363.8067.180.953497.80.38421.1 7.1 #20.325.811.13673.7773.489.25891070.38218.8 8.0 22.628.89.504003.7379.998.26461160.37916.8 8.8 #24.531.38.364263.6985.21066941230.37715.3 10.0 27.434.97.004623.6492.41167611330.37413.7 12.5 #33.042.15.005223.521041358791500.36811.2 120 x 1204.0 #14.418.427.04104.7268.479.76351010.47032.6 5.0 17.822.721.04984.6883.097.67771220.46726.2 6.3 22.228.216.06034.621001209501470.46420.9 7.1 #24.731.513.96634.5911013310501610.46218.7 8.0 27.635.212.07264.5512114611601760.45916.6 8.8 #30.138.310.67794.5113015812501890.45715.2 10.0 33.742.99.008524.4614217513802060.45413.5 12.5 40.952.16.609824.3416420716202360.44811.0 140 x 1405.0 21.026.725.08075.5011513512501700.54726.1 6.3 26.133.319.29845.4414116615402060.54420.8 7.1 #29.237.216.710905.4015518417102270.54218.5 8.0 32.641.614.512005.3617120418902490.53916.5 8.8 #35.645.412.912905.3318422120502680.53715.1 10.0 40.050.911.014205.2720224622702940.53413.4 12.5 48.762.18.2016505.1623629327003420.52810.8 (1) For local buckling calculation c = h - 3t. # Check avialability FOR EXPLANATION OF TABLES SEE NOTES 2 AND 3

BS EN 1993-1-1:2005 BS EN 10210-2:2006
Hot Finished yy

HOT-FINISHED SQUARE HOLLOW SECTIONS

Celsius® SHS

Hot Finished yy

Dimensions and properties

MassAreaRatioSecondRadiusElasticPlastic perofforMomentofModulusModulus SizeThicknessMetreSectionLocalof AreaGyrationPerPer BucklingMetreTonne

h x htA c/t (1) IiWel Wp IT Wt mmmmkg/m cm 2 cm 4 cm cm 3 cm 3 cm 4 cm 3 m 2 m 2

150 x 1505.0 22.628.727.010005.9013415615501970.58726.0

6.3 28.135.820.812205.8516319219102400.58420.8

7.1 #31.440.018.113505.8118021321202640.58218.5 8.0 35.144.815.814905.7719923723502910.57916.5

8.8 #38.448.914.016105.7421425725503130.57715.1 10.0 43.154.912.017705.6823628628303440.57413.3 12.5 52.767.19.0020805.5727734233804020.56810.8 14.2 #58.975.07.5622605.4930237737104360.5639.57 16.0 # r65.283.06.3824305.4132441140304670.5598.55

160 x 1605.0 #24.130.729.012306.3115317818902260.62726.0 6.3 30.138.322.415006.2618722023302750.62420.8

7.1 #33.742.919.516606.2220724526003040.62218.5 8.0 37.648.017.018306.1822927228803350.61916.5 8.8 #41.152.415.219806.1424729531303610.61715.0 10.0 46.358.913.021906.0927332934803980.61413.3 12.5 56.672.19.8025805.9832239541604670.60810.8 14.2 #63.380.78.2728105.9035143645805080.6039.53 16.0 #70.289.47.0030305.8237947649905460.5998.51 180 x 1805.0 #27.334.733.017707.1319622727202900.70725.9 6.3 34.043.325.621707.0724128133603550.70420.7

7.1 #38.148.622.424007.0426731437403930.70218.4 8.0 42.754.419.526607.0029634941604340.69916.4 8.8 #46.759.417.528806.9632037945204690.69714.9 10.0 52.566.915.031906.9135542450505180.69413.2 12.5 64.482.111.437906.8042151160706130.68810.7 14.2 #72.292.09.6841506.7246256667106700.6839.43 16.0 80.21028.2545006.6450062173407240.6798.49

x 2005.0 30.438.737.024507.9524528337603620.78725.9

38.048.428.730107.8930135046504440.78420.6

#42.654.225.233507.8533539151904930.78218.4

47.760.822.037107.8137143657805450.77916.4

#52.266.519.740207.7840247462905900.77714.9

58.874.917.044707.7244753170306550.77413.2

72.392.113.053407.6153464384907780.76810.6

#81.110311.158707.5458771494208540.7639.38

90.31159.5063907.46639785103009270.7598.42

FOR
BS EN 1993-1-1:2005 BS EN 10210-2:2006
z z t
h 188
200
6.3
7.1
8.0
8.8
10.0
12.5
14.2
16.0
(1) For local buckling calculation c = h - 3t. r External corner radius >2T but 3T # Check avialability
EXPLANATION OF TABLES SEE NOTES 2 AND 3 Celsius® is a trademark of Tata Steel. A fuller description of the relationship between Hot Finished Square Hollow Sections (HFSHS) and the Celsius® range of sections manufactured by Tata Steel is given in note 12. Section Surface Area Designation Constants Torsional
h

Celsius® SHS

Dimensions and properties

MassAreaRatioSecondRadiusElasticPlastic perofforMomentofModulusModulus SizeThicknessMetreSectionLocalof AreaGyrationPerPer BucklingMetreTonne

h x htA c/t (1) IiWel Wp IT Wt mmmmkg/m cm 2 cm 4 cm cm 3 cm 3 cm 4 cm 3 m 2 m 2

250 x 2505.0 #38.348.747.048609.9938944774305770.98725.8

6.3 47.961.036.760109.9348155692407120.98420.6

7.1 #53.768.432.267009.90536622103007920.98218.3

8.0 60.376.828.374609.86596694115008800.97916.3

8.8 #66.084.125.481109.82649758126009550.97714.9 10.0 74.594.922.090609.777248511410010700.97413.1 12.5 91.911717.0109009.6687310401720012800.96810.6 14.2 #10313214.6121009.5896711601910014100.9639.31 16.0 11514712.6133009.50106012802110015500.9598.31

260 x 2606.3 #49.963.538.3679010.3522603104007731.0220.5 7.1 #56.071.333.6757010.3582674116008611.0218.3 8.0 #62.880.029.5842010.3648753130009561.0216.2 8.8 #68.887.626.5916010.27058221420010401.0214.8 10.0 #77.798.923.01020010.27889241590011601.0113.0 12.5 #95.812217.81240010.195111301940013901.0110.5 14.2 #10813715.3137009.99106012602170015401.009.27 16.0 #12015313.3151009.91116013902390016900.9998.29

300 x 3006.3 #57.873.644.61050012.07038091610010401.1820.4 7.1 #64.982.639.31180011.97859061810011601.1818.2 8.0 72.892.834.51310011.987510102020012901.1816.2 8.8 #79.810231.11430011.995411102210014101.1814.8 10.0 90.211527.01600011.8107012502480015801.1713.0 12.5 11214221.01940011.7130015303030019001.1710.5 14.2 #12616018.12160011.6144017103390021101.169.22 16.0 14117915.82390011.5159019003760023301.168.26 350 x 3508.0 85.410940.82110013.9121013903240017901.3816.1 8.8 #93.611936.82310013.9132015203540019501.3814.8 10.0 10613532.02590013.9148017203990021901.3712.9 12.5 13116725.03150013.7180021104890026501.3710.4 14.2 #14818921.63520013.7201023605490029601.369.19 16.0 16621118.93890013.6223026306100032601.368.21 400 x 4008.0 #97.912547.03190016.0159018304870023601.5816.1 8.8 #10713742.53480015.9174020005330025801.5814.7 10.0 12215537.03910015.9196022606010029001.5712.9 12.5 15119229.04780015.8239027807390035301.5710.4 14.2 #17021725.25350015.7268031308300039401.569.16 16.0 19124322.05930015.6297034809240043601.568.17 20.0 ^23530017.07150015.43580425011200052401.556.59

HOT-FINISHED SQUARE HOLLOW SECTIONS
(1) For local buckling calculation c = h - 3t. ^ SAW process (single longitudinal seam weld, slightly proud) # Check avialability
TABLES
3
Section TorsionalSurface Area BS EN 1993-1-1:2005 BS EN 10210-2:2006 Hot Finished
z z t h h 189
FOR EXPLANATION OF
SEE NOTES 2 AND
Designation Constants Celsius® is a trademark of Tata Steel. A fuller description of the relationship between Hot Finished Square Hollow Sections (HFSHS) and the Celsius® range of sections manufactured by Tata Steel is given in note 12.
yy

Celsius® RHS

Dimensions and properties

MassArea perof SizeThicknessMetreSectionAxisAxisAxisAxisAxisAxisAxisAxisPerPer y-yz-zy-yz-zy-yz-zy-yz-zMetreTonne h x btA cw/t (1) cf/t (1) IT Wt mmmmkg/m cm 2 cm 4 cm 4 cmcm cm 3 cm 3 cm 3 cm 3 cm 4 cm 3 m 2 m 2

50x303.0 #3.414.3413.77.0013.65.941.771.175.433.966.884.7613.56.510.15244.5 3.2 3.614.6012.66.3814.26.201.761.165.684.137.255.0014.26.800.15242.1 3.6 #4.015.1010.95.3315.46.671.741.146.164.457.945.4615.47.310.15137.8 4.0 4.395.599.504.5016.57.081.721.136.604.728.595.8816.67.770.15034.2 5.0 5.286.737.003.0018.77.891.671.087.495.2610.06.8019.08.670.14727.8

60x403.0 #4.355.5417.010.326.513.92.181.588.826.9510.98.1929.211.20.19244.2 3.2 4.625.8815.89.5027.814.62.181.579.277.2911.58.6430.811.70.19241.7 3.6 #5.146.5413.78.1130.415.92.161.5610.17.9312.79.5033.812.80.19137.2 4.0 5.647.1912.07.0032.817.02.141.5410.98.5213.810.336.713.70.19033.6 5.0 6.858.739.005.0038.119.52.091.5012.79.7716.412.243.015.70.18727.3 6.3 8.3110.66.523.3543.421.92.021.4414.511.019.214.249.517.60.18422.1 80x403.0 #5.296.7423.710.354.218.02.841.6313.69.0017.110.443.815.30.23243.8 3.2 5.627.1622.09.5057.218.92.831.6314.39.4618.011.046.216.10.23241.3 3.6 #6.277.9819.28.1162.820.62.811.6115.710.320.012.150.817.50.23137.0 4.0 6.908.7917.07.0068.222.22.791.5917.111.121.813.255.218.90.23033.4 5.0 8.4210.713.05.0080.325.72.741.5520.112.926.115.765.121.90.22727.0 6.3 10.313.19.703.3593.329.22.671.4923.314.631.118.475.624.80.22421.8 7.1 #11.414.58.272.6399.830.72.631.4625.015.433.819.880.926.20.22219.5 8.0 12.516.07.002.0010632.12.581.4226.516.136.521.285.827.40.21917.5

90x503.0 #6.247.9427.013.784.433.53.262.0518.813.423.215.376.522.40.27243.5 3.2 6.638.4425.112.689.135.33.252.0419.814.124.616.280.923.60.27241.1 3.6 #7.409.4222.010.998.338.73.232.0321.815.527.218.089.425.90.27136.6 4.0 8.1510.419.59.5010741.93.212.0123.816.829.819.697.528.00.27033.2 5.0 9.9912.715.07.0012749.23.161.9728.319.736.023.511632.90.26726.7 6.3 12.315.611.34.9415057.03.101.9133.322.843.228.013838.10.26421.5 7.1 #13.617.39.684.0416260.93.061.8836.024.447.230.514940.70.26219.3 8.0 15.019.28.253.2517464.63.011.8438.625.851.432.916043.20.25917.2

Surface Area SectionRatios for Local Buckling Second Moment of Area Radius of Gyration Elastic Modulus Designation Torsional Constants Plastic Modulus Celsius® is a trademark of Tata Steel. A fuller description of the relationship between Hot Finished Rectangular Hollow Sections (HFRHS) and the Celsius® range of sections manufactured by Tata Steel is given in note 12.

100x503.0 #6.718.5430.313.711036.83.582.0821.914.727.316.888.425.00.29243.5 3.2 7.139.0828.312.611638.83.572.0723.215.528.917.793.426.40.29240.9 3.6 #7.9610.124.810.912842.63.552.0525.617.032.119.610329.00.29136.7 4.0 8.7811.222.09.5014046.23.532.0327.918.535.221.511331.40.29033.1 5.0 10.813.717.07.0016754.33.481.9933.321.742.625.813536.90.28726.6 6.3 13.316.912.94.9419763.03.421.9339.425.251.330.816042.90.28421.4 7.1 #14.718.711.14.0421467.53.381.9042.727.056.333.517346.00.28219.2 8.0 16.320.89.503.2523071.73.331.8646.028.761.436.318648.90.27917.1 8.8 #17.622.58.362.6824374.83.291.8248.529.965.638.519751.10.27715.7 10.0 #19.624.97.002.0025978.43.221.7751.831.471.241.420953.60.27414.0 (1) For local buckling calculation cw = h - 3t and cf = b - 3t. # Check avialability FOR EXPLANATION OF TABLES SEE NOTES 2 AND 3

HOT-FINISHED
RECTANGULAR HOLLOW SECTIONS
BS EN 1993-1-1:2005 BS EN 10210-2:2006 Hot Finished
z z t b h 190
yy

Celsius® RHS

Hot Finished yy

perof

Dimensions and properties

100x603.0 #7.189.1430.317.012455.73.682.4724.718.630.221.212130.70.31243.4 3.2 7.639.7228.315.813158.83.672.4626.219.632.022.412932.40.31240.9 3.6 #8.5310.924.813.714564.83.652.4428.921.635.624.914235.60.31136.4 4.0 9.4112.022.012.015870.53.632.4331.623.539.127.315638.70.31032.9 5.0 11.614.717.09.0018983.63.582.3837.827.947.432.918845.90.30726.6

6.3 14.218.112.96.5222598.13.522.3345.032.757.339.522453.80.30421.3

7.1 #15.820.211.15.452441063.482.2948.835.362.943.224558.00.30219.1 8.0 17.522.49.504.502641133.442.2552.837.868.747.126562.20.29917.0 8.8 #19.024.28.363.822791193.402.2255.939.773.650.228265.40.29715.6 10.0 #21.126.97.003.002991263.332.1659.942.180.254.430469.30.29413.9 120x603.0 #8.1210.337.017.019465.54.332.5232.321.840.024.615637.20.35243.3

3.2 #8.6411.034.515.820569.24.322.5134.223.142.426.116539.20.35240.8 3.6 #9.6612.330.313.722776.34.302.4937.925.447.228.918343.30.35136.5 4.0 10.713.627.012.024983.14.282.4741.527.751.931.720147.10.35032.8 5.0 13.116.721.09.0029998.84.232.4349.932.963.138.424256.00.34726.4 6.3 16.220.716.06.523581164.162.3759.738.876.746.329065.90.34421.2 7.1 #18.123.013.95.453911264.122.3465.241.984.450.831771.30.34218.9 8.0 20.125.612.04.504251354.082.3070.845.092.755.434476.60.33916.9 8.8 #21.827.810.63.824521424.042.2775.347.599.659.236680.80.33715.5 10.0 #24.330.99.003.004881523.972.2181.450.510964.439686.10.33413.8 12.5 #29.137.16.601.805461653.842.1191.154.912673.144293.80.32811.3 120x803.6 #10.813.730.319.22761474.483.2746.036.755.642.030159.50.39136.2 4.0 11.915.227.017.03031614.463.2550.440.261.246.133065.00.39032.7 5.0 14.718.721.013.03651934.423.2160.948.274.656.140177.90.38726.3 6.3 18.223.216.09.704402304.363.1573.357.691.068.248792.90.38421.1 7.1 #20.325.813.98.274822514.323.1280.362.810075.25351010.38218.8 8.0 22.628.812.07.005252734.273.0887.568.111182.65871100.37916.8 8.8 #24.531.310.66.095612904.243.0493.572.411988.76291170.37715.3 10.0 27.434.99.005.006093134.182.9910278.113197.36881260.37413.7 12.5 #33.042.16.603.406923494.052.8811587.41531137891410.36811.2 150x1004.0 #15.119.234.522.06073245.634.1181.064.897.473.66601050.49032.5 5.0 18.623.727.017.07393925.584.0798.578.511990.18071270.48726.2 6.3 23.129.520.812.98984745.524.0112094.81471109861530.48420.9 7.1 #25.932.918.111.19905205.483.9713210416312210901680.48218.7 8.0 28.936.815.89.5010905695.443.9414511418013512001830.47916.6 8.8 #31.540.114.08.3611706105.403.9015612219514613001960.47715.2 10.0 35.344.912.07.0012806655.343.8517113321616114302140.47413.5 12.5 42.854.69.005.0014907635.223.7419815325619016802460.46810.9

HOT-FINISHED RECTANGULAR HOLLOW SECTIONS
MassArea
SizeThicknessMetreSectionAxisAxisAxisAxisAxisAxisAxisAxisPerPer y-yz-zy-yz-zy-yz-zy-yz-zMetreTonne h x btA cw/t (1) cf/t (1) IT Wt mmmmkg/m cm 2 cm 4 cm 4 cmcm cm 3 cm 3 cm 3 cm 3 cm 4 cm 3 m 2 m 2
BS EN 1993-1-1:2005 BS EN 10210-2:2006
z z t b
191
(1) For local buckling calculation cw = h - 3t and cf = b - 3t. # Check avialability FOR EXPLANATION OF TABLES SEE NOTES 2 AND 3 ModulusModulusConstants Second Moment DesignationLocal Bucklingof AreaGyration SectionRatios forTorsionalSurface Area Radius ofElasticPlastic Celsius® is a trademark of Tata Steel. A fuller description of the relationship between Hot Finished Rectangular Hollow Sections (HFRHS) and the Celsius® range of sections manufactured by Tata Steel is given in note 12.
h

Celsius® RHS

Dimensions and properties

MassArea perof

SizeThicknessMetreSectionAxisAxisAxisAxisAxisAxisAxisAxisPerPer y-yz-zy-yz-zy-yz-zy-yz-zMetreTonne h x btA cw/t (1) cf/t (1) IT Wt mmmmkg/m cm 2 cm 4 cm 4 cmcm cm 3 cm 3 cm 3 cm 3 cm 4 cm 3 m 2 m 2

160x804.0 #14.418.437.017.06122075.773.3576.551.794.758.349388.10.47032.6 5.0 17.822.729.013.07442495.723.3193.062.311671.16001060.46726.2 6.3 22.228.222.49.709032995.663.2611374.814286.87301270.46420.9 7.1 #24.731.519.58.279943275.623.2212481.715895.98041390.46218.7 8.0 27.635.217.07.0010903565.573.1813689.01751068831510.45916.6 8.8 #30.138.315.26.0911703795.533.1514794.91891149491610.45715.2 10.0 33.742.913.05.0012804115.473.1016110320912510401750.45413.5 12.5 40.952.19.803.4014904655.342.9918611624714612001980.44811.0 180x604.0 #14.418.442.012.06971216.162.5677.440.399.845.234172.20.47032.6 5.0 #17.822.733.09.008461446.102.5294.048.112254.941186.30.46726.2 6.3 #22.228.225.66.5210301716.032.4611457.015066.64951020.46420.9 7.1 #24.731.522.45.4511301865.992.4312661.916673.35421110.46218.7 8.0 #27.635.219.54.5012402015.942.3913866.918480.45901200.45916.6 8.8 #30.138.317.53.8213302125.892.3514870.819986.26301270.45715.2 10.0 #33.742.915.03.0014602285.832.3016275.822094.46831370.45413.5 12.5 #40.952.111.41.8016802515.682.2018783.72601097701510.44811.0 180x1004.0 #16.921.642.022.09453796.614.1910575.912885.28521270.55032.5 5.0 #21.026.733.017.011504606.574.1512892.015710410401540.54726.1 6.3 #26.133.325.612.914105576.504.0915611119412812801860.54420.8 7.1 #29.237.222.411.115606136.474.0617312321514214102050.54218.5 8.0 #32.641.619.59.5017106716.424.0219013423915715602240.53916.5 8.8 #35.645.417.58.3618507206.383.9820514425917016902400.53715.1 10.0 #40.050.915.07.0020407876.323.9322615728818818602630.53413.4 12.5 #48.762.111.45.0023909086.203.8226518234422321903030.52810.8 200x1004.0 #18.223.247.022.012204167.264.2412283.215092.89831420.59032.4 5.0 22.628.737.017.015005057.214.1914910118511412001720.58726.0 6.3 28.135.828.712.918306137.154.1418312322814014802080.58420.8 7.1 #31.440.025.211.120206747.114.1020213525415516302290.58218.5 8.0 35.144.822.09.5022307397.064.0622314828217218002510.57916.5 8.8 #38.448.919.78.3624107937.024.0324115930618619502700.57715.1 10.0 43.154.917.07.0026608696.963.9826617434120621602950.57413.3 12.5 52.767.113.05.00314010006.843.8731420140824525403410.56810.8 14.2 #58.975.011.14.04342010806.753.8034221645026827703680.5639.57 16.0 # r65.283.09.503.25368011506.663.7236822949129029803910.5598.55

HOT-FINISHED RECTANGULAR HOLLOW
SECTIONS
(1) For local buckling calculation cw = h - 3t and cf = b - 3t. r External corner radius >2T but 3T # Check avialability FOR EXPLANATION OF TABLES SEE NOTES 2 AND 3 SectionRatios
ModulusModulusConstants Second
of
of sections manufactured by
is
TorsionalSurface Area
BS EN 1993-1-1:2005 BS EN 10210-2:2006 Hot Finished yy z z t b h 192
for
MomentRadius ofElasticPlastic Celsius® is a trademark
Tata Steel. A fuller description of the relationship between Hot Finished Rectangular Hollow Sections (HFRHS) and the Celsius® range
Tata Steel
given in note 12.
DesignationLocal Bucklingof AreaGyration

Celsius® RHS

Dimensions and properties

MassArea perof

SizeThicknessMetreSectionAxisAxisAxisAxisAxisAxisAxisAxisPerPer y-yz-zy-yz-zy-yz-zy-yz-zMetreTonne h x btA cw/t (1) cf/t (1) IT Wt mmmmkg/m cm 2 cm 4 cm 4 cmcm cm 3 cm 3 cm 3 cm 3 cm 4 cm 3 m 2 m 2

200x1205.0 #24.130.737.021.016907627.404.9816812720514416502100.62726.0 6.3 30.138.328.716.020709297.344.9220715525317720302550.62420.8 7.1 #33.742.925.213.9229010307.304.8922917128119722502820.62218.5 8.0 37.648.022.012.0253011307.264.8525318831321825003100.61916.5 8.8 #41.152.419.710.6273012207.224.8227320334023727003340.61715.0 10.0 46.358.917.09.00303013407.174.7630322337926330003670.61413.3 12.5 #56.672.113.06.60358015607.044.6635826045531435704280.60810.8 14.2 #63.380.711.15.45391016906.964.5839128250334639204640.6039.53 16.0 #70.289.49.504.50422018106.874.5042230255037742504970.5998.51

200x1505.0 #26.533.737.027.0197012707.646.1219716923419223902670.68726.0 6.3 #33.042.128.720.8242015507.586.0724220728923729503260.68420.7 7.1 #37.047.125.218.1269017207.556.0326822932226432803610.68218.4 8.0 41.452.822.015.8297018907.505.9929725335929436403980.67916.4 8.8 #45.357.719.714.0322020507.475.9632227339031939604300.67715.0 10.0 51.064.917.012.0357022607.415.9135730243635644104750.67413.2 12.5 #62.579.613.09.00424026707.305.8042435652542852905590.66810.7 14.2 #70.089.211.17.56464029207.225.7246438958247358306100.6639.48 16.0 #77.799.09.506.38504031507.135.6450442063851863706580.6598.50 220x1205.0 #25.732.741.021.021308298.065.0319313823615518802320.66725.9 6.3 #32.040.831.916.0261010108.004.9823716829219123202830.66420.7 7.1 #35.945.728.013.9290011207.964.9426318632621325703120.66218.5 8.0 #40.251.224.512.0320012307.914.9029120536223628503430.65916.4 8.8 #43.955.922.010.6347013207.874.8731522139425630903700.65715.0 10.0 #49.462.919.09.00384014607.824.8134924344028534304070.65413.2 12.5 #60.577.114.66.60456017107.694.7141528553034140904760.64810.7 14.2 #67.886.312.55.45500018507.614.6345430958637644905170.6439.52 16.0 #75.295.810.84.50541019907.524.5549233164341048705550.6398.50

250x1005.0 #26.533.747.017.026106188.804.2820912426313816202170.68726.0 6.3 #33.042.136.712.932107518.734.2225715032616919802640.68420.7 7.1 #37.047.132.211.135608278.694.1928516536318822002910.68218.4 8.0 #41.452.828.39.5039409098.644.1531518240420924303190.67916.4 8.8 #45.357.725.48.3642709778.604.1234119543922626303430.67715.0 10.0 #51.064.922.07.00473010708.544.0637921449125129103760.67413.2 12.5 #62.579.617.05.00562012508.413.9645024959229934404380.66810.7 14.2 #70.089.214.64.04617013408.313.8849326965532937504730.6639.48 16.0 #77.799.012.63.25669014308.223.8053528771935840505050.6598.50

HOT-FINISHED RECTANGULAR HOLLOW
SECTIONS
(1) For local buckling calculation cw = h - 3t and cf = b - 3t. # Check avialability FOR EXPLANATION OF TABLES SEE NOTES 2 AND 3 TorsionalSurface Area DesignationLocal Bucklingof AreaGyrationModulusModulusConstants Second
ofElasticPlastic SectionRatios for Celsius® is a trademark of Tata Steel. A fuller description of the relationship between Hot Finished Rectangular Hollow Sections (HFRHS) and the Celsius® range of sections manufactured by Tata Steel is given in note 12. BS EN 1993-1-1:2005 BS EN 10210-2:2006
Finished
z z t b h 193
MomentRadius
Hot
yy

Celsius® RHS

Dimensions and properties

MassArea perof

SizeThicknessMetreSectionAxisAxisAxisAxisAxisAxisAxisAxisPerPer y-yz-zy-yz-zy-yz-zy-yz-zMetreTonne h x btA cw/t (1) cf/t (1) IT Wt mmmmkg/m cm 2 cm 4 cm 4 cmcm cm 3 cm 3 cm 3 cm 3 cm 4 cm 3 m 2 m 2

