C
H
A
P
T
E
R
2
Motion Along a Straight Line 2-1 POSITION, DISPLACEMENT, AND AVERAGE VELOCITY Learning Objectives After reading this module, you should be able to …
2.01 Identify that if all parts of an object move in the same direction and at the same rate, we can treat the object as if it were a (point-like) particle. (This chapter is about the motion of such objects.) 2.02 Identify that the position of a particle is its location as read on a scaled axis, such as an x axis. 2.03 Apply the relationship between a particle’s displacement and its initial and final positions.
2.04 Apply the relationship between a particle’s average velocity, its displacement, and the time interval for that displacement. 2.05 Apply the relationship between a particle’s average speed, the total distance it moves, and the time interval for the motion. 2.06 Given a graph of a particle’s position versus time, determine the average velocity between any two particular times.
Key Ideas ● The position x of a particle on an x axis locates the particle
with respect to the origin, or zero point, of the axis. ● The position is either positive or negative, according to which side of the origin the particle is on, or zero if the particle is at the origin. The positive direction on an axis is the direction of increasing positive numbers; the opposite direction is the negative direction on the axis. ● The displacement - x of a particle is the change in its
position: -x " x2 $ x 1. Displacement is a vector quantity. It is positive if the particle has moved in the positive direction of the x axis and negative if the particle has moved in the negative direction.
●
● When a particle has moved from position x1 to position x2
during a time interval -t " t2 $ t1, its average velocity during that interval is -x x2 $ x1 . " vavg " -t t2 $ t1 ● The algebraic sign of vavg indicates the direction of motion (vavg is a vector quantity). Average velocity does not depend on the actual distance a particle moves, but instead depends on its original and final positions. ● On a graph of x versus t, the average velocity for a time in-
terval -t is the slope of the straight line connecting the points on the curve that represent the two ends of the interval. ● The average speed savg of a particle during a time interval -t depends on the total distance the particle moves in that time interval: total distance savg " . -t
What Is Physics? One purpose of physics is to study the motion of objects—how fast they move, for example, and how far they move in a given amount of time. NASCAR engineers are fanatical about this aspect of physics as they determine the performance of their cars before and during a race. Geologists use this physics to measure tectonic-plate motion as they attempt to predict earthquakes. Medical researchers need this physics to map the blood flow through a patient when diagnosing a partially closed artery, and motorists use it to determine how they might slow sufficiently when their radar detector sounds a warning. There are countless other examples. In this chapter, we study the basic physics of motion where the object (race car, tectonic plate, blood cell, or any other object) moves along a single axis. Such motion is called one-dimensional motion. 13