250x1505.0 #30.438.747.027.0336015309.316.2826920432422832803370.78725.9 6.3 38.048.436.720.8414018709.256.2233125040228340504130.78420.6 7.1 #42.654.232.218.1461020809.226.1936827744931545204570.78218.4 8.0 47.760.828.315.8511023009.176.1540930650135050205060.77916.4 8.8 #52.266.525.414.0555024909.136.1244433154538154605470.77714.9 10.0 58.874.922.012.0617027609.086.0649436761142660906050.77413.2 12.5 72.392.117.09.00739032708.965.9659143574051473307170.76810.6 14.2 #81.110314.67.56814035808.875.8865147782357081007840.7639.38 16.0 90.311512.66.38888038708.795.8071051690662588708490.7598.42

260x1405.0 #30.438.749.025.0353013509.555.9127219333121630803260.78725.9 6.3 #38.048.438.319.2436016609.495.8633523741126738003990.78420.6 7.1 #42.654.233.616.7484018409.455.8237226345929842304420.78218.4 8.0 #47.760.829.514.5537020309.405.7841329051133147004880.77916.4 8.8 #52.266.526.512.9583022009.375.7544931455736051105270.77714.9 10.0 #58.874.923.011.0649024309.315.7049934762440257005840.77413.2 12.5 #72.392.117.88.20777028809.185.5959741175648568406900.76810.6 14.2 #81.110315.36.86856031409.105.5265844984053775607540.7639.38 16.0 #90.311513.35.75934034009.015.4471848692558882608150.7598.42

300x1005.0 #30.438.757.017.0415073110.34.3427614635416120402620.78725.9 6.3 #38.048.444.612.9511089010.34.2934117843919925003190.78420.6 7.1 #42.654.239.311.1568098110.24.2537919649022127803520.78218.4 8.0 47.760.834.59.506310108010.24.2142021654624530703870.77916.4 8.8 #52.266.531.18.366840116010.14.1845623259426633204160.77714.9 10.0 58.874.927.07.007610128010.14.1350825566629636804580.77413.2 12.5 #72.392.121.05.00910014909.944.0260729780635443505340.76810.6 14.2 #81.110318.14.041000016109.853.9466932189639047605780.7639.38 16.0 #90.311515.83.251090017209.753.8772934498642551406190.7598.42 300x1508.0 # rr54.068.834.515.88010270010.86.2753436066340764506130.87916.3 8.8 # rr59.175.331.114.08710293010.86.2358039072344370206640.87714.8 10.0 # rr66.784.927.012.09720325010.76.1864843381149678407360.87413.1 12.5 # rr82.110521.09.0011700386010.66.0777951498660094508740.86810.6 14.2 # rr92.311818.17.5612900423010.56.008625641100666105009590.8639.32 16.0 # rr10313115.86.3814200460010.45.9294461312107321150010400.8598.35

HOT-FINISHED RECTANGULAR HOLLOW SECTIONS
(1) For local buckling calculation cw = h - 3t and cf = b - 3t. rr External corner radius > 3t (not compliant with BS EN 10210-2) # Check avialability FOR EXPLANATION OF TABLES SEE NOTES 2 AND 3 Celsius® is a trademark of Tata Steel. A fuller description of the relationship between Hot Finished Rectangular Hollow Sections (HFRHS) and the Celsius® range of sections manufactured by Tata Steel is given in note 12. ModulusModulusConstants DesignationLocal Bucklingof AreaGyration ElasticPlasticTorsionalSurface Area SectionRatios forSecond MomentRadius of BS EN 1993-1-1:2005 BS EN 10210-2:2006 Hot Finished yy z z t b h 194

Celsius® RHS

Dimensions and properties

MassArea perof

SizeThicknessMetreSectionAxisAxisAxisAxisAxisAxisAxisAxisPerPer y-yz-zy-yz-zy-yz-zy-yz-zMetreTonne h x btA cw/t (1) cf/t (1) IT Wt mmmmkg/m cm 2 cm 4 cm 4 cmcm cm 3 cm 3 cm 3 cm 3 cm 4 cm 3 m 2 m 2

300x2005.0 #38.348.757.037.06320340011.48.3542134050138068205520.98725.8 6.3 47.961.044.628.77830419011.38.2952241962447284806810.98420.6 7.1 #53.768.439.325.28730467011.38.2658246769852894707570.98218.3 8.0 60.376.834.522.09720518011.38.22648518779589106008400.97916.3 8.8 #66.084.131.119.710600563011.28.18705563851643115009120.97714.9 10.0 74.594.927.017.011800628011.28.137886289567211290010200.97413.1 12.5 91.911721.013.014300754011.08.0295275411708771570012200.96810.6 14.2 #10313218.111.115800833011.07.95106083313009781750013400.9639.31 16.0 11514715.89.5017400911010.97.871160911144010801930014700.9598.31

300x2505.0 #42.253.757.047.07410561011.710.249444957550897706971.0925.8 6.3 #52.867.344.636.79190695011.710.2613556716633122008621.0820.4 7.1 #59.375.539.332.210300775011.610.1683620802708136009601.0818.3 8.0 66.584.834.528.311400863011.610.17616908967911520010701.0816.2 8.8 #72.992.931.125.412400939011.610.18297519798641660011601.0814.8 10.0 #82.410527.022.0139001050011.510.092884011009711860013001.0712.9 12.5 #10213021.017.0169001270011.49.8911201010135011902270015601.0710.5 14.2 #11514618.114.6187001410011.39.8212501130151013302540017301.069.25 16.0 #12816315.812.6206001550011.29.7413801240167014702810019001.068.28 340x10010.0 65.182.931.07.0010600144011.34.1662328882333243005230.85413.2

350x1505.0 #38.348.767.027.07660205012.56.4943727454330151604770.98725.8 6.3 #47.961.052.620.89480253012.56.4354233767637363905860.98420.6 7.1 #53.768.446.318.110600280012.46.4060437475641671206510.98218.3 8.0 #60.376.840.815.811800311012.46.3667341484446479307210.97916.3 8.8 #66.084.136.814.012800336012.36.3373244992250686207810.97714.9 10.0 #74.594.932.012.014300374012.36.27818498104056696308670.97413.1 12.5 #91.911725.09.0017300445012.26.1798859312606861160010300.96810.6 14.2 #10313221.67.5619200489012.16.09110065214107631290011300.9639.31 16.0 #11514718.96.3821100532012.06.01121070915608401410012300.9598.31

350x2506.3 #57.873.652.636.713200789013.410.47546318927091520010101.1820.4 7.1 #64.982.646.332.214700880013.410.38437049997941700011301.1818.2 8.0 #72.892.840.828.316400980013.310.394078411208881900012501.1816.2 8.8 #79.810236.825.4179001070013.310.2103085312209702080013701.1814.8 10.0 #90.211532.022.0201001190013.210.21150955138010902340015301.1713.0 12.5 #11214225.017.0244001440013.110.114001160169013302850018401.1710.5 14.2 #12616021.614.6272001600013.010.015501280189014903190020401.169.22 16.0 #14117918.912.6300001770012.99.9317201410210016603530022501.168.26

HOT-FINISHED
RECTANGULAR HOLLOW SECTIONS
(1) For local
calculation
=
- 3t and cf = b - 3t. #
FOR
OF
SEE
AND 3 ModulusModulusConstants
of
the
(HFRHS) and the
of sections manufactured by
is
DesignationLocal Bucklingof AreaGyration
forSecond MomentRadius ofElasticPlasticTorsionalSurface Area BS EN 1993-1-1:2005 BS EN 10210-2:2006 Hot Finished yy z z t b h 195
buckling
cw
h
Check avialability
EXPLANATION
TABLES
NOTES 2
Celsius® is a trademark
Tata Steel. A fuller description of
relationship between Hot Finished Rectangular Hollow Sections
Celsius® range
Tata Steel
given in note 12.
SectionRatios

Celsius® RHS

Dimensions and properties

MassArea perof

SizeThicknessMetreSectionAxisAxisAxisAxisAxisAxisAxisAxisPerPer y-yz-zy-yz-zy-yz-zy-yz-zMetreTonne h x btA cw/t (1) cf/t (1) IT Wt mmmmkg/m cm 2 cm 4 cm 4 cmcm cm 3 cm 3 cm 3 cm 3 cm 4 cm 3 m 2 m 2

400x1506.3 #52.867.360.520.813300285014.06.5166338083641876006731.0820.4

7.1 #59.375.553.318.114800317014.06.4774042293646784707481.0818.3 8.0 #66.584.847.015.816500351013.96.43824468105052194208281.0816.2 8.8 #72.992.942.514.018000380013.96.408985071140568103008981.0814.8

10.0 #82.410537.012.020100423013.86.3510105641290636115009981.0712.9

12.5 #10213029.09.0024400504013.76.24122067215707721380011901.0710.5 14.2 #11514625.27.5627100555013.66.16136074017608591530013101.069.25 16.0 12816322.06.3829800604013.56.09149080519509471680014301.068.28

400x2006.3 #57.873.660.528.715700538014.68.55785538960594126009171.1820.4 7.1 #64.982.653.325.217500599014.68.5187759910806651410010201.1818.2 8.0 72.892.847.022.019600666014.58.4797866612007431570011401.1816.2 8.8 #79.810242.519.721300724014.58.44107072413208111720012301.1814.8 10.0 90.211537.017.023900808014.48.39120080814809111930013801.1713.0 12.5 11214229.013.029100974014.38.281450974181011102340016601.1710.5 14.2 #12616025.211.1324001080014.28.2116201080203012402610018301.169.22 16.0 14117922.09.50357001180014.18.1317901180226013702890020101.168.26

400x3008.0 #85.410947.034.5257001650015.412.312901100152012503100017501.3816.1 8.8 #93.611942.531.1281001800015.312.314001200166013603390019101.3814.8 10.0 #10613537.027.0315002020015.312.215801350187015403820021401.3712.9 12.5 #13116729.021.0385002460015.212.119201640230018804680025901.3710.4 14.2 #14818925.218.1430002740015.112.121501830258021105250028901.369.19 16.0 #16621122.015.8475003030015.012.023802020287023505830031801.368.21

450x2508.0 85.410953.328.3301001210016.610.61340971162010802710016301.3816.1 8.8 #93.611948.125.4328001320016.610.514601060177011802960017701.3814.8 10.0 10613542.022.0369001480016.510.516401190200013303330019901.3712.9 12.5 13116733.017.0450001800016.410.420001440246016304070024101.3710.4 14.2 #14818928.714.6503002000016.310.322401600276018304560026801.369.19 16.0 16621125.112.6557002200016.210.224801760307020305050029501.368.21

500x2008.0 #85.410959.522.034000814017.78.65136081417108962110014301.3816.1 8.8 #93.611953.819.737200885017.78.61149088518709792300015601.3814.8 10.0 #10613547.017.041800989017.68.561670989211011002590017401.3712.9 12.5 #13116737.013.0510001190017.58.4520401190259013503150021001.3710.4 14.2 #14818932.211.1569001320017.48.3822801320290015103520023201.369.19 16.0 #16621128.39.50630001450017.38.3025201450323016703890025501.368.21

#97.912559.534.5437002000018.712.617501330210014804260022001.5816.1

#10713753.831.1478002180018.712.619101450230016204660024001.5814.7

#15119237.021.0658002980018.512.526301990320022406440032801.5710.4

HOT-FINISHED
RECTANGULAR HOLLOW SECTIONS
BS EN 1993-1-1:2005 BS EN 10210-2:2006 Hot Finished yy z z t b h 196
500x3008.0
8.8
10.0 12215547.027.0538002440018.612.621501630260018305250027001.5712.9 12.5
14.2 #17021732.218.1737003320018.412.429502220359025207220036601.569.16 16.0 19124328.315.8818003680018.312.332702450401028008030040401.568.17 20.0 ^23530022.012.0988004410018.212.139502940489034109740048401.556.59 (1) For local buckling calculation cw = h - 3t and cf = b - 3t. ^ SAW process (single longitudinal seam weld, slightly proud) # Check avialability FOR EXPLANATION OF TABLES SEE NOTES 2 AND 3 Celsius® is a trademark of Tata Steel. A fuller description of the relationship between Hot Finished Rectangular Hollow Sections (HFRHS) and the Celsius® range of sections manufactured by Tata Steel is given in note 12. Surface Area DesignationLocal Bucklingof AreaGyrationModulusModulusConstants SectionRatios forSecond MomentRadius ofElasticPlasticTorsional

ELLIPTICAL HOLLOW SECTIONS HOT-FINISHED

Dimensions and properties

Elastic Modulus Section

MassArea perof

Torsional Second MomentRadius of Celsius® is a trademark of Tata Steel. A fuller description of the relationship between Hot Finished Elliptical Hollow Sections (HFEHS) and the Celsius® range of sections manufactured by Tata Steel is given in note 12.

Plastic Modulus Surface Area Designation Constants

of AreaGyration

SizeThicknessMetreSectionAxisAxisAxisAxisAxisAxisAxisAxisPerPer y-yz-zy-yz-zy-yz-zy-yz-zMetreTonne h x btA IT Wt mmmmkg/m cm 2 cm 4 cm 4 cmcm cm 3 cm 3 cm 3 cm 3 cm 4 cm 3 m 2 m 2 150 x 754.0 #10.713.63011014.702.7240.126.956.134.430360.10.36333.9 5.0 #13.316.93671224.662.6948.932.568.942.036772.20.36327.4 6.3 #16.521.04481474.622.6459.739.184.951.544386.30.36322.0 200 x 1005.0 #17.922.88973026.273.6489.760.412576.89051350.48427.1 6.3 #22.328.411003686.233.6011073.515594.711101630.48421.7 8.0 #28.035.713604466.173.5413689.319311713501970.48417.3 10.0 #34.544.016405296.103.4716410623514116102320.48414.0 12.5 #42.454.019506196.023.3919512428416918902690.48411.4 250 x 1256.3 #28.235.922107427.844.5517611924615122202650.60521.5 8.0 #35.445.127309097.784.4921914530718827303230.60517.1 10.0 #43.855.8332010907.714.4226517437622832903850.60513.8 12.5 #53.968.7400012907.634.3432020745827639204530.60511.2 300 x 1508.0 #42.854.5481016209.395.4432121544927548504810.72617.0 10.0 #53.067.5587019509.325.3739126055133658705770.72613.7 12.5 65.583.4712023309.245.2947531167440970506860.72611.1 16.0 #82.5105873028109.125.1758237483750385308180.7268.78 400 x 2008.0 #57.673.411700397012.67.35584397811500119008900.96916.9 10.0 #71.591.114300483012.57.2871748310006151450010800.96913.6 12.5 88.611317500584012.57.1987758412307531760013000.96910.9 16.0 11214321700714012.37.07109071415409362160015800.9698.64 500 x 25010.0 #90.011528500968015.89.19114077515909762900017401.2113.4 12.5 #112142350001180015.79.101400943196012003530021101.2110.8 16.0 #142180437001450015.68.9817501160246015004370025901.218.54 # Check availability FOR EXPLANATION OF TABLES SEE NOTES 2 AND 3

BS EN 1993-1-1:2005 BS EN 10210-2:2006 Hot
b t
z z 197
Finished h
yy

Hybox® CHS

Cold Formed yy

Dimensions and properties

Designation Section Torsional Constants

Surface Area

MassAreaRatioSecondRadiusElasticPlastic perofforMomentofModulusModulus OutsideThicknessMetreSectionLocalof AreaGyrationPerPer DiameterBuckling MetreTonne dtAd/tIiWel Wpl IT Wt mmmmkg/m cm 2 cm 4 cm cm 3 cm 3 cm 4 cm 3 m 2 m 2 33.73.0 2.272.8911.23.441.092.042.846.884.080.10646.6 42.43.0 2.913.7114.17.251.403.424.6714.56.840.13345.6 48.33.0 3.354.2716.111.01.614.556.1722.09.110.15245.3 4.0 #4.375.5712.113.81.575.707.8727.511.40.15234.8 60.33.0 #4.245.4020.122.22.037.379.8644.414.70.18944.6 4.0 5.557.0715.128.22.009.3412.756.318.70.18934.0 76.13.0 5.416.8925.446.12.5912.116.092.224.20.23944.2 4.0 7.119.0619.059.12.5515.520.811831.00.23933.7 88.93.0 6.368.1029.674.83.0416.822.115033.60.27943.8

3.5 #7.379.3925.485.73.0219.325.517138.60.27937.9 4.0 8.3810.722.296.33.0021.728.919343.30.27933.2 5.0 10.313.217.81162.9726.235.223352.40.27927.0 6.3 12.816.314.11402.9331.543.128063.10.27921.7 114.33.0 #8.2310.538.11633.9428.437.232556.90.35943.4 3.5 9.5612.232.71873.9232.743.037465.50.35937.7 4.0 #10.913.928.62113.9036.948.742273.90.35933.0 5.0 13.517.222.92573.8745.059.851489.90.35926.6 6.0 16.020.419.13003.8352.570.46001050.35922.4 6.3 16.821.418.13133.8254.773.66251090.35921.4 139.73.0 #10.112.946.63014.8343.156.160286.20.43943.4 4.0 #13.417.134.93934.8056.273.77861120.43932.8 5.0 16.621.227.94814.7768.890.89611380.43926.4 6.0 19.825.223.35644.7380.810711301620.43922.2 6.3 20.726.422.25894.7284.311211801690.43921.2 8.0 26.033.117.57204.6610313914402060.43916.9 10.0 32.040.714.08624.6012316917202470.43913.7 168.34.0 16.220.642.16975.8182.810813901660.52932.6 4.5 #18.223.237.47775.7992.412115501850.52929.1 5.0 20.125.733.78565.7810213317102030.52926.3 6.0 24.030.628.110105.7412015820202400.52922.0 6.3 25.232.126.710505.7312516521102500.52921.0 8.0 31.640.321.013005.6715420626003080.52916.7 10.0 39.049.716.815605.6118625131303720.52913.5 12.5 48.061.213.518705.5322230437404440.52911.0

193.74.0 #18.723.848.410706.7111114421502220.60932.5 4.5 #21.026.743.012006.6912416124002470.60929.0 5.0 23.329.638.713206.6713617826402730.60926.2 6.0 27.835.432.315606.6416121131203220.60921.9 6.3 29.137.130.716306.6316822132603370.60920.9 8.0 36.646.724.220206.5720827640304160.60916.6 10.0 45.357.719.424406.5025233848805040.60913.5 12.5 55.971.215.529306.4230341158706060.60910.9 FOR EXPLANATION OF TABLES SEE NOTES 2 AND 3

Hybox® is a trademark of Tata Steel. A fuller description of the relationship between Cold Formed Circular Hollow Sections (CFCHS) and the Hybox® range of sections manufactured by Tata Steel is given in note 12.

COLD-FORMED CIRCULAR
HOLLOW SECTIONS
BS EN 1993-1-1:2005 BS EN 10219-2:2006
z z t d 198

Hybox® CHS

Dimensions and properties

Surface Area Designation Constants

Section Torsional

MassAreaRatioSecondRadiusElasticPlastic perofforMomentofModulusModulus OutsideThicknessMetreSectionLocalof AreaGyrationPerPer DiameterBuckling MetreTonne dtAd/tIiWel Wpl IT Wt mmmmkg/m cm 2 cm 4 cm cm 3 cm 3 cm 4 cm 3 m 2 m 2 219.14.5 #23.830.348.717507.5915920734903190.68828.9

5.0 26.433.643.819307.5717622938603520.68826.1

6.0 31.540.236.522807.5420827345604170.68821.8 6.3 33.142.134.823907.5321828547704360.68820.8

8.0 41.653.127.429607.4727035759205400.68816.5 10.0 51.665.721.936007.4032843872006570.68813.3

12.0 #61.378.118.342007.3338351584007670.68811.2 12.5 63.781.117.543507.3239753486907930.68810.8 16.0 80.110213.753007.20483661106009670.6888.60 244.55.0 #29.537.648.927008.4722128754004410.76826.0 6.0 35.345.040.832008.4326234164005230.76821.7 6.3 37.047.138.833508.4227435866905470.76820.7 8.0 46.759.430.641608.3734044883206810.76816.4 10.0 57.873.724.550708.30415550101008300.76813.3 12.0 #68.887.720.459408.23486649119009720.76811.1 12.5 71.591.119.661508.215036731230010100.76810.8 16.0 90.211515.375308.106168371510012300.7688.52 2734.0 #26.533.868.330609.5122428961204480.85832.3 4.5 #29.838.060.734209.4925132468405010.85828.8 5.0 #33.042.154.637809.4827735975605540.85826.0 6.0 39.550.345.544909.4432942889706570.85821.7 6.3 41.452.843.347009.4334444893906880.85820.7 8.0 52.366.634.158509.37429562117008570.85816.4 10.0 64.982.627.371509.315246921430010500.85813.2 12.0 #77.298.422.884009.246158181680012300.85811.1 12.5 80.310221.887009.226378491740012700.85810.7 16.0 10112917.1107009.1078410602140015700.8588.46 323.95.0 #39.350.164.8637011.3393509127007871.0225.9 6.0 47.059.954.0757011.2468606151009351.0221.7 6.3 #49.362.951.4793011.2490636159009791.0220.7 8.0 62.379.440.5991011.26127991980012201.0216.3 10.0 77.498.632.41220011.17519862430015001.0213.2 12.0 #92.311827.01430011.088411702860017701.0211.0 12.5 96.012225.91480011.091712102970018301.0210.6 16.0 12115520.21840010.9114015203680022701.028.39 355.65.0 #43.255.171.1846012.4476615169009521.1225.9 6.0 51.765.959.31010012.45667332010011301.1221.6 6.3 #54.369.156.41050012.45937692110011901.1220.6 8.0 68.687.444.51320012.37429672640014901.1216.4 10.0 85.210935.61620012.291212003240018301.1213.1 12.0 #10213029.61910012.2108014203830021501.1211.0 12.5 10613528.41990012.1112014703970022301.1210.6 16.0 13417122.22470012.0139018504930027701.128.36

COLD-FORMED CIRCULAR HOLLOW
SECTIONS
FOR EXPLANATION OF TABLES SEE NOTES 2 AND 3 Hybox® is a trademark of Tata Steel. A fuller description of the relationship between Cold Formed Circular Hollow Sections (CFCHS) and the Hybox® range of sections manufactured by Tata Steel is given in note 12.
BS EN 1993-1-1:2005 BS EN 10219-2:2006 Cold
z z t d 199
Formed yy

Hybox® CHS

Dimensions and properties

Section TorsionalSurface Area Designation Constants

MassAreaRatioSecondRadiusElasticPlastic perofforMomentofModulusModulus OutsideThicknessMetreSectionLocalof AreaGyrationPerPer DiameterBuckling MetreTonne dtAd/tIiWel Wpl IT Wt mmmmkg/m cm 2 cm 4 cm cm 3 cm 3 cm 4 cm 3 m 2 m 2 406.46.0 #59.275.567.71510014.27459623030014901.2821.6

6.3 #62.279.264.51580014.178010103170015601.2820.6 8.0 78.610050.81990014.197812703970019601.2816.3 10.0 97.812540.62450014.0121015704900024101.2813.1 12.0 #11714933.92890014.0142018705790028501.2811.0 12.5 12115532.53000013.9148019406010029601.2810.5 16.0 15419625.43740013.8184024407490036901.288.31 4576.0 #66.785.076.22160015.994612204320018901.4421.6 6.3 #70.089.272.52270015.999112804530019801.4420.6 8.0 88.611357.12840015.9125016105690024901.4416.3 10.0 11014045.73510015.8154020007020030701.4413.1 12.0 #13216838.14160015.7182023808310036401.4410.9 12.5 13717536.64310015.7189024708630037801.4410.5 16.0 17422228.65400015.62360311010800047201.448.28 5086.0 #74.394.684.72980017.7117015105960023501.6021.6 6.3 #77.999.380.63120017.7123015906250024601.6020.5 8.0 #98.612663.53930017.7155020007860030901.6016.2 10.0 12315650.84850017.6191024809700038201.6013.0 12.0 #14718742.35750017.52270295011500045301.6010.9 12.5 15319540.65980017.52350307012000047101.6010.5 16.0 #19424731.87490017.42950387015000059001.608.24 FOR EXPLANATION OF TABLES SEE NOTES 2 AND 3

Hybox® is a trademark of Tata Steel. A fuller description of the relationship between Cold Formed Circular Hollow Sections (CFCHS) and the Hybox® range of sections manufactured by Tata Steel is given in note 12.

COLD-FORMED
CIRCULAR HOLLOW SECTIONS
BS EN 1993-1-1:2005 BS EN 10219-2:2006
z z t d 200
Cold Formed yy

SQUARE HOLLOW SECTIONS

Hybox® SHS

Dimensions and properties

Surface Area Section Designation

Torsional Constants

MassAreaRatioSecondRadiusElasticPlastic perofforMomentofModulusModulus SizeThicknessMetreSectionLocalof AreaGyrationPerPer BucklingMetreTonne h x htA c/t (1) IiWel Wp IT Wt mmmmkg/m cm 2 cm 4 cm cm 3 cm 3 cm 4 cm 3 m 2 m 2 25x252.0 #1.361.749.501.480.9241.191.472.531.800.09368.2

2.5 1.642.097.001.690.8991.351.712.972.070.09155.5 30x302.0 #1.682.1412.02.721.131.812.214.542.750.11367.3 2.5 #2.032.599.003.161.102.102.615.403.200.11154.6 3.0 2.363.017.003.501.082.342.966.153.580.11046.5 40x402.0 #2.312.9417.06.941.543.474.1311.35.230.15366.4

2.5 2.823.5913.08.221.514.114.9713.66.210.15153.6 3.0 3.304.2110.39.321.494.665.7215.87.070.15045.5 4.0 4.205.357.0011.11.445.547.0119.48.480.14634.7 50x502.5 3.604.5917.016.91.926.788.0727.510.20.19153.1 3.0 4.255.4113.719.51.907.799.3932.111.80.19044.8 4.0 5.456.959.5023.71.859.4911.740.414.40.18634.0 5.0 6.568.367.0027.01.8010.813.747.516.60.18327.8 60x603.0 5.196.6117.035.12.3111.714.057.117.70.23044.4 4.0 6.718.5512.043.62.2614.517.672.622.00.22633.7 5.0 8.1310.49.0050.52.2116.820.986.425.60.22327.4 6.0 #9.4512.07.0056.12.1618.723.798.428.60.21923.2 70x703.0 6.137.8120.357.52.7116.419.492.424.70.27044.0 3.5 7.068.9917.065.12.6918.622.210628.00.26838.1 4.0 7.9710.114.572.12.6720.624.811931.10.26633.5 5.0 9.7012.411.084.62.6224.229.614236.70.26327.1 6.0 #11.314.48.6795.22.5727.233.816341.40.25922.9 80x803.0 7.079.0123.787.83.1222.025.814033.00.31043.7 3.5 8.1610.419.999.83.1025.029.516137.60.30837.9 4.0 9.2211.717.01113.0727.833.118041.80.30633.0 5.0 11.314.413.01313.0332.939.721849.70.30326.9 6.0 13.216.810.31492.9837.345.825256.60.29922.6 90x903.0 8.0110.227.01273.5328.333.020142.50.35043.8 3.5 9.2611.822.71453.5132.237.923248.50.34837.6 4.0 10.513.319.51623.4836.042.626154.20.34633.0 5.0 12.816.415.01933.4342.951.431664.70.34326.7 6.0 #15.119.212.02203.3949.059.536874.20.33922.4 100x1003.0 8.9611.430.31773.9435.441.227953.20.39043.7 4.0 11.714.922.02263.8945.353.336268.10.38632.9 5.0 14.418.417.02713.8454.264.644181.70.38326.6 6.0 17.021.613.73113.7962.375.151494.10.37922.3 8.0 21.427.29.503663.6773.291.16451140.36617.1 120x1203.0 #10.813.837.03124.7652.160.248878.20.47043.4 4.0 14.218.127.04024.7167.078.36371010.46632.7 5.0 17.522.421.04854.6680.995.47781220.46326.4 6.0 20.726.417.05624.6193.71129131410.45922.1 8.0 26.433.612.06774.4911313811601750.44616.9 10.0 31.840.69.007774.3812916213802030.43713.7 (1) For local buckling calculation c = h - 3t. # Check availability FOR EXPLANATION OF TABLES SEE NOTES 2 AND 3

Hybox® is a trademark of Tata Steel. A fuller description of the relationship between Cold Formed Square Hollow Sections (CFSHS) and the Hybox® range of sections manufactured by Tata Steel is given in note 12.

COLD-FORMED
BS EN 1993-1-1:2005 BS EN 10219-2:2006 Cold
z z t
h 201
Formed yy
h

SQUARE HOLLOW SECTIONS

Hybox® SHS

Dimensions and properties

MassAreaRatioSecondRadiusElasticPlastic perofforMomentofModulusModulus SizeThicknessMetreSectionLocalof AreaGyrationPerPer BucklingMetreTonne

Designation

h x htA c/t (1) IiWel Wp IT Wt mmmmkg/m cm 2 cm 4 cm cm 3 cm 3 cm 4 cm 3 m 2 m 2

140x1404.0 16.821.332.06525.5293.110810201400.54632.6

5.0 20.726.425.07915.4811313212601700.54326.2 6.0 24.531.220.39205.4313115514801980.53922.0 8.0 31.440.014.511305.3016119419002480.52616.7 10.0 38.148.611.013105.2018723022702910.51713.5 150x1504.0 #18.022.934.58085.9310812512701620.58632.5

5.0 22.328.427.09825.8913115315501970.58326.2 6.0 26.433.622.011505.8415318018302300.57921.9 8.0 33.943.215.814105.7118822623602890.56616.7 10.0 41.352.612.016505.6122026928403410.55713.5 160x1604.0 #19.324.537.09876.3412314315401850.62632.5

5.0 23.830.429.012006.2915017519002260.62326.2

6.0 28.336.023.714106.2517620622402640.61921.9 8.0 36.546.417.017406.1221826029003340.60616.6 10.0 44.456.613.020506.0225631134903950.59713.4

180x1805.0 27.034.433.017407.1119322427202900.70326.1 6.0 32.140.827.020407.0622626432203400.69921.8 6.3 #33.342.425.621007.0323327333803540.69320.8 8.0 41.552.819.525506.9428333641904320.68616.5 10.0 50.764.615.030206.8433540450705150.67713.3 12.0 #58.574.512.033206.6836945458705840.65811.3 12.5 60.577.011.434106.6537846760506000.65610.8 200x2005.0 30.138.437.024107.9324127937603620.78326.0 6.0 35.845.630.328307.8828333044604260.77921.7 6.3 #37.247.428.729207.8529234146804440.77320.7 8.0 46.559.222.035707.7635742158205440.76616.5 10.0 57.072.617.042507.6542550870706510.75713.3 12.0 #66.084.113.747307.5047357682307430.73811.2 12.5 68.387.013.048607.4748659485007650.73610.7 250x2506.0 45.257.638.756709.9245452488406810.97921.6 6.3 #47.160.036.758709.8947054492907110.97320.6 8.0 59.175.228.372309.80578676116008780.96616.3 10.0 72.792.622.087109.706978221420010600.95713.2 12.0 #84.810817.898609.557899441670012300.93811.1 12.5 88.011217.0102009.528139751730012700.93610.7 300x3006.0 54.769.647.0996012.0664764154009971.1821.6 6.3 #57.072.644.61030011.96897951620010401.1720.5 8.0 71.691.234.51280011.88539912030012901.1716.4 10.0 88.411327.01550011.7104012102500015701.1613.1 12.0 #10413222.01780011.6118014002950018301.1411.0 12.5 10813721.01830011.6122014503060018901.1410.6 (1) For local buckling calculation c = h - 3t. # Check availability FOR EXPLANATION OF TABLES SEE NOTES 2 AND 3

COLD-FORMED
Section TorsionalSurface Area BS EN 1993-1-1:2005 BS EN 10219-2:2006
z z t
h 202
Constants Hybox® is a trademark of Tata Steel. A fuller description of the relationship between Cold Formed Square Hollow Sections (CFSHS) and the Hybox® range of sections manufactured by Tata Steel is given in note 12.
Cold Formed yy
h

COLD-FORMED SQUARE HOLLOW SECTIONS

Hybox® SHS

Dimensions and properties

TorsionalSurface Area Designation Constants

Section

MassAreaRatioSecondRadiusElasticPlastic perofforMomentofModulusModulus SizeThicknessMetreSectionLocalof AreaGyrationPerPer BucklingMetreTonne h x htA c/t (1) IiWel Wp IT Wt mmmmkg/m cm 2 cm 4 cm cm 3 cm 3 cm 4 cm 3 m 2 m 2

350x3506.0 #64.181.655.31600014.091510502470013701.3821.5 6.3 #66.985.252.61660014.095110902590014401.3720.4 8.0 84.210740.82070013.9118013703260017901.3716.3 10.0 10413332.02520013.8144016804010021801.3613.1 12.0 #12315626.22910013.6166019504760025501.3410.9 12.5 12716225.03000013.6172020204940026401.3410.5 400x4006.0 #73.593.663.72410016.0121013803700018101.5821.5 6.3 #76.897.860.52510016.0126014403890018901.5720.4 8.0 96.712347.03130015.9156018004890023601.5716.2 10.0 12015337.03820015.8191022106040028901.5613.0 12.0 #14118030.34430015.7222025907180034001.5410.9 12.5 14718729.04590015.7229026807460035201.5410.5

Hybox® is a trademark of Tata Steel. A fuller description of the relationship between Cold Formed Square Hollow Sections (CFSHS) and the Hybox® range of sections manufactured by Tata Steel is given in note 12.

(1) For local buckling calculation c = h - 3t. # Check availability FOR EXPLANATION OF TABLES SEE NOTES 2 AND 3

BS EN 1993-1-1:2005 BS EN 10219-2:2006 Cold
z
t
h 203
Formed yy
z
h

Hybox® RHS

Cold Formed

Dimensions and properties

Designation

MassArea perof

Torsional Constants Plastic Modulus Local Buckling Elastic Modulus Second Moment of Area Radius of Gyration

Surface Area SectionRatios for

SizeThicknessMetreSectionAxisAxisAxisAxisAxisAxisAxisAxisPerPer y-yz-zy-yz-zy-yz-zy-yz-zMetreTonne h x btA cw/t (1) cf/t (1) IT Wt mmmmkg/m cm 2 cm 4 cm 4 cmcm cm 3 cm 3 cm 3 cm 3 cm 4 cm 3 m 2 m 2

50 x 252.0 #2.152.7422.09.508.382.811.751.013.352.254.262.627.063.920.14366.5 2.5 2.623.3417.07.009.893.281.720.9913.952.625.113.128.434.600.14153.9 3.0 3.073.9113.75.3311.23.671.690.9694.472.935.863.569.645.180.14045.6 50 x 302.0 #2.312.9422.012.09.544.291.801.213.812.864.743.339.774.840.15366.4 2.5 2.823.5917.09.0011.35.051.771.194.523.375.703.9811.75.720.15153.6 3.0 3.304.2113.77.0012.85.701.751.165.133.806.574.5813.56.490.15045.5 4.0 4.205.359.504.5015.36.691.691.126.104.468.055.5816.57.710.14634.7 60 x 402.5 #3.604.5921.013.022.111.72.191.607.365.879.066.8425.19.720.19153.1 3.0 4.255.4117.010.325.413.42.171.588.466.7210.57.9429.311.20.19044.8 4.0 5.456.9512.07.0031.016.32.111.5310.38.1413.29.8936.713.70.18634.0 5.0 6.568.369.005.0035.318.42.061.4811.89.2115.411.542.815.60.18327.8

70 x 403.0 4.726.0120.310.337.315.52.491.6110.77.7513.49.0536.513.20.21044.5 4.0 6.087.7514.57.0046.018.92.441.5613.19.4416.811.345.816.20.20633.8 5.0 7.349.3611.05.0052.921.52.381.5215.110.819.813.353.818.70.20327.6 70 x 503.0 #5.196.6120.313.744.126.12.581.9912.610.415.412.253.617.10.23044.4 4.0 6.718.5514.59.5054.732.22.531.9415.612.919.515.468.121.20.22633.7 5.0 8.1310.411.07.0063.537.22.481.9018.114.923.118.280.824.60.22327.4 80 x 403.0 5.196.6123.710.352.317.62.811.6313.18.7816.510.243.915.30.23044.4 4.0 6.718.5517.07.0064.821.52.751.5916.210.720.912.855.218.80.22633.7 5.0 8.1310.413.05.0075.124.62.691.5418.812.324.715.065.021.70.22327.4 80 x 503.0 5.667.2123.713.761.129.42.912.0215.311.818.813.665.019.70.25044.3 4.0 7.349.3517.09.5076.436.52.861.9819.114.624.017.282.724.60.24633.5 5.0 8.9111.413.07.0089.242.32.801.9322.316.928.520.598.428.70.24327.2 80 x 603.0 6.137.8123.717.070.044.93.002.4017.515.021.217.488.324.10.27044.0 3.5 7.068.9919.914.179.350.72.972.3719.816.924.119.810127.30.26838.1 4.0 7.9710.117.012.087.956.12.942.3522.018.727.022.111330.30.26633.5 5.0 9.7012.413.09.0010365.72.892.3125.821.932.226.413635.70.26327.1 90 x 503.0 #6.137.8127.013.781.932.73.242.0518.213.122.615.076.722.40.27044.0 4.0 #7.9710.119.59.5010340.73.182.0022.816.328.819.197.728.00.26633.5 5.0 9.7012.415.07.0012147.43.121.9626.818.934.422.711632.70.26327.1 (1) For local buckling calculation cw = d - 3t and cf = h - 3t. # Check availability FOR EXPLANATION OF TABLES SEE NOTES 2 AND 3

COLD-FORMED RECTANGULAR HOLLOW SECTIONS
BS EN 1993-1-1:2005 BS EN 10219-2:2006
z
Hybox® is a trademark of Tata Steel. A fuller description of the relationship between Cold Formed Rectangular Hollow Sections (CFRHS) and the Hybox® range of sections manufactured by Tata Steel is given in note 12. b t 204
z yy h

Hybox® RHS

Dimensions and properties

ElasticPlasticTorsional SectionRadius of

MassArea perof

SizeThicknessMetreSectionAxisAxisAxisAxisAxisAxisAxisAxisPerPer y-yz-zy-yz-zy-yz-zy-yz-zMetreTonne h x btA cw/t (1) cf/t (1) IT Wt mmmmkg/m cm 2 cm 4 cm 4 cmcm cm 3 cm 3 cm 3 cm 3 cm 4 cm 3 m 2 m 2 100 x 403.0 6.137.8130.310.392.321.73.441.6718.510.823.712.459.019.40.27044.0 4.0 7.9710.122.07.0011626.73.381.6223.113.330.315.774.524.00.26633.5 5.0 #9.7012.417.05.0013630.83.311.5827.115.436.118.587.927.90.26327.1 100 x 503.0 6.608.4130.313.710636.13.562.0721.314.426.716.488.625.00.29044.1 4.0 8.5910.922.09.5013444.93.502.0326.818.034.120.911331.30.28633.2 5.0 10.513.417.07.0015852.53.441.9831.621.040.825.013536.80.28327.0 6.0 12.315.613.75.3317958.73.381.9435.823.546.928.515441.40.27922.7 100 x 603.0 7.079.0130.317.012154.63.662.4624.118.229.620.812230.60.31043.7 3.5 8.1610.425.614.113761.93.632.4427.420.633.823.813934.80.30837.9 4.0 9.2211.722.012.015368.73.602.4230.522.937.926.615638.70.30633.0 5.0 11.314.417.09.0018180.83.552.3736.226.945.631.918845.80.30326.9 6.0 13.216.813.77.0020591.23.492.3341.130.452.536.621651.90.29922.6 100 x 803.0 #8.0110.230.323.71491063.823.2229.826.435.430.419641.90.35043.8 4.0 10.513.322.017.01891343.773.1737.933.545.639.225453.40.34633.0 5.0 12.816.417.013.02261603.723.1245.239.955.147.230863.70.34326.7 6.0 15.119.213.710.32581823.673.0851.745.563.854.735773.00.33922.4 120 x 403.0 #7.079.0137.010.314825.84.051.6924.712.932.214.674.623.50.31043.7 4.0 #9.2211.727.07.0018731.93.991.6531.115.941.218.594.229.20.30633.0 5.0 #11.314.421.05.0022136.93.921.6036.818.549.422.011134.10.30326.9 120 x 603.0 8.0110.237.017.018964.44.302.5131.521.539.224.215637.10.35043.8 3.5 9.2611.831.314.121673.14.282.4935.924.444.927.717942.20.34837.6 4.0 10.513.327.012.024181.24.252.4740.127.150.531.120147.00.34633.0 5.0 12.816.421.09.0028796.04.192.4247.832.060.937.424255.80.34326.7 6.0 15.119.217.07.003281094.132.3854.736.370.643.128063.60.33922.4 120 x 803.0 8.9611.437.023.72301234.493.2938.430.946.235.025550.80.39043.7 4.0 11.714.927.017.02951574.443.2449.139.359.845.233164.90.38632.9 5.0 14.418.421.013.03531884.393.2058.946.972.454.740277.80.38326.6 6.0 17.021.617.010.34062154.333.1567.753.884.363.546989.40.37922.3 8.0 21.427.212.07.004762524.183.0479.362.910276.95841080.36617.1

x 803.0 #9.9012.643.723.73341415.153.3547.835.358.239.631759.70.43043.4

13.016.532.017.04301805.103.3061.445.175.551.341276.50.42632.8

#16.020.425.013.05172165.043.2673.954.091.862.250191.80.42326.5

18.924.020.310.35972484.983.2185.362.010772.45841060.41922.2

23.930.414.57.007082934.823.1010173.313188.47311290.40617.0

28.736.611.05.008043304.693.0111582.61521038511470.39713.8

COLD-FORMED RECTANGULAR HOLLOW SECTIONS
140
4.0
5.0
6.0
8.0
10.0
(1) For local buckling calculation cw = d - 3t and cf = h - 3t. # Check availability FOR EXPLANATION OF TABLES SEE NOTES 2 AND 3 Surface Area
DesignationLocal Bucklingof AreaGyrationModulusModulusConstants Ratios forSecond Moment Hybox® is a trademark of Tata Steel. A fuller description of the relationship between Cold Formed Rectangular Hollow Sections (CFRHS) and the Hybox® range of sections manufactured by Tata Steel is given in note 12.
BS EN 1993-1-1:2005 BS EN 10219-2:2006 Cold Formed z z yy h b t 205

Hybox® RHS

Dimensions and properties

Second MomentRadius ofElasticPlastic Modulus TorsionalSurface Area SectionRatios for DesignationLocal Bucklingof AreaGyration

MassArea perof

ModulusConstants

SizeThicknessMetreSectionAxisAxisAxisAxisAxisAxisAxisAxisPerPer y-yz-zy-yz-zy-yz-zy-yz-zMetreTonne h x btA cw/t (1) cf/t (1) IT Wt mmmmkg/m cm 2 cm 4 cm 4 cmcm cm 3 cm 3 cm 3 cm 3 cm 4 cm 3 m 2 m 2

150 x 1003.0 #11.314.447.030.34612485.654.1561.449.573.555.850781.40.49043.3 4.0 14.918.934.522.05953195.604.1079.363.795.772.56621050.48632.7 5.0 18.323.427.017.07193845.554.0595.976.811788.38091270.48326.3 6.0 21.727.622.013.78354445.504.0111188.81371039481470.47922.1 8.0 27.735.215.89.5010105365.353.9013410716912812101820.46616.8 10.0 33.442.612.07.0011606145.223.8015512319915014302110.45713.7

160 x 803.0 #10.813.850.323.74641595.803.3958.039.871.444.338068.60.47043.4 4.0 14.218.137.017.05982045.743.3574.750.992.957.449488.00.46632.7 5.0 17.522.429.013.07222445.683.3090.261.011369.76011060.46326.4 6.0 20.726.423.710.38362815.623.2610570.213281.37021220.45922.1 8.0 26.433.617.07.0010003355.463.1612583.71631008821500.44616.9 10.0 #31.840.613.05.0011503805.323.0614395.019111710301720.43713.7

180 x 803.0 11.815.057.023.76211776.433.4369.044.285.848.944577.50.51043.3 4.0 15.519.742.017.08022276.373.3989.156.711263.557899.60.50632.6 5.0 19.124.433.013.09712726.313.3410868.113777.27041200.50326.3 6.0 #22.628.827.010.311303146.253.3012578.516090.28231390.49922.1 8.0 28.936.819.57.0013603776.083.2015194.119811110401700.48616.8 10.0 #35.044.615.05.0015704295.943.1017410723413112101960.47713.6

180 x 1004.0 #16.821.342.022.09263746.594.1810374.812684.08541270.54632.6 5.0 20.726.433.017.011204526.534.1412590.415410310501540.54326.2 6.0 24.531.227.013.713105246.484.1014610518112012301790.53922.0 8.0 31.440.019.59.5016006376.323.9917812722615015702220.52616.7 10.0 38.148.615.07.0018607366.193.8920714726817718602600.51713.5

200 x 1004.0 18.022.947.022.012004117.234.2312082.214891.79851420.58632.5 5.0 22.328.437.017.014604977.174.1914699.418111212101720.58326.2 6.0 26.433.630.313.717005777.124.1417011521313214202000.57921.9 8.0 33.943.222.09.5020907056.954.0420914126716518102500.56616.7 10.0 41.352.617.07.0024408186.823.9424416431819521502920.55713.5 200 x 1204.0 19.324.547.027.013506187.435.0213510316411513501720.62632.5 5.0 23.830.437.021.016507507.374.9716512520114116502100.62326.2 6.0 28.336.030.317.019308747.324.9319314623716619502450.61921.9 8.0 36.546.422.012.0239010807.174.8223918029820925103080.60616.6 10.0 44.456.617.09.00281012607.044.7228121035625030103640.59713.4 200 x 1504.0 #21.226.947.034.5158010207.676.1615813618715419402190.68632.4 5.0 #26.233.437.027.0194012507.626.1119316623018923902670.68326.1 6.0 31.139.630.322.0227014607.566.0622719427122328303130.67921.8 8.0 40.251.222.015.8283018207.435.9528324234428336703960.66616.6 10.0 49.162.617.012.0335021407.315.8533528641333944304710.65713.4 (1) For local buckling calculation cw = d - 3t and cf = h - 3t. # Check availability FOR EXPLANATION OF TABLES SEE NOTES 2 AND 3

Hybox® is a trademark of Tata Steel. A fuller description of the relationship between Cold Formed Rectangular Hollow Sections (CFRHS) and the Hybox® range of sections manufactured by Tata Steel is given in note 12.

COLD-FORMED RECTANGULAR HOLLOW SECTIONS
BS EN 1993-1-1:2005 BS EN 10219-2:2006
z
b t 206
Cold Formed
z yy h

Hybox® RHS

Dimensions and properties

MassArea perof

SizeThicknessMetreSectionAxisAxisAxisAxisAxisAxisAxisAxisPerPer y-yz-zy-yz-zy-yz-zy-yz-zMetreTonne h x btA cw/t (1) cf/t (1) IT Wt mmmmkg/m cm 2 cm 4 cm 4 cmcm cm 3 cm 3 cm 3 cm 3 cm 4 cm 3 m 2 m 2

250 x 1505.0 30.138.447.027.0330015109.286.2726420132022532903370.78326.0

6.0 35.845.638.722.0389017709.236.2331123637826638903960.77921.7 6.3 #37.247.436.720.8400018309.186.2032024339127640804120.77320.7 8.0 46.559.228.315.8489022209.086.1239129648234050505040.76616.5 10.0 57.072.622.012.0583026308.966.0246635158240961206020.75713.3 12.0 66.084.117.89.50646029308.775.9051739065846370906840.73811.2 12.5 68.387.017.09.00663030008.735.8753140067847773207040.73610.7

300 x 1008.0 46.559.234.59.505980105010.04.2039920952323830803850.76616.5 10.0 57.072.627.07.00711012209.904.1147424563128536804550.75713.3

300 x 2006.0 45.257.647.030.37370396011.38.2949139658844681206510.97921.6 6.3 #47.160.044.628.77620410011.38.2750841061046385206800.97320.6 8.0 59.175.234.522.09390504011.28.19626504757574106008380.96616.3 10.0 72.792.627.017.011300606011.18.097546069216981300010100.95713.2 12.0 #84.810822.013.712800685010.97.9685368510608011520011700.93811.1 12.5 88.011221.013.013200706010.87.9487970610908281580012000.93610.7

400 x 2006.0 #54.769.663.730.314800509014.68.55739509906562121008771.1821.6 6.3 #57.072.660.528.715300529014.58.53766529942585127009161.1720.5 8.0 71.691.247.022.019000652014.48.4594965211707281580011301.1716.4 10.0 88.411337.017.023000786014.38.36115078614308881940013701.1613.1 12.0 #10413230.313.726200898014.18.241310898166010302280015901.1411.0 12.5 10813729.013.027100926014.18.221360926171010602360016401.1410.6

450 x 2506.0 #64.181.672.038.722700925016.710.6101074012208172070012501.3821.5 6.3 #66.985.268.436.723600962016.610.6105076912708512170013101.3720.4 8.0 #84.210753.328.3293001190016.510.51300953159010602720016301.3716.3 10.0 #10413342.022.0357001450016.410.415901160195013003350019801.3613.1 12.0 #12315634.517.8411001670016.210.318301330226015203960023101.3410.9 12.5 #12716233.017.0425001720016.210.318901380235015704110023901.3410.5 500 x 3006.0 #73.593.680.347.0330001520018.812.713201010158011203240016901.5821.5 6.3 #76.897.876.444.6343001580018.712.713701050165011703410017701.5720.4 8.0 #96.712359.534.5428001960018.612.617101310206014604280022001.5716.2 10.0 #12015347.027.0523002390018.512.520901600254017905270026901.5613.0 12.0 #14118038.722.0606002770018.312.424201850296020906260031601.5410.9 12.5 #14718737.021.0627002870018.312.425101910307021706500032701.5410.5

COLD-FORMED RECTANGULAR HOLLOW SECTIONS
local
=
- 3t
cf =
- 3t.
SEE
3
the
the
sections manufactured by
is
BS EN 1993-1-1:2005 BS EN 10219-2:2006 Cold Formed z z yy h b t 207
(1) For
buckling calculation cw
d
and
h
# Check availability FOR EXPLANATION OF TABLES
NOTES 2 AND
SectionRatios forSecond MomentRadius ofElasticPlasticTorsionalSurface Area ModulusModulusConstants Hybox® is a trademark of Tata Steel. A fuller description of
relationship between Cold Formed Rectangular Hollow Sections (CFRHS) and
Hybox® range of
Tata Steel
given in note 12. DesignationLocal Bucklingof AreaGyration
208
209

98609860 88408840 79807980 72207220 65206520 56505650 5540 5280 648064806480 584058405840 58005800 51405140 4700 4410 44504450 4010 3780 3890 3520 3130 3050 3260 2950 2750 2570

S275 / Advance®S275
BS EN 1993-1-1:2005 BENDING BS 4-1: 2005
bold type italictype
210
UNIVERSAL BEAMS Advance® UKB

UNIVERSAL BEAMS Advance® UKB

37803780 28802880 24102410 2590 2340 2180 2130 453 422 395 371345 38203820 1190 32603260 926 26802680 821763 22402240 676628 2590 589547 2230 521484 2040 461428 1900 426396 1820 433399371 377348324 343319 331306284 286264245 2770 667616572 2320 592542501465 1890 460422390362 1700 430394364338 1580 388356328305 1510 366336310288 331303280260 294270249231 349320295274 314287265246 291266246228 257236218202 241219201185172

S275 / Advance®S275
BS EN 1993-1-1:2005 BENDING BS 4-1: 2005
bold type italictype
211

14801480 13301330 12201220 11001100 10601060 1100 946 877 11401140 10001000 910910 850850 817 731 844844 714714 226 637637 196 948 223 840 193 745 169 700 151 127 107 642642 208192178 560560 177163152 521 144133124 566 129119111 11210496.2 95.087.781.4 462 13812611510698.7 408 11410394.687.381.1 393 10393.685.879.273.5 83.675.268.462.757.953.7 77.367.760.154.149.245.141.638.7 61.652.846.241.137.033.630.828.426.4

S275 / Advance®S275
BS 4-1: 2005
bold type italictype
BS EN 1993-1-1:2005 BENDING 212
UNIVERSAL BEAMS Advance® UKB

609060906090 233021501990 526052605260 2150197018201690 457045704570 1860170015701460 38403840 16801520140012901200 32903290 14301300119011001020 28802880 123011201030948880 23002300 1100994903828764710 20602060 936842765702648601 18101810 814733666610563523 15401540 698629571524484449 12901290 584526478438404375 29802980 11601040947868801744 26302630 11301000900819750693643 21402140 912810729663608561521 1740 710631568517474437406 1510 609541487443406375348 1310 519461415377346319296 1120 438389350318292269250 1810 734642571514467428395367 1410 566495440396360330305283 1150 450393350315286262242225 933 371324288259236216200185 814 364312273243218198182168156 1370 536459402357322292268247230 1250 470402352313282256235217201 1090 406348304270243221203187174 345296259230207188173159148 742 282242212188169154141130121 289241206180160144131120111103 25020817815613912511310496.089.2 21918215613712210999.591.284.278.2 24119316113812010796.487.680.374.168.8 20516413611710290.981.874.468.263.058.5 17013611397.084.975.567.961.856.652.348.5 13610990.877.868.160.554.549.545.441.938.9 90.272.260.151.545.140.136.132.830.127.825.8

S275 / Advance®S275
bold
Advance® UKC BS EN 1993-1-1:2005 BENDING BS 4-1: 2005 UNIVERSAL COLUMNS 213
type italictype

JOISTS

10401040 381351326 705 168155144 700 229209191176164 17515313612311210294.487.7 13311499.688.579.672.466.461.356.9 12610894.684.175.768.863.158.254.1 76.365.457.250.845.841.638.135.232.7 13311194.983.173.866.460.455.451.147.5 99.482.971.062.255.249.745.241.438.235.5 31.226.022.319.517.315.614.213.012.011.1 91.072.860.652.045.540.436.433.130.328.026.0 59.647.739.734.129.826.523.821.719.918.317.0 53.642.935.730.626.823.821.419.517.916.515.3 bold type italictype

S275
BS EN 1993-1-1:2005 BENDING BS 4-1: 2005
214

PARALLEL FLANGE CHANNELS

Advance® UKPFC

S275 / Advance®S275
BS EN 1993-1-1:2005 BENDING BS 4-1: 2005
1590 1240 962 194 192179 156144134 120111103 142130120112 11110294.187.4 14212811610798.591.5 11199.990.883.276.871.3 12811310292.885.178.572.9 96.886.077.470.464.559.655.3 11398.587.578.871.665.660.656.3 83.072.664.558.152.848.444.741.5 65.956.549.444.039.636.033.030.428.3 43.035.930.726.923.921.519.617.916.615.4 bold type italictype 215

Design Section Shear Designation Resistance Vc,Rd kN

Position of Stiff Bearing

UNIVERSAL BEAMS Advance® UKB

Unstiffened webs

Design resistance of unstiffened web, FRd (kN) and limiting length, clim (mm)

Stiff bearing length, ss (mm)

0102030405075100150200250300350

1016x305x487 + 4930 FRd (c = 0) 938102011001200129014001670198024802860324036204010 clim (mm) 620610600590580570550520470420370320290 FRd (c clim) 3480356036403710379038704060425046305010540057806160

1016x305x437 + 4420 FRd (c = 0) 8018729501030112012101470174021602500285031903530 clim (mm) 620610600590580570550520470420370320270 FRd (c clim) 2940301030703140321032803450362039704310465050005340

1016x305x393 + 3990 FRd (c = 0) 68174681689297410601290154019002470275030203290 clim (mm) 620610600590580570550520470420370320300 FRd (c clim) 2470253026002660272027802940309034103720453046804830 1016x305x349 + 3610 FRd (c = 0) 59899610401090114011901320145016701880209023002510 clim (mm) 620610600590580570550520470420370320290 FRd (c clim) 2140220022502310289029202990305031803310342035403650

1016x305x314 + 3260 FRd (c = 0) 7718078458839239641070118013501530170018702040 clim (mm) 620610600590580570550520470420370320270 FRd (c clim) 2220225022702300232023402400245025602660276028602950 1016x305x272 + 2830 FRd (c = 0) 5685956236526827137928709991130126013801510 clim (mm) 620610600590580570550520470420370320270 FRd (c clim) 1620163016501670169017101750179018701950203021002170 1016x305x249 + 2770 FRd (c = 0) 5535806096386697007818489781110124013601490 clim (mm) 620610600590580570550520470420370320270 FRd (c clim) 1540156015801600162016401680172018101890197020402120 1016x305x222 + 2640 FRd (c = 0) 5095355625906196487187809021020115012701390 clim (mm) 620610600590580570550520470420370320270 FRd (c clim) 1390141014201440146014801520157016501730180018701940

914x419x388 3240 FRd (c = 0) 6517107748439169931420157018302060230025302770 clim (mm) 570560550540530520500470420370320280280 FRd (c clim) 2260231023702430248025402680282034103550368038003920

914x419x343 2920 FRd (c = 0) 81785890094398810301150128014801670187020602250 clim (mm) 570560550540530520500470420370320270260 FRd (c clim) 1860191019602440247025002560262027402850296030603160

Advance® and UKB are trademarks of Tata Steel. A fuller description of the relationship between Universal Beams (UB) and the Advance® range of sections manufactured by Tata Steel is given in note 12. + These sections are in addition to the range of BS 4 sections If c < clim, then use FRd value for c = 0.

FOR EXPLANATION OF TABLES SEE NOTE 6.

S275 / Advance® 275
WEB
BEARING AND BUCKLING
BS EN 1993-1-5: 2007 BS 4-1: 2005 z z yy ss c 216

Position of Stiff Bearing

WEB BEARING AND BUCKLING Advance® UKB

UNIVERSAL BEAMS

Unstiffened webs

Design resistance of unstiffened web, FRd (kN) and limiting length, clim (mm)

Stiff bearing length, ss (mm)

Design Section Shear Designation Resistance Vc,Rd kN 0102030405075100150200250300350 914x305x289 2900 FRd (c = 0) 46451988192597010201140125014401640183020202210 clim (mm) 580570560550540530510480430380330280250 FRd (c clim) 1640170017501800185019002490255026702790290030003110 914x305x253 2570 FRd (c = 0) 61965268572075679288897111201280143015801730 clim (mm) 580570560550540530510480430380330280230 FRd (c clim) 1750178018001820184018601910196020602150224023302410 914x305x224 2350 FRd (c = 0) 5145425716006316627428079371070119013201450 clim (mm) 580570560550540530510480430380330280230 FRd (c clim) 1430145014701490151015301570162017001780186019302000 914x305x201 2210 FRd (c = 0) 456481507534562590657716833949107011801300 clim (mm) 580570560550540530510480430380330280230 FRd (c clim) 1250127012801300132013401380142015001570164017101770 838x292x226 2220 FRd (c = 0) 54157260363666970479487010101160130014401580 clim (mm) 540530520510500490460440390340290240220 FRd (c clim) 1540156015801600162016401690173018201910199020702140 838x292x194 2000 FRd (c = 0) 440465492519548577648708828947107011801300 clim (mm) 540530520510500490460440390340290240200 FRd (c clim) 1220124012601280129013101350139014701540161016801740 838x292x176 1890 FRd (c = 0) 39341644146649251857963474285095810701170 clim (mm) 540530520510500490460440390340290240190 FRd (c clim) 1080110011101130114011601200123013101370144015001560 762x267x197 1950 FRd (c = 0) 5105415746096446807748499971150129014401590 clim (mm) 480470460450440430410380330280230200200 FRd (c clim) 1080112015001520154015601610166017501830192020002070 762x267x173 1760 FRd (c = 0) 420447475504534565638701826950107012001320 clim (mm) 480470460450440430410380330280230190190 FRd (c clim) 1180120012201240125012701310135014301510158016501710 762x267x147 1560 FRd (c = 0) 3303513743974224475015516517518519511050 clim (mm) 480470460450440430410380330280230180170 FRd (c clim) 9079229379529679811020105011201180123012901340

762x267x134 1520 FRd (c = 0) 292312332353375398444489579668758847936 clim (mm) 480470460450440430410380330280230180160 FRd (c clim) 7958098238368508638959269841040109011401150

Advance® and UKB are trademarks of Tata Steel. A fuller description of the relationship between Universal Beams (UB) and the Advance® range of sections manufactured by Tata Steel is given in note 12. If c < clim, then use FRd value for c = 0.

FOR EXPLANATION OF TABLES SEE NOTE 6.

S275 / Advance® 275
BS EN 1993-1-5: 2007 BS 4-1: 2005 z z yy ss c 217

Design

WEB BEARING AND BUCKLING

UNIVERSAL BEAMS Advance® UKB

Unstiffened webs

Position of Stiff Bearing

Design resistance of unstiffened web, FRd (kN) and limiting length, clim (mm)

Stiff bearing length, ss (mm)

Section Shear Designation Resistance Vc,Rd kN 0102030405075100150200250300350

686x254x170 1630 FRd (c = 0) 2704755075405746096977689111050120013401480 clim (mm) 440430420410400390360340290240190190190 FRd (c clim) 94798610201060136013801420147015501630171017801850

686x254x152 1470 FRd (c = 0) 36338941544347150157063074886698311001220 clim (mm) 440430420410400390360340290240190180180 FRd (c clim) 1030105010701080110011101150119012601330140014601520 686x254x140 1370 FRd (c = 0) 3173403633884134394985506557598639671070 clim (mm) 440430420410400390360340290240190170170 FRd (c clim) 8919079229379519651000103011001160122012701330 686x254x125 1280 FRd (c = 0) 277297318340363387435482575668761853946 clim (mm) 440430420410400390360340290240190160160 FRd (c clim) 7667807948088218348668979561010106011101160

610x305x238 1890 FRd (c = 0) 445497553615681752942112013601610185020902340 clim (mm) 390380370360350340310290240200200200200 FRd (c clim) 1570162016601710176018101930205023002540279031103230

610x305x179 1440 FRd (c = 0) 2913313755415776147117899401090124013901540 clim (mm) 390380370360350340310290240190190190190 FRd (c clim) 999104010701110115011901430148015601640172017901860

610x305x149 1210 FRd (c = 0) 3023243483733984254905436497558619661070 clim (mm) 390380370360350340310290240190170170170 FRd (c clim) 869883898912926939972101010701120118012301280

610x229x140 1300 FRd (c = 0) 227394423454486519596661792923105011801310 clim (mm) 390380370360350340310290240190170170170 FRd (c clim) 797831866901113011501190123013001380144015101570

610x229x125 1170 FRd (c = 0) 2983213453713974254865406487568639711080 clim (mm) 390380370360350340310290240190160160160 FRd (c clim) 85186688189691192596099410601120118012301280

610x229x113 1090 FRd (c = 0) 255275297319342366417464558652745839933 clim (mm) 390380370360350340310290240190150150150 FRd (c clim) 720733747760773786817847904957101010601100

610x229x101 1060 FRd (c = 0) 228247267287308330373416502588673759844 clim (mm) 390380370360350340310290240190140140140 FRd (c clim) 633646659671683695724752806855902947951

Advance® and UKB are trademarks of Tata Steel. A fuller description of the relationship between Universal Beams (UB) and the Advance® range of sections manufactured by Tata Steel is given in note 12.

If c < clim, then use FRd value for c = 0.

FOR EXPLANATION OF TABLES SEE NOTE 6.

S275 / Advance® 275
BS EN 1993-1-5: 2007 BS 4-1: 2005 z z yy ss c 218

Design

Section Shear Designation Resistance Vc,Rd kN

Position of Stiff Bearing

UNIVERSAL BEAMS Advance® UKB

Unstiffened webs

Design resistance of unstiffened web, FRd (kN) and limiting length, clim (mm)

Stiff bearing length, ss (mm)

0102030405075100150200250300350

610x178x100 + 1110 FRd (c = 0) 259281303326350375424473571668765863959 clim (mm) 390380370360350340310290240190150150150 FRd (c clim) 726741755769783796829861921977103010801130

610x178x92 + 1090 FRd (c = 0) 242262284306329350396443536628721813905 clim (mm) 390380370360350340310290240190140140140 FRd (c clim) 66868369671072473776979985791196310101050

610x178x82 + 1000 FRd (c = 0) 202219237256275290330369448525603681758 clim (mm) 390380370360350340310290240190140130130 FRd (c clim) 548560572584595606634660710756800822822 533x312x272 + 1910 FRd (c = 0) 5796387027718449231130136016601940222025002780 clim (mm) 340330320310300290260240230230230230230 FRd (c clim) 2060211021702230228023402480262029003180346037404020

533x312x219 + 1630 FRd (c = 0) 417468525587654725917108013201560180020502290 clim (mm) 340330320310300290260240190190190190190 FRd (c clim) 1460151015601610166017101830195021902430268029203160

533x312x182 + 1340 FRd (c = 0) 31635940745951657673985010501250145016601860 clim (mm) 340330320310300290260240190160160160160 FRd (c clim) 1090113011701210125012901390149017001900208021702260

533x312x150 + 1120 FRd (c = 0) 239275316361488523610680819959110012401360 clim (mm) 340330320310300290260240190170170170170 FRd (c clim) 8148488819159499821190123013001380145015101570

533x210x138 + 1290 FRd (c = 0) 2482903383914495106437409351130133015201800 clim (mm) 340330320310300290260240190140140140170 FRd (c clim) 8859249631000104010801180128014701660187019602090 533x210x122 1120 FRd (c = 0) 207243285331478514593664804943108012201340 clim (mm) 340330320310300290260240190160160160160 FRd (c clim) 729763796830864897981120012801350142014901550

533x210x109 1020 FRd (c = 0) 17431233836639542548854766478089710101110 clim (mm) 340330320310300290260240190150150150150 FRd (c clim) 60863967070188990494197610401110117012201280

533x210x101 952 FRd (c = 0) 246268291315341367420471572674775876962 clim (mm) 340330320310300290260240190140140140140 FRd (c clim) 539719733747760774806837896951100010501100 533x210x92 909 FRd (c = 0) 216236257278301324370415506596686776853 clim (mm) 340330320310300290260240190140140140140 FRd (c clim) 612625638651663675704733786836883927957

533x210x82 865 FRd (c = 0) 191209228248269287328369451533614696765 clim (mm) 340330320310300290260240190140130130130 FRd (c clim) 532544556568579591618644693739783824824

Advance® and UKB are trademarks of Tata Steel. A fuller description of the relationship between Universal Beams (UB) and the Advance® range of sections manufactured by Tata Steel is given in note 12.

+ These sections are in addition to the range of BS 4 sections

If c < clim, then use FRd value for c = 0.

FOR EXPLANATION OF TABLES SEE NOTE 6.

S275 / Advance® 275
WEB
BEARING AND BUCKLING
BS EN 1993-1-5: 2007 BS 4-1: 2005 z z yy ss c 219

Design

Section Shear Designation Resistance Vc,Rd kN

Position of Stiff Bearing

WEB BEARING AND BUCKLING

UNIVERSAL BEAMS Advance® UKB

Unstiffened webs

Design resistance of unstiffened web, FRd (kN) and limiting length, clim (mm)

Stiff bearing length, ss (mm)

0102030405075100150200250300350

533x165x85 + 902 FRd (c = 0) 219239260282306328374421513606698790868 clim (mm) 340330320310300290260240190140140140140 FRd (c clim) 619633646659671684714743798849897943987

533x165x74 + 871 FRd (c = 0) 193211231251272289332374457541624707778 clim (mm) 340330320310300290260240190140120120120 FRd (c clim) 535548560572584596624651702749794836846

533x165x66 + 793 FRd (c = 0) 160176192209225240275311382452522592652 clim (mm) 340330320310300290260240190140110110110 FRd (c clim) 436447458469479489513537580621659661661

457x191x161 + 1390 FRd (c = 0) 35941046753059867086598512201460170019402180 clim (mm) 290280270260250240220190180180180180180 FRd (c clim) 1320137014201460151015601680180020402280251027502990

457x191x133 + 1160 FRd (c = 0) 2703143634184775416867889911190140016001800 clim (mm) 290280270260250240220190150150150150150 FRd (c clim) 978102010601100114011801280138015901790199021902420

457x191x106 + 947 FRd (c = 0) 191227269316366421520604771938111013301410 clim (mm) 290280270260250240220190140130130150150 FRd (c clim) 677711744778811844928101011801370145015501620

457x191x98 852 FRd (c = 0) 17220524328533144351558171384597710901160 clim (mm) 290280270260250240220190150150150150150 FRd (c clim) 605636666696726756832101010801140121012701320

457x191x89 789 FRd (c = 0) 149179215316344373432488600712824920976 clim (mm) 290280270260250240220190140140140140140 FRd (c clim) 520547575603631772806838899957101010601110

457x191x82 756 FRd (c = 0) 135236259284309335386437539640742829880 clim (mm) 290280270260250240220190140130130130130 FRd (c clim) 470497645658671684716745802855905952997

457x191x74 693 FRd (c = 0) 175193212233254275317359443527611683725 clim (mm) 290280270260250240220190140120120120120 FRd (c clim) 500512523535546556583608655699741780791

457x191x67 650 FRd (c = 0) 153169187205224241278316391466541605643 clim (mm) 290280270260250240220190140120120120120 FRd (c clim) 432442453463474484508530573614651670670

Advance® and UKB are trademarks of Tata Steel. A fuller description of the relationship between Universal Beams (UB) and the Advance® range of sections manufactured by Tata Steel is given in note 12.

+ These sections are in addition to the range of BS 4 sections If c < clim, then use FRd value for c = 0.

FOR EXPLANATION OF TABLES SEE NOTE 6.

S275 / Advance® 275
BS EN 1993-1-5: 2007 BS 4-1: 2005 z z yy ss c 220

UNIVERSAL BEAMS

Advance® UKB

Unstiffened webs

Design

Position of Stiff Bearing

Design resistance of unstiffened web, FRd (kN) and limiting length, clim (mm)

Stiff bearing length, ss (mm)

Section Shear Designation Resistance Vc,Rd kN 0102030405075100150200250300350

457x152x82 798 FRd (c = 0) 143174209314343372429485597709821918974 clim (mm) 290280270260250240220190140140140140140 FRd (c clim) 510538565593621769803835897954101010601110

457x152x74 721 FRd (c = 0) 196216238261284308355402496590683764811 clim (mm) 290280270260250240220190140130130130130 FRd (c clim) 433459594606618630659687739788834877919

457x152x67 697 FRd (c = 0) 173191210231252271313356440524608680722 clim (mm) 290280270260250240220190140120120120120 FRd (c clim) 493505517528539550577602650694736776788

457x152x60 624 FRd (c = 0) 138153169186203217252286354422490549583 clim (mm) 290280270260250240220190140120120120120 FRd (c clim) 390400410419428437459480519556584584584

457x152x52 578 FRd (c = 0) 119132146161175187217247308368427479485 clim (mm) 290280270260250240220190140100100100100 FRd (c clim) 328337346355363372392411446479485485485

406x178x85 + 742 FRd (c = 0) 15218322026130635443150464883597110501110 clim (mm) 260250240230220210180160120130130130130 FRd (c clim) 5355645926216506797518249911080114012001260 406x178x74 664 FRd (c = 0) 128157248274300327380432537642747804855 clim (mm) 260250240230220210180160120120120120120 FRd (c clim) 447473499525643656687717773825874920965 406x178x67 612 FRd (c = 0) 170189210232255276322367457547637687730 clim (mm) 260250240230220210180160120120120120120 FRd (c clim) 381405516527539550577603652698740781819 406x178x60 549 FRd (c = 0) 135151168186205220257293366439511551586 clim (mm) 260250240230220210180160110110110110110 FRd (c clim) 387397407417426436458479519556591603603

406x178x54 529 FRd (c = 0) 125140157174191205239274343412481520553 clim (mm) 260250240230220210180160110100100100100 FRd (c clim) 352362372381391400422442481517551557557

Advance® and UKB are trademarks of Tata Steel. A fuller description of the relationship between Universal Beams (UB) and the Advance® range of sections manufactured by Tata Steel is given in note 12.

+ These sections are in addition to the range of BS 4 sections If c < clim, then use FRd value for c = 0.

FOR EXPLANATION OF TABLES SEE NOTE 6.

S275 / Advance® 275
WEB
BEARING AND BUCKLING
BS EN 1993-1-5: 2007 BS 4-1: 2005 z z yy ss c 221

Design

Section Shear Designation Resistance

WEB BEARING AND BUCKLING

UNIVERSAL BEAMS

Advance®

UKB

Unstiffened webs

Position of Stiff Bearing

Design resistance of unstiffened web, FRd (kN) and limiting length, clim (mm)

Stiff bearing length, ss (mm)

Vc,Rd kN 0102030405075100150200250300350

406x140x53 + 549 FRd (c = 0) 133149166184202217253290363435508548583 clim (mm) 260250240230220210180160110110110110110 FRd (c clim) 379389399409419428451472513550585601601

406x140x46 473 FRd (c = 0) 97.3109122135148159186213267321375393393 clim (mm) 260250240230220210180160110100100100100 FRd (c clim) 274282289297304311328344375393393393393

406x140x39 438 FRd (c = 0) 83.694.2106117127137161185233281325328328 clim (mm) 26025024023022021018016011090909090 FRd (c clim) 228236243250257263279294322328328328328

356x171x67 568 FRd (c = 0) 121149181218294322377432543653732785835 clim (mm) 230220210200190180150130120120120120120 FRd (c clim) 421446471496521547662692748800849895939

356x171x57 501 FRd (c = 0) 94.4119185207230248292336424511574617656 clim (mm) 230220210200190180150130110110110110110 FRd (c clim) 325347369459470480506530576618658695731

356x171x51 455 FRd (c = 0) 120136153171190204241278351424477512546 clim (mm) 230220210200190180150130100100100100100 FRd (c clim) 272354364374383392414435473509543563563

356x171x45 425 FRd (c = 0) 104119134151166179212245310375423455478 clim (mm) 2302202102001901801501309090909090 FRd (c clim) 294304313322330339359378414447477478478

356x127x39 408 FRd (c = 0) 92.4105119134147158188217275333375404404 clim (mm) 2302202102001901801501309090909090 FRd (c clim) 262270278286294301319336368397404404404

356x127x33 366 FRd (c = 0) 74.385.096.6108118128152176225273307307307 clim (mm) 2302202102001901801501308080808080 FRd (c clim) 206213220227233240255270297307307307307

305x165x54 422 FRd (c = 0) 96.7121149182239261310359456543590634675 clim (mm) 190180170160150140120110110110110110110 FRd (c clim) 333355377398420442520545592636677715752

305x165x46 357 FRd (c = 0) 103118135152170185220255325388422454483 clim (mm) 190180170160150140120100100100100100100 FRd (c clim) 303312321330338346366384419451480491491

305x165x40 319 FRd (c = 0) 81.093.2106121135146174202259309336358358 clim (mm) 190180170160150140120909090909090 FRd (c clim) 234242249256263270286301329356358358358

Advance® and UKB are trademarks of Tata Steel. A fuller description of the relationship between Universal Beams (UB) and the Advance® range of sections manufactured by Tata Steel is given in note 12.

+ These sections are in addition to the range of BS 4 sections If c < clim, then use FRd value for c = 0. FOR EXPLANATION OF TABLES SEE NOTE 6.

S275 / Advance® 275
BS EN 1993-1-5: 2007 BS 4-1: 2005 z z yy ss c 222

UNIVERSAL BEAMS Advance® UKB

Unstiffened webs

Design

Position of Stiff Bearing

Design resistance of unstiffened web, FRd (kN) and limiting length, clim (mm)

Stiff bearing length, ss (mm)

Section Shear Designation Resistance Vc,Rd kN 0102030405075100150200250300350

305x127x48 474 FRd (c = 0) 91.4119153192228253315377501624756813867 clim (mm) 190180170160150140120909090100100100 FRd (c clim) 328353377402427452514575731791860911960

305x127x42 420 FRd (c = 0) 74.299.4130165193215270355455544594639682 clim (mm) 190180170160150140120909090909090 FRd (c clim) 263285307329351373428530581627671712750 305x127x37 372 FRd (c = 0) 61.684.1145166182198238277356427466502536 clim (mm) 190180170160150140120909090909090 FRd (c clim) 216236255275294366389411452489523556572 305x102x33 350 FRd (c = 0) 54.6108124141154167201234300363396427452 clim (mm) 2001901801701601501201009090909090 FRd (c clim) 194212285294302311331349384416445452452

305x102x28 315 FRd (c = 0) 74.987.2101113124136163191246297325343343 clim (mm) 2001901801701601501201008080808080 FRd (c clim) 149218226234241248265281310337343343343

305x102x25 299 FRd (c = 0) 68.279.892.5103114124150176227276302309309 clim (mm) 2001901801701601501201007070707070 FRd (c clim) 116195202210217224240255283309309309309 254x146x43 321 FRd (c = 0) 80.4103129159192213262312411488532572610 clim (mm) 160150140130120110909090100100100100 FRd (c clim) 278298317337357377426472517566604640674 254x146x37 280 FRd (c = 0) 64.484.0127146164179217254329371405436465 clim (mm) 16015014013012011090909090909090 FRd (c clim) 220237254304312321340359394426456484486 254x146x31 260 FRd (c = 0) 49.568.7112129143157191225293331362391417 clim (mm) 16015014013012011090808080808080 FRd (c clim) 168185201218267275294311344374402419419

Advance® and UKB are trademarks of Tata Steel. A fuller description of the relationship between Universal Beams (UB) and the Advance® range of sections manufactured by Tata Steel is given in note 12. If c < clim, then use FRd value for c = 0. FOR EXPLANATION OF TABLES SEE NOTE 6.

S275 / Advance® 275
WEB
BEARING AND BUCKLING
BS EN 1993-1-5: 2007 BS 4-1: 2005 z z yy ss c 223

WEB BEARING AND BUCKLING UNIVERSAL

BEAMS

Advance® UKB

Unstiffened webs

Position of Stiff Bearing

Design resistance of unstiffened web, FRd (kN) and limiting length, clim (mm)

Stiff bearing length, ss (mm)

Design Section Shear Designation Resistance Vc,Rd kN 0102030405075100150200250300350

254x102x28 283 FRd (c = 0) 49.369.694.9139154169205242315359393424454 clim (mm) 17016015014013012090808080808080 FRd (c clim) 174192209226244299320339375408438466469

254x102x25 265 FRd (c = 0) 40.460.1108123136150183216283323354383406 clim (mm) 17016015014013012090707070707070 FRd (c clim) 142158175191208262282300333363391406406 254x102x22 248 FRd (c = 0) 31.851.195.8108120132162193252289318343348 clim (mm) 17016015014013012090706060606060 FRd (c clim) 111127143158221229247263294322347348348 203x133x30 231 FRd (c = 0) 54.675.0100129148165209253341419458495529 clim (mm) 130120110100908070707080808080 FRd (c clim) 188206224241259276320364429474509542574 203x133x25 204 FRd (c = 0) 41.860.383.6106122137177216293329360390417 clim (mm) 130120110100908060607070707070 FRd (c clim) 143158174190205221260296336367396423441 203x102x23 197 FRd (c = 0) 42.459.881.5105119134181216267298327354378 clim (mm) 130120110100908070707070707070 FRd (c clim) 148162177192207243261278308336362384384 178x102x19 157 FRd (c = 0) 33.949.569.387.5101114155186222249274296307 clim (mm) 1101009080706060606060606060 FRd (c clim) 117130143156169196212227254278300307307 152x89x16 130 FRd (c = 0) 29.944.763.679.491.8104135166210236260281297 clim (mm) 100908070605050506060606060 FRd (c clim) 104116128141153166196210239262283297297 127x76x13 102 FRd (c = 0) 25.839.055.969.480.491.4119146183206226245255 clim (mm) 80706050505050506060606060 FRd (c clim) 89.6101112123134145169182206227246255255

Advance® and UKB are trademarks of Tata Steel. A fuller description of the relationship between Universal Beams (UB) and the Advance® range of sections manufactured by Tata Steel is given in note 12. If c < clim, then use FRd value for c = 0. FOR EXPLANATION OF TABLES SEE NOTE 6.

S275 / Advance® 275
BS EN 1993-1-5: 2007 BS 4-1: 2005 z z yy ss c 224

Design

UNIVERSAL COLUMNS

Advance® UKC

Unstiffened webs

Position of Stiff Bearing

Design resistance of unstiffened web, FRd (kN) and limiting length, clim (mm)

Stiff bearing length, ss (mm)

Section Shear Designation Resistance Vc,Rd kN 0102030405075100150200250300350

356x406x634 3040 FRd (c = 0) 1900202021402280242025702960339043305010560061806760 clim (mm) 390390390390390390390390390390390390390 FRd (c clim) 7160727073907510762077408030832089109490101001070011200

356x406x551 2630 FRd (c = 0) 1550166017701890202021502510290037404260477052905810 clim (mm) 350350350350350350350350350350350350350 FRd (c clim) 5780589059906090620063006560681073307850836088809390

356x406x467 2290 FRd (c = 0) 1270137014701570169018102130248031703620408045404990 clim (mm) 320320320320320320320320320320320320320 FRd (c clim) 4650474048404930502051105340557060206480694073907850

356x406x393 1920 FRd (c = 0) 990107011601250135014501740204025702960335037404130 clim (mm) 280280280280280280280280280280280280280 FRd (c clim) 3570365037203800388039604150435047405130552059106300

356x406x340 1640 FRd (c = 0) 8018729481030112012101460173021502490283031703510 clim (mm) 260260260260260260260260260260260260260 FRd (c clim) 2850292029803050312031903360353038704200454048805220

356x406x287 1440 FRd (c = 0) 64971278085493210201240148018202120242027203020 clim (mm) 230230230230230230230230230230230230230 FRd (c clim) 2270233023902450251025702720287031703470377040704370

356x406x235 1150 FRd (c = 0) 482534590650715784971117014101660190021502390 clim (mm) 220210210210210210210210210210210210210 FRd (c clim) 1660171017601810185019002020215023902630288031203370

356x368x202 1030 FRd (c = 0) 398444495550609673843100012201440166018702090 clim (mm) 220210200190190190190190190190190190190 FRd (c clim) 1360141014501490154015801690180020202240245026702890

356x368x177 907 FRd (c = 0) 32736741246151356972184410301230142016101800 clim (mm) 220210200190180170170170170170170170170 FRd (c clim) 1110114011801220126013001390149016801870206022502440

356x368x153 772 FRd (c = 0) 2622963353774234716036968591020119013501510 clim (mm) 220210200190180170160160160160160160160 FRd (c clim) 876908941973101010401120120013601530168017601830

356x368x129 645 FRd (c = 0) 20323226630234138349456370183899810701130 clim (mm) 220210200190180170140140140140150150150 FRd (c clim) 67169872675378180987794610501110119012401300

Advance® and UKC are trademarks of Tata Steel. A fuller description of the relationship between Universal Columns (UC) and the Advance® range of sections manufactured by Tata Steel is given in note 12. If c < clim, then use FRd value for c = 0. FOR EXPLANATION OF TABLES SEE NOTE 6.

S275 / Advance® 275
WEB
BEARING AND BUCKLING
BS EN 1993-1-5: 2007 BS 4-1: 2005 z
yy ss c 225
z

UNIVERSAL COLUMNS

Advance® UKC

Unstiffened webs

Position of Stiff Bearing

Design resistance of unstiffened web, FRd (kN) and limiting length, clim (mm)

Stiff bearing length, ss (mm)

Design Section Shear Designation Resistance Vc,Rd kN 0102030405075100150200250300350

305x305x283 1490 FRd (c = 0) 739810888972106011601410169020702410275031003440 clim (mm) 250250250250250250250250250250250250250 FRd (c clim) 2690276028302900297030303210338037204060440047405090

305x305x240 1320 FRd (c = 0) 6056697398148969821220146017702070238026802990 clim (mm) 220220220220220220220220220220220220220 FRd (c clim) 2170223022902350241024702630278030803390369040004300

305x305x198 1070 FRd (c = 0) 456509568632701775973115014001660191021602420 clim (mm) 200200200200200200200200200200200200200 FRd (c clim) 1610166017101760181018601990211023702620287031303380 305x305x158 871 FRd (c = 0) 32837342347753659976888310901300151017201930 clim (mm) 190180170170170170170170170170170170170 FRd (c clim) 1140118012201260131013501450156017701980219024002600 305x305x137 756 FRd (c = 0) 2663053493974505056507419241110129014701660 clim (mm) 190180170160150150150150150150150150150 FRd (c clim) 9109479831020106010901180128014601640182020102190 305x305x118 657 FRd (c = 0) 213247286329375425539619778937110012601410 clim (mm) 190180170160150140140140140140140140140 FRd (c clim) 721753784816848880959104012001360152016801810 305x305x97 558 FRd (c = 0) 16519422826530635043750564177791310301100 clim (mm) 190180170160150140120120120120120130130 FRd (c clim) 5505776046316586867548229581050112011801240

254x254x167 903 FRd (c = 0) 424478538603674749952111013601620187021302380 clim (mm) 190190190190190190190190190190190190190 FRd (c clim) 1520157016201670173017801900203022902540279030503300

254x254x132 705 FRd (c = 0) 30034339244550356572882910301240144016401840 clim (mm) 160160160160160160160160160160160160160 FRd (c clim) 1050109011301180122012601360146016601860207022702470

254x254x107 577 FRd (c = 0) 221258299345395448567652821991116013301500 clim (mm) 160150140140140140140140140140140140140 FRd (c clim) 7647988328669009341020110012701440161017801950

254x254x89 467 FRd (c = 0) 16719623026730835244050964578191810501190 clim (mm) 160150140130130130130130130130130130130 FRd (c clim) 5665936206476757027708389751110125013901450

254x254x73 407 FRd (c = 0) 129155185218255293360419537656774851905 clim (mm) 160150140130120110110110110110110120120 FRd (c clim) 4334564805045275516106698018589119681020

Advance® and UKC are trademarks of Tata Steel. A fuller description of the relationship between Universal Columns (UC) and the Advance® range of sections manufactured by Tata Steel is given in note 12. If c < clim, then use FRd value for c = 0.

FOR EXPLANATION OF TABLES SEE NOTE 6.

S275 / Advance® 275
WEB
BEARING AND BUCKLING
BS EN 1993-1-5: 2007 BS 4-1: 2005
yy ss c 226
z z

UNIVERSAL COLUMNS Advance® UKC

Unstiffened webs

Position of Stiff Bearing

Design resistance of unstiffened web, FRd (kN) and limiting length, clim (mm)

Stiff bearing length, ss (mm)

Design Section Shear Designation Resistance Vc,Rd kN 0102030405075100150200250300350

203x203x127 + 686 FRd (c = 0) 35140246052359266585697612201460170019402180 clim (mm) 170170170170170170170170170170170170170 FRd (c clim) 1280133013801430147015201640176020002240248027202960

203x203x113 + 624 FRd (c = 0) 29634339545351658374385110701280150017201930 clim (mm) 160160160160160160160160160160160160160 FRd (c clim) 1070111011601200124012901400150017201940215023702580 203x203x100 + 545 FRd (c = 0) 2452873343864435046357319231120131015001690 clim (mm) 140140140140140140140140140140140140140 FRd (c clim) 876914953991103010701160126014501640184020302220 203x203x86 475 FRd (c = 0) 198234276323374428532616785953112012901460 clim (mm) 130130130130130130130130130130130130130 FRd (c clim) 698732765799833866950103012001370154017101880 203x203x71 371 FRd (c = 0) 14717621024728733140747360673887110001140 clim (mm) 130120120120120120120120120120120120120 FRd (c clim) 5085355615886146417077739061040117013001440 203x203x60 352 FRd (c = 0) 1211501842222633013664305606898189471080 clim (mm) 130120110100100100100100100100100100100 FRd (c clim) 417443469494520546611675805934106011901320 203x203x52 298 FRd (c = 0) 97.7122150183218247301355464573681786838 clim (mm) 13012011010090909090909090100100 FRd (c clim) 331352374396417439493548656774826880926 203x203x46 269 FRd (c = 0) 81.9104131161193215264314413512602649692 clim (mm) 130120110100909090909090909090 FRd (c clim) 275295315335354374424473572631680721760

152x152x51 + 316 FRd (c = 0) 12716120124729633140748263378593610901240 clim (mm) 100100100100100100100100100100100100100 FRd (c clim) 4544855155455756066817579081060121013601510

152x152x44 + 271 FRd (c = 0) 1021311672072482753404055366667979281060 clim (mm) 100909090909090909090909090 FRd (c clim) 359385411437463490555620751881101011401270

152x152x37 226 FRd (c = 0) 78.6104134169199221276331441551661771881 clim (mm) 100908080808080808080808080 FRd (c clim) 2732953173393613834384936037138239331050

152x152x30 184 FRd (c = 0) 57.678.2104132153171216260350439528592633 clim (mm) 100908070707070707070707070 FRd (c clim) 197214232250268286331375465561604647685

152x152x23 158 FRd (c = 0) 39.358.482.5103119135175215295375429465498 clim (mm) 100908070605050505050606060 FRd (c clim) 133149165181197213252292372428467500531

Advance® and UKC are trademarks of Tata Steel. A fuller description of the relationship between Universal Columns (UC) and the Advance® range of sections manufactured by Tata Steel is given in note 12.

+ These sections are in addition to the range of BS 4 sections

If c < clim, then use FRd value for c = 0.

FOR EXPLANATION OF TABLES SEE NOTE 6.

S275 / Advance® 275
WEB BEARING AND BUCKLING
BS EN 1993-1-5: 2007 BS 4-1: 2005
ss c 227
z z yy

JOISTS

Unstiffened webs

Position of Stiff Bearing

Design resistance of unstiffened web, FRd (kN) and limiting length, clim (mm)

Stiff bearing length, ss (mm)

Design Section Shear Designation Resistance Vc,Rd kN 0102030405075100150200250300350

254x203x82 520 FRd (c = 0) 17019923226930935244351064678191610501190 clim (mm) 150140130130130130130130130130130130130 FRd (c clim) 5886156426696967237908589931130126014101470

254x114x37 352 FRd (c = 0) 73.497.2126159187208260313417522593640683 clim (mm) 16015014013012011080808080909090 FRd (c clim) 261282303324345365418470569617670711750

203x152x52 350 FRd (c = 0) 114140170205242279338397515633751869987 clim (mm) 120110110110110110110110110110110110110 FRd (c clim) 40042344747149451857763675487299011101200 152x127x37 300 FRd (c = 0) 93.31261672132462753464185617048479901130 clim (mm) 90808080808080808080808080 FRd (c clim) 339368397425454482554625768911105012001340 127x114x29 231 FRd (c = 0) 76.41091511922202483183885296698099491090 clim (mm) 70707070707070707070707070 FRd (c clim) 28030933736539342149156170184198211201260 127x114x27 178 FRd (c = 0) 64.588.0117150173193244295396498600702803 clim (mm) 70707070707070707070707070 FRd (c clim) 229249269290310330381432534636737839941 127x76x16 140 FRd (c = 0) 38.656.980.2101116132170209286363440491526 clim (mm) 80706060606060606060606060 FRd (c clim) 139154169185200216254293370447494531563 114x114x27 224 FRd (c = 0) 68.699.51381752012282933584896197508811010 clim (mm) 70606060606060606060606060 FRd (c clim) 25027630232835438044651164277290310301160 102x102x23 185 FRd (c = 0) 62.293.61341661922192843494806107418721000 clim (mm) 60606060606060606060606060 FRd (c clim) 23025628230833436042649162275288310101140 102x44x7 82.2 FRd (c = 0) 16.432.146.958.770.582.3112141201258285310334 clim (mm) 60504040404040404040404040 FRd (c clim) 60.872.784.596.3108120150179238278303327349 89x89x19 166 FRd (c = 0) 55.987.9129157184210275340471602732863993 clim (mm) 60606060606060606060606060 FRd (c clim) 2102362622883143414064716027328639941120 76x76x15 127 FRd (c = 0) 43.674.5111135160184245306429551674796918 clim (mm) 50505050505050505050505050 FRd (c clim) 1641892132382622873484095326547768991020 76x76x13 85.8 FRd (c = 0) 32.249.170.887.6102116151186256326396466536 clim (mm) 50505050505050505050505050 FRd (c clim) 115129143157171185220255325395465535606

If c < clim, then use FRd value for c = 0. FOR EXPLANATION OF TABLES SEE NOTE 6.

WEB BEARING AND BUCKLING S275
BS EN 1993-1-5: 2007 BS 4-1: 2005 yy z z ss c 228

Design

Advance® UKPFC

Unstiffened webs

Position of Stiff Bearing

Design resistance of unstiffened web, FRd (kN) and limiting length, clim (mm)

Stiff bearing length, ss (mm)

Section Shear Designation Resistance Vc,Rd kN 0102030405075100150200250300350

430x100x64 750 FRd (c = 0) 11815119023428331338645860481494810301100 clim (mm) 270260250240230220190170120120120120120 FRd (c clim) 4454745035325615916637369781060112011801240

380x100x54 581 FRd (c = 0) 101129163202243269332440553667759815868 clim (mm) 230220210200190180160130110110110110110 FRd (c clim) 374399424450475500563711771826878927974

300x100x46 443 FRd (c = 0) 92.8120152189227250310370489608727823877 clim (mm) 18017016015014013011090909090100100 FRd (c clim) 341365389413436460520580699809864928976 300x90x41 445 FRd (c = 0) 85.8114149188220245307369493616770830885 clim (mm) 180170160150140130110909090100100100 FRd (c clim) 319344369394418443505567691806878930980

260x90x35 349 FRd (c = 0) 73.098.3129164191213268323433543650701749 clim (mm) 16015014013012011080808080909090 FRd (c clim) 268290312334356378433488598676735780823 260x75x28 308 FRd (c = 0) 53.576.1104133153172220268364447489528564 clim (mm) 16015014013012011090707080808080 FRd (c clim) 197217236255274294342413458509547582615

230x90x32 294 FRd (c = 0) 70.794.3123156183203255306409513612660704 clim (mm) 1401301201101009080808080909090 FRd (c clim) 258278299320340361412464567637691733774

230x75x26 258 FRd (c = 0) 53.774.4100129147165210255344413452488522 clim (mm) 1401301201101009070707080808080 FRd (c clim) 196214232250268286331385427472506539570 200x90x30 244 FRd (c = 0) 68.390.2117147174193241289385482577622665 clim (mm) 12011010090808080808080909090 FRd (c clim) 247266286305324343392440536603651692730

200x75x23 213 FRd (c = 0) 51.670.694.2121139155197238320380417450481 clim (mm) 12011010090807070707080808080 FRd (c clim) 187204220237253270311356395434466496524

Advance® and UKPFC are trademarks of Tata Steel. A fuller description of the relationship between Parallel Flange Channels (PFC) and the Advance® range of sections manufactured by Tata Steel is given in note 12. If c < clim, then use FRd value for c = 0. Resistances assume no eccentricity of the applied force relative to the web. FOR EXPLANATION OF TABLES SEE NOTE 6.

S275 / Advance® 275
WEB BEARING AND BUCKLING
PARALLEL FLANGE CHANNELS
BS EN 1993-1-5: 2007 BS 4-1: 2005 z z yy ss c 229

WEB BEARING AND BUCKLING

PARALLEL FLANGE CHANNELS

Advance® UKPFC

Unstiffened webs

Position of Stiff Bearing

Design resistance of unstiffened web, FRd (kN) and limiting length, clim (mm)

Stiff bearing length, ss (mm)

Design Section Shear Designation Resistance Vc,Rd kN 0102030405075100150200250300350

180x90x26 207 FRd (c = 0) 58.879.3105133155173217262351441520562600 clim (mm) 1101009080808080808080808080 FRd (c clim) 211229247265282300345390479538582620655

180x75x20 191 FRd (c = 0) 43.362.887.5111127144185226309393432467500 clim (mm) 1101009080706060606070707070 FRd (c clim) 157174190207223240281322400442477509539

150x90x24 175 FRd (c = 0) 56.477.1103131151169214259348437527620663 clim (mm) 90807070707070707070708080 FRd (c clim) 203220238256274292337381471560636681721

150x75x18 152 FRd (c = 0) 39.557.480.0101116131169207283364400433463 clim (mm) 90807060606060606070707070 FRd (c clim) 142157172187202218255293369407440470498

125x65x15 129 FRd (c = 0) 34.953.276.594.8110125163201276352428475510 clim (mm) 80706060606060606060606060 FRd (c clim) 128143158173188203241279354430477513545

100x50x10 90.3 FRd (c = 0) 26.143.364.578.292.0106140174243312381440472 clim (mm) 60505050505050505050505050 FRd (c clim) 97.3111125139152166200235304372436470500

Advance® and UKPFC are trademarks of Tata Steel. A fuller description of the relationship between Parallel Flange Channels (PFC) and the Advance® range of sections manufactured by Tata Steel is given in note 12. If c < clim, then use FRd value for c = 0.

Resistances assume no eccentricity of the applied force relative to the web.

FOR EXPLANATION OF TABLES SEE NOTE 6.

S275 / Advance® 275
BS EN 1993-1-5: 2007 BS 4-1: 2005 z z yy ss c 230

EQUAL ANGLES

Advance® UKA - Equal Angles

TENSION S275 / Advance® 275
BS EN 1993-1-1:2005 BS EN 10056-1:1999 231

EQUAL ANGLES

Advance® UKA - Equal Angles

TENSION S275 / Advance® 275
BS EN 1993-1-1:2005 BS EN 10056-1:1999 232

EQUAL ANGLES

Advance® UKA - Equal Angles

TENSION S275 / Advance® 275
BS EN 1993-1-1:2005 BS EN 10056-1:1999 233

UNEQUAL ANGLES

Advance® UKA - Unequal Angles

TENSION S275 / Advance® 275
BS EN 1993-1-1:2005 BS EN 10056-1:1999 234

UNEQUAL ANGLES

Advance® UKA - Unequal Angles

TENSION S275 / Advance® 275
BS EN 1993-1-1:2005 BS EN 10056-1:1999 235

UNEQUAL ANGLES

Advance® UKA - Unequal Angles

TENSION S275 / Advance® 275
BS EN 1993-1-1:2005 BS EN 10056-1:1999 236

UNEQUAL ANGLES

Advance® UKA - Unequal Angles

TENSION S275 / Advance® 275
BS EN 1993-1-1:2005 BS EN 10056-1:1999 237

UNEQUAL ANGLES

Advance® UKA - Unequal Angles

TENSION S275 / Advance® 275
BS EN 1993-1-1:2005 BS EN 10056-1:1999 238

UNEQUAL ANGLES

Advance® UKA - Unequal Angles

TENSION S275 / Advance® 275
BS EN 1993-1-1:2005 BS EN 10056-1:1999 239

UNIVERSAL BEAMS Advance® UKB

11400114001140011400114001140011400113001120011200 10000100001000010000100001000010000993098709810974096809610 95108790 974092408740 8400840084008400840084008370832082608210816081008050 7970738066705810 815077307300685064005970 7600760076007600760076007570752074707420737073207270 718066205930 73606970655061105660 6660666066606660666066606620658065406500645064106360 625057405090 64406080569052804840 1130011300113001130011300113001120011100110001100010900

COMPRESSION S275 / Advance® 275
BS EN 1993-1-1:2005 BS 4-1:2005 240
11100 11300

UNIVERSAL BEAMS

Advance®

UKB

9380938093809380938093609300924091709100904089608890 8900 9110 7970797079707970797079607910786078007750769076307570 75707020 7750735069306500 6880688068806880688068606820677067306680663065806520 652060305440 66806330596055605150 6020602060206020602060105970593058905840580057605710 5690525047104070 584055305190482044304050 7170717071707170717071307080703069806920686068006740 67806260 6940657061905790 5950595059505950595059105870583057805740569056405590 561051704620 57505430510047304360 5290529052905290529052605220518051405100506050104960 498045704070 51104820451041703820 6340634063406340632062706220617061106050599059305860 5910 60705710 5420542054205420540053605310527052205170512050705010 50404570 518048704530 4440444044404440443043904360432042804240420041504110 412037303240 42403980368033603040 4100410041004100408040504020398039403910387038203780 379034102940 39103650336030502730

COMPRESSION S275 / Advance® 275
BS EN 1993-1-1:2005 BS 4-1:2005 241

UNIVERSAL BEAMS Advance® UKB 5540554055405540549054405390534052805220 5280 4840484048404840480047504710466046104560451044504390 44704040 460043104000 4360436043604360432042804240420041604110406040103960 40303640 4150388035903290 3810381038103810378037503710368036403600355035103460 351031602710 3620338031102830 4810481048104800475047004650460045504490442043504280 46104310 468044404190 45604560456045404500445044004350 3980398039803960392038803840380037503700364035803510 3620 37403470 3540354035403520348034503410337033303280323031803120 32102830 332030702800 3210321032103190315031203090305030102970292028702810 28902530 3000276025002230

COMPRESSION S275 / Advance® 275
BS EN 1993-1-1:2005 BS 4-1:2005 242

UNIVERSAL BEAMS Advance® UKB 3120312031203100307030403000297029302880284027902730 2610 28002510 2900290029002880285028102780274027102670262025702520 2390 25902290 2490249024902480245024202390236023302300226022202170 2050 222019501670 35803580358035403490 32703270327032303190315031103060301029602900 2910 3020 3010301030002970293029002860281027702710266025902520 2670 27802540 2650265026502620258025502520248024302390234022802210 23401990 244022201980

COMPRESSION S275 / Advance® 275
BS EN 1993-1-1:2005 BS 4-1:2005 243

UNIVERSAL BEAMS

Advance® UKB 2680268026802650262025802550251024702420237023102240 2380 2390239023802350232022902260222021802140209020401980 1910 20901830 2030203020302000198019501920189018601820178017401680 1620 17801540 277027702740271026602620 24602460244024102370234022902250220021402070 2140 2240 2190219021702140211020702040200019501900183017701690 1900 19901790

COMPRESSION S275 / Advance® 275
BS EN 1993-1-1:2005 BS 4-1:2005 244

UNIVERSAL BEAMS

Advance®

UKB

2410241024102410241024102390236023202290 2300 2350 2220222022202220222022102200216021302100206020101970 21001950 215020401920 1920192019201920192019101900187018501820178017501700 182016901520 18601760166015501440 1630163016301630163016301620160015701550152014901450 1540143012801110 158015001410131012001100 228022802280228022802260225022102170 2210 2240 1990199019901990199019801960193019001860182017701720 193018301700 1960188017901700 1780178017801780178017601750172016901660162015801530 172016201510 1750167015901500

COMPRESSION S275 / Advance® 275
BS EN 1993-1-1:2005 BS 4-1:2005 245

UNIVERSAL BEAMS

Advance® UKB

1760176017601760176017401730170016701640160015501500 16501520 169016001500 1460146014601460146014501440141013901360133013001260 137012601120 14101330124011501060967 1200120012001200120011901180116011401120109010601030 11201030905763 116010901010927840757

172017201720172017101700168016501610 1670 16901610 15001500150015001490148014601430140013701320 14501360 147014001330 1280128012801280127012601250122011901160113010801030 11801060 121011301050 10501050105010501040103010201000978952922886844 960857727 991922846765

COMPRESSION S275 / Advance® 275
BS EN 1993-1-1:2005 BS 4-1:2005 246

UNIVERSAL BEAMS Advance® UKB 1580158015801580 1360136013601350134013201310128012401200 13101240 133012601200 11001100110011001090107010601040 921921921916906896886864837806768 800 844767 797797797791783774765745722694659 683 726654

COMPRESSION S275 / Advance® 275
BS EN 1993-1-1:2005 BS 4-1:2005 247

UNIVERSAL BEAMS Advance® UKB

COMPRESSION S275 / Advance® 275
BS EN 1993-1-1:2005 BS 4-1:2005 248

UNIVERSAL COLUMNS Advance® UKC

COMPRESSION S275 / Advance® 275
BS EN 1993-1-1:2005 BS 4-1:2005 249

UNIVERSAL COLUMNS Advance® UKC

COMPRESSION S275 / Advance® 275
BS EN 1993-1-1:2005 BS 4-1:2005 250

UNIVERSAL COLUMNS Advance® UKC

COMPRESSION S275 / Advance® 275
BS EN 1993-1-1:2005 BS 4-1:2005 251

PARALLEL FLANGE CHANNELS

Advance® UKPFC

COMPRESSION S275 / Advance® 275
BS EN 1993-1-1:2005 BS 4-1:2005 252

PARALLEL FLANGE CHANNELS

Advance® UKPFC

COMPRESSION S275 / Advance® 275
BS EN 1993-1-1:2005 BS 4-1:2005 253

PARALLEL FLANGE CHANNELS Advance UKPFC

COMPRESSION S275 / Advance® 275
BS EN 1993-1-1:2005 BS 4-1:2005 254

PARALLEL FLANGE CHANNELS Advance UKPFC

COMPRESSION S275 / Advance® 275
BS EN 1993-1-1:2005 BS 4-1:2005 255

EQUAL ANGLES

Advance® UKA - Equal Angles

151014401370126011401020914727583475393329280 1550155015501550155015501550155015501550155015501550 14001340127011701050944842668535436360302257 1360136013601360136013601360136013601360136013601360 76371563555147340534826220216013010890.4 771771771771771771771771771771771771771 58154749543537832728321516713310889.775.5 547547547547547547547547547547547547547 49343736730425020817412796.175.160.249.441.2 523523523523523523523523523523523523523 36232727923419516313810177.060.448.639.933.4 350350350350350350350350350350350350350 31826321016713310889.663.847.636.929.423.919.9 345345345345345345345345345345345345345

COMPRESSION S275 / Advance® 275
BS EN 1993-1-1:2005 BS EN 10056-1:1999 256

EQUAL ANGLES

Advance® UKA - Equal Angles

27521916913110483.568.448.235.727.521.817.714.7 322322322322322322322322322322322322322 24219315011691.773.960.642.731.724.419.415.713.0 269269269269269269269269269269269269269

15911887.065.350.540.032.522.516.512.69.988.076.66 195195195195195195195195195195195195195

14210374.355.242.333.427.018.613.610.48.196.615.45 187187187187187187187187187187187187187

91.662.243.331.423.818.614.910.27.395.614.403.542.92 133133133133133133133133133133133133133 52.733.422.516.011.99.247.364.983.592.712.121.701.40 87.687.687.687.687.687.687.687.687.687.687.687.687.6

COMPRESSION S275 / Advance® 275
BS EN 1993-1-1:2005 BS EN 10056-1:1999 257

UNEQUAL ANGLES

Advance® UKA - Unequal Angles

10801010930839734639555425332266217180152 1090109010901090109010901090109010901090109010901090 745702655605538475418325257207170142120 693693693693693693693693693693693693693

58551744837530925721615711992.774.460.950.8 604604604604604604604604604604604604604 43138633929324420517312797.076.261.350.442.1 408408408408408408408408408408408408408 41335729523619115612992.569.353.842.935.029.1 452452452452452452452452452452452452452 35929422717513711090.063.246.735.928.523.119.1 423423423423423423423423423423423423423 25521116312699.680.165.746.334.326.420.917.014.1 289289289289289289289289289289289289289

COMPRESSION S275 / Advance® 275
BS EN 1993-1-1:2005 BS EN 10056-1:1999 258

UNEQUAL ANGLES

Advance® UKA - Unequal Angles

25319714811388.270.457.440.129.622.717.914.512.0 307307307307307307307307307307307307307 18514010276.659.146.838.026.319.314.811.69.417.77 230230230230230230230230230230230230230

11277.553.939.229.723.218.612.79.247.015.504.433.65 151151151151151151151151151151151151151

80.953.136.326.119.615.212.28.296.004.543.552.862.35 123123123123123123123123123123123123123

COMPRESSION S275 / Advance® 275
BS EN 1993-1-1:2005 BS EN 10056-1:1999 259

UNEQUAL ANGLES

Advance® UKA - Unequal Angles

10801010930839734639555425332266217180152 1090109010901090109010901090109010901090109010901090 745702655605538475418325257207170142120 693693693693693693693693693693693693693

58551744837530925721615711992.774.460.950.8 604604604604604604604604604604604604604 43138633929324420517312797.076.261.350.442.1 408408408408408408408408408408408408408 41335729523619115612992.569.353.842.935.029.1 452452452452452452452452452452452452452 35929422717513711090.063.246.735.928.523.119.1 423423423423423423423423423423423423423 25521116312699.680.165.746.334.326.420.917.014.1 289289289289289289289289289289289289289

COMPRESSION S275 / Advance® 275
BS EN 1993-1-1:2005 BS EN 10056-1:1999 260

UNEQUAL ANGLES

Advance® UKA - Unequal Angles

25319714811388.270.457.440.129.622.717.914.512.0 307307307307307307307307307307307307307 18514010276.659.146.838.026.319.314.811.69.417.77 230230230230230230230230230230230230230

11277.553.939.229.723.218.612.79.247.015.504.433.65 151151151151151151151151151151151151151

80.953.136.326.119.615.212.28.296.004.543.552.862.35 123123123123123123123123123123123123123

COMPRESSION S275 / Advance® 275
BS EN 1993-1-1:2005 BS EN 10056-1:1999 261
262

Class 2

UNIVERSAL BEAMS

Advance® UKB

1.00 1.00 1.00 0.313 0.252 0.169 0.185

S275 / Advance® 275
AXIAL FORCE & BENDING
BS EN 1993-1-1:2005 BS 4-1:2005 263

1.00

UNIVERSAL BEAMS

Advance® UKB

S275 / Advance® 275
1.00 1.00 0.313 0.252 0.169 0.185 AXIAL FORCE & BENDING
BS EN 1993-1-1:2005 BS 4-1:2005 264

Class 2

UNIVERSAL BEAMS

Advance® UKB

0.182 0.319 0.269 0.313 0.239 0.196 0.177

S275 / Advance® 275
AXIAL FORCE & BENDING
BS EN 1993-1-1:2005 BS 4-1:2005 265

0.182 0.319 0.269 0.313 0.239 0.196 0.177

UNIVERSAL BEAMS Advance® UKB

S275 / Advance® 275
AXIAL FORCE & BENDING
BS EN 1993-1-1:2005 BS 4-1:2005 266

Class 2

UNIVERSAL BEAMS

Advance® UKB

0.233 0.194 0.175 0.280 0.237 0.181 0.139

S275 / Advance® 275
AXIAL FORCE & BENDING
BS EN 1993-1-1:2005 BS 4-1:2005 267

0.233 0.194 0.175 0.280 0.237 0.181 0.139

UNIVERSAL BEAMS Advance® UKB

S275 / Advance® 275
AXIAL FORCE & BENDING
BS EN 1993-1-1:2005 BS 4-1:2005 268

Class 2

UNIVERSAL BEAMS

Advance® UKB

0.292 0.239 0.208 0.186 1.00 0.293 0.200

S275 / Advance® 275
AXIAL FORCE & BENDING
BS EN 1993-1-1:2005 BS 4-1:2005 269

UNIVERSAL BEAMS Advance® UKB

S275 / Advance® 275
0.292 0.239 0.208 0.186 1.00 0.293 0.200 AXIAL FORCE & BENDING
BS EN 1993-1-1:2005 BS 4-1:2005 270

Class 2

UNIVERSAL BEAMS

Advance® UKB

0.296 0.242 0.208 0.177 0.250 0.227 0.178

S275 / Advance® 275
AXIAL FORCE & BENDING
BS EN 1993-1-1:2005 BS 4-1:2005 271

0.296 0.242 0.208 0.177 0.250 0.227 0.178

UNIVERSAL BEAMS Advance® UKB

S275 / Advance® 275
AXIAL FORCE & BENDING
BS EN 1993-1-1:2005 BS 4-1:2005 272

Class 2

UNIVERSAL BEAMS

Advance® UKB

1.00 1.00 1.00 0.288 1.00 0.357 0.303

S275 / Advance® 275
AXIAL FORCE & BENDING
BS EN 1993-1-1:2005 BS 4-1:2005 273

1.00

UNIVERSAL BEAMS

Advance® UKB

S275 / Advance® 275
1.00 1.00 0.288 1.00 0.357 0.303 AXIAL FORCE & BENDING
BS EN 1993-1-1:2005 BS 4-1:2005 274

Class 2

UNIVERSAL BEAMS

Advance® UKB

0.260 0.217 0.201 0.264 0.230 0.185 1.00

S275 / Advance® 275
AXIAL FORCE & BENDING
BS EN 1993-1-1:2005 BS 4-1:2005 275

UNIVERSAL BEAMS Advance® UKB

S275 / Advance® 275
0.260 0.217 0.201 0.264 0.230 0.185 1.00 AXIAL FORCE & BENDING
BS EN 1993-1-1:2005 BS 4-1:2005 276

Class 2

UNIVERSAL BEAMS

Advance® UKB

1.00 1.00 1.00 0.321 0.283 0.227 0.205

S275 / Advance® 275
AXIAL FORCE & BENDING
BS EN 1993-1-1:2005 BS 4-1:2005 277

1.00

UNIVERSAL BEAMS

Advance® UKB

S275 / Advance® 275
1.00 1.00 0.321 0.283 0.227 0.205 AXIAL FORCE & BENDING
BS EN 1993-1-1:2005 BS 4-1:2005 278

Class 2

UNIVERSAL BEAMS

Advance® UKB

0.349 0.294 0.251 0.192 0.169 1.00 0.313

S275 / Advance® 275
AXIAL FORCE & BENDING
BS EN 1993-1-1:2005 BS 4-1:2005 279

0.349 0.294 0.251 0.192 0.169 1.00 0.313

UNIVERSAL BEAMS Advance® UKB

S275 / Advance® 275
AXIAL FORCE & BENDING
BS EN 1993-1-1:2005 BS 4-1:2005 280

Class 2

0.274 0.214 0.217 0.241 0.158 0.142

AXIAL FORCE & BENDING

UNIVERSAL BEAMS Advance® UKB

S275 / Advance® 275
BS EN 1993-1-1:2005 BS 4-1:2005 281

0.274 0.214 0.217 0.241 0.158 0.142

AXIAL FORCE & BENDING

UNIVERSAL BEAMS

Advance® UKB

S275 / Advance® 275
BS EN 1993-1-1:2005 BS 4-1:2005 282

Class 2

1.00 0.292 0.247 0.232 0.218 0.179

AXIAL FORCE & BENDING

UNIVERSAL BEAMS Advance® UKB

S275 / Advance® 275
BS EN 1993-1-1:2005 BS 4-1:2005 283

1.00 0.292 0.247 0.232 0.218 0.179

UNIVERSAL BEAMS

Advance® UKB

S275 / Advance® 275
AXIAL FORCE & BENDING
BS EN 1993-1-1:2005 BS 4-1:2005 284

Class 2

1.00 0.240 0.193 1.00 1.00 0.355

AXIAL FORCE & BENDING

UNIVERSAL BEAMS Advance® UKB

S275 / Advance® 275
BS EN 1993-1-1:2005 BS 4-1:2005 285

UNIVERSAL BEAMS

Advance® UKB

S275 / Advance® 275
1.00 0.240 0.193 1.00 1.00 0.355 AXIAL FORCE & BENDING
BS EN 1993-1-1:2005 BS 4-1:2005 286

Class 2

UNIVERSAL BEAMS

Advance® UKB

0.307 0.260 0.262 1.00 1.00 0.308 0.380

S275 / Advance® 275
AXIAL FORCE & BENDING
BS EN 1993-1-1:2005 BS 4-1:2005 287

UNIVERSAL BEAMS

Advance® UKB

S275 / Advance® 275
0.307 0.260 0.262 1.00 1.00 0.308 0.380 AXIAL FORCE & BENDING
BS EN 1993-1-1:2005 BS 4-1:2005 288

Class 2

UNIVERSAL BEAMS

Advance® UKB

0.372 0.365 1.00 1.00 1.00 1.00 1.00 1.00

S275 / Advance® 275
AXIAL FORCE & BENDING
BS EN 1993-1-1:2005 BS 4-1:2005 289

UNIVERSAL BEAMS

Advance® UKB

S275 / Advance® 275
0.372 0.365 1.00 1.00 1.00 1.00 1.00 1.00 AXIAL FORCE & BENDING
BS EN 1993-1-1:2005 BS 4-1:2005 290

Class 2

UNIVERSAL COLUMNS

Advance® UKC

1.00 1.00 1.00 1.00 1.00 1.00 1.00

AXIAL FORCE & BENDING S275 / Advance® 275
BS EN 1993-1-1:2005 BS 4-1:2005 291

1.00 1.00 1.00 1.00 1.00 1.00 1.00

UNIVERSAL COLUMNS

Advance® UKC

AXIAL FORCE & BENDING S275 / Advance® 275
BS EN 1993-1-1:2005 BS 4-1:2005 292

Class 2

UNIVERSAL COLUMNS

Advance® UKC

1.00 1.00 1.00 1.00 1.00 1.00 1.00

AXIAL FORCE & BENDING S275 / Advance® 275
BS EN 1993-1-1:2005 BS 4-1:2005 293

1.00 1.00 1.00 1.00 1.00 1.00 1.00

UNIVERSAL COLUMNS

Advance® UKC

AXIAL FORCE & BENDING S275 / Advance® 275
BS EN 1993-1-1:2005 BS 4-1:2005 294

Class 2

UNIVERSAL COLUMNS

Advance® UKC

1.00 1.00 1.00 1.00 1.00 1.00 1.00

AXIAL FORCE & BENDING S275 / Advance® 275
BS EN 1993-1-1:2005 BS 4-1:2005 295

1.00 1.00 1.00 1.00 1.00 1.00 1.00

UNIVERSAL COLUMNS

Advance® UKC

AXIAL FORCE & BENDING S275 / Advance® 275
BS EN 1993-1-1:2005 BS 4-1:2005 296

Class 2

UNIVERSAL COLUMNS

Advance® UKC

1.00 1.00 1.00 1.00 1.00 1.00 1.00

AXIAL FORCE & BENDING S275 / Advance® 275
BS EN 1993-1-1:2005 BS 4-1:2005 297

1.00 1.00 1.00 1.00 1.00 1.00 1.00

UNIVERSAL COLUMNS

Advance® UKC

AXIAL FORCE & BENDING S275 / Advance® 275
BS EN 1993-1-1:2005 BS 4-1:2005 298

Class 2

UNIVERSAL COLUMNS

Advance® UKC

1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00

AXIAL FORCE & BENDING S275 / Advance® 275
BS EN 1993-1-1:2005 BS 4-1:2005 299

1.00 1.00 1.00 1.00 1.00 1.00 1.00

UNIVERSAL COLUMNS

Advance® UKC

AXIAL FORCE & BENDING S275 / Advance® 275
BS EN 1993-1-1:2005 BS 4-1:2005 300

JOISTS

Class 2

1.00 1.00 1.00 1.00 1.00 1.00 1.00

AXIAL FORCE & BENDING S275
BS EN 1993-1-1:2005 BS 4-1:2005 301

JOISTS

1.00 1.00 1.00 1.00 1.00 1.00 1.00

AXIAL FORCE & BENDING S275
BS EN 1993-1-1:2005 BS 4-1:2005 302

JOISTS

Class 2

1.00 1.00 1.00 1.00 1.00 1.00

AXIAL FORCE & BENDING S275
BS EN 1993-1-1:2005 BS 4-1:2005 303

JOISTS

1.00 1.00 1.00 1.00 1.00 1.00

AXIAL FORCE & BENDING S275
BS EN 1993-1-1:2005 BS 4-1:2005 304

Class 2

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

PARALLEL FLANGE CHANNEL

Advance® UKPFC

AXIAL FORCE & BENDING S275 / Advance® 275
BS EN 1993-1-1:2005 BS 4-1:2005 305

PARALLEL FLANGE CHANNEL

Advance® UKPFC

AXIAL FORCE & BENDING S275 / Advance® 275
BS EN 1993-1-1:2005 BS 4-1:2005 306
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Class 2

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

PARALLEL FLANGE CHANNEL

Advance® UKPFC

AXIAL FORCE & BENDING S275 / Advance® 275
BS EN 1993-1-1:2005 BS 4-1:2005 307

PARALLEL FLANGE CHANNEL

Advance® UKPFC

AXIAL FORCE & BENDING S275 / Advance® 275
BS EN 1993-1-1:2005 BS 4-1:2005 308
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

3742.247.552.863.479.2106132158 6774.589.3112149186223 42.1 101126168211253 52.262.6 157209261313 63.275.888.4101 253316379 bold italic

S275
BOLT RESISTANCES BS EN 1993-1-8:2005 BS EN ISO 4016 BS EN ISO 4018 309

26.4 63.479.2106132158 37.244.752.159.6 149186223 42.150.558.967.475.884.2 211253 52.262.673.183.594104125 313 63.275.888.4101114126152189 55.564.87483.392.5111139185231278 146182243304364 74.589.5 224298373447 94.6114132 284378473568 112134157179201 447559671 bold italic

S275
BOLT RESISTANCES BS EN 1993-1-8:2005 BS EN ISO 4014 BS EN ISO 4017 310

26.4 63.479.2106132158 37.244.752.159.6 149186223 42.150.558.967.475.884.2 211253 52.262.673.183.594104125 313 63.275.888.4101114126152189 64.87483.392.5111139185231278 60.7 146182243304364 74.589.5 224298373447 94.6114132 284378473568 112134157179201 559671 bold italic

S275
BOLT RESISTANCES BS EN 1993-1-8:2005 BS EN ISO 4014 BS EN ISO 4017 311

10.615.8 31.737.047.563.489.8116143 7.414.922.329.8 81.9119156194 08.416.825.333.742.1 126168211 0010.420.931.341.862.6 146198251 0006.318.931.656.894.7 221284 bold italic

S275
BOLT RESISTANCES BS EN 1993-1-8:2005 BS EN ISO 4016 BS EN ISO 4018 312

10.615.821.126.4 63.489.8116143 7.414.922.329.837.244.759.6 156194 08.416.825.333.742.158.984.2 211 0010.420.931.341.862.694.0 0006.318.931.656.894.7158 18.5 55.564.883.3111157204250 12.124.336.448.6 134194255316 014.929.844.759.674.5 224298373 0018.937.856.875.7114 360454 00011.233.555.9101168 503 bold italic

S275
BOLT RESISTANCES BS EN 1993-1-8:2005 BS EN ISO 4014 BS EN ISO 4017 313

10.615.821.126.4 63.489.8116143 7.414.922.329.837.244.759.6 156194 08.416.825.333.742.158.984.2 211 0010.420.931.341.862.694.0 0006.318.931.656.894.7158221

18.527.8 64.883.3111157204250 12.124.336.448.660.7 134194255316 014.929.844.759.674.5 224298373 0018.937.856.875.7114 360454 00011.233.555.9101168 503 bold italic

S275
BOLT RESISTANCES BS EN 1993-1-8:2005 BS EN ISO 4014 BS EN ISO 4017 314
S275 dAFF dA BF F Ft BOLT RESISTANCES BS EN 1993-1-8:2005 BS EN 14399:2005 EN 1090:2008 315
S275 dAFF dA BF F Ft BOLT RESISTANCES BS EN 1993-1-8:2005 BS EN 14399:2005 EN 1090:2008 316
S275 dA BOLT RESISTANCES BS EN 1993-1-8:2005 BS EN 14399:2005 EN 1090:2008 317
S275 dA BOLT RESISTANCES BS EN 1993-1-8:2005 BS EN 14399:2005 EN 1090:2008 318
S275 dAFF dA BF BOLT RESISTANCES F Ft BS EN 1993-1-8:2005 BS EN 14399:2005 EN 1090:2008 319
S275 dAFF dA BF BOLT RESISTANCES F
BS EN 1993-1-8:2005 BS EN 14399:2005 EN 1090:2008 320
Ft
S275 dA BOLT RESISTANCES BS EN 1993-1-8:2005 BS EN 14399:2005 EN 1090:2008 321
S275 dA BOLT RESISTANCES BS EN 1993-1-8:2005 BS EN 14399:2005 EN 1090:2008 322
S275 FILLET WELDS BS EN 1993-1-8 323
324
325

1410 1220 1020 1010942 12001110 1060986 968899 919848787

italictype

326

172015901480 128011801090 1060975906 1040953879817 922845780725 823755697647 744682629584 699641591549 648594549509 566519479445 1970181016701550 1530141013001210 1390126011601070993 11401040954880817 997907831767712 882802735679630 781710651601558 721655601555515 670609559516479 585532487450418 581528484447415 571513467428395367 493443403369341317 11601040948869802745 941847770706652605 733659599549507471 684616560513474440 618556505463428397 650578520473433400371 587522469427391361335 522464418380348321298 556500455417385357 499449408374345321 516459413375344317295 457406366332305281261 389346311283259239222

italictype 327

428 418 360 294 529491 441410 391364 339314 288267 257237220 437400370343 372341315292 322295272253 367337311288 317291268249 278255236219 248228210195 208191176164 177162149139 321292268247230 274249229211196 248223203186172159 223201182167154143 193174158145134124 163147134123113105 223198178162149137127 183163147133122113105 16614813312111110294.9 13912110897.188.380.974.769.4 11699.887.377.669.963.558.253.749.9 95.479.568.259.653.047.743.439.836.734.1

328
italictype

411037003360308028502640 349031402850262024202240 3350298026802440223020601910 2750245022002000184017001570 2340208018801710156014401340 2000178016001460134012301150 184016201440129011801080995924 1560137012201100997914843783 136011901060954867795734681 11701020909818744682629585 781694625568521481446 1950171015201370124011401050977 16701470130011701070977902837 136011901050949863791730678 12301060925822740673617569528 1060906792704634576528488453 900772675600540491450416386 586513456410373342316293 1110956836743669608557515478 1030860737645573516469430397369 819683585512455410372341315293 675563483422375338307282260241 563470403352313282256235217201 837698598523465419381349322299

791634528453396352317288264244226 674539449385337300270245225207193 550441367315276245220200184170157 466373311266233207186169155143133 403322269230201179161147134124115 353283235202177157141128118109101 41531124920717815513812411310495.788.9 35226421117615113211710696.088.081.375.5 29221917514612511097.487.779.773.167.562.6 23417614111710087.978.270.363.958.654.150.2 11693.277.666.558.251.846.642.338.835.833.3 italictype 329
734611524459408367333306282262

595540495457425 290261237217201186 373332299271249230213 264226198176158144132122113 20617114712911410393.585.779.173.4 19516314012210997.788.881.475.269.8 11898.584.473.865.659.153.749.245.442.2 21417214312310795.385.878.071.566.061.3 16012810791.780.271.364.258.353.549.445.8 50.340.233.528.725.122.320.118.316.815.514.4 15711793.978.367.158.752.247.042.739.136.133.6 10377.061.651.344.038.534.230.828.025.723.722.0 92.269.255.346.139.534.630.727.725.123.121.319.8

italictype

330

368 322295272253 293269248230 268241219201186172 207186169155143133 252224202183168155144 197175158144132121113 236207184165150138127118 18416114312911710799.292.1 18816514613212011010194.1 143125111100.090.983.376.971.4 16914512711310292.484.778.272.6 12510793.783.375.068.262.557.753.6 10285.172.963.856.751.146.442.639.336.5 69.455.646.339.734.730.927.825.323.121.419.8

italictype

331

Design

Unstiffened webs

Position of Stiff Bearing

Design resistance of unstiffened web, FRd (kN) and limiting length, clim (mm)

Stiff bearing length, ss (mm)

Section Shear Designation Resistance Vc,Rd kN 0102030405075100150200250300350

1016x305x487 + 6480 FRd (c = 0) 1230134014501570170018302200260032503750426047605260 clim (mm) 620610600590580570550520470420370320290 FRd (c clim) 4570468047804880498050805330558060806580709083308390

1016x305x437 + 5810 FRd (c = 0) 1050115012501360147016001930267030903480386042404620 clim (mm) 620610600590580570550520470420370320310 FRd (c clim) 3860395040404130422043104540476059906210642066306830

1016x305x393 + 5240 FRd (c = 0) 89498010701640172017901980218025202830315034603780 clim (mm) 620610600590580570550520470420370320300 FRd (c clim) 3250333034103490357044404540464048305020519053705530

1016x305x349 + 4700 FRd (c = 0) 1090114011901240130013501500165019002140238026202860 clim (mm) 620610600590580570550520470420370320290 FRd (c clim) 3170320032303270330033303410348036303770391040404170

1016x305x314 + 4240 FRd (c = 0) 8799219641010105011001220135015401740194021302330 clim (mm) 620610600590580570550520470420370320270 FRd (c clim) 2540257025902620265026702740280029203040315032603370 1016x305x272 + 3680 FRd (c = 0) 64867971174477881390499311401290143015801730 clim (mm) 620610600590580570550520470420370320270 FRd (c clim) 1840186018801910193019502000204021402230231023802380 1016x305x249 + 3600 FRd (c = 0) 63166269572876379989196811201260141015601700 clim (mm) 620610600590580570550520470420370320270 FRd (c clim) 1760178018001820185018701920197020602160225023302350 1016x305x222 + 3440 FRd (c = 0) 58061064167370674082089010301170131014401580 clim (mm) 620610600590580570550520470420370320270 FRd (c clim) 1580160016201650167016901740179018801970206021402140

914x419x388 4220 FRd (c = 0) 1160121012701330139014601620179020802350262028903160 clim (mm) 570560550540530520500470420370320280280 FRd (c clim) 3400343034703500354035703650374038904050419043404470 914x419x343 3800 FRd (c = 0) 93297810301080113011801320146016901910213023502570 clim (mm) 570560550540530520500470420370320270260 FRd (c clim) 2700273027602790282028502920299031203250337034903610

Advance® and UKB are trademarks of Tata Steel. A fuller description of the relationship between Universal Beams (UB) and the Advance® range of sections manufactured by Tata Steel is given in note 12.

+ These sections are in addition to the range of BS 4 sections If c < clim, then use FRd value for c = 0.

FOR EXPLANATION OF TABLES SEE NOTE 6.

z z yy ss c 332

Design

Unstiffened webs

Position of Stiff Bearing

Design resistance of unstiffened web, FRd (kN) and limiting length, clim (mm)

Stiff bearing length, ss (mm)

Section Shear Designation Resistance Vc,Rd kN 0102030405075100150200250300350 914x305x289 3780 FRd (c = 0) 91095710101060111011601300143016501870209023102530 clim (mm) 580570560550540530510480430380330280250 FRd (c clim) 2610264026802710274027702840291030503180331034303550 914x305x253 3350 FRd (c = 0) 7077447828228629041010111012801460163018001970 clim (mm) 580570560550540530510480430380330280230 FRd (c clim) 2000203020502080210021202180224023502460256026602750 914x305x224 3060 FRd (c = 0) 58761865168572075584792110701220136015101650 clim (mm) 580570560550540530510480430380330280230 FRd (c clim) 1640166016801700172017401790184019402030212022002250

914x305x201 2870 FRd (c = 0) 5205495786096416737508179501080122013501480 clim (mm) 580570560550540530510480430380330280230 FRd (c clim) 1420145014701490151015201570162017101790187019301930

838x292x226 2900 FRd (c = 0) 61865268872576480390699311601320148016401800 clim (mm) 540530520510500490460440390340290240220 FRd (c clim) 1760178018001830185018701930198020802180227023602440 838x292x194 2610 FRd (c = 0) 5025315615936256587408089441080122013501490 clim (mm) 540530520510500490460440390340290240200 FRd (c clim) 1400142014401460148015001540159016801760184019201920 838x292x176 2460 FRd (c = 0) 448475503531561592661723847970109012201330 clim (mm) 540530520510500490460440390340290240190 FRd (c clim) 1230125012701290130013201370141014901570164016701670 762x267x197 2530 FRd (c = 0) 58261865569473577688396811401310148016401810 clim (mm) 480470460450440430410380330280230200200 FRd (c clim) 1660169017101740176017801840189019902090219022802360 762x267x173 2290 FRd (c = 0) 4795105425756096447288009421080123013701510 clim (mm) 480470460450440430410380330280230190190 FRd (c clim) 1350137013901410143014501500154016301720180018801930 762x267x147 2040 FRd (c = 0) 37640142745348151057162974385797110901190 clim (mm) 480470460450440430410380330280230180170 FRd (c clim) 1040105010701090110011201160120012701340141014101410 762x267x134 1970 FRd (c = 0) 332354377401426452504555658760852924996 clim (mm) 480470460450440430410380330280230180160 FRd (c clim) 9039199359509659801020105011201180118011801180

Advance® and UKB are trademarks of Tata Steel. A fuller description of the relationship between Universal Beams (UB) and the Advance® range of sections manufactured by Tata Steel is given in note 12. If c < clim, then use FRd value for c = 0. FOR EXPLANATION OF TABLES SEE NOTE 6.

z z yy ss c 333

Design

Unstiffened webs

Position of Stiff Bearing

Design resistance of unstiffened web, FRd (kN) and limiting length, clim (mm)

Stiff bearing length, ss (mm)

Section Shear Designation Resistance Vc,Rd kN 0102030405075100150200250300350

686x254x170 2120 FRd (c = 0) 50754257861665569579587710401200136015301690 clim (mm) 440430420410400390360340290240190190190 FRd (c clim) 1460148015001530155015701620167017701860195020302120

686x254x152 1920 FRd (c = 0) 415444474505538571651718853988112012601390 clim (mm) 440430420410400390360340290240190180180 FRd (c clim) 1180120012201240125012701320136014401520159016601690 686x254x140 1790 FRd (c = 0) 36238741444247150156862874786698411001220 clim (mm) 440430420410400390360340290240190170170 FRd (c clim) 1020104010501070109011001140118012501320139014201420

686x254x125 1670 FRd (c = 0) 3163393633884144414975506577628689741070 clim (mm) 440430420410400390360340290240190160160 FRd (c clim) 874890906922937952988102010901150120012001200

610x305x238 2460 FRd (c = 0) 5806477218018879781230158018802170246027503050 clim (mm) 390380370360350340310290240220220220220 FRd (c clim) 2040210021702230229023602520267031803330348036203750

610x305x179 1880 FRd (c = 0) 50353957761765870181190110701250142015901760 clim (mm) 390380370360350340310290240190190190190 FRd (c clim) 1470149015201540156015801630169017801870196020502130

610x305x149 1570 FRd (c = 0) 34537039742545448556062074186298211001220 clim (mm) 390380370360350340310290240190170170170 FRd (c clim) 991101010201040106010701110115012201280135013801380

610x229x140 1690 FRd (c = 0) 4184504835185545926807559041050120013501500 clim (mm) 390380370360350340310290240190170170170 FRd (c clim) 1210123012501270129013101360140014901570165017201790

610x229x125 1530 FRd (c = 0) 34036639442345348455461673986298511101230 clim (mm) 390380370360350340310290240190160160160 FRd (c clim) 97198910101020104010601100113012101280134014001400

610x229x113 1420 FRd (c = 0) 2913143393643914184755296377448519571060 clim (mm) 390380370360350340310290240190150150150 FRd (c clim) 82183785286788289693296610301090114011401140

610x229x101 1370 FRd (c = 0) 259281303326350375424473571668765854930 clim (mm) 390380370360350340310290240190140140140 FRd (c clim) 719734748763776790823855915972978978978

Advance® and UKB are trademarks of Tata Steel. A fuller description of the relationship between Universal Beams (UB) and the Advance® range of sections manufactured by Tata Steel is given in note 12. If c < clim, then use FRd value for c = 0.

FOR EXPLANATION OF TABLES SEE NOTE 6.

z z yy ss c 334

Design

Unstiffened webs

Position of Stiff Bearing

Design resistance of unstiffened web, FRd (kN) and limiting length, clim (mm)

Stiff bearing length, ss (mm)

Section Shear Designation Resistance Vc,Rd kN 0102030405075100150200250300350

610x178x100 + 1450 FRd (c = 0) 2963203463724004274845406517628739841100 clim (mm) 390380370360350340310290240190150150150 FRd (c clim) 82884586187789390994698210501120118012001200

610x178x92 + 1410 FRd (c = 0) 2752983223483743974505036097148199231030 clim (mm) 390380370360350340310290240190140140140 FRd (c clim) 7597757918078228378739089741040108010801080

610x178x82 + 1290 FRd (c = 0) 229248269290312330375420508597674739804 clim (mm) 390380370360350340310290240190140130130 FRd (c clim) 622636650663676689720750807846846846846

533x312x272 + 2480 FRd (c = 0) 7548309131000110012001480178021602520289032503610 clim (mm) 340330320310300290260240230230230230230 FRd (c clim) 2680275028302900297030403230341037704140450048605320

533x312x219 + 2120 FRd (c = 0) 5436106847648519441190140017202030235026602980 clim (mm) 340330320310300290260240190190190190190 FRd (c clim) 1900197020302090216022202380254028503170353036803830 533x312x182 + 1740 FRd (c = 0) 4124675305986728671010113013601590182020402240 clim (mm) 340330320310300290260240190190190190190 FRd (c clim) 1420147015301580163016802010207021902310242025202620 533x312x150 + 1460 FRd (c = 0) 4124464815185575966967769351090125014101550 clim (mm) 340330320310300290260240190170170170170 FRd (c clim) 1210123012501270129013101350140014901570165017201800 533x210x138 + 1680 FRd (c = 0) 323378440509584788913102012301450166018702060 clim (mm) 340330320310300290260240190170170170170 FRd (c clim) 1150120012501310136014101530185019702080219022902390

533x210x122 1450 FRd (c = 0) 3984334695065455866777579171080124014001530 clim (mm) 340330320310300290260240190160160160160 FRd (c clim) 1160119012101230125012701320136014501540162017001770 533x210x109 1330 FRd (c = 0) 327355386417450485557624757890102011601270 clim (mm) 340330320310300290260240190150150150150 FRd (c clim) 942961979997102010301070111011901260133014001450 533x210x101 1240 FRd (c = 0) 2813063323603894184795376537698849991100 clim (mm) 340330320310300290260240190140140140140 FRd (c clim) 80482083685286788391995510201090114011801180 533x210x92 1170 FRd (c = 0) 246268292316342368420472575677780882969 clim (mm) 340330320310300290260240190140140140140 FRd (c clim) 696711725739753767800832893949981981981 533x210x82 1120 FRd (c = 0) 217238259282305326373419513605698790846 clim (mm) 340330320310300290260240190140130130130 FRd (c clim) 604618632645658671702732788840846846846

Advance® and UKB are trademarks of Tata Steel. A fuller description of the relationship between Universal Beams (UB) and the Advance® range of sections manufactured by Tata Steel is given in note 12.

+ These sections are in addition to the range of BS 4 sections If c < clim, then use FRd value for c = 0.

FOR EXPLANATION OF TABLES SEE NOTE 6.

z z yy ss c 335

Design

Unstiffened webs

Position of Stiff Bearing

Design resistance of unstiffened web, FRd (kN) and limiting length, clim (mm)

Stiff bearing length, ss (mm)

Section Shear Designation Resistance Vc,Rd kN 0102030405075100150200250300350

533x165x85 + 1170 FRd (c = 0) 249272297322349374427480586691796901991 clim (mm) 340330320310300290260240190140140140140 FRd (c clim) 706722737752766780815848910969102010301030

533x165x74 + 1120 FRd (c = 0) 219240262285309329377424520614709803867 clim (mm) 340330320310300290260240190140120120120 FRd (c clim) 608623637650664677709740798851867867867

533x165x66 + 1020 FRd (c = 0) 182200218238256272313353433513578637679 clim (mm) 340330320310300290260240190140110110110 FRd (c clim) 496508521533544556583610659679679679679

457x191x161 + 1810 FRd (c = 0) 4685346086907788721130128015901900221025202840 clim (mm) 290280270260250240220190180180180180180 FRd (c clim) 1720178018401910197020302190234026502960327035803930

457x191x133 + 1510 FRd (c = 0) 352409473544622704894103012901550182020802410 clim (mm) 290280270260250240220190150150150150170 FRd (c clim) 1270133013801430148015401670180020702400253026502800

457x191x106 + 1230 FRd (c = 0) 2482963504115706187188109941180136015201610 clim (mm) 290280270260250240220190150150150150150 FRd (c clim) 8829259691010106011001350141015101600169017701850

457x191x98 1110 FRd (c = 0) 224359393429467505587663814964112012401320 clim (mm) 290280270260250240220190150150150150150 FRd (c clim) 78898410001020104010601100115012301300138014501510

457x191x89 1030 FRd (c = 0) 27330133036139342649355768581394010501110 clim (mm) 290280270260250240220190140140140140140 FRd (c clim) 79881583284986588191995610301090115012101260

457x191x82 976 FRd (c = 0) 2432682943223513814394976127288439421000 clim (mm) 290280270260250240220190140130130130130 FRd (c clim) 701717733748763777813847911971103010601060

457x191x74 895 FRd (c = 0) 199219241264289312360408503599694776811 clim (mm) 290280270260250240220190140120120120120 FRd (c clim) 568581595607620632662691744794811811811 457x191x67 839 FRd (c = 0) 174192212233255273316359444529614687687 clim (mm) 290280270260250240220190140120120120120 FRd (c clim) 490503515527538549577603652687687687687

Advance® and UKB are trademarks of Tata Steel. A fuller description of the relationship between Universal Beams (UB) and the Advance® range of sections manufactured by Tata Steel is given in note 12.

+ These sections are in addition to the range of BS 4 sections If c < clim, then use FRd value for c = 0.

FOR EXPLANATION OF TABLES SEE NOTE 6.

z z yy ss c 336

Design

Section Shear Designation Resistance

Position of Stiff Bearing

Unstiffened webs

Design resistance of unstiffened web, FRd (kN) and limiting length, clim (mm)

Stiff bearing length, ss (mm)

Vc,Rd kN 0102030405075100150200250300350

457x152x82 1040 FRd (c = 0) 27129932835939142448955468280993710501110 clim (mm) 290280270260250240220190140140140140140 FRd (c clim) 79481182884586187791695310201090115012101250

457x152x74 938 FRd (c = 0) 224247271297324351405459566673779871925 clim (mm) 290280270260250240220190140130130130130 FRd (c clim) 648663677691705719752784843899951970970

457x152x67 899 FRd (c = 0) 196217239262287308356404500595690772807 clim (mm) 290280270260250240220190140120120120120 FRd (c clim) 560574587600613625655684738789807807807

457x152x60 806 FRd (c = 0) 157174192211231247286325402479556600600 clim (mm) 290280270260250240220190140120120120120 FRd (c clim) 443454465476487497522545590600600600600

457x152x52 747 FRd (c = 0) 135150166183199212247281350411463499499 clim (mm) 290280270260250240220190140100100100100 FRd (c clim) 373383393403413422445466499499499499499 406x178x85 + 966 FRd (c = 0) 198239287407446486566644798953111011901270 clim (mm) 260250240230220210180160130130130130130 FRd (c clim) 6967347718099719891030108011601230131013701440 406x178x74 858 FRd (c = 0) 229254282311341371431491610730849914971 clim (mm) 260250240230220210180160120120120120120 FRd (c clim) 66968570071673174578081487893799310501050 406x178x67 790 FRd (c = 0) 193215239264290314366417519622724780829 clim (mm) 260250240230220210180160120120120120120 FRd (c clim) 558572586599612625656686741793840840840 406x178x60 709 FRd (c = 0) 154172191211232250292333416499581619619 clim (mm) 260250240230220210180160110110110110110 FRd (c clim) 440451463474484495520544590619619619619 406x178x54 683 FRd (c = 0) 142159178198217232272311390468547571571 clim (mm) 260250240230220210180160110100100100100 FRd (c clim) 400411422433444454479503547571571571571

Advance® and UKB are trademarks of Tata Steel. A fuller description of the relationship between Universal Beams (UB) and the Advance® range of sections manufactured by Tata Steel is given in note 12.

+ These sections are in addition to the range of BS 4 sections If c < clim, then use FRd value for c = 0.

FOR EXPLANATION OF TABLES SEE NOTE 6.

z z yy ss c 337

Design

Section Shear Designation Resistance

Position of Stiff Bearing

Unstiffened webs

Design resistance of unstiffened web, FRd (kN) and limiting length, clim (mm)

Stiff bearing length, ss (mm)

Vc,Rd kN 0102030405075100150200250300350

406x140x53 + 709 FRd (c = 0) 151169188209230246288329412495577615615 clim (mm) 260250240230220210180160110110110110110 FRd (c clim) 430442453465476486512537583615615615615

406x140x46 611 FRd (c = 0) 111124138154168181212242304355401405405 clim (mm) 260250240230220210180160110100100100100 FRd (c clim) 311320329337345353373391405405405405405

406x140x39 566 FRd (c = 0) 94.9107120133144156183210258297335338338 clim (mm) 26025024023022021018016011090909090 FRd (c clim) 260268276284292299317334338338338338338

356x171x67 733 FRd (c = 0) 216243272302334366429491617742832892949 clim (mm) 230220210200190180150130120120120120120 FRd (c clim) 54465767268870371775378685090996410201050

356x171x57 646 FRd (c = 0) 166187211235261282332382481581652701746 clim (mm) 230220210200190180150130110110110110110 FRd (c clim) 482496509521534546575603655703746746746 356x171x51 587 FRd (c = 0) 136154174194216232274316399482542576576 clim (mm) 230220210200190180150130100100100100100 FRd (c clim) 391402414424435445470494538576576576576 356x171x45 549 FRd (c = 0) 119135153171188203241278352427480489489 clim (mm) 2302202102001901801501309090909090 FRd (c clim) 334345355366375385408430470489489489489 356x127x39 527 FRd (c = 0) 105119135152167180213246313379415415415 clim (mm) 2302202102001901801501309090909090 FRd (c clim) 298307316325334342363382415415415415415

356x127x33 472 FRd (c = 0) 84.496.6110123134145173200255298316316316 clim (mm) 2302202102001901801501308080808080 FRd (c clim) 234242250258265272290306316316316316316

305x165x54 545 FRd (c = 0) 166190216243271297352408518617671720767 clim (mm) 190180170160150140120110110110110110110 FRd (c clim) 495508522535548560590619673722769803803

305x165x46 461 FRd (c = 0) 117135153173194210250290370441480503503 clim (mm) 190180170160150140120100100100100100100 FRd (c clim) 345355365374384393415436476503503503503

305x165x40 411 FRd (c = 0) 92.0106121137153166198230294351367367367 clim (mm) 190180170160150140120909090909090 FRd (c clim) 266275283291299307325342367367367367367

Advance® and UKB are trademarks of Tata Steel. A fuller description of the relationship between Universal Beams (UB) and the Advance® range of sections manufactured by Tata Steel is given in note 12.

+ These sections are in addition to the range of BS 4 sections If c < clim, then use FRd value for c = 0.

FOR EXPLANATION OF TABLES SEE NOTE 6.

z z yy ss c 338

Design

Section Shear Designation Resistance

Position of Stiff Bearing

Unstiffened webs

Design resistance of unstiffened web, FRd (kN) and limiting length, clim (mm)

Stiff bearing length, ss (mm)

Vc,Rd kN 0102030405075100150200250300350

305x127x48 612 FRd (c = 0) 118154198248295327443515659788858924985 clim (mm) 190180170160150140120100100100100100100 FRd (c clim) 42345548751955158374077885091697810401090

305x127x42 542 FRd (c = 0) 95.8128212240266289346403517618674726775 clim (mm) 190180170160150140120909090909090 FRd (c clim) 340368396425524538571602660713762808822

305x127x37 481 FRd (c = 0) 124144165188207225270315405485529570583 clim (mm) 190180170160150140120909090909090 FRd (c clim) 279370382393405416442467513555583583583

305x102x33 452 FRd (c = 0) 106122140160175190228266341412450462462 clim (mm) 2001901801701601501201009090909090 FRd (c clim) 303314324334344353376397436462462462462

305x102x28 407 FRd (c = 0) 85.199.0114129141154185217279338351351351 clim (mm) 2001901801701601501201008080808080 FRd (c clim) 239248257265274282301319351351351351351 305x102x25 386 FRd (c = 0) 77.590.7105117129141170200258313316316316 clim (mm) 2001901801701601501201007070707070 FRd (c clim) 212221230238246254273290316316316316316

254x146x43 415 FRd (c = 0) 104132192219248271327382493555604650693 clim (mm) 160150140130120110100100100100100100100 FRd (c clim) 359384453466478490519546596643686727728 254x146x37 361 FRd (c = 0) 106124144166187204246289374421460495496 clim (mm) 16015014013012011090909090909090 FRd (c clim) 314325335345355364387408448484496496496 254x146x31 336 FRd (c = 0) 91.1108127147162178217255332376411427427 clim (mm) 16015014013012011090808080808080 FRd (c clim) 264274284294303312334354391425427427427

Advance® and UKB are trademarks of Tata Steel. A fuller description of the relationship between Universal Beams (UB) and the Advance® range of sections manufactured by Tata Steel is given in note 12. If c < clim, then use FRd value for c = 0.

FOR EXPLANATION OF TABLES SEE NOTE 6.

z z yy ss c 339

Design

Unstiffened webs

Position of Stiff Bearing

Design resistance of unstiffened web, FRd (kN) and limiting length, clim (mm)

Stiff bearing length, ss (mm)

Section Shear Designation Resistance Vc,Rd kN 0102030405075100150200250300350

254x102x28 365 FRd (c = 0) 98.7117137158175191233275358408447477477 clim (mm) 17016015014013012090808080808080 FRd (c clim) 225299310320330340364386426463477477477

254x102x25 341 FRd (c = 0) 87.0104123140155170208246321367402413413 clim (mm) 17016015014013012090707070707070 FRd (c clim) 183259269279289298320341378413413413413

254x102x22 320 FRd (c = 0) 76.491.8109123137150185219287329354354354 clim (mm) 17016015014013012090706060606060 FRd (c clim) 144223233242251260280299334354354354354

203x133x30 299 FRd (c = 0) 70.596.8129166191213270343426476521562601 clim (mm) 130120110100908070808080808080 FRd (c clim) 243266289311334357413447495538578616628

203x133x25 263 FRd (c = 0) 54.077.9125146163181224268333373409443447 clim (mm) 130120110100908070707070707070 FRd (c clim) 184204225245289299322343382418447447447 203x102x23 254 FRd (c = 0) 54.794.7114134150166205245303339372390390 clim (mm) 130120110100908070707070707070 FRd (c clim) 190210250259268276297316350382390390390 178x102x19 203 FRd (c = 0) 43.777.394.9112126140176212252283311312312 clim (mm) 1101009080706060606060606060 FRd (c clim) 151168200208216224241258288312312312312 152x89x16 167 FRd (c = 0) 38.657.890.6107122137174205239268295301301 clim (mm) 100908070606060606060606060 FRd (c clim) 134150166193201208226242271298301301301 127x76x13 131 FRd (c = 0) 33.350.472.189.6104118154177207234257259259 clim (mm) 80706050505050606060606060 FRd (c clim) 116130144163170176192208234258259259259

Advance® and UKB are trademarks of Tata Steel. A fuller description of the relationship between Universal Beams (UB) and the Advance® range of sections manufactured by Tata Steel is given in note 12. If c < clim, then use FRd value for c = 0. FOR EXPLANATION OF TABLES SEE NOTE 6.

z z yy ss c 340

Unstiffened webs

Position of Stiff Bearing

Design resistance of unstiffened web, FRd (kN) and limiting length, clim (mm)

Stiff bearing length, ss (mm)

Design Section Shear Designation Resistance Vc,Rd kN 0102030405075100150200250300350

356x406x634 4040 FRd (c = 0) 2510267028403020321034003930450057406650742082008970 clim (mm) 390390390390390390390390390390390390390 FRd (c clim) 9490965098009960101001030010700110001180012600134001410014900

356x406x551 3490 FRd (c = 0) 2060220023502510268028503330384049605650633070207700 clim (mm) 350350350350350350350350350350350350350 FRd (c clim) 76707810795080808220836087009040972010400111001180012500

356x406x467 3000 FRd (c = 0) 1670179019302070222023702800325041604760536059606560 clim (mm) 320320320320320320320320320320320320320 FRd (c clim) 61106230635064706590671070107310791085109110971010300

356x406x393 2520 FRd (c = 0) 1300141015201640177019102280268033803890440049205430 clim (mm) 280280280280280280280280280280280280280 FRd (c clim) 4690479048905000510052005460571062306740725077608280

356x406x340 2160 FRd (c = 0) 1050115012501350147015901920227028303270372041604610 clim (mm) 260260260260260260260260260260260260260 FRd (c clim) 3740383039204010410041904410463050805520597064106860

356x406x287 1870 FRd (c = 0) 84692710201110121013201610193023702760315035403930 clim (mm) 230230230230230230230230230230230230230 FRd (c clim) 2960304031203200327033503550374041304520491053005690

356x406x235 1500 FRd (c = 0) 62869576884793110201260152018402160248027903110 clim (mm) 220210210210210210210210210210210210210 FRd (c clim) 2160222022902350241024802640279031103430375040604380

356x368x202 1340 FRd (c = 0) 5185786447167938761100130015901870216024402730 clim (mm) 220210200190190190190190190190190190190 FRd (c clim) 1770183018901940200020602200234026302910320034803770

356x368x177 1180 FRd (c = 0) 425478536600668741938110013501600184020902340 clim (mm) 220210200190180170170170170170170170170 FRd (c clim) 1440149015401590164016901810194021902430268028002920

356x368x153 1010 FRd (c = 0) 34138643649155161478590611201330154017201820 clim (mm) 220210200190180170160160160160160170170 FRd (c clim) 1140118012301270131013501460156017301830192020202110

356x368x129 839 FRd (c = 0) 2643033464304705126187018681040114012201290 clim (mm) 220210200190180170150150150150150150150 FRd (c clim) 87390910001020104010601100114012101280135014201480

Advance® and UKC are trademarks of Tata Steel. A fuller description of the relationship between Universal Columns (UC) and the Advance® range of sections manufactured by Tata Steel is given in note 12. If c < clim, then use FRd value for c = 0. FOR EXPLANATION OF TABLES SEE NOTE 6.

z
yy ss c 341
z

Design Section Shear

Unstiffened webs

Design resistance of unstiffened web, FRd (kN) and limiting length, clim (mm)

Position of Stiff Bearing

Stiff bearing length, ss (mm)

Designation Resistance Vc,Rd kN 0102030405075100150200250300350

305x305x283 1950 FRd (c = 0) 971107011701280139015201860222027203170362040704520 clim (mm) 250250250250250250250250250250250250250 FRd (c clim) 3540363037203810390039904210444048805330578062306680

305x305x240 1710 FRd (c = 0) 7878709621060117012801580191023002700310034903890 clim (mm) 220220220220220220220220220220220220220 FRd (c clim) 2820290029803060314032203420362040204410481052105600

305x305x198 1400 FRd (c = 0) 59466374082391310101270150018302160249028203150 clim (mm) 200200200200200200200200200200200200200 FRd (c clim) 2090216022302290236024202590275030803410374040704400

305x305x158 1130 FRd (c = 0) 4284865506216987801000115014201700197022402510 clim (mm) 190180170170170170170170170170170170170 FRd (c clim) 1480154015901650170017601890203023002570285031203390

305x305x137 984 FRd (c = 0) 34639745451758565884696512001440168019202160 clim (mm) 190180170160150150150150150150150150150 FRd (c clim) 1190123012801330138014201540166019002140238026102790 305x305x118 856 FRd (c = 0) 27732237242848855370280610101220143016301820 clim (mm) 190180170160150140140140140140140140140 FRd (c clim) 93998010201060110011501250135015601780188019802080 305x305x97 721 FRd (c = 0) 2132512943433954515646528281010110011701250 clim (mm) 190180170160150140120120120130130130130 FRd (c clim) 709745780815850885998104011201210128013501410

254x254x167 1180 FRd (c = 0) 5526227007858779751240144017702110244027703100 clim (mm) 190190190190190190190190190190190190190 FRd (c clim) 1980205021102180225023102480264029703310364039704300

254x254x132 918 FRd (c = 0) 390447510580655735948108013401610187021402400 clim (mm) 160160160160160160160160160160160160160 FRd (c clim) 1370142014801530158016401770190021602430269029503220

254x254x107 751 FRd (c = 0) 28833538944951458473884910701290151017301950 clim (mm) 160150140140140140140140140140140140140 FRd (c clim) 995104010801130117012201330144016601880210023202540

254x254x89 607 FRd (c = 0) 2172552993484014585736628401020120013801470 clim (mm) 160150140130130130130130130130130130130 FRd (c clim) 7367728078438789141000109012701420150015901670

254x254x73 525 FRd (c = 0) 1672002392823293794655416948329029671030 clim (mm) 160150140130120110110110110120120120120 FRd (c clim) 558589620650681711803840910982104011001150

Advance® and UKC are trademarks of Tata Steel. A fuller description of the relationship between Universal Columns (UC) and the Advance® range of sections manufactured by Tata Steel is given in note 12. If c < clim, then use FRd value for c = 0.

FOR EXPLANATION OF TABLES SEE NOTE 6.

z
yy ss c 342
z

Unstiffened webs

Position of Stiff Bearing

Design resistance of unstiffened web, FRd (kN) and limiting length, clim (mm)

Stiff bearing length, ss (mm)

Design Section Shear Designation Resistance Vc,Rd kN 0102030405075100150200250300350

203x203x127 + 893 FRd (c = 0) 4575245996817708661110127015801900221025202830 clim (mm) 170170170170170170170170170170170170170 FRd (c clim) 1670173017901860192019802140229026102920323035403850

203x203x113 + 812 FRd (c = 0) 386446514590672759967111013901670195022302510 clim (mm) 160160160160160160160160160160160160160 FRd (c clim) 1390145015101560162016801820196022402520280030803360 203x203x100 + 709 FRd (c = 0) 31937343550357765682795212001450170019502200 clim (mm) 140140140140140140140140140140140140140 FRd (c clim) 1140119012401290134013901520164018902140239026402890 203x203x86 619 FRd (c = 0) 25830536042148755769380310201240146016801900 clim (mm) 130130130130130130130130130130130130130 FRd (c clim) 9099529961040108011301240135015701790200022202440 203x203x71 483 FRd (c = 0) 192229273321374430530616789961113013101480 clim (mm) 130120120120120120120120120120120120120 FRd (c clim) 662696731765800834920101011801350152016401720 203x203x60 455 FRd (c = 0) 157194237286339389472555722889106012201350 clim (mm) 130120110100100100100100100100100100100 FRd (c clim) 53857260563867270578887210401210134014201500 203x203x52 385 FRd (c = 0) 126157194236281318389459599739830893952 clim (mm) 130120110100909090909090100100100 FRd (c clim) 42745548351153956763770781587994410001050 203x203x46 347 FRd (c = 0) 106134169207249277341405533628684737786 clim (mm) 130120110100909090909090909090 FRd (c clim) 355381406432457483547604663723772819864

152x152x51 + 408 FRd (c = 0) 1642082603193834275256228181010121014001600 clim (mm) 100100100100100100100100100100100100100 FRd (c clim) 58662566570474378287997711701370156017601950

152x152x44 + 350 FRd (c = 0) 131169215267321354439523692860103012001370 clim (mm) 100909090909090909090909090 FRd (c clim) 4634975315655986327168019691140131014801640

152x152x37 292 FRd (c = 0) 1011341732182572853564275697118539951100 clim (mm) 100908080808080808080808080 FRd (c clim) 352381409437466494565636778920106011301200

152x152x30 238 FRd (c = 0) 74.4101134171198221278336451568623673719 clim (mm) 100908070707070707070707070 FRd (c clim) 254277300323346369427485585642690736778

152x152x23 204 FRd (c = 0) 50.775.3107133154175226278381444488528566 clim (mm) 100908070605050505060606060 FRd (c clim) 171192213233254274326377442491531568603

Advance® and UKC are trademarks of Tata Steel. A fuller description of the relationship between Universal Columns (UC) and the Advance® range of sections manufactured by Tata Steel is given in note 12.

+ These sections are in addition to the range of BS 4 sections

If c < clim, then use FRd value for c = 0.

FOR EXPLANATION OF TABLES SEE NOTE 6.

z
yy ss c 343
z

Design

Unstiffened webs

Position of Stiff Bearing

Design resistance of unstiffened web, FRd (kN) and limiting length, clim (mm)

Stiff bearing length, ss (mm)

Section Shear Designation Resistance Vc,Rd kN 0102030405075100150200250300350

254x203x82 676 FRd (c = 0) 2212593023514034585766648401020119013701480 clim (mm) 150140130130130130130130130130130130140 FRd (c clim) 7658008368719069411030112012901450153016101690

254x114x37 455 FRd (c = 0) 94.7125163206242269361425552617674727776 clim (mm) 16015014013012011090909090909090 FRd (c clim) 337364391418445472567599657711761808852

203x152x52 456 FRd (c = 0) 14818222226731536344051767082497711301230 clim (mm) 120110110110110110110110110110110110110 FRd (c clim) 5215515826136436747518289811140124013101380

152x127x37 388 FRd (c = 0) 120163215274318355447540724909109012801460 clim (mm) 90808080808080808080808080 FRd (c clim) 4384755125495866237158079921180136015501730

127x114x29 298 FRd (c = 0) 98.6141195248284320411501683864105012301410 clim (mm) 70707070707070707070707070 FRd (c clim) 3623984344715075436347249051090127014501630 127x114x27 230 FRd (c = 0) 83.21141511932232493153805126437749061040 clim (mm) 70707070707070707070707070 FRd (c clim) 29532234837440042749255868982195210801160 127x76x16 181 FRd (c = 0) 49.873.5103130150170219269369468515558597 clim (mm) 80706060606060606060606060 FRd (c clim) 179199219239258278328378473522564603640 114x114x27 289 FRd (c = 0) 88.512817922626029437846263180096811401310 clim (mm) 70606060606060606060606060 FRd (c clim) 323356390424457491575660828997117013301500 102x102x23 238 FRd (c = 0) 80.312117221524828236745161978895711301290 clim (mm) 60606060606060606060606060 FRd (c clim) 297330364398432465550634803971114013101480 102x44x7 106 FRd (c = 0) 21.241.460.575.891.0106144183258293324353379 clim (mm) 60504040404040404040404040 FRd (c clim) 78.593.8109124140155193231284316345372388 89x89x19 214 FRd (c = 0) 72.211316620323727135543960877794511101280 clim (mm) 60606060606060606060606060 FRd (c clim) 271305338372406440524608777946111012801450 76x76x15 164 FRd (c = 0) 56.396.114317420623831739655371186910301190 clim (mm) 50505050505050505050505050 FRd (c clim) 212244275307339370449528686844100011601320 76x76x13 111 FRd (c = 0) 41.663.491.3113131149195240330421511602663 clim (mm) 50505050505050505050505060 FRd (c clim) 148166184202220239284329420510601662705

If c < clim, then use FRd value for c = 0. FOR EXPLANATION OF TABLES SEE NOTE 6.

yy z z ss c 344

Design

Unstiffened webs

Position of Stiff Bearing

Design resistance of unstiffened web, FRd (kN) and limiting length, clim (mm)

Stiff bearing length, ss (mm)

Section Shear Designation Resistance Vc,Rd kN 0102030405075100150200250300350

430x100x64 977 FRd (c = 0) 154196247396436467545622775928108011801250 clim (mm) 270260250240230220190170120120120120120 FRd (c clim) 579617655693731769998104011301210128013501410

380x100x54 757 FRd (c = 0) 132168279311345371437502632761866930990 clim (mm) 230220210200190180160130110110110110110 FRd (c clim) 487520552585720736774811879943100010601110

300x100x46 577 FRd (c = 0) 1211561982462953264044816378018729391000 clim (mm) 1801701601501401301109090100100100100 FRd (c clim) 444475506537568599677782856938100010601110

300x90x41 575 FRd (c = 0) 1111471922422843163964766368028759431010 clim (mm) 1801701601501401301109090100100100100 FRd (c clim) 41244447650854057265277184793499710601110

260x90x35 451 FRd (c = 0) 94.3127167212247275346417559676739797851 clim (mm) 16015014013012011080808090909090 FRd (c clim) 346375403431460488559642708780835887936 260x75x28 397 FRd (c = 0) 69.098.2135196217238290343447508556600641 clim (mm) 16015014013012011090808080808080 FRd (c clim) 255280305329414426455482533579621656656 230x90x32 380 FRd (c = 0) 91.3122159201236262329395528636695749800 clim (mm) 1401301201101009080808090909090 FRd (c clim) 333359386413439466532606668733785833879 230x75x26 333 FRd (c = 0) 69.396.1129185206226278330420469514555593 clim (mm) 1401301201101009080808080808080 FRd (c clim) 254277300323384395422447493536575605605

Advance® and UKPFC are trademarks of Tata Steel. A fuller description of the relationship between Parallel Flange Channels (PFC) and the Advance® range of sections manufactured by Tata Steel is given in note 12. If c < clim, then use FRd value for c = 0. Resistances assume no eccentricity of the applied force relative to the web.

FOR EXPLANATION OF TABLES SEE NOTE 6.

z z yy ss c 345

Design

Unstiffened webs

Position of Stiff Bearing

Design resistance of unstiffened web, FRd (kN) and limiting length, clim (mm)

Stiff bearing length, ss (mm)

Section Shear Designation Resistance Vc,Rd kN 0102030405075100150200250300350

200x90x30 315 FRd (c = 0) 88.2116151190224249311373497599655707755 clim (mm) 12011010090808080808090909090 FRd (c clim) 319344369394418443505573632691740786829

200x75x23 275 FRd (c = 0) 66.691.2122156179201267319387432473511546 clim (mm) 12011010090807080808080808080 FRd (c clim) 242263284305352356387411454493530557557

180x90x26 267 FRd (c = 0) 75.9102135172200223280338453540591638682 clim (mm) 1101009080808080808080808080 FRd (c clim) 272295318342365388445508562616662704744

180x75x20 247 FRd (c = 0) 55.981.1113143164186239292398447491531568 clim (mm) 1101009080706060607070707070 FRd (c clim) 203224245267288309363407460502542578604

150x90x24 226 FRd (c = 0) 72.999.5132170195218276334449565652704753 clim (mm) 90807070707070707070808080 FRd (c clim) 261285308331354377435492608672726774819

150x75x18 196 FRd (c = 0) 51.074.1103131150170219267368413454492526 clim (mm) 90807060606060607070707070 FRd (c clim) 183203222242261281330375423463500534566 125x65x15 166 FRd (c = 0) 45.168.798.7122142161210259357453498540579 clim (mm) 80706060606060606060606060 FRd (c clim) 165184204223243262311360454503544583619 100x50x10 117 FRd (c = 0) 33.755.983.2101119136181225314403460500536 clim (mm) 60505050505050505050505050 FRd (c clim) 126143161179197214259303392455497534568

Advance® and UKPFC are trademarks of Tata Steel. A fuller description of the relationship between Parallel Flange Channels (PFC) and the Advance® range of sections manufactured by Tata Steel is given in note 12. If c < clim, then use FRd value for c = 0. Resistances assume no eccentricity of the applied force relative to the web.

FOR EXPLANATION OF TABLES SEE NOTE 6.

z z yy ss c 346
347
348
349
350
351
352
353
354
355

UNIVERSAL BEAMS

Advance® UKB

14400144001440014400144001440014300142001410014000138001370013600 1340012200 138001300012200 12600126001260012600126001260012500124001230012200121001200011900 11800107009350 12100114001060098409090 10600106001060010600106001050010500104001030010200102001010010000 9860899078906620 10100952088608160747068306280 9530953095309530953095009440937093009230916090809000 8850801069605760 9120854079107240655059205370 8320832083208320832082908230817081108050798079207840 7680690059304840 794074206840620055604960 16500165001650016500165001640016300161001600015900157001560015400 1610015300 1630015700 14300143001430014300143001420014100140001390013700136001350013400 14000132001240011500 1410013500130001230011700

COMPRESSION S355 / Advance® 355
BS EN 1993-1-1:2005 BS 4-1:2005 356

11800118001180011800118001170011600115001140011300112001110011000 1100010000 11300106009940 100001000010000100001000099409870979097109630955094609360 935085207490 96109030840077307060 8620862086208620862085608490843083608290822081408060 8030731064105360 826077607200659059705380 7530753075307530753074707420736073007240717071007030 6990634055204580 7210676062505690511045604070 9020902090209020899089208840877086908610852084308330 838076106630 86108070749068706260 7460746074607460743073707310725071807120704069706890 6910625054204470 712066506140559050304510 6620662066206620659065406490643063706310625061806110 6120552047603900 631058905430491043803890 7980798079807980791078407760768076007510742073207220 72806470 752069906420 6800680068006800674066806620655064806410633062406150 619054904600 6410594054204880 5560556055605560551054605410536053005240518051105030 505044603720 524048404390391034403040 5090509050905090504050004950490048504790473046704600 4610405033502630 478044103980351030602660

357

6980698069806950688068106730665065706480638062706150 63205570 654060505530 6090609060906060600059405870580057305650556054705370 55104850 5700526047804300 5480548054805450540053405290522051605090501049304840 496043603610 51304730429038203400 4780478047804760471046604610456045004440437043004220 431037803100 44704110370032702870 75907590759075107430734072507150704069206790 7150 72806850 6100610061006040598059105830575056705570547053605230 576053004740 58505500512047204310 5760576057605690563055605490541053205230512050104880 5100 53104860 5010501050104960490048504780471046404560447043704270 44403800 462042103780 4450445044504400435043004240418041204040397038803780 39303360 4100372033102910 3990399039903950390038503800375036903620355034603370 351029602310 3660331029202520

358

UNIVERSAL BEAMS Advance® UKB 3910391039003860381037703710366036003530346033803290 3120 34102960 3590359035803540350034503400335032903230316030802990 2820 312026802230 3080308030803040301029702930288028402780272026602580 24101730 267022701870 64306430640063206230614060505940 6080 6170 5150515051205050498049104830 452045204490443043704300423041604070397038603730 3900 41003700 4120412041004040399039303870380037203630353034203290 3560 37303360 3760376037303680363035803520345033803300321031002980 32302660 340030402650 3310331032803240319031503090303029702890281027202610 28302300 298026502280

COMPRESSION S355 / Advance® 355
BS EN 1993-1-1:2005 BS 4-1:2005 359

UNIVERSAL BEAMS Advance® UKB 3370337033403300325032003150309030202950286027702660 2610 28902480 2960296029402900286028102760271026502580250024102310 2250 25202120 2520252025002470243023902350230022502190213020501970 1900 213017701430 420042004140 37703770371036503590352034403350 3360 3470347034203360330032403160308029802870 2900 3080 3090309030402990294028802820275026602570245023302190 2590 27302410 2740274027002650261025602500243023602270217020601940 22901800 242021201810

COMPRESSION S355 / Advance® 355
BS EN 1993-1-1:2005 BS 4-1:2005 360

346034603460346034503430340033503290322031503070 3240 33203130 3040304030403040304030202990295028902840277027002620 28402600 2920275025702390 2770277027702770276027402720268026302580252024502370 258023502070 26502490232021401960 2390239023902390239023702360232022802230218021202060 2230204017901500 229021502000184016701510 2030203020302030203020202000197019301890185018001740 1890172015001250 1950182016901540138012401110 32203220322032203200318031503090302029502860 30902880 31402980 2860286028602860285028202800275026902620255024602350 274025602340 2790265025002350 2500250025002500249024702440240023502290223021502060 2400224020501830 243023102180204018901750 2230223022302230221021902170213020902040198019101820 2130198018101600 216020501930180016601520

361

2200220022002200218021602140210020602010195018801790 203018201570 2090195018001640 1820182018201820181018001780175017101670162015701500 1690152013101080 173016201490135012101080979 1500150015001500149014701460143014001370133012801230 137012301050846 1420132012001080952839743 2470247024702460244024202390234022702200 23602200 24002270 217021702170216021402120210020501990193018501760 207019201750 2100199018701740 1880188018801870185018401820177017301670160015201420 179016601510 18201720161014901370 1600160016001590158015601540151014701420136012901200 14401260 1490137012401110 131013101310130012901270126012301200116011101050980 11701010823 12201110998878768

362

2000200020001980196019301910185017901700 19101770 193018301720 171017101710169016701650163015901530146013701270 1630152013801220 16501560146013601250 16101610161015901570155015301480 1490 13801380138013601350133013101270122011601090 1160 12401110 115011501150113011201110109010601020965903830 962 1030912792 988988986975963951938908872827771706 815 879772657

363

16501650 137013701360134013201290 1280 1300 1240124012301210 1090109010801060104010301010 934934924910896880863821 829

364
365
366
367
368
369
370
371

2140203018901700150013201160899709570467389329 2200220022002200220022002200220022002200220022002200 1940184017101530136011901050809637512420350296 1910191019101910191019101910191019101910191019101910 167015901480134011901050927721571460378315267 1560156015601560156015601560156015601560156015601560

12001090935788660555470346264207167137115 1280128012801280128012801280128012801280128012801280 90983672561752144037427721216713511193.1 887887887887887887887887887887887887887 67363055648141235230122617413811292.477.6 608608608608608608608608608608608608608

73662450540532726822215911992.473.860.250.1 817817817817817817817817817817817817817 60051341933727322418613410078.062.350.942.3 618618618618618618618618618618618618618 41936930925420917314510579.762.349.940.934.1 389389389389389389389389389389389389389 48538429422717914311782.661.147.037.330.325.1 573573573573573573573573573573573573573 37229823118014211594.066.349.237.930.124.520.3 398398398398398398398398398398398398398

372

33625519014411289.172.550.537.228.522.518.215.1 396396396396396396396396396396396396396 27621416212496.577.263.044.132.525.019.816.013.3 305305305305305305305305305305305305305 27820214610883.065.552.936.526.720.416.113.010.7 367367367367367367367367367367367367367 24717412491.269.554.644.030.322.116.813.210.68.77 347347347347347347347347347347347347347 18213093.469.252.941.733.723.217.012.910.28.216.77 224224224224224224224224224224224224224 19413393.067.851.440.232.322.116.112.29.577.716.34 281281281281281281281281281281281281281 16711580.759.044.835.028.219.314.010.78.376.755.55 225225225225225225225225225225225225225 12781.855.439.729.723.118.412.59.026.825.334.293.52 207207207207207207207207207207207207207 10467.946.233.124.819.315.410.57.575.724.483.602.96 157157157157157157157157157157157157157

73.444.529.320.615.211.79.286.244.483.372.632.111.73 144144144144144144144144144144144144144 58.035.623.616.612.39.507.545.083.652.752.151.721.41 101101101101101101101101101101101101101

373

16201490135011701000854731547422334270223187 1710171017101710171017101710171017101710171017101710 125011601060933804691595449348276224186156 1240124012401240124012401240124012401240124012401240 860805745674591515449344270216176146124 767767767767767767767767767767767767767 96081867553643035028920615411995.077.564.3 1070107010701070107010701070107010701070107010701070 66958249740532927122616312295.376.262.351.8 671671671671671671671671671671671671671 49143437731626121718213210078.462.951.543.0 446446446446446446446446446446446446446

62852440631524920016411685.866.152.442.635.3 733733733733733733733733733733733733733 47240232125320216413595.771.355.143.835.729.6 507507507507507507507507507507507507507

53641430322717513911278.057.243.734.527.923.0 686686686686686686686686686686686686686 40732624418514411493.265.047.936.729.023.519.4 475475475475475475475475475475475475475

40731122917213310585.359.243.433.226.221.217.5 509509509509509509509509509509509509509 28923217513410483.468.047.635.126.921.317.314.3 323323323323323323323323323323323323323

374

29421916012092.973.659.741.430.423.218.314.812.2 356356356356356356356356356356356356356

25618012893.871.556.145.231.122.617.213.510.99.00 338338338338338338338338338338338338338 20915110980.461.648.539.127.019.715.011.89.557.87 259259259259259259259259259259259259259 18411677.755.341.231.925.417.212.49.337.295.854.80 304304304304304304304304304304304304304 12482.556.540.730.623.819.113.09.407.115.574.483.68 168168168168168168168168168168168168168 18512485.361.746.636.329.119.814.410.98.546.875.65 270270270270270270270270270270270270270

85.650.632.923.016.913.010.26.864.923.692.882.301.88 172172172172172172172172172172172172172 11874.950.435.926.820.716.511.28.076.094.763.823.14 191191191191191191191191191191191191191 11572.248.234.325.519.715.710.67.645.764.503.612.96 195195195195195195195195195195195195195 88.756.538.027.120.215.712.58.456.104.603.602.892.37 139139139139139139139139139139139139139

62.836.923.916.712.39.387.414.963.552.672.081.661.36 133133133133133133133133133133133133133

375

16201490135011701000854731547422334270223187 1710171017101710171017101710171017101710171017101710 125011601060933804691595449348276224186156 1240124012401240124012401240124012401240124012401240 860805745674591515449344270216176146124 767767767767767767767767767767767767767 96081867553643035028920615411995.077.564.3 1070107010701070107010701070107010701070107010701070 66958249740532927122616312295.376.262.351.8 671671671671671671671671671671671671671 49143437731626121718213210078.462.951.543.0 446446446446446446446446446446446446446

62852440631524920016411685.866.152.442.635.3 733733733733733733733733733733733733733 47240232125320216413595.771.355.143.835.729.6 507507507507507507507507507507507507507

53641430322717513911278.057.243.734.527.923.0 686686686686686686686686686686686686686 40732624418514411493.265.047.936.729.023.519.4 475475475475475475475475475475475475475

40731122917213310585.359.243.433.226.221.217.5 509509509509509509509509509509509509509 28923217513410483.468.047.635.126.921.317.314.3 323323323323323323323323323323323323323

376

29421916012092.973.659.741.430.423.218.314.812.2 356356356356356356356356356356356356356

25618012893.871.556.145.231.122.617.213.510.99.00 338338338338338338338338338338338338338 20915110980.461.648.539.127.019.715.011.89.557.87 259259259259259259259259259259259259259 18411677.755.341.231.925.417.212.49.337.295.854.80 304304304304304304304304304304304304304 12482.556.540.730.623.819.113.09.407.115.574.483.68 168168168168168168168168168168168168168 18512485.361.746.636.329.119.814.410.98.546.875.65 270270270270270270270270270270270270270

85.650.632.923.016.913.010.26.864.923.692.882.301.88 172172172172172172172172172172172172172 11874.950.435.926.820.716.511.28.076.094.763.823.14 191191191191191191191191191191191191191 11572.248.234.325.519.715.710.67.645.764.503.612.96 195195195195195195195195195195195195195 88.756.538.027.120.215.712.58.456.104.603.602.892.37 139139139139139139139139139139139139139

62.836.923.916.712.39.387.414.963.552.672.081.661.36 133133133133133133133133133133133133133

377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407

UNIVERSAL COLUMNS

AXIAL FORCE & BENDING S355 / Advance® 355
BS EN 1993-1-1:2005 BS 4-1:2005 408
Advance® UKC 1.00 1.00 1.00 1.00 1.00 1.00 1.00
409
410
411
412
413

UNIVERSAL COLUMNS

UKC

AXIAL FORCE & BENDING S355 / Advance® 355
BS EN 1993-1-1:2005 BS 4-1:2005 414
Advance®
1.00 1.00 1.00 1.00 1.00 1.00 1.00
415
416
417
418
419
420
421
422
423
424

36.342.448.454.560.572.690.8121151182 68.376.885.4102128171213256 96.5116145193241290 59.8 144180239299359 72.486.9101 217290362434 bold italic

S355
BOLT RESISTANCES BS EN 1993-1-8:2005 BS EN ISO 4016 BS EN ISO 4018 425

60.572.690.8121151182 42.751.259.7 128171213256 48.357.967.677.286.9 193241290 59.871.883.895.8108120 299359 72.486.9101116130145174 434 63.774.384.995.5106127159212265318 125139167209279348418 85.5 205256342427513 108130 325434542651 128154179205 513641769

S355
BOLT RESISTANCES BS EN 1993-1-8:2005 BS EN ISO 4014 BS EN ISO 4017 426
bold italic

60.572.690.8121151182 42.751.259.7 128171213256 48.357.967.677.286.996.5 241290 59.871.883.895.8108120 299359 72.486.9101116130145174217 63.774.384.995.5106127159212265318 139167209279348418 85.5 205256342427513 108130 325434542651 128154179205 513641769

S355
BOLT RESISTANCES BS EN 1993-1-8:2005 BS EN ISO 4014 BS EN ISO 4017 427
bold italic

12.1 36.342.454.572.6103133163 8.517.125.6 68.393.9137179222 09.719.329.038.6 96.5145193241 0012.023.935.947.9 168227287 0007.221.736.265.2 253326 bold italic

S355
BOLT RESISTANCES BS EN 1993-1-8:2005 BS EN ISO 4016 BS EN ISO 4018 428

12.118.224.2 72.6103133163 8.517.125.634.142.751.2 137179222 09.719.329.038.648.367.6 193241 0012.023.935.947.971.8108 287 0007.221.736.265.2109181 21.2 63.774.395.5127180233286 13.927.941.855.7 153223292362 017.134.251.368.485.5 256342427 0021.743.465.186.8130 304412521 00012.838.564.1115192 449577 bold italic

S355
BOLT RESISTANCES BS EN 1993-1-8:2005 BS EN ISO 4014 BS EN ISO 4017 429

12.118.224.2 72.6103133163 8.517.125.634.142.751.2 137179222 09.719.329.038.648.367.696.5 241 0012.023.935.947.971.8108 287 0007.221.736.265.2109181 21.2 63.774.395.5127180233286 13.927.941.855.7 153223292362 017.134.251.368.485.5 256342427 0021.743.465.186.8130 304412521 00012.838.564.1115192 577 bold italic

S355
BOLT RESISTANCES BS EN 1993-1-8:2005 BS EN ISO 4014 BS EN ISO 4017 430
S355 dAFF dA BF F Ft BOLT RESISTANCES BS EN 1993-1-8:2005 BS EN 14399:2005 EN 1090:2008 431
S355 dAFF dA BF BOLT RESISTANCES F Ft BS EN 1993-1-8:2005 BS EN 14399:2005 EN 1090:2008 432
S355 dA BOLT RESISTANCES BS EN 1993-1-8:2005 BS EN 14399:2005 EN 1090:2008 433
S355 dA BOLT RESISTANCES BS EN 1993-1-8:2005 BS EN 14399:2005 EN 1090:2008 434
S355 dAFF dA BF BOLT RESISTANCES F Ft BS EN 1993-1-8:2005 BS EN 14399:2005 EN 1090:2008 435
S355 dAFF dA BF Ft BOLT RESISTANCES F BS EN 1993-1-8:2005 BS EN 14399:2005 EN 1090:2008 436
S355 dA BOLT RESISTANCES BS EN 1993-1-8:2005 BS EN 14399:2005 EN 1090:2008 437
S355 dA BOLT RESISTANCES BS EN 1993-1-8:2005 BS EN 14399:2005 EN 1090:2008 438
439
440
BCSA Publication No. 55/13

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.